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Abstract

We consider a dynamic learning problem where a decision maker sequentially selects a control

and observes a response variable that depends on chosen control and an unknown sensitivity

parameter. After every observation, the decision maker updates her/his estimate of the unknown

parameter and uses a certainty-equivalence decision rule to determine subsequent controls based

on this estimate. We show that under this certainty-equivalence learning policy the parameter

estimates converge with positive probability to an uninformative fixed point that can differ from

the true value of the unknown parameter; a phenomenon that will be referred to as incomplete

learning. In stark contrast, it will be shown that this certainty-equivalence policy may avoid

incomplete learning if the parameter value of interest “drifts away” from the uninformative fixed

point at a critical rate. Finally, we prove that one can adaptively limit the learning memory to

improve the accuracy of the certainty-equivalence policy in both static (estimation), as well as

slowly varying (tracking) environments, without relying on forced exploration.

Keywords: Dynamic control, sequential estimation, certainty equivalence, incomplete learning.

1 Introduction

1.1 Background and overview of contribution

Background and motivation. Dynamic decision making under uncertainty arises in many ap-

plication domains. For example, consider a seller who is uncertain about the price-elasticity of the

demand for its product and can dynamically adjust prices to learn about the elasticity of demand,

or a physician who is uncertain about how a drug’s dosage will treat a medical condition and makes

sequential observations on patient outcomes to learn about that effect; see §3 for detailed models of

these and other applications. A common strategy in this context is to first estimate the unknown

effect (e.g., the price-elasticity of demand, or the drug’s treatment effect) and then make a decision

that optimizes an objective function that is parameterized by the estimate. The repetitive use of

this estimate-and-optimize routine at every decision epoch provides a dynamic learning policy. A

salient feature of this type of policy is that it optimizes as if there is no estimation, and estimates

as if there is no optimization; a principle often referred to as certainty-equivalence. This paper

is concerned with the question whether (and when) learning “takes care of itself,” as implicitly

stipulated by this class of policies.
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More formally, we consider a dynamic control problem where the response structure is a function

of the decision maker’s controls and an unknown sensitivity parameter. We analyze learning policies

that iteratively estimate the unknown parameter and on the basis of this choose controls via a

certainty-equivalence decision rule, which would have been optimal if the unknown parameter were

equal to its estimate with certainty. A natural question in this context is whether the resulting

sequence of parameter estimates eventually, as more and more observations are collected, reveals

the true nature of the response function parameter. Failure to do so is usually referred to as

inconsistency of the estimates, and our primary focus is on an extreme form of inconsistency called

incomplete learning, which occurs if the parameter estimates not only fail to converge to the true

value of the unknown parameter but in fact converge to an incorrect value. In this paper, we

study environments in which the incomplete learning phenomenon is observed, and elucidate when

and how certainty-equivalence decision making can avoid incomplete learning. Moreover, when

incomplete learning can be avoided, we are interested in the asymptotic accuracy and tracking

performance of certainty-equivalence estimates.

As will be discussed in detail below, antecedent literature related to incomplete learning has

almost exclusively focused on avoiding this phenomenon via forced exploration (i.e., carefully sub-

stituting information collection for inference purposes, for the decisions that would be otherwise

prescribed by the learning policy). Roughly speaking, forced exploration judiciously turns “on and

off” a given decision rule to improve inference. In contrast to the literature on forced exploration,

the question we are interested in is how the iterative and uninterrupted use of a certainty-equivalence

decision rule, which is a passive learning approach that does not rely on forced exploration, can

avoid the incomplete learning phenomenon.

Overview of main results. Our study makes two contributions to the literature on dynamic

decision making under uncertainty.

The first concerns the nature of incomplete learning. We prove that in a static environment

the estimates of a certainty-equivalence learning policy can fail to converge to the true value of

the unknown model parameter with positive probability (see Example 1 and Theorem 1). Roughly

speaking, a certainty-equivalence learning policy can stop learning prematurely. This type of obser-

vation is not new in and of itself. Lai and Robbins (1982) were the first to show that the controls

of an iterated least squares policy can converge to the boundary of the feasible set of controls,

disproving a conjecture of Anderson and Taylor (1976); see Prescott (1972) for an earlier reference,

and den Boer and Zwart (2014) for a more recent one, as well as other follow-up work discussed in

§1.2. However, the analysis of incomplete learning in these papers suggests that it is a consequence

of the possibly problematic boundaries of feasible control sets. The setting considered in this paper

shows that incomplete learning occurs due to the controls and estimates of a certainty-equivalence

policy converging to an uninformative equilibrium, which has nothing to do with boundaries, but
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rather is a fixed point (attractor) of the dynamical system induced by the response function and

the certainty-equivalence rule.

As incomplete learning is identified with a fixed point of a dynamical system, an obvious question

is whether this is a stable equilibrium point (i.e., does perturbing this point result in the dynamical

system being “attracted” back to it, or diverging from it). In the context of dynamic estimation

and control, it has been established that if the cumulative “variation” of the controls is forced to

grow over time at a judiciously selected rate then the corresponding estimate sequence would be

consistent (this is a classical observation that pertains to forced exploration, further discussed in

§1.2). Along similar lines of thinking, one might intuitively expect that if the unknown parameter

of the response function is changing over time such that its cumulative variation grows at a suitable

rate then incomplete learning should not happen. However, our analysis reveals that this intuition

is incorrect (see Example 2 and Theorem 2). Thus, variation in controls and variation in unknown

parameters have distinct impacts on learning; small perturbations to the control sequence are

effective in mitigating incomplete learning, whereas similar fluctuations in the unknown parameter

sequence do not rule out incomplete learning (see also the discussion following Theorem 2 for

further details). Expanding on this result, we also investigate the question whether there exists

a changing environment in which incomplete learning can be avoided without using any forced

exploration. For example, what happens if the unknown parameter varies over time in a manner

that can “push” the trajectory of estimates and controls “away” from the attractor discussed

above. To that end, we identify the following phenomenon: if the parameter drifts away from the

uninformative equilibrium faster than some critical rate, then incomplete learning is eliminated in

a suitable sense (see Example 4 and Theorem 3). In this setting, the changes in the “environment”

facilitate dynamic learning.

Motivated by these observations, we propose a general adaptive scheme that can mitigate incom-

plete learning in both static as well as “slowly varying” environments. For that purpose, we limit the

memory of certainty-equivalence learning by adaptively choosing a sequence of estimation windows.

In Theorem 5, we prove that such a policy avoids incomplete learning in a fairly general class of static

and changing environments, without relying on any forced exploration. Moreover, we show that

limiting estimation memory achieves asymptotic accuracy in static environments (see Theorem 6),

and exhibits good tracking performance in slowly changing environments (see Theorem 7).

Exposition, conventions, and organization of the paper. Throughout the sequel, we will

use some modeling elements primarily for illustrative purposes. For example, we will focus on a

linear-Gaussian response model that will greatly facilitate development of basic ideas and intuition

and allow us to study both static and drifting parameter sequences, deferring treatment of a general

response model to §6. We will also employ nonlinear least squares estimation, and provide an

extension to more general estimation techniques in §7. The remainder of this paper is organized as
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follows. This section concludes with a review of related literature. Section 2 describes our model and

the main salient features of the problem studied in this paper, and §3 presents illustrative examples

of the model. Our main results are presented in §§4-6. In §4, we show several negative and positive

outcomes driven by certainty-equivalence learning policies in static and changing environments in

the context of a linear-Gaussian model, and in §5, we extend our analysis of incomplete learning in

static environments to a family of nonlinear models. In §6, we study certainty-equivalence learning

with limited memory as a general method for eliminating the negative outcomes and guaranteeing

“good” performance in static and in slowly changing environments. We provide our concluding

remarks in §7. All proofs are in appendices.

1.2 Origins of certainty-equivalence and related literature

There is a rich academic literature on multiperiod control and sequential estimation problems,

especially in the area of adaptive control (see, e.g., Åström and Wittenmark 2013), stochastic

approximation (see, e.g., the survey paper by Lai 2003), and reinforcement learning (see, e.g.,

Kaelbling, Littman and Moore 1996, Gosavi 2009, for comprehensive surveys): to avoid exhaustively

surveying said literature, we will focus on work which is closely related to, and serves best to

motivate, the problems studied in this paper.

The principle of certainty-equivalence is a widely used heuristic in the design of adaptive control

policies. It can be viewed as an “extreme point” in the space of dynamic programming-based

policies. The significant computational challenge there, primarily due to the curse of dimensionality,

is further exacerbated in problems with parameter uncertainty. One approach to deal with this

is model predictive control, which uses a limited rolling horizon to account for the evolution of

controls and estimates (see the survey paper by Garcia, Prett and Morari 1989). A particular

form of model predictive control is the restriction of policy space to what is known as limited

lookahead policies, which reduce the computational burden by solving the dynamic programming

recursion for a shorter time horizon, leading to a smaller-scale problem. For instance, a simple

and commonly used policy within this family is the one-step lookahead policy that needs to iterate

the dynamic programming recursion only once. An even more extreme policy is the certainty-

equivalence control, which is a myopic policy that does not look ahead at all, but instead focuses

only on optimizing immediate rewards. To be precise, the certainty-equivalence control operates

under the assumption that the decision maker’s beliefs or estimates on an unobservable system

state will remain the same in the future, as if these beliefs or estimates are certain values rather

than random variables. Early examples of estimation methods in this context typically involve least

squares estimation of the parameters of a linear dynamical system, referred to as linear quadratic

estimation, or more generally as the Kalman-Bucy filter (see Kalman and Bucy 1961). As explained

above, the certainty-equivalence control separates the dual goals of estimation and optimization,

and is known to perform well in some of the fundamental dynamic control problems such as the
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linear quadratic Gaussian (LQG) control problem (see Åström and Wittenmark 2013, chap. 4).

These appealing features have brought forth certainty-equivalence control as a viable heuristic in

the broader context of dynamic learning problems.

A prototypical and widely studied example in this context is the multiarmed bandit problem,

in which a decision maker attempts to find the best option within a finite feasible action set by

sequentially sampling and obtaining noisy observations on the expected rewards of sampled options,

also referred to as “arms”; see Thompson (1933) and Robbins (1952) for the origin of this literature.

In this context it is clear that if one employs certainty-equivalence, the policy would sample the

arm with the highest empirical mean. Because sampling an arm does not provide information

about other arms, it is not difficult to see that in most settings this policy will get stuck on an

inferior arm with positive probability. Robbins (1952) identified this issue and proposed the use

of forced exploration, defined as departure from the certainty-equivalence decision rule on a pre-

scheduled sequence of experiments. Lai and Robbins (1985) refined this proposal by introducing an

adaptive version of forced exploration based on upper confidence bounds (UCB), which does not

pre-schedule experimentation; see also Auer, Cesa-Bianchi and Fischer (2002) for further study of

these UCB policies as well as randomization-based alternatives. Rothschild (1974) asked a slightly

different question in this context. If one were to study the multiarmed bandit problem within a

Bayesian infinite horizon discounted formulation, is the optimal policy going to sample the best

arm infinitely often? While this is a property that seems natural to expect, it turns out that this

need not hold, and the optimal action is not identified with positive probability. Rothschild (1974)

called this phenomenon “incomplete learning” (see also Brezzi and Lai 2000, 2002, McLennan 1984),

and we use this term in our paper, with slight abuse of terminology, to describe the inability of

certainty-equivalence to identify the underlying parameter (and optimal action).

Another research stream related to incomplete learning focuses on the consistency of iterated least

squares in multiperiod control and estimation. As mentioned in §1.1, an early study by Anderson

and Taylor (1976) provided simulation results that demonstrate the consistency of iterated least

squares in a multiperiod control problem, and following this, Lai and Robbins (1982) derived a

counterexample where a control sequence based on iterated least squares can incorrectly converge

to the boundary of the feasible control set. More recently, den Boer and Zwart (2014) proved a

similar incomplete learning result in a dynamic pricing context. In a sequence of papers, Lai and

Robbins (1979, 1981, 1982) derived conditions that ensure the consistency of iterated least squares

and stochastic approximation based schemes in similar settings.

In the context of adaptive control, Borkar and Varaiya (1979, 1982) studied the control of discrete-

state-space Markov chains whose transition probabilities depend on an unknown parameter. They

derived conditions for identifiability, and showed that adaptive control rules may not necessarily

identify the unknown parameter that governs the Markov chain transition probability. The broader
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domain of dynamic learning and adaptive control also includes variants of certainty-equivalence poli-

cies that use different forms of forced exploration. A prominent example is ǫ-greedy exploration,

which prescribes choosing a random control with probability ǫ at every decision opportunity and us-

ing certainty-equivalence control otherwise (see Sutton and Barto 1998, chap. 5). Another approach

is to employ extensions of the aforementioned UCB policies when the feasible control set is continu-

ous rather than discrete. One obvious approach is to quantize the feasible control set and treat each

as an “arm” within a multiarmed bandit problem (see, e.g., Auer, Ortner and Szepesvári 2007);

Thompson sampling (Thompson 1933) has recently received a lot of attention as a Bayesian-based

UCB alternative (see, e.g., Agrawal and Goyal 2012). In control theory, dithering signals is used for

maintaining system stability by adding random perturbations on top of the certainty-equivalence

control sequence (see Åström andWittenmark 2013, chap. 10). There has also been a flurry of recent

work in revenue management that considers dynamic pricing policies that might be described as

semi-myopic yet focuses on avoiding incomplete learning via repetitive use of forced exploration (see,

e.g., Lobo and Boyd 2003, Harrison, Keskin and Zeevi 2012, Broder and Rusmevichientong 2012, den

Boer and Zwart 2014, Keskin and Zeevi 2014, den Boer 2014, Besbes and Zeevi 2015, Cheung,

Simchi-Levi and Wang 2017).

In terms of formulation, our paper has several distinguishing features: (i) the dynamical system

we analyze has a continuous and unbounded state space; (ii) there is a (possibly unbounded)

continuum of feasible controls; (iii) the unknown parameter that governs the system evolution

can be static or changing over time; and (iv) we introduce and study adaptive and non-stationary

control policies (e.g., adaptively limiting the memory in estimation) as a way to mitigate incomplete

learning. In that way our work sheds light on the boundary of environments in which passive

learning (i.e., absent forced exploration) works well. As alluded to earlier, the statistical inference

methods we employ in this paper are related to nonlinear least squares that is first developed and

analyzed in Marquardt (1963) and Jennrich (1969), and studied in detail by Wu (1981) and Lai

(1994).

2 Problem Formulation

2.1 The model and preliminaries

The observation process and certainty-equivalence control. Consider a dynamic control

problem in which a decision maker chooses controls x1, x2, . . . from a set X ⊆ R over a discrete

time horizon. In response to the controls, s/he observes outputs y1, y2, . . . generated according to

the following response model:

yt = f(xt, θ) + ǫt for t = 1, 2, . . . , (2.1)

where θ is an unknown model parameter that can take values in a set Θ ⊆ R, f : X ×Θ → R is

a continuously differentiable function, and {ǫt, t = 1, 2, . . .} are unobservable noise terms, which
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are independent and identically distributed random variables with a density hǫ(·) and support R.

We assume that the mean and the variance of these noise terms are zero and σ2 respectively. The

unknown parameter θ represents the sensitivity of the responses to controls. To accommodate the

largest possible set of values for θ, we will assume that Θ = R unless otherwise stated (see §7 for a

discussion of the case where Θ is a strict subset of R).

In the first period, the decision maker deterministically chooses the value of x1 to generate

an initial observation. (The case where several initial observations are taken at different points

x1, x2, . . . can be treated similarly.) After that, at the end of every period t ≥ 1, the decision maker

aims to compute the least squares estimate θ̂t+1 that minimizes St(θ) =
∑t

s=1

(
ys − f(xs, θ)

)2
. In

general, there need not be a closed-form solution to this optimization problem, and we stipulate

that θ̂t+1 is computed by solving the first-order optimality condition:

∂St(θ̂t+1)

∂θ
= 0, [estimation] (2.2)

where ∂St(θ)/∂θ = −2
∑t

s=1

(
ys − f(xs, θ)

)
fθ(xs, θ), and fθ(x, θ) = ∂f(x, θ)/∂θ. We assume the

existence of a unique solution to (2.2). (If Θ is a strict subset of R, then θ̂t+1 is computed by

projecting the solution to (2.2) onto Θ.)

Remark 1 The use of least squares estimation in the computation of θ̂t+1 is to make the exposition

concrete. The analysis in §6 is valid for any M-estimator, with φ : R2t → Θ such that θ̂t+1 =

φ(x1, y1, . . . , xt, yt) = argmaxθ
∑t

s=1 λ
(
ys − f(xs, θ)

)
, and λ(·) is a suitably chosen score function.

See §7 for a detailed discussion of the extension from least squares to M-estimation.

Following the estimation in period t, the decision maker chooses the control in period t+1 as follows:

xt+1 = ψ(θ̂t+1), [control] (2.3)

where ψ : Θ → X is a control function that satisfies the following properties.

Definition (admissible control functions) A function ψ : Θ → X is said to be an admissible

control function if ψ(·) is differentiable and monotone, and satisfies ℓ ≤ |ψ′(θ)| ≤ L for all θ ∈ Θ,

where 0 < ℓ ≤ L <∞. The set of all admissible control functions is denoted by Ψ.

The value of ψ(θ) is interpreted as the best control the decision maker could have chosen in period

t+ 1 if s/he had perfect knowledge of θ. However, in the absence of this information the mapping

to action space replaces θ with the estimate θ̂t+1 in (2.3). The monotonicity of ψ(·) implies that

the control is always sensitive to the unknown model parameter, and the decision maker reacts

to more responsive systems in a particular direction, by either increasing or decreasing controls

(see the applications in §3 for a more detailed explanation of how such monotonicity conditions

naturally arise in practice). Unless otherwise noted, we assume without loss of generality that ψ(·)
is increasing, as the analysis for case where ψ(·) is decreasing follows by symmetry. Because ψ(·)
is monotone it is invertible, and we denote by ψ−1(·) its inverse.
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The iterative use of equations (2.2) and (2.3), which interlace estimation and control, describes

a dynamical system that induces a family of probability measures on the sample space of response

sequences {yt, t = 1, 2, . . .}. Given θ ∈ Θ, let Pθ be a probability measure with density

hθ(y1, . . . , yt) =

t∏

s=1

hǫ
(
ys − f(xs, θ)

)
for y1, . . . , yt ∈ R, (2.4)

where hǫ(·) is the density of the random variables ǫt, and {xt, t = 1, 2, . . .} is the control sequence

formed under the decision rule (2.3) and responses y1, y2, . . .

Performance metric and formulation for drifting parameter sequences. In the sub-

sequent sections, we will also consider a more general time-varying version of the response model

(2.1), which is expressed as follows:

yt = f(xt, θt) + ǫt for t = 1, 2, . . . , (2.5)

where θ = {θt, t = 1, 2, . . .} is a sequence of unknown model parameters taking values in Θ ⊆ R.

Replacing θ with {θt} in all preceding response equations, one obtains the time-varying counterparts

of our learning problem in static environments. In these time-varying environments, we use the

probability measure Pθ with density hθ(y1, . . . , yt) =
∏t

s=1 hǫ
(
ys − f(xs, θs)

)
for y1, . . . , yt ∈ R.

We measure the inaccuracy of the estimates θ̂t as normalized deviations from unity,

∆t :=

∣∣∣∣ 1−
θ̂t
θt

∣∣∣∣ , (2.6)

where θt 6= 0 for all t. In settings where {θt} is static, the convergence of {θ̂t} to the true value

of the unknown parameter θ (in which case we say θ̂t is consistent) is tantamount to {∆t → 0}.
Given ε > 0, we say that the estimate θ̂t is ε-accurate if

∆t ≤ ε, (2.7)

and the estimate sequence {θ̂t} is asymptotically ε-accurate if

Pθ

{
θ̂t is ε-accurate eventually

}
= Pθ

{⋃∞
n=1

⋂∞
t=n{∆t ≤ ε}

}
≥ 1− ε. (2.8)

The preceding definition of asymptotic accuracy is a basic requirement for any consistent estimator

in a static environment, and reflects our focus on the pathwise properties of said estimates. As will

be shown below, there exist several different examples in which {∆t} fails to converge to zero.

2.2 Incomplete learning and certainty-equivalence

The dynamical system in (2.2-2.3) is induced by an iterative process of estimation and optimization.

But, the estimation and optimization steps of this process are executed in isolation, i.e., we estimate

the unknown parameter as if there were no optimization of controls and we choose the controls as

if there were no estimation. For brevity, we call the dynamical system in (2.2-2.3) the certainty-

equivalence learning policy and denote it by C. A fundamental question concerning this policy is

whether learning “takes care of itself” if we carry out estimation and optimization in isolation. To

that end, consider the following illustrative example where the unknown parameter is fixed over

time.

8



Example 1: A static environment. Assume that f(x, θ) = θx for all x ∈ X = R and θ ∈ Θ = R,

and that ǫt
iid∼ Normal(0, σ2) with σ = 3. Let {θt, t = 1, 2, . . .} be a constant sequence with θt = 2.5

for all t. The decision maker sets the initial control as x1 = 1, and subsequently uses the control

function ψ(θ) = −1 + θ.

Figure 1 displays sample paths of {θ̂t} under the certainty-equivalence learning policy C in Example 1.

Interestingly, a substantial portion of the sample paths converge to a parameter value that is dif-

ferent from the true value of the unknown parameter.

t

θ̂t
(a) sample paths of {θ̂t}

0 2500 5000 7500 10000
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4
(b) histogram of θ̂10,000

0 0.5 1 1.5 2 2.5 3
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500

1000

1500

2000
true parameter

spurious fixed point

Figure 1: Certainty-equivalence estimates in another static environment. Panels (a) and (b) depict

sample paths of the estimate sequence {θ̂t}, and the histogram of the estimate in period 10,000, respectively,

generated under the certainty-equivalence learning policy C in Example 1. There are 2,000 sample paths in

total, and on 20% of the sample paths, {θ̂t} converges to 1. The separation in the distribution of estimates

is stable after period 10,000; when we extend the graph in panel (a) up to t = 30,000, we observe that the

same 20% of the sample paths remain around a small neighborhood of 1.

The behavior in Figure 1 suggests that certainty-equivalence control can “stop learning” prema-

turely with positive probability. This phenomenon, which we call incomplete learning, is an extreme

form of asymptotic inaccuracy. To formally define the incomplete learning phenomenon, let us con-

sider how information is collected in the linear-Gaussian setting of Example 1. The choice of the

control xt determines how fast the information accumulates. If xt = 0, then fθ(xt, θ) = xt = 0 and

the estimation equation (2.2) implies that θ̂t+1 = θ̂t; i.e., the estimate stays the same in the follow-

ing period. Letting ζ = ψ−1(0), we note that if θ̂t = ζ at some period t then xt = ψ(θ̂t) = ψ(ζ) = 0,

implying that θ̂t+1 = θ̂t. Repeating this argument we deduce that whenever θ̂t = ζ for some t we

have θ̂s = ζ for all s > t; that is, the estimate sequence {θ̂t} becomes permanently “stuck” at the

fixed point ζ of the dynamical system of estimation and control. In light of this, we hereafter call ζ

the uninformative estimate. Accordingly, we refer to ψ(ζ) = 0 as the uninformative control. (This

definition of the uninformative estimate ζ extends to a fixed point of the general dynamical system

in (2.2-2.3); see §6.1 for details). We define incomplete learning as the convergence of the estimate

sequence {θ̂t} to the uninformative estimate ζ.

Definition (incomplete learning) The sequence of estimates {θ̂t} is said to exhibit incomplete

learning if θ̂t → ζ with positive probability and {θt} does not converge to ζ as t→ ∞.
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Remark 2 (static case) In the case where θt is constant and equal to θ 6= ζ, the above definition

of incomplete learning implies that the sequence of estimates {θ̂t} fails to converge to θ; in other

words, the estimator sequence is not consistent.

The reachability of ζ by the estimates of the certainty-equivalence learning policy plays a key role

in incomplete learning and asymptotic accuracy.

Definition (reachability of the uninformative estimate) Let δ > 0 and ε ∈ [0, 1]. The

uninformative estimate ζ is said to be δ-reachable by {θ̂t} with probability ε if

Pθ

{
|θ̂t − ζ| ≤ δ for some t = 1, 2, . . .

}
= Pθ

{⋃∞
t=1{|θ̂t − ζ| ≤ δ}

}
≥ ε. (2.9)

Note that despite the certainty-equivalence learning policy C being designed primarily for static

environments, it can be also used in changing environments. Motivated by the case of a decision

maker who is oblivious to changes in {θt}, we are also interested in how C would perform if {θt}
can change over time.

Remark 3 We would like to note that inconsistency of parameter estimates can arise also due

to the empirical objective function (e.g., the sum of squared residuals) being multimodal. In this

paper we do not consider this potential source of incomplete learning and hence restrict attention to

settings where the empirical objective defining the estimator has a unique optimizer given by (2.2)

and the estimates of the unknown parameter can be uniquely computed in every period of the

problem. (See also §7 for a discussion that extends least squares to general M-estimation.)

3 Illustrative Examples of the Model

In this section, we present examples of the model presented in §2, with explicit forms of the response

function f(· , ·) and the control function ψ(·). As will be explained below, the antecedent work on

these examples have almost exclusively focused on static environments; time-varying generalizations

of such examples can be constructed by modifying the response as in (2.5). In all of these examples,

the asymptotic estimation accuracy plays an important role in determining whether the decision

maker can ultimately identify ψ(θ), the ideal control under perfect information on the unknown

parameter θ. To be precise, if the decision maker’s estimate sequence {θ̂t}, which is computed via

(2.2), does not converge to θ then the control sequence {xt = ψ(θ̂t), t = 1, 2, . . .} would fail to

converge to ψ(θ). This demonstrates that the inaccuracy of estimates defined in (2.6) is a relevant

performance metric in all the examples below. Consequently, as an extreme form of asymptotic

inaccuracy, incomplete learning is pertinent to these examples. The results in §6 provide a method

that eliminates any possibility of incomplete learning under the certainty-equivalence learning policy

C in these settings.

Dynamic control for eliciting a target response. Let y1, y2, . . . be a sequence of response

variables satisfying yt = θxt + ǫt for t = 1, 2, . . . , where: θ ∈ Θ = [θmin, θmax] is an unknown
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parameter, 0 < θmin < θmax <∞, {ǫt} are independent and identically distributed random variables

with zero mean and variance σ2, and xt ∈ X = R. The decision maker sequentially chooses x1, x2, . . .

to bring y1, y2, . . . as close as possible to some target value y∗. Here the estimation (2.2) is the

projection onto Θ of the ordinary least squares estimate, and the control function is given by

ψ(θ) = y∗/θ. In period t, given the projected least squares estimate θ̂t, the control is xt = y∗/θ̂t.

On paths where ∆t = ε > 0, xt is either y
∗/
(
(1− ε)θ

)
or y∗/

(
(1+ ε)θ

)
, and consequently |y∗ − θxt|

would equal either y∗ε/(1 − ε) or y∗ε/(1 + ε). Thus, smaller inaccuracy makes the mean response

θxt closer to y∗. See Prescott (1972), Anderson and Taylor (1976) and Lai and Robbins (1982)

for some examples of studies that consider variants of this problem, with the latter study focusing

on incomplete learning in this context. The treatment in §4 will further illuminate the incomplete

learning phenomenon in such settings.

Stochastic optimization of a quadratic function. Consider a decision maker who observes a

sequence of responses y1, y2, . . . such that yt = (θ−axt)2+ǫt for t = 1, 2, . . . , where a > 0 is a known

constant, θ ∈ Θ is an unknown parameter, and {ǫt} are independent and identically distributed

random variables with zero mean and variance σ2, and the control xt ∈ X . The decision maker

aims to minimize (θ − axt)
2 by choosing certainty-equivalence controls x1, x2, . . . in a sequential

fashion. Specifically, the estimation (2.2) is given by
∑t

s=1

(
ys−(θ̂t+1−axs)2

)
(θ̂t+1−axs) = 0, and

the control function in (2.3) is ψ(θ) = θ/a, hence in period t the control is xt = ψ(θ̂t) = θ̂t/a. Note

that on paths for which ∆t = ε > 0, xt equals either (1+ε)θ/a or (1−ε)θ/a. In either case, we have

(θ − axt)
2 = θ2ε2, meaning that smaller values of inaccuracy ∆t help the decision-maker achieve

her/his goal of minimizing (θ − axt)
2. Several variants of the above setting have been studied in

the literature, starting with an early paper by Kiefer and Wolfowitz (1952). The examples in §4
and §5 indicate that this procedure is possibly subject to incomplete learning, and as mentioned

above, §6 presents a general method of avoiding incomplete learning in this setting.

Dynamic pricing with demand learning. Consider a price-setting monopolist facing an

isoelastic demand curve D(p, θ) = kp−θ. The demand in period t is given by

dt = D(pt, θ) et = kp−θ
t et for t = 1, 2, . . . , (3.1)

where: k > 0 is a known constant, pt > 0 is the price charged in period t, θ ∈ Θ = [θmin, θmax] is

the price-elasticity of demand, 1 < θmin < θmax < ∞, and et
iid∼ Lognormal(0, σ2) are unobservable

multiplicative demand shocks. Taking the logarithm on both sides of (3.1), we obtain the following

response model:

yt = a− θxt + ǫt, for t = 1, 2, . . . ,

where yt = log dt, a = log k, xt = log pt ∈ X = R, and ǫt
iid∼ Normal(0, σ2). Note that the above

model is a special case of the general response model (2.1). The monopolist’s expected profit can
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be expressed as a function of log-price x and elasticity θ as follows:

π(x, θ) =
(
p(x)− c

)
Kp(x)−θ = K(ex − c) e−θx,

where p(x) = ex, K = keσ
2/2 > 0, and c > 0 is the marginal cost of production. In the above setup

the estimation (2.2) is the projection onto Θ of the least squares estimate
∑t

s=1 xs(a−ys)/
∑t

s=1 x
2
s,

and the control (2.3) is given by the profit-maximizing decision ψ(θ) = argmaxx∈X {π(x, θ)} =

log c− log(1− 1/θ). Note that ψ(θ) is monotone decreasing in θ. Intuitively, this means that if the

demand is more price-elastic then the monopolist would charge a lower price, as this would increase

profits. To see the impact of estimation inaccuracy on profits, note that there exists a positive

constant z0 such that for all x satisfying |x−ψ(θ)| ≤ z0, π(ψ(θ), θ)−π(x, θ) ≥ aθ
(
x−ψ(θ)

)2
, where

aθ =
1
4Kc

1−θθ1−θ(θ−1)θ. This implies that if ∆t = ε ∈ (0, bθ) then π(ψ(θ), θ)−π(ψ(θ̂t), θ) ≥ ãθε
2,

where ãθ = aθ/
(
2θ(θ − 1)

)
and bθ = θ(θ − 1)z0/2. Thus, to get closer to the maximal profit

π(ψ(θ), θ), the monopolist needs to reduce ∆t. For an illustration of incomplete learning in a

related dynamic pricing setting, see den Boer and Zwart (2014).

Dynamic medical treatment. Consider a physician who sequentially decides on medical

treatment levels (e.g., dosage of a drug) for patients. Viewing the response model (2.1) in this

healthcare context, the outputs {yt} are sequential responses that reflect the patients’ medical

condition, the controls {xt} are the treatment levels, the unknown model parameter θ represents the

patients’ responsiveness to treatment, and {ǫt} are temporal shocks that depend on unobservable

factors. The treatment levels are chosen from a set X = [xmin,∞), where xmin > 0. Suppose

that there exists a current medical practice that prescribes a treatment level x0 ∈ X , and the

physician knows the expected response to x0. In this setting, a simple example for the response

curve is f(x, θ) = θ(x − x0). Alternatively, one can consider nonlinear response curves such as

f(x, θ) = k1e
θ(x−x0) + k2θ

2(x − x0), where k1 and k2 are known constants. To determine the

treatment sequence, suppose that the physician uses the estimation (2.2) in conjunction with the

control function ψ(θ) = xmin + α(θ − θmin), where θ ∈ Θ = [θmin,∞), α > 0, and θmin ∈ R.

This control function prescribes linearly adjusting the treatment level for more responsive patients,

where the policy parameter α represents the rate of adjustment in treatment level. (As in our

preceding application, it is possible to use a nonlinear control function in this context, and our

model accommodates such generality.) Given the value of the unknown parameter θ ∈ Θ, the

ideal control is ψ(θ), and on paths where ∆t = ε, the physician’s absolute deviation from the ideal

control is |xt − ψ(θ)| = αε. Hence, to minimize deviations from the ideal control, the physician

should decrease ∆t. As will be seen in §4, this strategy will result in incomplete learning in the

case of a linear response curve f(x, θ) = θ(x− x0).

4 The Linear-Gaussian Model

In this section, we focus on a special case of the general response model (2.1) to illustrate the

main salient features of the certainty-equivalence learning policy C and the incomplete learning
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phenomenon. To that end, let the expected response curve be linear, f(x, θ) = θx, and the noise

terms be normally distributed, ǫt
iid∼ Normal(0, σ2). Then, we can re-express (2.1) as

yt = θxt + ǫt for t = 1, 2, . . . (4.1)

In this case, estimates are computed via ordinary least squares regression, with closed-form expres-

sion for θ̂t+1:

θ̂t+1 =

∑t
s=1 xsys∑t
s=1 x

2
s

. (4.2)

Because {ǫt} are normally distributed, the density of Pθ in (2.4) is defined via the Gaussian density

in this case. The response model (4.1) represents a static environment in the sense that the unknown

parameter θ does not change over time. We will study this static case in the following subsection,

and then consider changing environments where the unknown parameter can vary over time.

4.1 Incomplete learning in static environments

Our first task is to formalize the observations in Example 1, which suggests that certainty-equivalence

can exhibit incomplete learning in a static environment. We deduce from (4.1) and (4.2) that

θ̂t+1 = θ +
Mt

Jt
for t = 1, 2, . . . (4.3)

where Mt =
∑t

s=1 xsǫs and Jt =
∑t

s=1 x
2
s . Based on the characterization of the estimator in (4.3),

our following result shows that there are exactly two possible asymptotic outcomes for the policy

C in a static environment.

Proposition 1 (convergence of estimator in static environments) Let θ ∈ R, and assume

that θt = θ 6= ζ for t = 1, 2, . . . Then, for any ψ(·) ∈ Ψ,

(i) θ̂t → θ almost surely on {J∞ = ∞}, and
(ii) θ̂t → ζ almost surely on {J∞ <∞},

where {θ̂t} is the sequence of certainty-equivalence estimates generated under C, and J∞ = limt→∞ Jt.

Proposition 1 categorizes the asymptotic learning outcomes based on whether {Jt} diverges to ∞.

Note that in this setting, Jt can be viewed as a measure of cumulative information, formally called

the empirical Fisher information accumulated in the first t periods. Proposition 1 states that

{θ̂t} identifies θ if and only if the cumulative information tends to ∞. Therefore, the asymptotic

outcomes in a static environment are partitioned into two cases: (i) consistency, which occurs if

{Jt} diverges to ∞, and (ii) incomplete learning, which occurs if {Jt} converges to a finite limit.

By the continuity of ψ(·), we also deduce that the control sequence {xt} converges almost surely

to ψ(θ) on {J∞ = ∞}. However, on the event {J∞ < ∞}, {xt} converges almost surely to the

uninformative control ψ(ζ) = 0, which is not necessarily equal to ψ(θ). The proof of Proposition 1

is based on showing that Mt is a square-integrable martingale and then applying the strong law of

large numbers for martingales (see also Lai and Wei 1982, for a related application).

Our next result shows that in a static environment, {θ̂t} exhibits incomplete learning under the
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certainty-equivalence learning policy C.

Theorem 1 (incomplete learning in static environments) Let ψ(·) ∈ Ψ, θ ∈ R, and assume

that θt = θ 6= ζ for t = 1, 2, . . . Then Pθ

{
θ̂t → ζ

}
> 0, where {θ̂t} is the sequence of certainty-

equivalence estimates generated under C.

To see the intuition behind the incomplete learning result in Theorem 1, note that the decision

rule in (2.3) creates a temporal dependency within the control sequence {xt, t = 1, 2, . . .}. If {xt}
approaches the uninformative control, then the “signal quality” of the responses in (4.1) diminishes,

and the learning slows down, thereby creating further tendency to choose a control in the vicinity

of the uninformative control, leading to an estimate close to the uninformative estimate ζ. This

vicious cycle leads the dynamical system to be attracted to the fixed point of incomplete learning.

An important consequence of Theorem 1 is the poor accuracy of the certainty-equivalence learn-

ing policy C, which is expressed in the following result.

Corollary 1 (accuracy in static environments) Let ψ(·) ∈ Ψ, θ ∈ R, and assume that θt =

θ 6= ζ for t = 1, 2, . . . Then there exists a positive constant δ such that the sequence of certainty-

equivalence estimates {θ̂t} generated under C is not asymptotically ε-accurate for any ε ∈ (0, δ).

The preceding result, in conjunction with Theorem 1, states that the eventual inaccuracy of {θ̂t} will
stay above a certain positive value, namely |1− ζ/θ|, with a positive probability p0 = Pθ{θ̂t → ζ}.
Letting δ = min{|1− ζ/θ|, p0}, we deduce that {θ̂t} is not asymptotically ε-accurate for any ε < δ.

Further discussion of Example 1. The above analysis of incomplete learning helps us view

Example 1 in a new light. In that example, the uninformative estimate is ζ = 1. As shown

in Figure 1, about one fifth of all sample paths of {θ̂t} converge to ζ in this setting, providing

a numerical example of the incomplete learning result in Theorem 1. We can also measure the

accuracy performance of C in Example 1. Figure 2 displays sample paths of the inaccuracy process

{∆t, t = 1, 2, . . .} under C.

t

∆t
(a) sample paths of {∆t}
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(b) histogram of ∆10,000
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Figure 2: Inaccuracy of certainty-equivalence learning in a static environment. Panels (a) and

(b) show sample paths of the inaccuracy process {∆t}, and the histogram the inaccuracy in period 10,000,

respectively, generated under the certainty-equivalence learning policy C in Example 1. In the first 10,000

periods, approximately 20% of the 2,000 sample paths converge to a positive value, namely 0.6.
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Note that approximately 20% of the generated sample paths in Figure 2 end up with an inaccuracy

of |1 − ζ/θ| = |1 − 1/2.5| = 0.60. Hence, we estimate that there is p0 = 0.20 probability that

the eventual inaccuracy of {θ̂t} will be more than 0.20 in Example 1. As a result, {θ̂t} is not

asymptotically ε-accurate for any ε less than δ = 0.20.

No uninformative estimate implies no incomplete learning. In a static environment with

an uninformative estimate ζ ∈ Θ, we observe incomplete learning because ζ is reachable by the

certainty-equivalence estimates {θ̂t} with some positive probability. But, if Θ is a strict subset of

R, there might be no uninformative estimate ζ in Θ. Note that, because |ψ′(θ)| ≥ ℓ > 0 for all

θ ∈ Θ, an uninformative estimate ψ−1(0) exists in R, but may be outside Θ. The following result

complements Theorem 1 by investigating settings where Θ is a strict subset of R containing no

uninformative estimates.

Proposition 2 (no uninformative estimate implies no incomplete learning) Let ψ(·) ∈ Ψ,

and θ ∈ Θ ⊆ R. Assume that θt = θ for t = 1, 2, . . . , and there does not exist any ζ ∈ Θ satisfying

ψ(ζ) = 0. Then, Pθ

{
θ̂t → θ

}
= 1, where {θ̂t = argminθ∈Θ St−1(θ), t = 2, 3, . . .} is the sequence of

certainty-equivalence estimates generated under C.

Proposition 2 states that, in a static environment where there is no reachable uninformative estimate

in Θ, the certainty-equivalence learning policy C is consistent. In what follows, we will further study

the connection between incomplete learning and the reachability of the uninformative estimate to

explore the broader extent of the incomplete learning phenomenon.

4.2 Incomplete learning in changing environments

4.2.1 A boundedly changing environment

We will now investigate a slight modification of Example 1 by letting {θt} vary within a bounded

interval in a cyclical fashion, with the implicit question whether this type of change will prevent

the system (4.1-4.2) into settling into the uninformative estimate and control.

Example 2: A boundedly changing environment. Assume that f(x, θ) = θx for all x ∈ X =

R and θ ∈ Θ = R, and that ǫt
iid∼ Normal(0, σ2) with σ = 3. Let T+ =

⋃∞
k=0

⋃2000
n=1{4000k + n}, and

{θt, t = 1, 2, . . .} be such that θ1 = 2.5 and

θt+1 − θt =

{
+0.001 if t ∈ T+
−0.001 otherwise,

for all t ≥ 1. The decision maker sets the initial control as x1 = 1, and subsequently uses the

control function ψ(θ) = −1 + θ.

Compared to the original (static) example, Example 2 poses a slightly more difficult learning

problem since the unknown parameter sequence {θt} keeps changing over time. As portrayed in

Figure 3, allowing the unknown parameter to fluctuate within a bounded interval, we still observe

that {θ̂t} converges to the spurious fixed point 1 on 20% of the sample paths as in Example 1.
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Thus, the incomplete learning result we observed in Example 1 persists in Example 2.
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Figure 3: Certainty-equivalence estimates in a boundedly changing environment. Panels (a) and

(b) depict sample paths of the estimate sequence {θ̂t} (solid curves), and the histogram of the estimate in

period 10,000, respectively, generated under the certainty-equivalence learning policy C in Example 2. There

are 2,000 sample paths in total. The values of {θt} are shown in the dotted curve in panel (a).

Our next task is to formalize the observation in Example 2, namely, that there is not sufficient

temporal change in {θt} to avoid incomplete learning. For this purpose, in the next result, we

extend Theorem 1 to environments that fluctuate in a bounded fashion.

Theorem 2 (incomplete learning in boundedly fluctuating environments) Let ψ(·) ∈ Ψ,

and assume that
ζ − κ1 ≤ θt ≤ ζ + κ2 for t = 1, 2, . . . ,

and that θt ≥ ζ + κ0 eventually, where ∞ < −κ1 < 0 < κ0 < κ2 < ∞. Then Pθ

{
θ̂t → ζ

}
> 0,

where {θ̂t} is the sequence of certainty-equivalence estimates generated under C.

Remark 4 In the hypothesis of the preceding theorem, the condition that θt ≥ ζ + κ0 for suffi-

ciently large t ensures that {θt} will eventually be confined to a bounded interval on one side of ζ.

If this condition is violated and {θt} is allowed to visit both sides of ζ infinitely often, then it is

possible to construct an example in which {θ̂t} fluctuates perpetually and moves arbitrarily close

to ζ without converging to ζ (see Example 7 in Appendix C).

Discussion of the incomplete learning phenomenon. Theorem 2 shows that if the unknown

parameter sequence {θt} is fluctuating within lower and upper bounds that are independent of time

(as in Example 2), then there is a positive probability that the sequence of estimates {θ̂t} converges

to the uninformative estimate ζ, and incomplete learning exists (with positive probability) under

C. As explained in the preceding subsection, incomplete learning depends on: (i) the reachability of

the uninformative estimate ζ within the space of estimates; and (ii) the diminishing signal quality

near ζ. Theorem 2 shows that, in boundedly fluctuating environments, ζ is still reachable by the

certainty-equivalence estimates of C with positive probability, and the quality of the signals can

diminish as in static environments.

Noting that the expected response f(xt, θt) depends on two variables, namely the control xt and

the unknown parameter θt, we can employ the above analysis to compare how the changes in these

16



two variables affect incomplete learning under C. To that end, let Vθ(t) =
∑t

s=1(θs − ζ)2 be the

cumulative quadratic deviation of the parameter sequence from the uninformative estimate, and

Vx(t) =
∑t

s=1

(
xs − ψ(ζ)

)2
be the cumulative quadratic deviation of the control sequence from

the uninformative control. In the antecedent literature, it has been shown that if Vx(t) is linearly

increasing in t then incomplete learning will not occur (see, e.g., Keskin and Zeevi 2014, §3.4).
Based on this, one might expect that a similar result would hold for Vθ(t). But, our preceding

analysis shows that if Vθ(t) increases linearly in t then incomplete learning persists. This identifies

a significant difference in the manner in which the variations in {xt} and {θt} affect the incomplete

learning phenomenon. While a linearly growing Vx(t) can eliminate incomplete learning, a linearly

growing Vθ(t) may not ensure a similar result. It is perhaps worth noting that this contrast is

present also when the variations in {xt} and {θt} are measured as deviations from the historical

average. Letting V̄θ(t) =
∑t

s=1(θs − θ̄t)
2 and V̄x(t) =

∑t
s=1(xs − x̄t)

2, where θ̄t = t−1
∑t

s=1 θs and

x̄t = t−1
∑t

s=1 xs, we note that linear growth of V̄x(t) helps avoid incomplete learning (see Keskin

and Zeevi 2014) whereas linear growth of V̄θ(t) does not (as in Example 2 and Theorem 2). As

a simple illustration of the above contrast, consider the piecewise-linear cyclical pattern of {θt}
in Example 2. If {xt} follows a similar cyclical pattern, then (as explained above) there will be

no incomplete learning. But, when {θt} exhibits a cyclical pattern as in Example 2, there is still

incomplete learning.

4.2.2 A more volatile changing environment

Theorem 2 demonstrates that merely the existence of a changing environment is not sufficient for

avoiding the incomplete learning phenomenon. Now, given that incomplete learning persists in

boundedly changing environments, what happens in unboundedly fluctuating environments? To in-

vestigate this question, let us now consider an environment where the unknown parameter sequence

{θt} changes in an unbounded and volatile fashion.

Example 3: A volatile environment. Assume that f(x, θ) = θx for all x ∈ X = R and

θ ∈ Θ = R, and that ǫt
iid∼ Normal(0, σ2) with σ = 3. Let {θt, t = 1, 2, . . .} be a sequence such

that θt =
∑t

s=1 ξs for all t, where ξt
iid∼ Normal(0, 1). The decision maker sets the initial control as

x1 = 1, and subsequently uses the control function ψ(θ) = −1 + θ.

Figure 4 depicts the estimates under C in Example 3, where {θt} evolves as an unobservable random

walk process. Because such a process would drift towards ζ infinitely often, the signal quality of

the observations would decrease infinitely often, and ζ will be reachable by the estimates of C. As a
negative consequence of this fact, we observe that the probability of {θ̂t} converging to ζ increases

dramatically in Example 3: compared to the 20% likelihood of incomplete learning in Example 1

(see Figure 1), we now estimate a 45% chance of incomplete learning (see Figure 4).
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Figure 4: Certainty-equivalence estimates in a volatile environment. Panels (a) and (b) depict

sample paths of the estimate sequence {θ̂t} (solid curves), and the histogram of the estimate in period

10,000, respectively, generated under C in Example 3. There are 2,000 sample paths in total. The values of

{θt} are shown in the dotted curve in panel (a). Approximately 45% of the sample paths converge to ζ.

4.2.3 Environments drifting away from the uninformative estimate

Combining our observations in Examples 2 and 3, we note that: (i) bounded fluctuations in {θt}
are not sufficient to render the uninformative estimate unreachable by the certainty-equivalence

estimates; and (ii) making the fluctuations in {θt} unbounded and volatile does not necessarily

render the uninformative estimate unreachable, as long as {θt} can drift towards ζ. Given these

observations, we will now study environments where {θt} drifts away from ζ. To that end, consider

the following example.

Example 4: A slowly and unboundedly changing environment. Assume that f(x, θ) = θx

for all x ∈ X = R and θ ∈ Θ = R, and that ǫt
iid∼ Normal(0, σ2) with σ = 3. Let {θt, t = 1, 2, . . .}

be an increasing sequence such that θt = 1 +
√

8 log(t+ 1) for all t. The decision maker sets the

initial control as x1 = 1, and subsequently uses the control function ψ(θ) = −1 + θ.

In Example 4, {θt} keeps increasing without an upper bound. Somewhat surprisingly, the incom-

plete learning seems to be barely visible in this example. As seen in Figure 5, more than 96% of

the sample paths keep track of the changing parameter sequence.
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Figure 5: Certainty-equivalence estimates in a slowly and unboundedly changing environment.

Panels (a) and (b) depict sample paths of the estimate sequence {θ̂t} (solid curves), and the histogram of

the estimate in period 10,000, respectively, generated under the certainty-equivalence learning policy C in

Example 4. There are 2,000 sample paths in total. The values of {θt} are shown in the dotted curve in

panel (a).
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To characterize settings as in Example 4, let {θlt, t = 1, 2, . . .} and {θht , t = 1, 2, . . .} be two se-

quences that respectively designate lower and upper bounds for the unknown parameter sequence

{θt, t = 1, 2, . . .}. We will assume that {θt} essentially takes values between the lower and upper

bound processes {θlt} and {θht }, allowing for some violation of these bounds in the following sense.

Definition (evolution between lower and upper bound processes with tolerance) Let

ρ−
θ

=
∑∞

t=1 max{θlt − θt, 0} be the cumulative violation of the lower bound process {θlt}, and

ρθ =
∑∞

t=1 max{θt − θht , θ
l
t − θt, 0} be the cumulative violation of the lower and upper bound

processes {θlt} and {θht }. Given R ≥ 0, an unknown parameter sequence {θt} is said to evolve above

{θlt} with tolerance R if ρ−
θ
≤ R. In addition, if ρθ ≤ R, then {θt} is said to evolve between {θlt}

and {θht } with tolerance R.

Our next result covers a family of unboundedly changing environments in which the probability

that {θ̂t} converges to ζ is suitably small.

Proposition 3 (learning in a slowly changing environment) Let ψ(·) ∈ Ψ, ε ∈ (0, 12), and

θlt = ζ +
√
κ1 log(t+ 1) , (4.4)

for t = 1, 2, . . . , where κ1 ≥ 32σ
√

2 log(4/ε)
/
(ℓ log 2). Assume that {θt} evolves above the lower

bound process {θlt} with tolerance R ≤ ε
√
κ1 log

(
1−ε

1−ε/2

)/(
128 log(1−r)

)
where r = 2−ℓ2κ2

1 log 2/(512σ
2).

Then there exists a positive constant δ such that the sequence of certainty-equivalence estimates {θ̂t}
generated under C satisfies

Pθ

{
θ̂t ≥ ζ + δ for t = 1, 2, . . .

}
≥ 1− ε. (4.5)

Remark 5 The hypothesis of Proposition 3 describes a minimum rate at which {θt} moves away

from ζ in the positive direction. By symmetry, we arrive at a similar conclusion if {θt} moves away

from ζ at the same rate, but in the opposite direction: if θht = ζ −
√
κ1 log(t+ 1) for all t, and

∑∞
t=1 max{θt− θht , 0} ≤ R, then the conclusion of Proposition 3 becomes Pθ{θ̂t ≤ ζ− δ for all t} ≥

1 − ε for the constants κ1 and δ given above. We also note that, as ε → 0 in Proposition 3, the

upper bound on R converges to zero, while the constant δ approaches 1
4

√
κ1 log 2.

The lower bound in (4.4) describes a sufficient condition for the existence of δ > 0 such that

the uninformative estimate ζ is not δ-reachable with probability at least 1 − ε. (The particular

sub-logarithmic growth rate is an artifact of our proof technique; generalized growth conditions for

tracking and asymptotic accuracy are discussed in Theorem 7 in §6, as well as in §7). An important

special case of the above result is R = 0, where {θt} moves away from ζ strictly above {θlt}. With

R > 0, {θt} is allowed to move towards ζ with an eventually diminishing frequency.

Unlike the environments in Examples 2 and 3, certain changing environments (in which {θt}
drifts away from ζ at a critical rate) can render the uninformative estimate essentially unreachable.

Proposition 3 spells out a condition on the unknown parameter sequence {θt} that keeps the
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estimate sequence {θ̂t} away from ζ with high probability. This makes the incomplete learning

result, in which {θ̂t} converges to ζ, very unlikely under said condition. The main intuition behind

this result is the following. If {θt} moves away from ζ, then the signal quality of observations will

gradually increase because the relative magnitude of noise terms will decay. With higher signal

quality, it is less likely that the sequence of estimates {θ̂t} induced by the certainty-equivalence

learning policy will converge to the uninformative estimate. As a result, a changing environment

can help avoid incomplete learning if it makes the uninformative estimate ζ gradually less reachable.

Our next goal is to study the implications of Proposition 3 on the accuracy of {θ̂t} in changing

environments. To that end, we first decompose the estimation inaccuracy into two terms.

Proposition 4 (decomposition of estimation inaccuracy) For any parameter sequence {θt},
and ψ(·) ∈ Ψ,

1− θ̂t+1

θt+1
=

t∑

k=1

Jk
Jt

· θk+1 − θk
θt+1

− Mt

θt+1Jt
(4.6)

for t = 1, 2, . . . , where Mt =
∑t

s=1 xsǫs and Jt =
∑t

s=1 x
2
s .

Remark 6 The preceding proposition extends the estimation equation (4.3) to changing environ-

ments; note that if θk+1 = θk for all k, then (4.6) reduces to (4.3).

The above decomposition provides a key insight into the accuracy of {θ̂t}: the first term on

the right hand side of (4.6) is influenced by the changes in the unknown parameter sequence {θt},
while the second is driven by estimation noise. If {Jt} grows at a sufficiently fast rate, the second

term will vanish eventually. On the other hand, the magnitude of the first term (i.e., the effect of

changing environment) is influenced by not only the growth rate of {Jt} but also the changes in {θt}.
Roughly speaking, if {θt} drifts away from ζ at a critical rate, then the fraction (θk+1 − θk)/θt+1

in (4.6) will eventually offset the growth in {Jt}, making asymptotic accuracy possible (see the

discussion following Theorem 3 for a more formal account).

Using the decomposition in Proposition 4, we show that the sub-logarithmic growth condition

in Proposition 3 substantially improves the asymptotic accuracy of estimates, thereby avoiding a

negative consequence of incomplete learning.

Theorem 3 (accuracy in a slowly changing environment) Let ψ(·) ∈ Ψ, ε ∈ (0, 12 ), and

θlt = ζ +
√
κ1 log(t+ 1) , (4.7a)

θht = ζ +
√
κ2 log(t+ 1) , (4.7b)

for t = 1, 2, . . . , where κ1 ≥ 32σ
√

2 log(4/ε)
/
(ℓ log 2) and κ1 ≤ κ2 ≤ κ1/(1−ε/8). Assume that {θt}

is eventually nondecreasing and evolves between the lower and upper bound processes {θlt} and {θht }
respectively, with tolerance R ≤ εκ1 log

(
1−ε

1−ε/2

)/(
128

√
κ2 log(1 − r)

)
where r = 2−ℓ2κ2

1 log 2/(512σ
2).

Then the sequence of certainty-equivalence estimates {θ̂t} generated under C is asymptotically ε-

accurate.
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Remark 7 The upper bound condition in Theorem 3 can be replaced by a total variation condition

as follows. For all s < t, let P(s, t) be the set of all partitions of {s, s+1, . . . , t} and define Vθ(s, t) =

sup{t0,t1,...,tK}∈P(s,t),K≥1

{∑K
k=1 |θtk−θtk−1

|
}
. If Vθ(s, t) ≤

√
κ2 log(t+ 1)−

√
κ2 log(s+ 1) for s < t,

θ1 ≤ ζ +
√
κ2 log 2, and {θt} is eventually nondecreasing and evolves above {θlt} with tolerance R,

then θt would eventually be bounded above by θht .

Discussion and numerical illustrations. Theorem 3 states that the asymptotic inaccuracy

of {θ̂t} becomes arbitrarily small in the family of slowly changing environments described in (4.7).

This stands in stark contrast to Corollary 1 which proves that the asymptotic inaccuracy of {θ̂t} is

always above a positive constant δ in static environments. The reason for this is the following: in the

slowly changing environment given in Theorem 3, Proposition 3 implies that {θ̂t} remains bounded

away from ζ by a positive margin with high probability. On this event, {Jt =
∑t

s=1 x
2
s, t = 1, 2, . . .}

diverges to ∞, eliminating any possibility of incomplete learning by Proposition 1. Recalling the

decomposition of inaccuracy in Proposition 4, this means that the effect of noise, which is given by

the second term on the right hand side of (4.6), converges to zero. If the environment is changing

slowly as in Theorem 3, then we can also characterize the maximum and minimum possible growth

rates of {Jt}, and prove that the effect of said change, which is given by the first term on the right

hand side of (4.6), becomes very small eventually.

Figure 6 demonstrates the accuracy of the certainty-equivalence learning policy in Example 4,

which satisfies the hypotheses of Theorem 3. Observing that the inaccuracy ∆t becomes less than

0.05 on more than 95% of the sample paths, we can deduce that the estimate sequence {θ̂t} is

asymptotically ε-accurate for ε = 0.05 in this example. This is a significant improvement over the

asymptotic inaccuracy of 0.20 observed in Example 1 (see Figure 2).
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Figure 6: Inaccuracy of certainty-equivalence learning in a slowly and unboundedly changing

environment. Panels (a) and (b) show sample paths of the inaccuracy process {∆t}, and the histogram of

the inaccuracy in period 10,000, respectively, generated under the certainty-equivalence learning policy C in

Example 4. On approximately 96% of the 2,000 sample paths, the estimate θ̂10,000 is ε-accurate for ε = 0.05.

The improved accuracy of {θ̂t} in the slowly changing environments described in Theorem 3 leads

to another question: how does the certainty-equivalence learning policy behave in more quickly

changing environments? Our next example addresses such settings.
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Example 5: Another unboundedly changing environment. Assume that f(x, θ) = θx for

all x ∈ X = R and θ ∈ Θ = R, and that ǫt
iid∼ Normal(0, σ2) with σ = 3. Let {θt, t = 1, 2, . . .} be an

increasing sequence such that θt = 1 + 2
√
t for all t. The decision maker sets the initial control as

x1 = 1, and subsequently uses the control function ψ(θ) = −1 + θ.

As shown in Figure 7, more than 95% of the sample paths of {θ̂t} avoid incomplete learning in

Example 5, tracing the unknown parameter sequence {θt}.
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Figure 7: Certainty-equivalence estimates in another unboundedly changing environment. Panels

(a) and (b) depict sample paths of the estimate sequence {θ̂t} (solid curves), and the histogram of the estimate

in period 10,000, respectively, generated under C in Example 5. There are 2,000 sample paths in total. The

values of {θt} are shown in the dotted curve in panel (a).

Compared to Example 4, {θt}moves away from ζ at a faster rate in Example 5, thereby increasing

signal quality of observations and thus “helping” the certainty-equivalence learning policy avoid

incomplete learning (see also §7 for further discussion of moderately changing environments and

how they can facilitate learning).

5 Incomplete Learning in Nonlinear Models

In this section, we extend the analysis of incomplete learning in static environments to a family of

nonlinear response models. For purposes of demonstration, let us consider the following example

with nonlinear response.

Example 6: A static environment – nonlinear response. Assume that f(x, θ) = 1
1+e−θx +

θx
2

for all x ∈ X = R and θ ∈ Θ = R, and that ǫt
iid∼ Normal(0, σ2) with σ = 6. Let {θt, t = 1, 2, . . .}

be a constant sequence with θt = 2.5 for all t. The decision maker sets the initial control as x1 = 1,

and subsequently uses the control function ψ(θ) = −1 + θ.

As shown in Figure 8, the above example exhibits another case of incomplete learning, where C can

stop learning prematurely in static environments with nonlinear response structure.

The response model in Example 6 belongs to a family of nonlinear models called generalized

linear models (GLMs). In these models, the response function is the composition of a known link

function g : R → R and the linear function x 7→ θx, whose parameter θ is unknown to the decision
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Figure 8: Certainty-equivalence estimates in a static environment with nonlinear response.

Panels (a) and (b) depict sample paths of the estimate sequence {θ̂t}, and the histogram of the estimate

in period 10,000, respectively, generated under C in Example 6. There are 2,000 sample paths in total.

Thirty percent of the sample paths of {θ̂t} converge to 1. The iterated nonlinear least squares estimates are

computed via the Levenberg-Marquardt algorithm.

maker; that is, f(x, θ) = g(θx) for all x ∈ X and θ ∈ Θ. To generalize our analysis of incomplete

learning, we assume that g(·) is a differentiable and increasing function such that ℓ̃ ≤ g′(ξ) ≤ L̃ for

all ξ ∈ Ξ = {θx : (x, θ) ∈ X ×Θ}, where 0 < ℓ̃ ≤ L̃ <∞. Note that, for the linear-Gaussian model

studied in the preceding section, we have g(ξ) = ξ, which satisfies these properties with ℓ̃ = L̃ = 1.

Our next result extends our analysis of incomplete learning to the GLMs described above.

Theorem 4 (learning in static environments with nonlinear response) Let ψ(·) ∈ Ψ,

θ ∈ Θ, and assume that θt = θ for t = 1, 2, . . . Denote by {θ̂t} the sequence of certainty-equivalence

estimates generated under C.
(i) If ψ(θ) 6= 0 and there exists ζ ∈ Θ satisfying ψ(ζ) = 0, then Pθ

{
θ̂t → ζ

}
> 0.

(ii) If there does not exist any ζ ∈ Θ satisfying ψ(ζ) = 0, then Pθ

{
θ̂t → θ

}
= 1.

The preceding theorem generalizes the analysis in §4.1: Theorem 4(i) states that, if there is an

uninformative estimate, then there is a positive probability of incomplete learning in the context

of GLMs; Theorem 4(ii) states that, if there is no such uninformative estimate, then the sequence

of certainty-equivalence estimates will be consistent in our GLM setting. Thus, the intuition we

derived via Theorem 1 and Proposition 2 in the context of the linear-Gaussian model remains valid

in a broader context of nonlinear models.

6 A General Solution for Incomplete Learning

In this section, we extend the main ideas developed in the preceding section to the general response

model (2.5) with f : X × Θ → R assumed to be a continuously differentiable function, and de-

rive a unifying solution that has good accuracy performance in both static and slowly changing

environments represented by Examples 1 and 4, respectively.

6.1 Formulation and intuition

To generally describe the incomplete learning phenomenon, we first need to extend our definitions

of uninformative control and uninformative estimate to the general response model (2.5). Recall
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that in the linear-Gaussian model the uninformative control is 0 and the uninformative estimate

is ζ = ψ−1(0). In general, the informativeness of controls depends on the shape of the response

curve. If xt is chosen such that fθ(xt, θ̂t) = 0, then

∂St(θ̂t)

∂θ
=

∂St−1(θ̂t)

∂θ
, (6.1)

where ∂St(θ)/∂θ = −2
∑t

s=1

(
ys − f(xs, θ)

)
fθ(xs, θ). By the estimation equation (2.2), we know

that ∂St−1(θ̂t)/∂θ = 0, which implies θ̂t+1 = θ̂t by invoking (2.2) once more. To identify such

controls that fail to update the estimate θ̂t, let

u(θ) = {x ∈ X : fθ(x, θ) = 0} for θ ∈ Θ, (6.2)

and assume that there exists a unique ζ ∈ Θ satisfying ψ(ζ) ∈ u(ζ). With slight abuse of notation,

we will hereafter use u(ζ) to refer to the single element in that set. As in the linear-Gaussian

model, if θ̂t = ζ for some t then xs = ψ(ζ) and θ̂s = ζ for all s > t. Thus, extending our previous

definitions, we refer to ζ as the uninformative estimate and ψ(ζ) as the uninformative control.

We assume that all controls other than ψ(ζ) are informative in the following sense: given any

δ > 0 there exists a finite and positive constant cδ such that for all x satisfying |x − ψ(ζ)| > δ

we have minθ∈Θ |fθ(x, θ)| > cδ . Roughly speaking, this condition means that the controls that are

different than the uninformative control make fθ(x, θ) distinct from zero, and provide information

at a positive rate. (The particular rate of information accumulation will be identified explicitly

below.)

To avoid incomplete learning in general, we also need to extend our intuition on how information

accumulates. In the linear-Gaussian model, incomplete learning occurs if xt → 0, and the amount

of information provided by choosing a control x ∈ X can be expressed as

I(x) = x2 for x ∈ X , (6.3)

which is why we measured the cumulative information with Jt =
∑t

s=1 x
2
s =

∑t
s=1 I(xs) in that

case. In general, the rate of information accumulation depends on both the control and the estimate

of the decision maker. With slight abuse of notation, let

I(x, θ) =
(
fθ(x, θ)

)2
for x ∈ X and θ ∈ Θ. (6.4)

In our general response model, we measure the rate of information accumulation with (6.4), which

is a generalization of (6.3). When this rate gets close zero, the estimate sequence {θ̂t} under the

certainty-equivalence learning policy C runs the risk of “getting stuck” at ζ. We will now use

the information rate in (6.4), and study the impact of limiting the number of observations used

in estimation. For that purpose, define a least squares estimation function that uses the last w

observations. Let ϕ(w, t) be the minimizer of Sw,t(θ) =
∑t

s=t−w+1

(
ys−f(xs, θ)

)2
where 1 ≤ w ≤ t.

As argued in (2.2), ϕ(w, t) is given by

∂Sw,t

(
ϕ(w, t)

)

∂θ
= 0 , (6.5)
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where ∂Sw,t(θ)/∂θ = −2
∑t

s=t−w+1

(
ys − f(xs, θ)

)
fθ(xs, θ). For example, in the linear-Gaussian

model, ϕ(w, t) has the following closed-form expression:

ϕ(w, t) =

(
t∑

s=t−w+1

ysxs

)/( t∑

s=t−w+1

x2s

)
. (6.6)

In general, the estimator ϕ(w, t) has the same form as θ̂t+1, but it only uses the observations from

period t−w+1 to period t. This makes θ̂t+1 a special case of ϕ(w, t), simply because θ̂t+1 = ϕ(t, t).

In what follows, we will construct a sequence of estimation windows, {wn, n = 1, 2, . . .}, that will
be consecutively used in the estimation equation (6.5). Throughout the sequel, we will denote the

cumulative sums of this sequence by τn =
∑n

i=1 wi for all n.

Define I∗(x) = minθ∈Θ{I(x, θ)} for all x ∈ X , and suppose that K > 0 is a sufficiently large

constant satisfying I(x, θ) ≤ K I∗(x) for all x ∈ X and θ ∈ Θ. Let w1 be a natural number, and

X1 ∈ X such that I∗(X1) > 0. The decision maker chooses xt = X1 for t = 1, 2, . . . , w1. After this

initialization, the decision maker computes the following estimate at the end of period τn for all

n ≥ 1:

Θ̂n+1 = ϕ(wn, τn). (6.7)

Based on the most recent estimate in (6.7), compute

Xn+1 = ψ
(
Θ̂n+1

)
. (6.8)

Because the noise terms {ǫt} are continuous random variables, we have Pθ{I∗(Xn+1) = 0} = 0.

Consequently, I∗(Xn+1) > 0 almost surely. Let wn+1 be the smallest integer satisfying

wn+1 ≥ ν log(τn + wn+1)/I
∗(Xn+1), (6.9)

where ν is a scale parameter. Having computed the next control Xn+1 and the estimation window

wn+1, the policy chooses xt = Xn+1 for t = τn+1, . . . , τn+wn+1. Based on this construction, we note

that {τn, n = 1, 2, . . .} can be viewed as the subsequence of periods in which estimation windows are

updated, and the repetitive use of the equations (6.7) and (6.8) provides a variant of the certainty-

equivalence learning policy C defined in §2. While the control function ψ(·) is still employed in

a certainty-equivalence manner, the estimate Θ̂n+1 no longer has unlimited memory. Thus, we

will hereafter call this variant the certainty-equivalence learning policy with limited memory , and

denote it by C∗. Accordingly, we will denote by {θ̂*t , t = 1, 2, . . .} the estimate sequence generated

under C∗, i.e., θ̂*t = Θ̂n+1 for t = τn + 1, . . . , τn + wn+1 and n = 1, 2, . . . We will also denote by

{∆∗
t, t = 1, 2, . . .} the inaccuracy process under C∗.

6.2 Theory and illustrations

Avoiding incomplete learning. Our first result shows that limiting memory helps avoid incom-

plete learning under fairly general conditions. To express said conditions in a compact form, let us

define a measure of how frequently the unknown parameter sequence {θt} occupies a neighborhood
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of the uninformative control ζ. For a, b > 0, we define the occupancy measure µ as

µ
(
ζ − a, ζ + b

)
:= lim sup

t→∞

1

t

t∑

s=1

I
{
ζ − a ≤ θs ≤ ζ + b

}
, (6.10)

where I{·} is the indicator function (i.e., given condition A, I{A} = 1 if A holds, and 0 otherwise).

We note that, despite the fact that the occupancy measure µ and the previously defined tolerance

parameter R (which appeared in Proposition 3 and Theorem 3, and will re-appear in Theorem 7

below) are both related to the temporal evolution of {θt}, they are fundamentally different concepts.

The occupancy measure µ is related to our treatment of incomplete learning, which depends on

the location of {θt} relative to ζ. On the other hand, R is related to our treatment of asymptotic

accuracy in changing environments where {θt} slowly moves away from ζ. For any given R > 0, the

slowly changing environments in Proposition 3 and Theorems 3 and 7 would imply µ
(
ζ−a, ζ+b

)
= 0

for all a, b > 0.

Theorem 5 (no incomplete learning with limited memory) Let ψ(·) ∈ Ψ, and assume that

there exist a, b > 0 such that θt ≥ ζ − a eventually, and µ
(
ζ − a, ζ + b

)
= 0. Then Pθ

{
θ̂*t → ζ

}
= 0,

where {θ̂*t } is the sequence of certainty-equivalence estimates generated under C∗.

We note that, by symmetry, the conclusion of Theorem 5 holds also if θt ≥ ζ − a is replaced by

θt ≤ ζ + b above.

A simple verbal paraphrase of Theorem 5 is that, curtailing the memory of the estimates, it is

possible to entirely eliminate the incomplete learning problem in a broad class of environments.

The hypothesis of Theorem 5 allows {θt} to become arbitrarily close to ζ infinitely often, but as

long as {θt} does not frequently visit or jump over the neighborhood (ζ − a, ζ + b), the policy C∗

would not suffer from incomplete learning. This stands in stark contrast with Theorems 1 and 2,

which demonstrate the incomplete learning of C in static and boundedly changing environments,

even though {θt} is eventually bounded away from ζ in both of those results.

Remark 8 (the source of logarithmic window length) To avoid incomplete learning, the

policy C∗ employs a logarithmic scaling in the construction of the estimation windows {wn}. This
is ensured by the use of the logarithm function in (6.9). Our analysis indicates that, by the law of the

iterated logarithm, Theorem 5 would hold under any scaling that dominates the iterated logarithm

(see the proof of Theorem 5 for details). The logarithmic scaling in (6.9) satisfies this condition,

and since it is possible to use another scaling that grows faster than the iterated logarithm, the

function log(·) in (6.9) can be replaced by, say, (log log(·))2.

Achieving asymptotic accuracy. Encouraged by Theorem 5, we now turn our attention to

the accuracy of C∗. In our next result, we show that C∗ achieves asymptotic accuracy in static

environments.
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Theorem 6 (accuracy in static environments) Let ψ(·) ∈ Ψ, θ ∈ R, and assume that θt =

θ 6= ζ for t = 1, 2, . . . Then, for any ε ∈ (0, 1), the sequence of certainty-equivalence estimates {θ̂*t }
generated under C∗ is asymptotically ε-accurate.

The performance guarantee for C∗ in Theorem 6 is a significant improvement over the performance

of C in Theorem 1 and Corollary 1, which state that incomplete learning arises with positive

probability. Figure 9 displays the evolution of the inaccuracy of C∗. Comparing Figures 2 and 9,

we note that limiting the estimation memory remarkably improves asymptotic accuracy.
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Figure 9: Accuracy of certainty-equivalence learning with limited memory in a static environ-

ment. Panels (a) and (b) show sample paths of the inaccuracy process {∆∗

t}, and the histogram of the

inaccuracy in period 10,000, respectively, generated under C∗ in Example 1. More than 95% of the 2,000

sample paths eventually achieve an inaccuracy ∆∗

t less than 0.05. For all sample paths, the initial control is

X1 = 1, and the initial estimation window is w1 = 200. The scale parameter of C∗ is ν = 250.

The improved performance of C∗ relies on avoiding the incomplete learning trap by gradually

increasing the amount of information collected in an estimation window. In particular, if the control

sequence gets close to the uninformative control, then C∗ further adjusts its estimation window to

maintain the “right rate” in information accumulation. As shown in Figure 10, adaptively adjusting

memory resolves the incomplete learning problem associated with certainty-equivalence in static

environments.
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Figure 10: Certainty-equivalence estimates with limited memory in a static environment. Panels

(a) and (b) depict sample paths of the estimate sequence {θ̂*t }, and the histogram of the estimate in period

10,000, respectively, generated under C∗ in the setting of Example 1. (Problem parameters are the same as

in Figure 9.)

Our final result shows that limiting memory also provides good accuracy performance in slowly
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changing environments. To express this result compactly we define asymptotic tracking as follows.

Definition (asymptotic tracking) The estimate sequence {θ̂*t } is said to asymptotically track

the unknown parameter sequence {θt}, expressed as θ̂*t ≍ θt, if there exist constants η1, η2 where

0 < η1 ≤ 1 ≤ η2 <∞, such that

lim inf
t→∞

θ̂*t
θt

≥ η1 and lim sup
t→∞

θ̂*t
θt

≤ η2 almost surely. (6.11)

Theorem 7 (tracking accuracy in slowly changing environments) Let ψ(·) ∈ Ψ, and

θlt = ζ + κ1G(t) , (6.12a)

θht = ζ + κ2G(t) , (6.12b)

for t = 1, 2, . . . , where 0 < κ1 ≤ κ2. Assume that G(·) is concave and nondecreasing, G(t) → ∞,

and {θt} evolves between the lower and upper bound processes {θlt} and {θht } respectively, with

tolerance R > 0. Then θ̂*t ≍ θt, where {θ̂*t } is the sequence of certainty-equivalence estimates

generated under C∗.

Remark 9 If κ1 and κ2 are sufficiently close to each other, then η1 and η2 are both close to 1,

implying asymptotic accuracy. To be precise, if κ2 ≤ (1 + ε/4)κ1 for ε ∈ (0, 12), then {θ̂*t } is

asymptotically ε-accurate.

The preceding theorem states that C∗ can “track” the unknown parameter in slowly changing

environments. That is, as long as {θt} moves away from ζ at a slow growth rate described by

the concave function G(·), {θ̂*t } will attain the same order of magnitude as {θt}. It is perhaps

worth noting that the changing environment described in Theorem 7 is more general than the one

described in Theorem 3, in the sense that the growth envelope in (6.12) is more general in its

functional form, and the tolerance parameter R could be larger.

Figures 11 and 12 show that C∗ can track the unknown parameter sequence {θt} in the slowly

changing environment described in Example 4.
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Figure 11: Accuracy of certainty-equivalence learning with limited memory in a slowly changing

environment. Panels (a) and (b) show sample paths of the inaccuracy process {∆∗

t}, and the histogram of

the inaccuracy in period 10,000, respectively, generated under C∗ in Example 4. More than 99% of the 2,000

sample paths eventually achieve an inaccuracy ∆∗

t less than 0.02. For all sample paths, the initial control is

X1 = 1, and the initial estimation window is w1 = 200. The scale parameter of C∗ is ν = 250.
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Figure 12: Certainty-equivalence estimates with limited memory in a slowly changing environ-

ment. Panels (a) and (b) depict sample paths of the estimate sequence {θ̂*t }, and the histogram of the

estimate in period 10,000, respectively, generated under C∗ in Example 4. (Problem parameters are the

same as in Figure 11.)

Evolution of estimation windows in static and changing environments. The operating

principle of C∗ is to gradually increase the amount of information collected within an estimation

window. In a static environment, this principle leads to increasing the size of the estimation window,

wn, because the signals received from the environment do not necessarily “grow stronger” over time.

But, in the slowly changing environments described in Theorems 3 and 7, the strength of these

signals increases as time progresses; hence it is possible for the amount of information collected in

an estimation window to increase while keeping the window size wn more or less stable. Figure 13

depicts this feature of C∗ by comparing the evolution of its window size in Examples 1 and 4.
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Figure 13: Estimation window size. The box-and-whiskers plots above show how the estimation windows

wn of C∗ evolve in Examples 1 and 4, respectively. For every iteration n ≥ 2, the box displays the lower

quartile, median, and upper quartile values for the 2,000 sample paths generated, while each whisker extends

either to the most extreme data point or else for a distance equal to 1.5 times the inter-quartile range,

whichever is smaller. For all sample paths, the initial control is X1 = 1, and the initial estimation window

is w1 = 200. The scale parameter of C∗ is ν = 250.

7 Concluding Remarks

Generalization from least squares to M-estimation. For concreteness and exposition pur-

poses, we focused in this paper on (nonlinear) least squares estimators described by (2.2). We note

that least squares estimation belongs to a broad family of estimation methods that are predicated
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on optimizing an empirical objective function that serves as a proxy for an unobserved ideal objec-

tive. These are collectively referred to as M-estimators, and include least squares and maximum

likelihood as well as several other well studied instances. Our general analysis in §6 can be extended

to M-estimators that satisfy the following conditions. Let φ : R2t → Θ be an estimator function

that maps the history of observed responses and controls to an estimate θ̂t+1 as follows:

θ̂t+1 = φ(x1, y1, . . . , xt, yt) := argmax
θ

{ t∑

s=1

λ
(
ys − f(xs, θ)

)}
, (7.1)

where λ(·) is a twice differentiable and concave loss function such that: (i) Eθ{λ′(ǫt)} = 0 for all t;

and (ii) there exists c > 0 satisfying |λ′′(z)| ≥ c for all z ∈ R. Let Lt(θ) =
∑t

s=1 λ
(
ys − f(xs, θ)

)
.

In this case, we replace (2.2) by

∂Lt(θ̂t+1)

∂θ
= 0, (7.2)

where ∂Lt(θ)/∂θ = − ∑t
s=1 λ

′
(
ys−f(xs, θ)

)
fθ(xs, θ). A well-known example of the aforementioned

M-estimation procedure is maximum likelihood estimation, for which λ(·) is the logarithm of the

density of the noise terms {ǫt}, and Lt(·) is the log-likelihood function at the end of period t.

To extend the proofs of our general results in §6, one needs to study the optimality condition (7.2)

and employ the mean value theorem as in the proof of Theorem 5. In the case of M-estimation, the

generalized optimality conditions are expressed in terms of weighted sums, where the second deriva-

tives of the loss function λ(·) serve as weights. As long as these second derivatives are bounded away

from zero, our asymptotic analysis, proofs of Theorems 5-7, follows in the same manner. (For further

details on this extension, please see the remark following the proof of Theorem 5 in Appendix E.)

Constrained estimation. In many applications of dynamic learning, the decision maker may

know a priori that Θ, the feasible set of unknown model parameters, is a strict subset of R. In this

case, the unconstrained estimator θ̂t would be projected onto Θ to reduce inaccuracy, which leads

to {θ̂t} taking values possibly on the boundary of Θ. We would like to emphasize that our proof

of incomplete learning in Theorem 1 does not rely on the convergence of the estimate sequence

{θ̂t} to the boundary of Θ, or the convergence of the control sequence {xt} to the boundary of X .

Instead, our analysis reveals that there is a positive probability that {θ̂t} and {xt} converge to a

uninformative estimate-control pair ζ and ψ(ζ) that are in the interior of Θ and X , respectively.

This result holds even if Θ and X are both unbounded, and thus, it is distinct from most antecedent

work on incomplete learning for certainty-equivalence, e.g., Lai and Robbins (1982), that rely on

the uninformative control being on the boundary of X .

Extension to martingale-difference noise. As shown in §5, our findings on the incomplete

learning phenomenon hold for a family of nonlinear models called generalized linear models (GLMs);

see Theorem 4(i-ii). We note that these findings can be further generalized to the case where the

noise terms follow a martingale difference sequence. To be more precise, the statement of Theorem

4 remains valid if the noise terms {ǫt} form a square-integrable martingale difference sequence with
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respect to the canonical filtration Ft = σ(ǫ1, . . . , ǫt). By using the strong law of large numbers for

martingales instead of the classical strong law of large numbers (while applying the other proof

arguments verbatim) in the proof of Theorem 4, one can cover this extended setting and show that,

if {ǫt} is a square-integrable martingale difference sequence with conditional probability density

function hǫt(·|Ft−1) and support R, then Theorem 4 still holds. Note that, in this extension,

the density of Pθ is given by hθ(y1, . . . , yt) = hǫ1
(
y1 − f(x1, θ)

)∏t
s=2 hǫs

(
ys − f(xs, θ)|Fs−1

)
for

y1, . . . , yt ∈ R.

Moderately changing environments: from sub-logarithmic to linear growth. In Theo-

rem 3, we describe a specific family of slowly changing environments where the unknown parameter

sequence {θt} drifts away from the uninformative estimate ζ at a slow, sub-logarithmic rate. Of

course, if {θt} moves away from ζ at a faster sub-linear rate (e.g., at a rate of order tα where

0 < α < 1), the decision maker would be receiving even stronger signals; hence it would be rela-

tively easier to achieve asymptotic accuracy in such moderately changing environments. Theorem 7

provides the generalized growth conditions on {θt} for achieving asymptotic accuracy.

Comparison with antecedent work on certainty-equivalence policies. As discussed

earlier in §1.2, incomplete learning of certainty-equivalence policies has been the subject of several

studies. In particular, Lai and Robbins (1982) showed that, in a dynamic learning setting with

a compact set of feasible controls, the control sequence of a certainty-equivalence learning policy

can converge to the boundary of the feasible control set; see also den Boer and Zwart (2014) for

a variant of this result in a dynamic pricing formulation. At first glance, one might think that

incomplete learning is a boundary-related phenomenon that will disappear if the feasible control

set is unbounded. However, unlike the Lai and Robbins (1982) result, we show that the incomplete

learning phenomenon persists even in this setting. Our result is based on the observation that the

controls of the certainty-equivalence learning policy can converge to an uninformative fixed point in

the interior of the control set. The proof technique in Lai and Robbins (1982) relies on the control

sequence taking a fixed boundary value after a finite number of periods, which is not possible in

our setting. The added challenge in proving our result is to show that the certainty-equivalence

controls can become “trapped” in a narrow range of interior values (rather than a fixed boundary

value). To obtain our incomplete learning result, we employ the strong law of large numbers for

martingales, and characterize the information growth patterns on sample paths with and without

incomplete learning. In addition to the above, our study differs from the work by Lai and Robbins

(1982) (and follow-up papers surveyed in §1.2) insofar as: (i) we consider several different changing
environments to shed light on the extent of the incomplete learning phenomenon under certainty-

equivalence policies; and (ii) we prove that limiting the estimation memory of certainty-equivalence

policies can eliminate incomplete learning, improving accuracy and tracking performance.

We would also like to note that, in the literature on dynamic learning, there exist other ap-
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proaches to modifying certainty-equivalence policies. In the vast majority of these approaches, the

control function of the certainty-equivalence policy is modified to implement forced exploration.

For example, in the widely studied multiarmed bandit problem, this idea dates back to Robbins

(1952), later refined in the formulation of the upper confidence bound policies and randomization

(ǫ-greedy) policies for bandit problems with arms indexed by an unknown parameter; see Lai and

Robbins (1985) and Auer et al. (2002). We refer readers to Harrison et al. (2012), Broder and Rus-

mevichientong (2012), den Boer and Zwart (2014), Keskin and Zeevi (2014) for typical examples

of such modifications in the context of the dynamic pricing problem described in §3; see also den

Boer and Zwart (2015) for a simple modification of a certainty-equivalence policy in a dynamic

pricing and learning problem with finite initial inventory. Unlike the studies above, our certainty-

equivalence learning policy with limited memory (i.e., the policy C∗) does not attempt to replace

the control function to implement forced exploration; i.e., C∗ employs the certainty-equivalence

control function ψ(·) all the time, using limited estimation memory to avoid incomplete learning in

lieu of forced exploration.

Comparison with antecedent work on learning in changing environments. In a recent

study, Keskin and Zeevi (2016) analyzed the performance of various forced-exploration dynamic

pricing policies in changing environments. In particular, they constructed and studied policies that

employ moving windows, gradually decaying weights, and change-point detection tests. Our work

differs from theirs in two major ways. First, the focus of Keskin and Zeevi (2016) is on forced

exploration; all of their policies rely on a pre-determined schedule of explicit experiments with

controls, rather than using certainty-equivalence. By contrast, our work studies the performance

of certainty-equivalence policies without any forced exploration. Secondly, the aforementioned

moving windows in Keskin and Zeevi (2016) are chosen deterministically in the beginning of the

time horizon, whereas the estimation windows of the policy C∗ are chosen adaptively. Consequently,

the absence of forced exploration and the adaptive nature of estimation windows make our policies

and their analysis distinct.

Multiple unknown parameters. In this paper, we have studied a family of response models

characterized by a single unknown parameter, and shown that certainty-equivalence learning policies

may exhibit incomplete learning. We should note that this phenomenon is observed in a broader

context where the response model can depend on multiple unknown parameters. As an illustrative

example, suppose that the response is given by yt = α+βxt+ǫt, where α and β are unknown scalars,

and xt ∈ X = R. In this case, the parameter vector is θ = (α, β), which takes values in Θ ⊆ R
2. The

definition of a certainty-equivalence learning policy in this setting is similar to the dynamical system

in (2.2-2.3): at the end of each period t, a least squares estimate θ̂t+1 = (α̂t+1, β̂t+1) is computed,

and then a certainty-equivalence decision rule ψ : Θ → X maps the estimate θ̂t+1 into the control

xt+1 to be used in the following period, i.e., xt+1 = ψ(θ̂t+1). (For example, a certainty-equivalence

decision rule commonly used in dynamic pricing settings is ψ(α, β) = −α/(2β); assuming that xt
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and yt are the price and demand in period t, respectively, this decision rule would maximize the

expected revenue function if the values of α > 0 and β < 0 were known with certainty.)

Figure 14 shows the performance of certainty-equivalence learning in the aforementioned setting.

As depicted in panel (a), the controls {xt} of the certainty-equivalence learning policy do not

necessarily converge to ψ(θ), which equals 1.1 in this example. Instead, they converge to various

values that are distinct from ψ(θ). The essential reason for this behavior is that the uninformative

control varies over time. To be precise, the uninformative control that fails to update the least

square estimate is the sample average of the first t controls, namely x̄t =
∑t

s=1 xs. Because {x̄t}
evolves over time, the control sequence {xt} can “get stuck” at different values. The primary

challenge in the analysis of the above multi-parameter setting is the time-varying nature of the

uninformative estimate-control pair. This means that, in the case of incomplete learning, the

location of the uninformative equilibrium is not fixed in advance, which makes the convergence

results especially challenging. Changing uninformative estimate-control pairs present an interesting

direction for future research on incomplete learning, and we believe that the analysis we develop

in this paper would hopefully constitute a key step in facilitating that study.
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Figure 14: Incomplete learning with multiple unknown parameters. Panels (a) and (b) depict sample

paths of the control sequence {xt}, and the histogram of the control in period 10,000, respectively, under

the certainty-equivalence learning policy in a static environment with two unknown parameters. The true

values of the unknown parameters are α = 1.1 and β = −0.5, and the standard deviation of noise terms is

σ = 0.5. The first two controls are set to be x1 = 1 and x2 = 2, and subsequently are set using the control

function ψ(α, β) = −α/(2β).

Appendix A: Speed of Learning

On the paths in which the estimate sequence {θ̂t} exhibits incomplete learning, the rate of con-

vergence to the uninformative estimate can differ from the rate of convergence on the set of paths

where {θ̂t} converges to the true parameter. In Example 1, 20% of the sample paths exhibit in-

complete learning whereas the remaining 80% exhibit consistency. For the latter sample paths, a

log-log regression reveals that the mean squared error of estimates, namely Eθ(θ̂t − θ)2, decreases

at a rate close to t−1 (with R2 = 0.99, see panel (a) of Figure 15). This means that the cumulative
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mean squared error
∑T

t=1 Eθ(θ̂t − θ)2, which can also be linked to the decision maker’s “regret”

under a quadratic loss function, grows proportional to log T on the sample paths that exhibit con-

sistency. Because Proposition 1 implies that xt → ψ(θ) almost surely on these sample paths, the

Fisher information {Jt =
∑t

s=1 x
2
s, t = 1, 2, . . .} increases linearly in the case of consistency, which

explains why the mean squared error decays in inverse proportion to t. However, {θ̂t} cannot have

the same convergence rate for incomplete learning because we know by Proposition 1 that J∞ <∞
almost surely in this case. For the sample paths with incomplete learning, Eθ(θ̂t − ζ)2 decays at

a rate close to e−0.01t (with R2 = 0.97, see panel (b) of Figure 15; the decay coefficient 0.01 is

statistically significant with p < 0.001).

Consequently, as explained by Proposition 1, the convergence rate for incomplete learning is

substantially faster than that for consistency. Note that, in the case of incomplete learning, the

cumulative mean squared error
∑T

t=1 Eθ(θ̂t − θ)2 grows linearly in T , due to Markov’s inequality

and because θ̂t converges to ζ with positive probability.
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Figure 15: Speed of convergence. The solid curves in panels (a) and (b) depict the semi-log plots of

Eθ(θ̂t − θ)2 in the case of consistency and Eθ(θ̂t − ζ)2 in the case of incomplete learning, respectively, in

Example 1. The dotted curves in panels (a) and (b) display the best log-log and semi-log regression fits to

the plots, respectively.

Appendix B: Proofs of the Results in §4

Proof of Proposition 1. Let Ft = σ(ǫ1, . . . , ǫt) for t = 1, 2, . . . We will first show by induction

that xt is square-integrable for t = 1, 2, . . . For the base step, note that x1 is deterministic and

hence square-integrable. Now, for the induction step, assume that x1, . . . , xt are square-integrable.

By (2.3), xt+1 = ψ(θ̂t+1). Using the mean value theorem and the fact that |ψ′(θ)| ≤ L <∞ for all

θ ∈ Θ, we further deduce that

x2t+1 ≤ 2
(
ψ(θ)

)2
+ 2L2(θ̂t+1 − θ)2

(a)
= 2

(
ψ(θ)

)2
+

2L2M2
t

J2
t

(b)

≤ 2
(
ψ(θ)

)2
+

2L2M2
t

x41
, (B.1)

where: (a) follows from (4.3); and (b) follows because x21 ≤
∑t

s=1 x
2
s = Jt. Recall that x1, . . . , xt are

square-integrable by the induction hypothesis. Moreover, because ǫt
iid∼ Normal(0, σ2), ǫ1, . . . , ǫt are

also square-integrable, which implies that Mt =
∑t

s=1 xsǫs is square integrable, i.e., EθM
2
t < ∞.

By (B.1), this implies that Eθ x
2
t+1 < ∞, i.e., xt+1 is square-integrable. Consequently, since xt
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and ǫt are square-integrable for t = 1, 2, . . . , the stochastic process {Mt, t = 1, 2, . . .} is a square-

integrable and zero-mean martingale with respect to the filtration {Ft, t = 1, 2, . . .}. Let Vt = 〈M〉t
denote the predictable compensator of {Mt, t = 1, 2, . . .}; that is

Vt =

t∑

s=1

Eθ[(Ms −Ms−1)
2|Fs−1] (B.2)

for all t. By the strong law of large numbers for martingales (see Williams 1991, pp. 122-124),

we know that (i) Mt/Vt → 0 almost surely on {V∞ = ∞}, and (ii) Mt converges almost surely

to a finite limit on {V∞ < ∞}, where V∞ = limt→∞ Vt. Now recall that, by (2.2), θ̂t+1 ∈ mFt

for all t. Since xt+1 = ψ(θ̂t+1) by (2.3), and ψ(·) is a known deterministic function, we further

deduce that xt+1 ∈ mFt for all t. Consequently, Eθ[x
2
t+1|Ft] = x2t+1 for all t. Thus, we have

Vt = σ2
∑t

s=1 Eθ[x
2
s|Fs−1] = σ2

∑t
s=1 x

2
s = σ2Jt, where Jt =

∑t
s=1 x

2
s . Therefore, V∞ is finite if

and only if J∞ is finite. By (i) and equation (4.3), θ̂t → θ almost surely on the event {J∞ = ∞}.
However, on the event {J∞ <∞}, xt → 0 because

∑∞
s=1 x

2
s <∞. Thus, θ̂t → ψ−1(0) almost surely

on {J∞ <∞}.

Proof of Theorem 1. Because θ 6= ζ, we deduce that either θ > ζ or θ < ζ.

Case 1. θ > ζ. In this case, the remainder of the proof is a special case of the proof of Theorem 2

with Yt = θJt, κ0 = (θ − ζ)/2, and κ2 = 3(θ − ζ)/2.

Case 2. θ < ζ. Let κ0 = (ζ−θ)/2, κ1 = 3(ζ−θ)/2, and κ2 > 0. Consider the proof of Theorem 2,

and redefine the indicator variable χs as χs = I{ζ − κ0 < θs ≤ ζ + κ2}. If ζ − κ1 ≤ θt ≤ ζ + κ2 for

t = 1, 2, . . . , and θt ≤ ζ − κ0 eventually, then by the argument used to prove (B.8) we deduce that

there exists a finite random variable N1 such that θ̂t ≤ ζ − κ0/2 for all t ≥ N1. By symmetry, we

repeat the arguments following (B.8) in a similar manner to show that the conclusion of Theorem 2

holds for the above choices of κ0, κ1, and κ2.

Proof of Proposition 2. Because ψ(·) is monotone and there exists no ζ ∈ Θ satisfying ψ(ζ) = 0,

we deduce that either ψ(θ) > 0 for all θ ∈ Θ, or ψ(θ) < 0 for all θ ∈ Θ. Assume without loss

generality that ψ(θ) > 0 for all θ ∈ Θ. Recall that Jt =
∑t

s=1 x
2
s, and that J∞ = limt→∞ Jt.

Suppose towards a contradiction that Pθ{J∞ < ∞} > 0. On the event {J∞ < ∞}, we know that

xt → 0 because
∑∞

s=1 x
2
s <∞. In addition, as shown in the proof of Proposition 1,Mt =

∑t
s=1 xsǫs

converges almost surely to a finite limit on {J∞ < ∞}. By (4.3) and the fact that J∞ ≥ x21 > 0,

this implies that, on the event {J∞ < ∞}, θ̂t ∈ Θ converges to a finite limit in Θ. But, since

ψ(θ) > 0 for all θ ∈ Θ, this contradicts the fact that xt = ψ(θ̂t) converges to 0 on {J∞ < ∞}.
Thus, Pθ{J∞ < ∞} = 0, and Pθ{J∞ = ∞} = 1. By Proposition 1(i), we conclude that θ̂t → θ

almost surely.

Proof of Theorem 2. First note that, for every t ≥ 2, by the mean value theorem there exists a

random variable ct on the line segment between θ̂t and ζ such that xt = ψ(θ̂t) = ψ(ζ)+ψ′(ct)(θ̂t−ζ).
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Because ψ(ζ) = 0, we can express the control in period t as

xt = ψ(θ̂t) = Lt(θ̂t − ζ) for all t = 1, 2, . . . , (B.3)

where Lt = ψ′(ct). Secondly, the equations (4.1) and (4.2) imply that

θ̂t+1 =
Yt +Mt

Jt
for t = 1, 2, . . . (B.4)

where Yt =
∑t

s=1 θsx
2
s , Jt =

∑t
s=1 x

2
s , and Mt =

∑t
s=1 xsǫs. We can re-express the preceding

identity as follows: θ̂t+1 =
∑t

s=1 λs,t θs +Mt/Jt for all t, where λs,t = x2s/Jt. Note that λs,t ≥ 0 for

all s and t, and that
∑t

s=1 λs,t = 1. Now, suppose towards a contradiction that Pθ{J∞ <∞} = 0;

hence J∞ = ∞ almost surely. As argued in the proof of Proposition 1, this implies by the strong

law of large numbers for martingales thatMt/Jt converges to zero almost surely. Thus, there exists

a finite random variable N0 such that we have the following with probability one:

t∑

s=1

λs,t θs − κ∗ ≤ θ̂t+1 ≤
t∑

s=1

λs,t θs + κ∗ for all t ≥ N0, (B.5)

where κ∗ = max{κ1, κ2}. By (4.4), we know that ζ − κ1 ≤ ∑t
s=1 λs,t θs ≤ ζ + κ2, implying

−2κ∗ ≤ θ̂t+1 − ζ ≤ 2κ∗ for all t ≥ N0. Combining these inequalities with (B.3), we have x2t+1 ≤
(2Lκ∗)2 for all t ≥ N0, where L is the upper bound on the derivative of ψ(·). Note further that

θ̂t+1
(a)
= ζ + κ0 +

∑t
s=1(θs − ζ − κ0)x

2
s (χs + χ̄s)∑t

s=1 x
2
s

+
Mt

Jt

≥ ζ + κ0 − (κ0 + κ1) ·
∑t

s=1 x
2
s χs∑t

s=1 x
2
s

+ (κ0 − κ0) ·
∑t

s=1 x
2
s χ̄s∑t

s=1 x
2
s

+
Mt

Jt

= ζ + κ0 − (κ0 + κ1) ·
∑t

s=1 x
2
s χs∑t

s=1 x
2
s

+
Mt

Jt
(B.6)

for t = 1, 2, . . . , where: χs = I{ζ − κ1 ≤ θs < ζ + κ0}, χ̄s = I{ζ + κ0 ≤ θs ≤ ζ + κ2} = 1 − χs,

and (a) follows by (B.4) and (4.4). Because x2t+1 ≤ (2Lκ∗)2 for all t ≥ N0, the preceding inequality

implies that

θ̂t+1 ≥ ζ + κ0 −
C0
∑t

s=1 χs

Jt
+
Mt

Jt
for all t ≥ N0, (B.7)

where C0 = (κ0 + κ1)(2Lκ
∗)2. Since Pθ{J∞ = ∞} = Pθ{Mt/Jt → 0} = 1, and θt ≥ ζ + κ0

eventually, we deduce that there exists a finite random variable N1 ≥ N0 such that we have the

following with probability one:

θ̂t ≥ ζ +
κ0
2

for all t ≥ N1. (B.8)

Let δ > 0. Define a stochastic process {γt, t = 1, 2, . . .} with

γt =
αtL

2t
+
βtJt−1

2Lt
for all t = 1, 2, . . . , (B.9)
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where αt = −δmax{θt−ζ, θt+1−ζ}, and βt = min{1, |1+δ/(θ̂t−ζ)|, |1+δ/(θ̂t+1−ζ)|}. Note that
(B.8) implies that βt would almost surely converge to 1. Moreover, combining (B.3) and (B.8), we

have xt ≥ Ltκ0/2 ≥ ℓκ0/2 for all t ≥ N1, because Lt ≥ ℓ. Recalling the definition of γt in (B.9) and

noting that |αt| ≤ δmax{κ1, κ2} = δκ∗ for all t, we deduce that there is a finite random variable

N2 ≥ N1 such that

γt ≥ γ for all t ≥ N2, (B.10)

where γ = (ℓκ0)
2/(8L) > 0. Because the first control x1 is chosen deterministically without using

any observed data, we will complete the proof by finding a contradiction when x1 is negative, and

when it is not.

Case 1. x1 < 0. Let ǫt := t−1
∑t

s=2 ǫs, and define an event A as follows:

A =

{
(ζ − θ1)x1 ≤ ǫ1 ≤ (ζ − θ1 − δ)x1

|ǫt| ≤ γt for all t ≥ 2

}
.

First, we will show that Pθ{A} > 0. It follows from the strong law of large numbers that Pθ{|ǫt| >
γ/2, i.o.} = 0. By (B.10), we also have Pθ{γt < γ/2, i.o.} = 0. The preceding two facts lead to the

conclusion that Pθ{|ǫt| > γt, i.o.} = 0. In other words, there exists a finite random variable τ such

that one almost surely has |ǫt| ≤ γt for all t ≥ τ . Because the random variable τ is finite, it attains

some finite value n with positive probability, implying that Pθ{A} ≥ Pθ{A|τ = n}Pθ{τ = n} > 0.

Secondly, we will prove by induction that, on the event A, we have

ζ − δ ≤ θ̂t ≤ ζ for all t ≥ 2. (B.11)

For the base step, note that the condition (ζ − θ1)x1 ≤ ǫ1 ≤ (ζ − θ1 − δ)x1 for the event A holds if

and only if ζ − δ ≤ θ1 + ǫ1/x1 ≤ ζ, because x1 < 0. By (B.4), we know that θ̂2 = θ1 + ǫ1/x1. Thus,

the condition (ζ − θ1)x1 ≤ ǫ1 ≤ (ζ − θ1 − δ)x1 is equivalent to ζ − δ ≤ θ̂2 ≤ ζ. For the induction

step, suppose that ζ − δ ≤ θ̂s ≤ ζ for all s ≤ t in a given time period t. On the event A we have
∑t

s=2 ǫs ≥ −tγt and −∑t−1
s=2 ǫs ≥ −(t−1)γt−1, from which we deduce that ǫt ≥ −tγt−(t−1)γt−1.

By (B.9), this implies that

ǫt ≥ − βtJt−1 + βt−1Jt−2

2L
− (αt + αt−1)L

2

(b)

≥ − Jt−1 + Jt−2

2L
+ (θt − ζ)δL

(c)

≥ − Jt−1

L
+ (θt − ζ)δL, (B.12)

where: (b) follows because max{αt, αt−1} ≤ −δ(θt − ζ) and max{βt, βt−1} ≤ 1; and (c) follows

because Jt is nondecreasing in t. By the induction hypothesis, we know that ζ − δ ≤ θ̂t; hence

−(θ̂t − ζ) ≤ δ. This implies that −(θt − ζ)(θ̂t − ζ)L ≤ (θt − ζ)δL. Consequently, we deduce from

(B.12) that ǫt ≥ −Jt−1/L − (θt − ζ)(θ̂t − ζ)L. Because Lt ≤ L for all t, the preceding inequality

implies ǫt ≥ −Jt−1/Lt − (θt − ζ)(θ̂t − ζ)Lt. By (B.3), we know that Lt = xt/(θ̂t − ζ). Therefore,
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ǫt ≥ −(θ̂t− ζ)Jt−1/xt− (θt− ζ)xt. Recalling (B.4) we have θ̂t = (Yt−1 +Mt−1)/Jt−1, implying that

ǫt ≥ − Yt−1 − ζJt−1 +Mt−1

xt
− (θt − ζ)xt

(d)
= − Yt − ζJt +Mt−1

xt
, (B.13)

where (d) follows because Yt = Yt−1 + θtx
2
t and Jt = Jt−1 + x2t . Since xt < 0, (B.13) implies

−xtǫt ≥ Yt − ζJt +Mt−1. Recalling that Mt =Mt−1 + xtǫt, this is equivalent to (Yt +Mt)/Jt ≤ ζ,

which implies that θ̂t+1 ≤ ζ by (B.4). To complete the induction, we note that
∑t

s=2 ǫs ≤ tγt and

−
∑t−1

s=2 ǫs ≤ (t− 1)γt−1 on the event A. Therefore, we have

ǫt ≤ tγt + (t− 1)γt−1 =
βtJt−1 + βt−1Jt−2

2L
+

(αt + αt−1)L

2

(e)

≤ |1 + δ/(θ̂t − ζ)| (Jt−1 + Jt−2)

2L
(f)

≤ |1 + δ/(θ̂t − ζ)|Jt−1

L
, (B.14)

where: (e) follows because max{αt, αt−1} ≤ 0 and max{βt, βt−1} ≤ |1 + δ/(θ̂t − ζ)|; and (f) follows

because Jt is nondecreasing in t. Now, because ζ − δ ≤ θ̂t ≤ ζ by the induction hypothesis, (B.14)

implies that

ǫt ≤ − (θ̂t − ζ + δ)Jt−1

(θ̂t − ζ)L
. (B.15)

Because −(θt − ζ + δ)xt ≥ 0, we further obtain

ǫt ≤ − (θ̂t − ζ + δ)Jt−1

(θ̂t − ζ)L
− (θt − ζ + δ)xt.

Recalling that Lt ≤ L for all t, we deduce by (B.15) that

ǫt ≤ − (θ̂t − ζ + δ)Jt−1

(θ̂t − ζ)Lt

− (θt − ζ + δ)xt
(g)
= − (θ̂t − ζ + δ)Jt−1

xt
− (θt − ζ + δ)xt,

where (g) follows because Lt = xt/(θ̂t − ζ) by (B.3). The estimation equation (B.4) implies that

θ̂t = (Yt−1 +Mt−1)/Jt−1, hence

ǫt ≤ − Yt−1 − (ζ − δ)Jt−1 +Mt−1

xt
− (θt − ζ + δ)xt

(h)
= − Yt − (ζ − δ)Jt +Mt−1

xt
, (B.16)

where (h) follows because Yt = Yt−1+ θtx
2
t and Jt = Jt−1+x

2
t . Because xt < 0, (B.16) implies that

−xtǫt ≤ Yt − (ζ − δ)Jt +Mt−1. Recalling Mt =Mt−1 + xtǫt, we deduce that ζ − δ ≤ (Yt +Mt)/Jt.

By (B.4) this implies that ζ − δ ≤ θ̂t+1. As a result, Pθ{A} > 0 and on the event A we have

ζ − δ ≤ θ̂t ≤ ζ for all t ≥ 2. But then, this contradicts (B.8), which holds almost surely under the

assumption that Pθ{J∞ <∞} = 0.

Case 2. x1 ≥ 0. In the definition of the event A, replace the condition (ζ − θ1)x1 ≤ ǫ1 ≤
(ζ − θ1 − δ)x1 with (ζ − θ1 − δ)x1 ≤ ǫ1 ≤ (ζ − θ1)x1. This change ensures that ζ − δ ≤ θ̂2 ≤ ζ on

A. The rest of the proof follows by the same argument.

Proof of Proposition 3. We will complete the proof in three steps.
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Step 1: Find a relaxed growth envelope for θt. Let z = ε
√
κ1/128 > 0. Recalling that {θt}

evolves above {θlt} with tolerance R, we deduce that if θlt − z ≤ θt then

ζ +
√
κ̃1 log(t+ 1) ≤ θt (B.17)

for all t, where κ̃1 =
(√
κ1 − z/

√
log 2

)2
. That is, as long as θt does not violate the lower bound θlt

by more than z, θt will satisfy the slightly relaxed growth condition in (B.17). Because z is chosen

sufficiently small, (B.17) implies by elementary algebra that κ1 − εκ1/32 ≤ κ̃1 ≤ κ1. Within a

tolerance of R, the unknown parameter θt can violate (B.17) in at mostN = ⌈R/z⌉ periods. Because
R ≤ z log

(
1−ε

1−ε/2

)
/ log(1− r) where r = 2−ℓ2κ2

1 log 2/(512σ
2), we know that N log(1− r) ≥ log

(
1−ε

1−ε/2

)
,

i.e., (1− r)N ≥ (1− ε)/(1 − ε/2).

Step 2: Find a lower bound on the conditional probability that θ̂t remains bounded away from ζ.

First, let δ = 1
4

√
κ̃1 log 2. To prove that {θ̂t, t = 1, 2, . . .} stays above ζ + δ with high probability,

let us define Bt = {θ̂t ≥ ζ + δ} for all t. We will derive an upper bound on Pθ{Bc
t+1 |Bt} for t ≥ 2.

Note that the equations (4.1) and (4.2) imply

θ̂t+1 =
Yt +Mt

Jt
for t = 1, 2, . . . ,

where Yt =
∑t

s=1 θsx
2
s , Jt =

∑t
s=1 x

2
s , and Mt =

∑t
s=1 xsǫs. Therefore, for t = 2, 3, . . . , we have

Pθ{Bc
t+1 |Bt} = Pθ

{
θ̂t+1 < ζ + δ

∣∣Bt

}
= Pθ

{
Yt +Mt < (ζ + δ)Jt

∣∣Bt

}
.

By the definition of the sums Yt, Mt, and Jt, the preceding identity is equivalent to

Pθ{Bc
t+1 |Bt} = Pθ

{
Yt−1 + θtx

2
t +Mt−1 + ǫtxt < (ζ + δ)(Jt−1 + x2t )

∣∣Bt

}
.

Recalling that θ̂t = (Yt−1 +Mt−1)/Jt−1, we can re-express the above identity as follows:

Pθ{Bc
t+1 |Bt} = Pθ

{
θ̂tJt−1 + θtx

2
t + ǫtxt < (ζ + δ)(Jt−1 + x2t )

∣∣Bt

}

= Pθ

{
ǫtxt < (ζ + δ − θ̂t)Jt−1 + (ζ + δ − θt)x

2
t

∣∣Bt

}
.

Because (ζ + δ − θ̂t)Jt−1 ≤ 0 on the event Bt = {θ̂t ≥ ζ + δ}, we deduce that

Pθ{Bc
t+1 |Bt} ≤ Pθ

{
ǫtxt < (ζ + δ − θt)x

2
t

∣∣Bt

}
. (B.18)

We will now find an upper bound on the right hand side of (B.18) under the condition that θt

satisfies (B.17). Noting that xt > 0 on Bt = {θ̂t ≥ ζ + δ}, we deduce the following: for all t ≥ 2 in

which θt satisfies (B.17), we have

Pθ{Bc
t+1 |Bt} ≤ Pθ

{
ǫt < (ζ + δ − θt)xt

∣∣∣Bt

}
≤ Pθ

{
ǫt <

(
δ −

√
κ̃1 log(t+ 1)

)
xt

∣∣∣Bt

}
. (B.19)

Since δ = 1
4

√
κ̃1 log 2, we know that

δ −
√
κ̃1 log(t+ 1) ≤ δ − 1

2

√
κ̃1 log 2− 1

2

√
κ̃1 log t = − 1

4

√
κ̃1 log 2− 1

2

√
κ̃1 log t.
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Moreover, on Bt = {θ̂t ≥ ζ + δ}, we also have xt ≥ ψ(ζ + δ) ≥ ℓδ = 1
4ℓ
√
κ̃1 log 2 > 0 because

ψ′(θ) ≥ ℓ > 0. Thus, (B.19) implies that

Pθ{Bc
t+1 |Bt} ≤ Pθ

{
ǫt <

(
− 1

4

√
κ̃1 log 2− 1

2

√
κ̃1 log t

)
1
4ℓ
√
κ̃1 log 2

∣∣∣Bt

}

(a)
= Pθ

{
ǫt < − 1

16ℓκ̃1log 2− 1
8ℓκ̃1

√
(log 2)(log t)

}

(b)

≤ exp

(
−
(

1
16ℓκ̃1log 2 +

1
8ℓκ̃1

√
(log 2)(log t)

)2

2σ2

)

≤ exp
(
− 1

512σ
−2ℓ2κ̃21(log 2)

2 − 1
128σ

−2ℓ2κ̃21(log 2)(log t)
)

(B.20)

for all t ≥ 2 in which (B.17) holds, where: (a) follows by the independence of ǫt and θ̂t ∈ mFt−1,

and (b) follows by Markov’s inequality and the fact that Eθ{ekǫt} = e
1
2
k2σ2

for all k ≥ 0. Note that

(B.20) can be expressed in the following compact form:

Pθ{Bc
t+1 |Bt} ≤ c t−q (B.21)

for all t ≥ 2 in which (B.17) holds, where q = (ℓ2κ̃21 log 2)/(128σ
2) and c = 2−q/4. Repeating

the above arguments, we also deduce that Pθ{Bc
2} = Pθ

{
θ̂2 < ζ + δ

}
≤ c. On the other hand,

whenever the condition (B.17) is violated in period t, then we have a more relaxed lower bound

on θt. In general, θt ≥ ζ +
√
κ1 log(t+ 1) − R ≥ ζ + δ + 1

4

√
κ1 log 2, because R ≤ 1

2

√
κ1 log 2 and

δ ≤ 1
4

√
κ1 log 2. By (B.18) and the arguments used to derive (B.20), we deduce that Pθ{Bc

t+1 |Bt} ≤
Pθ

{
ǫt < − 1

16ℓκ1log 2
}
≤ exp

(
− 1

512σ
−2ℓ2κ21(log 2)

2
)
= 2−ℓ2κ2

1 log 2/(512σ
2) = r for t ≥ 2. As argued

in Step 1, (B.24) can be violated in at most N periods, which implies that

Pθ

{
∞⋂

t=1

{
θ̂t+1 ≥ ζ + δ

}
}

≥ Pθ

{
θ̂2 ≥ ζ + δ

} ∞∏

t=2

Pθ

{
θ̂t+1 ≥ ζ + δ

∣∣∣ θ̂t ≥ ζ + δ
}

= Pθ{B2}
∞∏

t=2

Pθ{Bt+1 |Bt}

(c)

≥ (1− r)N
∞∏

t=1

(
1− c t−q

)
, (B.22)

where (c) follows because Pθ{Bt+1 |Bt} ≥ 1−c t−q in all but at mostN periods, and Pθ{Bt+1 |Bt} ≥
1− r in all periods.

Step 3: Prove that θ̂t is very likely to be bounded away from ζ. Let p∞ =
∏∞

t=1

(
1− c t−q

)
, and

note that

log p∞ =

∞∑

t=1

log
(
1− c t−q

) (d)

≥ log(1− c)

∞∑

t=1

t−q
(e)

≥ log(1− c)
π2

6
≥ 2 log(1− c),

where: (d) follows because log(x) ≥ c−1 log(1− c) (1−x) for 1− c ≤ x ≤ 1; and (e) follows because

κ̃1 ≥ κ1/2 ≥ 16σ/(ℓ
√
log 2), which implies that q = (ℓ2κ̃21 log 2)/(128σ

2) ≥ 2. The preceding
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inequality implies that p∞ ≥ (1−c)2 ≥ 1−2c. Recalling that κ̃1 ≥ κ1/2 ≥ 16σ
√

2 log(4/ε)/(ℓ log 2),

we further get c = 2−q/4 = 2−(ℓ2κ̃2
1 log 2)/(512σ

2) ≤ 2− log(4/ε)/ log 2 = 2− log2(4/ε) = ε/4. Therefore,

Pθ

{
∞⋂

t=1

{
θ̂t+1 ≥ ζ + δ

}
}

≥ (1− r)N (1− 2c) ≥ (1− r)N (1− ε/2).

As shown in Step 1, (1− r)N ≥ (1− ε)/(1 − ε/2); hence Pθ

{⋂∞
t=1{θ̂t+1 ≥ ζ + δ}

}
≥ 1− ε.

Proof of Proposition 4. Let ξs := θs − θs−1 for s = 1, 2, . . . , where we set θ0 = 0 without loss of

generality. By (4.1) and (4.2), we know that

θ̂t+1 =

∑t
s=1 θsx

2
s∑t

s=1 x
2
s

+

∑t
s=1 xsǫs∑t
s=1 x

2
s

= θt+1 −
∑t

s=1(θt+1 − θs)x
2
s∑t

s=1 x
2
s

+

∑t
s=1 xsǫs∑t
s=1 x

2
s

(a)
= θt+1 −

∑t
s=1

∑t
k=s ξk+1x

2
s∑t

s=1 x
2
s

+

∑t
s=1 xsǫs∑t
s=1 x

2
s

= θt+1 −
∑t

s=1

∑t
k=s ξk+1x

2
s

Jt
+
Mt

Jt
(B.23)

for t = 1, 2, . . . , where Jt =
∑t

s=1 x
2
s , Mt =

∑t
s=1 xsǫs , and (a) follows because θs =

∑s
k=1 ξk for

all s. On the right hand side of (B.23), the numerator of the second term can be expressed as

t∑

s=1

t∑

k=s

ξk+1x
2
s =

t∑

k=1

k∑

s=1

ξk+1x
2
s =

t∑

k=1

ξk+1

k∑

s=1

x2s =
t∑

k=1

ξk+1Jk.

As a result, equation (B.23) becomes

θ̂t+1 = θt+1 −
t∑

k=1

Jk
Jt
ξk+1 +

Mt

Jt
for t = 1, 2, . . .

This implies that

1− θ̂t+1

θt+1
=

t∑

k=1

Jk
Jt

· ξk+1

θt+1
− Mt

θt+1Jt
for t = 1, 2, . . .

Proof of Theorem 3. Since κ1 ≤ κ2, we have R ≤ ε
√
κ1 log

(
1−ε

1−ε/2

)/(
128 log(1 − r)

)
where

r = 2−ℓ2κ2
1 log 2/(512σ

2). Thus, we deduce by Proposition 3 that Pθ{θ̂t ≥ ζ + δ for all t} ≥ 1 − ε,

where δ = 1
4

√
κ̃1 log 2, and κ̃1 is the constant defined in Step 1 in the proof of Proposition 3. We

will complete remainder of the proof in three steps.

Step 1: Find a relaxed growth envelope for θt. We extend Step 1 in the proof of Proposition 3

as follows. Let z = εκ1/(128
√
κ2) > 0. Because {θt} evolves between the lower and upper bound

processes {θlt} and {θht } with tolerance R, we deduce that if θlt − z ≤ θt ≤ θht + z then

ζ +
√
κ̃1 log(t+ 1) ≤ θt ≤ ζ +

√
κ̃2 log(t+ 1) (B.24)
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for all t, where κ̃1 =
(√
κ1 − z/

√
log 2

)2
and κ̃2 =

(√
κ2 + z/

√
log 2

)2
; i.e., as long as θt does

not violate the lower and upper bounds θlt and θht by more than z, θt will satisfy (B.24). By

elementary algebra, (B.24) implies that κ1 − εκ1/32 ≤ κ̃1 ≤ κ1 and κ2 ≤ κ̃2 ≤ κ2 + εκ1/32.

Because κ1 ≤ κ2 ≤ κ1/(1 − ε/8), we further deduce that κ̃1 ≤ κ̃2 ≤ κ̃1/(1 − ε/4). Given tolerance

R, θt can violate (B.24) in at most N = ⌈R/z⌉ periods. As argued in Step 1 in the proof of

Proposition 3, this implies that (1− r)N ≥ (1 − ε)/(1 − ε/2).

Step 2: Derive lower and upper bounds Jt on {θ̂t ≥ ζ + δ for all t}. By definition, the following

statements hold almost surely on {θ̂t ≥ ζ + δ for all t}: Because ψ′(θ) ≥ ℓ > 0 for all θ ∈ R, we

have xt ≥ ψ(ζ + δ) ≥ ℓδ > 0, which implies that

Jt ≥ c1t for all t, (B.25)

where c1 = ℓ2δ2. Thus, J∞ = ∞, implying by the strong law of large numbers for martingales

that Mt/Jt → 0 as t → ∞ (see (i) in the proof of Proposition 1). Recalling Proposition 4, we

note that the second term on the right hand side of (4.6) converges to zero. On the other hand,

the first term on the right hand side of (4.6) is between 0 and 1 for all t. Therefore, for any

ǫ0 > 0 there is a finite random variable n0 such that −ǫ0 ≤ 1 − θ̂t+1/θt+1 ≤ 1 + ǫ0 for all t ≥ n0.

Consequently, we have −ǫ0θt+1 ≤ θ̂t+1 ≤ (1 + ǫ0)θt+1, which implies by elementary algebra that

−ǫ0(θt+1 − ζ)− (1 + ǫ0)ζ ≤ θ̂t+1 − ζ ≤ (1 + ǫ0)(θt+1 − ζ) + ǫ0ζ for t ≥ n0. Thus,

|θ̂t+1 − ζ| ≤ (1 + 2ǫ0)max{|ζ|, |θt+1 − ζ|} for t ≥ n0. (B.26)

Now, recalling that {θt} evolves between the lower and upper bound processes {θlt} and {θht } with

tolerance R, we know that
∑∞

t=1 max{θt−θht , θlt−θt, 0} ≤ R <∞, and hence there is a finite random

variable n1 such that (B.24) is satisfied for all t ≥ n1. Let n2 = max
{
n0, n1, ⌈exp(4ζ2/κ1)⌉

}
, and

note that |ζ| ≤ 1
2

√
κ̃1 log(t+ 2) for t ≥ n2. Because ζ +

√
κ̃1 log(t+ 2) ≤ θt+1 for t ≥ n1,

max{|ζ|, |θt+1 − ζ|} = |θt+1 − ζ| for all t ≥ n2. We also know that θt+1 ≤ ζ +
√
κ̃2 log(t+ 2)

for t ≥ n1, which implies that |θ̂t+1 − ζ| ≤ (1 + 2ǫ0)|θt+1 − ζ| ≤ (1 + 2ǫ0)
√
κ̃2 log(t+ 2) for

all t ≥ n2 ≥ n1. Recalling that xt+1 = ψ(θ̂t+1) and that ψ′(θ) ≤ L for all θ ∈ R, we have

x2t+1 =
(
ψ(θ̂t+1))

2 ≤ K0 log(t+ 2) for t ≥ n2, where K0 = (1 + 2ǫ0)
2L2κ̃2. This implies that

Jt = Jn2 +

t∑

s=n2+1

x2s ≤ Jn2 +

t∑

s=n2+1

K0 log(s + 1) = Jn2 +K0(t+ 2) log(t+ 1)

for all t > n2. Let n3 = max{n2 + 1, Jn2/K0}. Then,

Jt ≤ c2(t+ 2) log(t+ 1) for all t ≥ n3, (B.27)

where c2 = 2K0. Having characterized the growth rate of Jt in the lower and upper bounds in (B.25)

and (B.27), respectively, we will now show that θ̂t is eventually ε-accurate on {θ̂t ≥ ζ + δ for all t}.
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Step 3: Prove that inaccuracy is small on {θ̂t ≥ ζ + δ for all t}. To complete the proof, we will

use the decomposition of inaccuracy in Proposition 4. Because {θt} is eventually nondecreasing

and (B.24) holds for all t ≥ n1, we know that there exists a finite random variable n4 such that

θt+1 ≥ θt ≥ 0 for all t ≥ n4. Let λ = 1 − ε/4 ∈ (0, 1), mt = ⌈tλ⌉, and n5 = (max{n3, n4})1/λ.
For all t ≥ n5, mt exceeds n3 and n4; hence the first term on the right hand side of (4.6) can be

expressed as

t∑

k=1

Jk
Jt

· ξk+1

θt+1
=

n4−1∑

k=1

Jk
Jt

· ξk+1

θt+1
+

mt∑

k=n4

Jk
Jt

· ξk+1

θt+1
+

t∑

k=mt+1

Jk
Jt

· ξk+1

θt+1
for all t ≥ n5, (B.28)

where ξk+1 = θk+1 − θk. For the first sum on the right hand side of (B.28), we note that

n4−1∑

k=1

Jk
Jt

· ξk+1

θt+1
≤

n4−1∑

k=1

Jk
Jt

· |ξk+1|
θt+1

(a)

≤ Jn4

Jt

n4−1∑

k=1

|ξk+1|
θt+1

(b)

≤ K1

Jt

(c)

≤ K1

c1t
for all t ≥ n5, (B.29)

where: K1 = Jn4

∑n4−1
k=1 |ξk+1|/θn4 ; (a) follows because Jt is nondecreasing in t; (b) follows because

θt+1 ≥ θn4 ; and (c) follows by (B.25). For the second sum on the right hand side of (B.28), we have

mt∑

k=n4

Jk
Jt

· ξk+1

θt+1

(d)

≤ Jmt

Jt

mt∑

k=n4

ξk+1

θt+1

(e)

≤ Jmt

Jt
for all t ≥ n5, (B.30)

where: (d) follows because Jt is nondecreasing in t and ξk+1 ≥ 0 for k ≥ n4; and (e) follows because
∑mt

k=n4
ξk+1 ≤ θmt

≤ θt+1. Using the bounds we found in Step 2, we deduce from (B.30) that

mt∑

k=n4

Jk
Jt

· ξk+1

θt+1

(f)

≤ c2(mt + 2) log(mt + 1)

c1t

(g)

≤ c2(t
λ + 3) log(tλ + 2)

c1t
for all t ≥ n5, (B.31)

where: (f) follows by (B.25) and (B.27); and (g) follows because mt = ⌈tλ⌉. Now, note that as

t→ ∞ the right hand side of (B.29) converges to zero. Because λ < 1, the right hand side of (B.31)

similarly converges to zero. Hence there is a finite random variable n6 ≥ n5 such that

n4−1∑

k=1

Jk
Jt

· ξk+1

θt+1
+

mt∑

k=n4

Jk
Jt

· ξk+1

θt+1
≤ ε

4
for all t ≥ n6. (B.32)

For the third sum on the right hand side of (B.28), note that

t∑

k=mt+1

Jk
Jt

· ξk+1

θt+1

(h)

≤
t∑

k=mt+1

ξk+1

θt+1

(i)
= 1−

∑mt

k=0 ξk+1∑t
k=0 ξk+1

= 1− θmt+1

θt+1
for all t ≥ n6, (B.33)

where: (h) follows because ξk+1 ≥ 0 for k ≥ mt ≥ n4 and Jk ≤ Jt for k ≤ t; and (i) follows because

θt+1 =
∑t

k=0 ξk+1. Because (B.24) holds for all t ≥ mt ≥ n1, (B.33) implies

t∑

k=mt+1

Jk
Jt

· ξk+1

θt+1
≤ 1− ζ +

√
κ̃1 log(mt + 2)

ζ +
√
κ̃2 log(t+ 2)

=

√
κ̃2 log(t+ 2) −

√
κ̃1 log(mt + 2)

ζ +
√
κ̃2 log(t+ 2)

for all t ≥ n6.
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Noting that mt + 2 = ⌈tλ⌉+ 2 ≥ tλ + 2 ≥ (t+ 2)λ, we further obtain

t∑

k=mt+1

Jk
Jt

· ξk+1

θt+1
≤
√
κ̃2 log(t+ 2)−

√
λκ̃1 log(t+ 2)

ζ +
√
κ̃2 log(t+ 2)

=
1−

√
λκ̃1/κ̃2

1 + ζ/
√
κ̃2 log(t+ 2)

for all t ≥ n6.

Recall that |ζ| ≤ 1
2

√
κ̃1 log(t+ 2) ≤ 1

2

√
κ̃2 log(t+ 2) for all t ≥ n6 ≥ n2. Thus,

t∑

k=mt+1

Jk
Jt

· ξk+1

θt+1
≤ 2

(
1−

√
λκ̃1/κ̃2

) (j)

≤ ε

2
for all t ≥ n6, (B.34)

where (j) follows because λ = 1 − ε/4 and κ̃1 ≥ (1 − ε/4)κ̃2. Combining (B.32) and (B.34), we

deduce that the first term on the right hand side of (4.6) will eventually be between 0 and 3ε/4

almost surely on {θ̂t ≥ ζ + δ for all t}. Recall that the second term on the right hand side of (4.6)

converges to zero almost surely on {θ̂t ≥ ζ+ δ for all t}, which implies that there is a finite random

variable n7 such that |Mt/(θt+1Jt)| ≤ ε/4 for all t ≥ n7. Therefore |1 − θ̂t+1/θt+1| ≤ ε for all

t ≥ max{n6, n7}. Because the above statements hold almost surely on {θ̂t ≥ ζ + δ for all t}, we
conclude that θ̂t is eventually ε-accurate on {θ̂t ≥ ζ + δ for all t}, and hence {θ̂t} is asymptotically

ε-accurate.

Appendix C: An Example with Cyclical Pattern of Estimates

The following example demonstrates that if the conditions of Theorem 2 are violated, then the

certainty-equivalence estimates {θ̂t} can keep fluctuating without converging to ζ.

Example 7: Another boundedly changing environment. Assume that f(x, θ) = θx for all

x ∈ X = R and θ ∈ Θ = R. Let tn = 2n for all n = 1, 2, . . . , Todd =
⋃∞

k=1[t2k−1, t2k), and

Teven =
⋃∞

k=1[t2k, t2k+1). Construct a sequence {θt, t = 1, 2, . . .} such that

θt =

{
0.8 if t ∈ Todd,
1.2 if t ∈ Teven,

for all t = 1, 2, . . . The decision maker sets the initial control as x1 = 1, and subsequently uses

the control function ψ(θ) = −1 + θ. To observe the cyclical behavior of {θ̂t} crisply, suppose that

ǫt
iid∼ Normal(0, σ2) with σ = 0.01.

Note that Example 7 does not satisfy the conditions of Theorem 2 because its unknown parameter

sequence {θt} will visit both sides of ζ infinitely often. Figure 16 shows that the sample paths

of {θ̂t} keep fluctuating in this example. Moreover, the sample paths get very close to ζ without

converging to ζ; the running minima of all sample paths is approximately 1.0152.

Since we focus on incomplete learning in this paper, we rule out such cyclical patterns of {θ̂t} by

assuming in Theorem 2 that {θt} will eventually be fluctuating in bounded interval on one side of ζ.
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Figure 16: Certainty-equivalence estimates in Example 7. The sample paths of {θ̂t} are shown in the

solid curves, and the values of {θt} are shown in the dotted curve. The dashed line shows the value of ζ = 1,

and the dash-dotted line shows the value of 1.0152.

Appendix D: Proof of Theorem 4

Proof of Theorem 4(i). Because θ 6= ζ, we have either θ > ζ or θ < ζ. Assume without loss of

generality that θ > ζ. We deduce from (2.2) that θ̂t+1 satisfies

t∑

s=1

(
ys − g(θ̂t+1xs)

)
g′(θ̂t+1xs)xs = 0 for t = 1, 2, . . . (D.1)

By (2.1) and the fact that f(x, θ) = g(θx) for x ∈ X and θ ∈ Θ, (D.1) implies that

t∑

s=1

(
g(θxs)− g(θ̂t+1xs) + ǫs

)
g′(θ̂t+1xs)xs = 0 for t = 1, 2, . . . (D.2)

Invoking the mean value theorem in (D.2) we deduce that, for all s and t, there exists a random

variable ϕ̄(θ̂t+1, xs) between θ̂t+1 and θ such that g(θxs)−g(θ̂t+1xs) = g′
(
ϕ̄(θ̂t+1, xs)xs

)
(θ−θ̂t+1)xs.

Therefore, (D.2) can be expressed as follows:

(θ − θ̂t+1)
t∑

s=1

g′
(
ϕ̄(θ̂t+1, xs)xs

)
g′(θ̂t+1xs)x

2
s +

t∑

s=1

g′(θ̂t+1xs)xsǫs = 0 for t = 1, 2, . . . (D.3)

For notational brevity, define Mt(ϑ) =
∑t

s=1 g
′(ϑxs)xsǫs, Jt(ϑ) =

∑t
s=1

(
g′(ϑxs)xs

)2
, and J̃t(ϑ) =∑t

s=1 g
′
(
ϕ̄(ϑ, xs)xs

)
g′(ϑxs)x

2
s for t = 1, 2, . . . and ϑ ∈ Θ. Then, (D.3) implies that

θ̂t+1 = θ +
Mt(θ̂t+1)

J̃t(θ̂t+1)
for t = 1, 2, . . . (D.4)

Suppose towards a contradiction that, for all ϑ ∈ Θ, Jt(ϑ) diverges to ∞ almost surely. Note that,

for all t = 1, 2, . . . , and ϑ ∈ Θ, we have the following by elementary algebra:

St(ϑ)− St(θ) =
t∑

s=1

(
ys − g(ϑxs)

)2 −
t∑

s=1

(
ys − g(θxs)

)2

(a)
=

t∑

s=1

(
g(θxs)− g(ϑxs) + ǫs

)2 −
t∑

s=1

ǫ2s

=

t∑

s=1

(
g(θxs)− g(ϑxs)

)2
+ 2

t∑

s=1

(
g(θxs)− g(ϑxs)

)
ǫs, (D.5)
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where: (a) follows by (2.1) and the fact that f(x, θ) = g(θx) for x ∈ X and θ ∈ Θ. For brevity, let

Jt(ϑ) =
∑t

s=1

(
g(θxs)− g(ϑxs)

)2
, Mt(ϑ) =

∑t
s=1

(
g(θxs)− g(ϑxs)

)
ǫs, and note that

St(ϑ)− St(θ) = Jt(ϑ) + 2Mt(ϑ) = Jt(ϑ) ·
(
1 +

2Mt(ϑ)

Jt(ϑ)

)
(D.6)

for all t = 1, 2, . . . , and ϑ ∈ Θ. Because g′(ξ) ≤ L̃ for all ξ ∈ Ξ = {θx : (x, θ) ∈ X ×Θ}, we deduce

that, for all ϑ ∈ Θ, {Mt(ϑ), t = 1, 2, . . .} is a square-integrable and zero-mean martingale with

respect to the filtration {Ft, t = 1, 2, . . .}, where Ft = σ(ǫ1, . . . , ǫt) for t = 1, 2, . . . Note that the

predictable compensator of {Mt(ϑ), t = 1, 2, . . .} is Vt(ϑ) = σ2
∑t

s=1

(
g(θxs)−g(ϑxs)

)2
= σ2Jt(ϑ).

Let δ̃ > 0, and choose ϑ ∈ Θ such that ϑ ≤ θ − δ̃. Since Jt(ϑ)
a.s.−→ ∞ as t → ∞, and

ℓ̃ ≤ g′(ξ) ≤ L̃ for all ξ ∈ Ξ = {θx : (x, θ) ∈ X × Θ}, we have Jt(ϑ)
a.s.−→ ∞ as t → ∞. By the

strong law of large numbers for martingales (see Williams 1991, pp. 122-124), this further implies

that Mt(ϑ)/Jt(ϑ)
a.s.−→ 0 as t → ∞. Combining this fact with (D.6), we deduce that, for all ϑ ∈ Θ

satisfying ϑ ≤ θ− δ̃, St(ϑ)− St(θ)
a.s.−→ ∞ as t→ ∞. By symmetry, St(ϑ)− St(θ)

a.s.−→ ∞ as t→ ∞
for all ϑ ∈ Θ satisfying ϑ ≥ θ − δ̃. Thus, we have St(ϑ) − St(θ)

a.s.−→ ∞ as t → ∞ for all ϑ ∈ Θ

such that |ϑ − θ| ≥ δ̃. On the other hand, we also have St(ϑ) − St(θ) = 0 for all t, if ϑ = θ.

Based on these facts, we conclude that, with probability one, any ϑ outside the δ̃-neighborhood

of θ cannot be the minimizer of St(·) as t → ∞. Therefore, for all δ̃ > 0, the following holds

with probability one: the estimator θ̂t+1, which minimizes St(·), will eventually be located inside

the δ̃-neighborhood of θ. Since δ̃ > 0 was selected arbitrarily, we deduce that θ̂t+1 converges to θ

almost surely (this is a standard proof argument regarding the consistency of M-estimators; see,

e.g., Wu 1981, Lemma 1). Now, recall that xt = ψ(θ̂t) = Lt(θ̂t − ζ) for all t, where Lt = ψ′(ct)

and ct is between θ̂t and ζ. Let L̄t = g′(ϕ̄(θ̂t+1)xt), L̃t = g′(θ̂t+1xt), ãt = (θ − ζ)min{L̄tLt(θ̂t − ζ),

L̄t+1Lt+1(θ̂t+1 − ζ)}, b̃t = (θ − ζ)min{J̃t−1(θ̂t+1)/(L̃tLt(θ̂t − ζ)), J̃t(θ̂t+2)/(L̃t+1Lt+1(θ̂t+1 − ζ))},
c̃t = min{|Mt−1(θ̂t+1)|/(L̃tLt(θ̂t − ζ)), |Mt(θ̂t+2)|/(L̃t+1Lt+1(θ̂t+1 − ζ))}, and define a stochastic

process {γ̃t, t = 1, 2, . . .} such that

γ̃t = 1
2t(ãt + b̃t + c̃t) for all t = 1, 2, . . . (D.7)

Because θ̂t+1 → θ almost surely, we deduce that ãt/t → 0 and b̃t/t → (θ − ζ)g′(θψ(θ))ψ(θ) almost

surely. Moreover, by the strong law of large numbers for martingales, c̃t/t → 0 almost surely.

Letting γ̃ = (θ − ζ)g′(θψ(θ))ψ(θ)/2 > 0, we thus have γ̃t → γ̃ almost surely. As in the proof of

Theorem 2, we consider the two possible cases for x1.

Case 1. x1 < 0. Let δ > 0, ǫt := t−1
∑t

s=2 ǫs, and

Ã =

{
(ζ − θ)L̃x1 ≤ ǫ1 ≤ (ζ − θ − δ)ℓ̃x1

|ǫt| ≤ γ̃t for all t ≥ 2

}
.

To see that Pθ{Ã} > 0, we deduce by the strong law of large numbers that Pθ{|ǫt| > γ̃/2, i.o.} = 0.

Because γ̃t → γ̃ almost surely, we also have Pθ{γ̃t < γ̃/2, i.o.} = 0. Thus, Pθ{|ǫt| > γ̃t, i.o.} = 0;
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i.e., there is a finite random variable τ̃ such that |ǫt| ≤ γ̃t for all t ≥ τ̃ , with probability one. Since τ̃

attains some finite value n with positive probability, Pθ{Ã} ≥ Pθ{Ã|τ̃ = n}Pθ{τ̃ = n} > 0. In the

remainder of our analysis in this case, we will prove by induction that, on Ã, we have ζ−δ ≤ θ̂t ≤ ζ

for all t ≥ 2. For the base step, note that the condition (ζ − θ)L̃x1 ≤ ǫ1 ≤ (ζ − θ − δ)ℓ̃x1 implies

that ζ − δ ≤ θ̂2 ≤ ζ. For the induction step, suppose that ζ − δ ≤ θ̂s ≤ ζ for all s ≤ t. Since
∑t

s=2 ǫs ≥ −tγ̃t and −∑t−1
s=2 ǫs ≥ −(t− 1)γ̃t−1 on Ã, we have ǫt ≥ −tγ̃t− (t− 1)γ̃t−1. By (D.7) and

elementary algebra, this implies that

ǫt ≥ − L̄tLt(θ − ζ)(θ̂t − ζ)− (θ − ζ)J̃t−1(θ̂t+1)

L̃tLt(θ̂t − ζ)
− |Mt−1(θ̂t+1)|
L̃tLt(θ̂t − ζ)

(b)

≥ − L̄tL(θ − ζ)(θ̂t − ζ)− (θ − ζ)J̃t−1(θ̂t+1) +Mt−1(θ̂t+1)

L̃tLt(θ̂t − ζ)
, (D.8)

where (b) follows since |y| ≥ y for all y ∈ R, and θ̂t ≤ ζ. Because xt = Lt(θ̂t − ζ) for all t, we

deduce from (D.8) that

ǫt ≥ − L̄t(θ − ζ)xt −
(θ − ζ)J̃t−1(θ̂t+1) +Mt−1(θ̂t+1)

L̃txt
. (D.9)

Since xt < 0, (D.9) implies that

(θ − ζ)
(
J̃t−1(θ̂t+1) + L̄tL̃tx

2
t

)
+Mt−1(θ̂t+1) + L̃txtǫt ≤ 0. (D.10)

Because J̃t(θ̂t+1) = J̃t−1(θ̂t+1)+L̄tL̃tx
2
t andMt(θ̂t+1) =Mt−1(θ̂t+1)+L̃txtǫt, (D.10) is equivalent to

θ+Mt(θ̂t+1)/J̃t(θ̂t+1) ≤ ζ. By (D.4), this implies that θ̂t+1 ≤ ζ, which proves one of the inequalities

in the induction step. For the other inequality, note that ǫt ≤ tγ̃t + (t − 1)γ̃t−1 on Ã. Therefore,

using (D.7) and elementary algebra, we obtain the following:

ǫt ≤ L̄tL(θ − ζ)(θ̂t − ζ) +
(θ − ζ)J̃t−1(θ̂t+1)

L̃tLt(θ̂t − ζ)
+

|Mt−1(θ̂t+1)|
L̃tLt(θ̂t − ζ)

(c)

≤ − L̄tLt(θ − ζ + δ)(θ̂t − ζ)− (θ − ζ + δ)J̃t−1(θ̂t+1) +Mt−1(θ̂t+1)

L̃tLt(θ̂t − ζ)
, (D.11)

where (c) follows because −|y| ≤ y for all y ∈ R, θ̂t ≤ ζ, and δ > 0. Recalling that xt = Lt(θ̂t − ζ),

we further deduce that

ǫt ≤ − L̄t(θ − ζ + δ)xt −
(θ − ζ + δ)J̃t−1(θ̂t+1) +Mt−1(θ̂t+1)

L̃txt
. (D.12)

Combining (D.12) with the fact that xt < 0, we have

(θ − ζ + δ)
(
J̃t−1(θ̂t+1) + L̄tL̃tx

2
t

)
+Mt−1(θ̂t+1) + L̃txtǫt ≥ 0. (D.13)

Thus, θ +Mt(θ̂t+1)/J̃t(θ̂t+1) ≥ ζ − δ, implying by (D.4) that θ̂t+1 ≥ ζ − δ. This completes the

induction. As a result, Pθ{Ã} > 0, and on Ã, we have ζ − δ ≤ θ̂t ≤ ζ for all t ≥ 2. This
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contradicts with the fact that θ̂t+1 → θ almost surely. Therefore, there must exist ϑ ∈ Θ such

that Jt(ϑ) converges to a finite limit with positive probability. Since g′(ξ) ≥ ℓ̃ for all ξ ∈ Ξ =

{θx : (x, θ) ∈ X × Θ}, we have Jt(ϑ) ≥ ℓ̃2
∑t

s=1 x
2
s. Consequently, because limt→∞ Jt(ϑ) < ∞

with positive probability, we conclude that xt converges to zero with positive probability; i.e.,

Pθ{xt → 0} = Pθ{θ̂t → ζ} > 0.

Case 2. x1 ≥ 0. In this case, we modify the definition of Ã by replacing the condition (ζ−θ)L̃x1 ≤
ǫ1 ≤ (ζ − θ − δ)ℓ̃x1 with (ζ − θ − δ)ℓ̃x1 ≤ ǫ1 ≤ (ζ − θ)L̃x1 to ensure that ζ − δ ≤ θ̂2 ≤ ζ. The

remainder of the proof follows by the same argument.

Proof of Theorem 4(ii). Since ψ(·) is monotone and there exists no ζ ∈ Θ satisfying ψ(ζ) = 0,

we deduce that either ψ(ϑ) > 0 for all ϑ ∈ Θ, or ψ(ϑ) < 0 for all ϑ ∈ Θ. Assume without loss

generality that ψ(ϑ) > 0 for all ϑ ∈ Θ. For t = 1, 2, . . . and ϑ ∈ Θ, let Jt(ϑ) =
∑t

s=1

(
g′(ϑxs)xs

)2

and J∞(ϑ) = limt→∞ Jt(ϑ). Suppose towards a contradiction that there exists ϑ̃ ∈ Θ such that

Pθ{J∞(ϑ̃) < ∞} > 0. Because g′(ξ) ≥ ℓ̃ for all ξ ∈ Ξ = {θx : (x, θ) ∈ X × Θ}, we deduce that

J∞(ϑ̃) ≥ ℓ̃2
∑t

s=1 x
2
s for all t. Therefore, on the event {J∞(ϑ̃) < ∞}, we have

∑∞
s=1 x

2
s < ∞,

which implies that xt → 0. Since ψ(·) is differentiable and monotone, this further implies that,

on the event {J∞(ϑ̃) < ∞}, θ̂t ∈ Θ converges to a finite limit in Θ. But, since ψ(ϑ) > 0 for

all ϑ ∈ Θ, this contradicts the fact that xt = ψ(θ̂t) converges to 0 on {J∞(ϑ̃) < ∞}. Thus,

Pθ{J∞(ϑ) < ∞} = 0 and Pθ{J∞(ϑ) = ∞} = 1 for all ϑ ∈ Θ. Using the argument following (D.6)

in the proof of Theorem 4(i), we deduce that (a) the strong law of large numbers for martingales

(see Williams 1991, pp. 122-124) and (b) the fact that Jt(ϑ) → ∞ almost surely for all ϑ ∈ Θ

jointly imply that infϑ∈Θ{St(ϑ)− St(θ) : |ϑ− θ| ≥ δ̃} → ∞ for any given δ̃ > 0. Consequently, the

estimator θ̂t+1 that minimizes St(·) converges to θ almost surely.

Appendix E: Proofs of the Results in §6

For the sake of comparison with the results in §4, we would like to provide some high-level intuition

for the results in §6. Roughly speaking, in the proofs of our incomplete learning results in Theorems

1 and 2, we considered how a few initial response realizations can make the certainty-equivalence

estimate θ̂t “get stuck” in a small neighborhood of ζ. In the proof of Theorem 5, we will show

that, by limiting the estimation memory, one can eliminate such negative impact of initial response

realizations and hence avoid incomplete learning. In the proof of Theorem 6, we will show that, in

static environments, this result can further be strengthened to establish the almost sure convergence

of the certainty-equivalence estimates, resulting in asymptotic estimation accuracy. Finally, in

the proof of Theorem 7, we study how the certainty-equivalence estimates evolve in changing

environments and in the absence of incomplete learning. If the unknown parameter θt drifts away

from ζ at a slow and concavely growing rate, the certainty-equivalence estimates can asymptotically

track θt.
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Proof of Theorem 5. Because Θ̂n+1 = ϕ(wn, τn) and τn = τn−1 + wn, we know by (6.5) that

−2

τn−1+wn∑

s=τn−1+1

(
ys − f

(
xs, Θ̂n+1

))
fθ
(
xs, Θ̂n+1

)
= 0,

for n = 1, 2, . . . Recalling that xs = Xn for s = τn−1 + 1, . . . , τn−1 + wn, we have

τn−1+wn∑

s=τn−1+1

(
ys − f

(
Xn, Θ̂n+1

))
= 0, (E.1)

for all n. Using the response model (2.5) we further obtain

τn−1+wn∑

s=τn−1+1

(
f
(
Xn, θs

)
− f

(
Xn, Θ̂n+1

)
+ ǫs

)
= 0, (E.2)

for all n. Now, by the mean value theorem there exists a random variable Cs,n on the line segment

between θs and Θ̂n+1 such that f
(
Xn, θs

)
−f
(
Xn, Θ̂n+1

)
=
(
θs−Θ̂n+1

)
fθ
(
Xn, Cs,n

)
. Consequently,

(E.2) implies the following for all n:

τn−1+wn∑

s=τn−1+1

(
θs − Θ̂n+1

)
fθ
(
Xn, Cs,n

)
+ S(wn, τn−1) = 0,

where S(w, t) =
∑t+w

s=t+1 ǫs. By elementary algebra, we can express the preceding identity as

Θ̂n+1 =

τn−1+wn∑

s=τn−1+1

µs,n θs +

(
τn−1+wn∑

s=τn−1+1

fθ
(
Xn, Cs,n

)
)−1

S(wn, τn−1) (E.3)

for all n, where

µs,n =

(
τn−1+wn∑

s=τn−1+1

fθ
(
Xn, Cs,n

)
)−1

fθ
(
Xn, Cs,n

)
.

Let us focus on the second term on the right hand side of (E.3). Note that

∣∣∣∣∣

(
τn−1+wn∑

s=τn−1+1

fθ
(
Xn, Cs,n

)
)−1

S(wn, τn−1)

∣∣∣∣∣
(a)

≤
∣∣∣∣
S(wn, τn−1)

wn

√
I∗(Xn)

∣∣∣∣

=

(
2σ2 log logwn

wn I∗(Xn)

)1/2 ∣∣E(wn, τn−1)
∣∣

(b)

≤
(
2σ2 log logwn

ν log τn

)1/2 ∣∣E(wn, τn−1)
∣∣

(c)

≤
(
2σ2 log log τn
ν log τn

)1/2 ∣∣E(wn, τn−1)
∣∣

for n = 2, 3, . . . , where: E(w, t) = (2σ2w log logw)−1/2S(w, t); ν is the scale parameter of C∗;

(a) follows because I(x, θ) =
(
fθ(x, θ)

)2
and I∗(Xn) = minθ∈Θ{I(Xn, θ)}; (b) follows because
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wn ≥ ν log(τn)/I
∗(Xn) for n ≥ 2; and (c) follows because wn ≤ τn. For all t, by the law of the

iterated logarithm we have that lim supw→∞ |E(w, t)| = lim supw→∞

∣∣(2σ2w log logw)−1/2S(w, t)
∣∣ =

1 almost surely. Noting that limx→∞{log log(x)/ log(x)} = 0, and that limn→∞{τn} = ∞ almost

surely, we consequently deduce that

lim
n→∞

∣∣∣∣∣

(
τn−1+wn∑

s=τn−1+1

fθ
(
Xn, Cs,n

)
)−1

S(wn, τn−1)

∣∣∣∣∣ = 0, almost surely. (E.4)

Let δ = b/3. By (E.3) and (E.4), there is a finite random variable m0 such that
∣∣∣∣∣ Θ̂n+1 −

τn−1+wn∑

s=τn−1+1

µs,n θs

∣∣∣∣∣ ≤ δ, (E.5)

for all n ≥ m0. Letting δ̃ = δ/
(
(a+ b)K

)
, by the theorem’s hypothesis there exists a subsequence

of estimation windows {wn(k), k = 1, 2, . . .} such that the following holds for all k:

1

wn(k)

τn(k)−1+wn(k)∑

s=τn(k)−1+1

I
{
ζ − a ≤ θs ≤ ζ + b

}
≤ δ̃,

and θs ≥ ζ − a for all s ≥ τn(k)−1 + 1. Consequently, we have

τn(k)−1+wn(k)∑

s=τn(k)−1+1

µs,n(k) I
{
ζ − a ≤ θs ≤ ζ + b

}
≤

δ̃ wn(k)K
√
I∗(Xn)

wn(k)

√
I∗(Xn)

=
b

3(a+ b)
for all k.

This implies that

τn(k)−1+wn(k)∑

s=τn(k)−1+1

µs,n(k) θs ≥ b

3(a+ b)
(ζ − a) +

(
1− b

3(a+ b)

)
(ζ + b)

= ζ +
2b

3
= ζ + 2δ (E.6)

for all k. By (E.5) and (E.6), we deduce that there is a finite random variable k0 such that

Θ̂n(k)+1 ≥ ζ + δ for k ≥ k0. As a result, with probability one, Θ̂n+1 does not converge to ζ.

Remark (extension to M-estimators) As mentioned earlier, our general analysis in §6 can be

extended to any M-estimator characterized by (7.1). To do this, the optimality condition in (E.1)

is replaced by the following:

−
τn−1+wn∑

s=τn−1+1

λ′
(
ys − f

(
xs, Θ̂n+1

))
fθ
(
xs, Θ̂n+1

)
= 0,

for all n. As in the proof of Theorem 5, we recall that xs = Xn for s = τn−1+1, . . . , τn−1+wn, and

then use the response model (2.5) and the mean value theorem on f(·) and λ′(·) to deduce that

Θ̂n+1 =

τn−1+wn∑

s=τn−1+1

µ̃s,n θs +

(
τn−1+wn∑

s=τn−1+1

λ′′(C̃s,n)fθ
(
Xn, Cs,n

)
)−1

S̃(wn, τn−1), (E.7)
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for all n, where:

µ̃s,n =

(
τn−1+wn∑

s=τn−1+1

λ′′(C̃s,n)fθ
(
Xn, Cs,n

)
)−1

λ′′(C̃s,n)fθ
(
Xn, Cs,n

)
,

S̃(wn, τn−1) =

τn−1+wn∑

s=τn−1+1

λ′(ǫs),

and C̃s,n is a random variable on the line segment between ǫs and ys − f
(
Xn, Θ̂n+1

)
. To extend

the proof of Theorem 5, note that
∣∣∣∣∣

( τn−1+wn∑

s=τn−1+1

λ′′(C̃s,n)fθ
(
Xn, Cs,n

)
)−1

S̃(wn, τn−1)

∣∣∣∣∣
(a)

≤
∣∣∣∣
S̃(wn, τn−1)

cwn

√
I∗(Xn)

∣∣∣∣

(b)

≤
(
2σ2 log log τn
c2 ν log τn

)1/2 ∣∣Ẽ(wn, τn−1)
∣∣

for n ≥ 2, where: Ẽ(w, t) = (2σ2w log logw)−1/2S̃(w, t); ν is the scale parameter of C∗; (a) follows

because |λ′′(z)| ≥ c for all z ∈ R, I(x, θ) =
(
fθ(x, θ)

)2
and I∗(Xn) = minθ∈Θ{I(Xn, θ)}; and (b)

follows because ν log(τn)/I
∗(Xn) ≤ wn ≤ τn for n ≥ 2. Using the law of the iterated logarithm and

the fact that limn→∞{τn} = ∞ almost surely, as in the proof of Theorem 5, we deduce that

lim
n→∞

∣∣∣∣∣

(
τn−1+wn∑

s=τn−1+1

λ′′(C̃s,n)fθ
(
Xn, Cs,n

)
)−1

S̃(wn, τn−1)

∣∣∣∣∣ = 0, almost surely. (E.8)

Replacing (E.4) with (E.8), and repeating the rest of the arguments in the proof of Theorem 5

in exactly the same way, we obtain the extension of Theorem 5 to the case of M-estimation. To

generalize Theorems 6 and 7, we invoke (E.7) and (E.8) instead of (E.3) and (E.4), respectively,

in the proofs of these theorems, and in accordance with that, we replace the weights {µs,n} with

{µ̃s,n} in the proof of Therorem 7. Noting that µ̃s,n ∈ [0, 1] and
∑τn−1+wn

s=τn−1+1 µ̃s,n = 1, we repeat

the arguments in the proofs of Theorems 6 and 7 in exactly the same way to obtain the extended

results.

Proof of Theorem 6. By the theorem’s hypothesis, we have θt = θ for all t. Using this fact and

repeating the arguments used to derive (E.3), we deduce that

Θ̂n+1 = θ +
S(wn, τn−1)

wn fθ
(
Xn, Cn

) (E.9)

for all n, where Cn is a random variable on the line segment between θ and Θ̂n+1. By (E.4), we

further obtain

lim
n→∞

∣∣∣∣
S(wn, τn−1)

wn fθ
(
Xn, Cn

)
∣∣∣∣ = 0, almost surely. (E.10)

Thus, Θ̂n → θ almost surely. As a result, with probability one, there exists a finite random variable

N such that |1− Θ̂n/θ| ≤ ε for all n ≥ N , which implies that |1− θ̂*t /θ| ≤ ε for all t ≥ τN .
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Proof of Theorem 7. We will prove the theorem in the first three steps, and the remark that

follows the theorem in the final step.

Step 1: Find a relaxed growth envelope for θt. Because {θt} evolves between the lower and upper

bound processes {θlt} and {θht } with tolerance R, there exists z > 0 such that θlt − z ≤ θt ≤ θht + z

for all but possibly finitely many t. Thus, there exists a natural number N0 such that

ζ + κ1G(t)− z ≤ θt ≤ ζ + κ2G(t) + z (E.11)

for all t ≥ N0. Moreover, because G(·) is nondecreasing and G(t) → ∞, there exists N1 ≥ N0 such

that G(t) >
(
z +max{1 − ζ, 0}

)
/κ1 for all t ≥ N1.

Step 2: Derive an upper bound on the growth of wn. Let a(t) be the largest integer a satisfying

τa ≤ t. Recalling that {τn, n = 1, 2, . . .} is the subsequence of periods at which estimation windows

are updated, the definition of a(t) implies that τa(t) is the latest period before t, at which the

estimation window is updated, and that wa(t) = τa(t) − τa(t)−1 is the size of last estimation window

before t. Letting δ = 1
2

(
κ1G(N1) − z

)
> 0, we deduce from (E.3) and (E.4) that there is a finite

random variable m0 such that
∣∣∣∣∣ Θ̂n+1 −

τn−1+wn∑

s=τn−1+1

µs,n θs

∣∣∣∣∣ ≤ δ,

for all n ≥ m0 almost surely. Now, let m = max{m0, a(N1) + 1}. Because µs,n ∈ [0, 1],
∑τn−1+wn

s=τn−1+1 µs,n = 1, and G(·) is nondecreasing, we have that∑τn−1+wn

s=τn−1+1 µs,n θs ≥ ζ+κ1G(τn−1)−z
for all n ≥ m. Therefore,

Θ̂n+1 ≥ ζ + κ1G(τn−1)− z − δ ≥ ζ + κ1G(N1)− z − δ = ζ + δ,

for all n ≥ m almost surely. Because ψ′(θ) ≥ ℓ > 0 for all θ ∈ R, we deduce that Xn − ψ(ζ) =

ψ
(
Θ̂n

)
− ψ(ζ) ≥ ℓδ > 0 for all n ≥ m + 1 almost surely. Thus, there exists a finite and positive

constant c such that I∗(Xn) > c all n ≥ m + 1 almost surely. Recalling that wn is the smallest

integer satisfying wn ≥ ν log(τn)/I
∗(Xn) for all n ≥ 2, we further get wn − 1 < ν log(τn)/I

∗(Xn) ≤
ν log(τn)/c for all n ≥ m+ 1 almost surely. Thus,

wn = τn − τn−1 ≤ 1 +
ν log(τn)

c
for all n ≥ m+ 1 almost surely. (E.12)

Step 3: Prove that θ̂*t+1 has the same order of magnitude as θt+1. Note that (E.3) implies

θ̂*t+1

θt+1
=

τa(t)−1+wa(t)∑

s=τa(t)−1+1

µs,a(t) θs

θt+1
−
(
θt+1

τa(t)−1+wa(t)∑

s=τa(t)−1+1

fθ

(
Xa(t), Cs,a(t)

))−1

S
(
wa(t), τa(t)−1

)
, (E.13)

for all t ≥ τm+1. We will first prove that the second term on the right hand side of (E.13) converges

to zero. By (E.4), there is a finite random variable N2 such that
∣∣∣∣∣

(
τn−1+wn∑

s=τn−1+1

fθ
(
Xn, Cs,n

)
)−1

S(wn, τn−1)

∣∣∣∣∣ ≤ ε

2
,
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for all n ≥ N2 almost surely. Because (E.11) holds for all t ≥ τm+1 ≥ N0, we also know that

θt+1 ≥ ζ + κ1G(t)− z for all t ≥ τm+1, which implies that θt+1 ≥ 1 for all t ≥ τm+1 ≥ N1. Letting

N3 = max{τm+1, τN2}, we have
∣∣∣∣∣

(
θt+1

τa(t)−1+wa(t)∑

s=τa(t)−1+1

fθ

(
Xa(t), Cs,a(t)

))−1

S
(
wa(t), τa(t)−1

) ∣∣∣∣∣ ≤ ε

2
, (E.14)

for all t ≥ N3 almost surely. Now, we will study the first term on the right hand side of (E.13).

Recalling that µs,n ∈ [0, 1],
∑τn−1+wn

s=τn−1+1 µs,n = 1, and G(·) is nondecreasing, we have

τa(t)−1+wa(t)∑

s=τa(t)−1+1

µs,a(t) θs

θt+1
≥

ζ + κ1G
(
τa(t)−1

)
− z

ζ + κ2G
(
τa(t)+1

)
+ z

, (E.15)

for all t ≥ N3 almost surely. Let η1, η2 > 0 such that η1 < κ1/κ2 ≤ 1 ≤ κ2/κ1 < η2. Since

G(·) is nondecreasing and G(t) → ∞, there exists a finite random variable N4 ≥ N3 such that

G(t) ≥
(
(1− η1)|ζ|+ (1 + η1)z

)
/(κ1 − η1κ2) for all t ≥ N4. Moreover, invoking (E.12) for n = a(t)

and n = a(t) + 1, we also get τa(t)+1 − τa(t)−1 ≤ 2 + 2ν log(τa(t)+1)/c for all t ≥ N4 almost surely;

that is, τa(t)−1 ≥ τa(t)+1 − 2ν log
(
τa(t)+1

)
/c − 2 for all t ≥ N4 almost surely. Combining this with

the fact that τa(t) diverges almost surely to ∞ as t → ∞, we deduce that there exists a finite

random variable N5 ≥ N4 such that τa(t)−1 ≥ λτa(t)+1 + (1 − λ)N4 for all t ≥ N5 almost surely,

where λ = η1κ2/κ1 < 1. Because G(·) is concave and nondecreasing, this implies that

G
(
τa(t)−1

)
≥ λG

(
τa(t)+1

)
+ (1− λ)G(N4) (E.16)

≥ λG
(
τa(t)+1

)
+
(
(1− η1)|ζ|+ (1 + η1)z

)
/κ1

for all t ≥ N5 almost surely. By elementary algebra, this further implies that the right hand side of

(E.15) is greater than or equal to η1 for all t ≥ N5. Thus, by (E.13) and (E.14), we conclude that

lim inft→∞ θ̂*t+1/θt+1 ≥ η1 almost surely. To complete the proof of (a), note that

τa(t)−1+wa(t)∑

s=τa(t)−1+1

µs,a(t) θs

θt+1
≤

ζ + κ2G
(
τa(t)+1

)
+ z

ζ + κ1G
(
τa(t)−1

)
− z

, (E.17)

for all t ≥ N3 almost surely. Recall that G(·) is nondecreasing and G(t) → ∞, implying that there

exists Ñ4 ≥ N3 such that G(t) ≥
(
(η2− 1)|ζ|+(1+ η2)z

)
/(η2κ1−κ2) for all t ≥ Ñ4. Repeating the

above arguments with λ = κ2/(η2κ1), we conclude that the right hand side of (E.17) is less than

or equal to η2, hence lim supt→∞ θ̂*t+1/θt+1 ≤ η2 almost surely.

Step 4: Derive an upper bound on the eventual inaccuracy of θ̂*t+1. Note that κ2 ≤ (1 + ε/4)κ1

implies κ2 ≤ κ1/(1 − ε/4). Thus, we can choose η1 = 1− ε/2 < κ1/κ2 and η2 = 1 + ε/2 > κ2/κ1.

Combining this with (E.14), we obtain the desired result.
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