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We consider a dynamic assortment selection problem, where in every round the retailer offers a subset

(assortment) of N substitutable products to a consumer, who selects one of these products according to a

multinomial logit (MNL) choice model. The retailer observes this choice and the objective is to dynamically

learn the model parameters, while optimizing cumulative revenues over a selling horizon of length T . We

refer to this exploration-exploitation formulation as the MNL-Bandit problem. Existing methods for this

problem follow an explore-then-exploit approach, which estimate parameters to a desired accuracy and then,

treating these estimates as if they are the correct parameter values, offers the optimal assortment based on

these estimates. These approaches require certain a priori knowledge of “separability,” determined by the

true parameters of the underlying MNL model, and this in turn is critical in determining the length of the

exploration period. (Separability refers to the distinguishability of the true optimal assortment from the

other sub-optimal alternatives.) In this paper, we give an efficient algorithm that simultaneously explores

and exploits, without a priori knowledge of any problem parameters. Furthermore, the algorithm is adaptive

in the sense that its performance is near-optimal in both the “well separated” case, as well as the general

parameter setting where this separation need not hold.
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1. Introduction

1.1. Overview of the problem

Assortment optimization problems arise widely in many industries including retailing and online

advertising where the seller needs to select a subset from a universe of substitutable items with

the objective of maximizing expected revenue. Choice models capture substitution effects among

products by specifying the probability that a consumer selects a product from the offered set.

1



Agrawal, Avadhanula, Goyal and Zeevi: MNL-Bandit: A Dynamic Learning Approach to Assortment Selection
2 Submitted to Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Traditionally, assortment decisions are made at the start of the selling period based on a choice

model that has been estimated from historical data; see Kök and Fisher (2007) for a detailed

review.

In this work, we focus on the dynamic version of the problem where the retailer needs to simul-

taneously learn consumer preferences and maximize revenue. In many business applications such

as fast fashion and online retail, new products can be introduced or removed from the offered

assortments in a fairly frictionless manner and the selling horizon for a particular product can

be short. Therefore, the traditional approach of first estimating the choice model and then using

a static assortment based on the estimates, is not practical in such settings. Rather, it is essen-

tial to experiment with different assortments to learn consumer preferences, while simultaneously

attempting to maximize immediate revenues. Suitable balancing of this exploration-exploitation

tradeoff is the focal point of this paper.

We consider a stylized dynamic optimization problem that captures some salient features of this

application domain, where our goal is to develop an exploration-exploitation policy that simulta-

neously learns from current observations and exploits this information gain for future decisions.

In particular, we consider a constrained assortment selection problem under the Multinomial logit

(MNL) model with N substitutable products and a “no purchase” option. Our goal is to offer a

sequence of assortments, S1, . . . , ST , where T is the planning horizon, such that the cumulative

expected revenues over said horizon is maximized, or alternatively, minimizing the gap between the

performance of a proposed policy and that of an oracle that knows instance parameters a priori, a

quantity referred to as the regret.

Related literature. The Multinomial Logit model (MNL), owing primarily to its tractability,

is the most widely used choice model for assortment selection problems. (The model was intro-

duced independently by Luce (1959) and Plackett (1975), see also Train (2009), McFadden (1978),

Ben-Akiva and Lerman (1985) for further discussion and survey of other commonly used choice

models.) If the consumer preferences (MNL parameters in our setting) are known a priori, then the

problem of computing the optimal assortment, which we refer to as the static assortment optimiza-

tion problem, is well studied. Talluri and van Ryzin (2004) consider the unconstrained assortment

planning problem under the MNL model and present a greedy approach to obtain the optimal

assortment. Recent works of Davis et al. (2013) and Désir and Goyal (2014) consider assortment

planning problems under MNL with various constraints. Other choice models such as Nested Logit

(Williams 1977, Davis et al. 2014, Gallego and Topaloglu 2014 and Li et al. 2015), Markov Chain

(Blanchet et al. 2016 and Désir et al. 2015) and more general models (Farias et al. 2013 and Gallego

et al. 2014) are also considered in the literature.
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Most closely related to our work are the papers of Caro and Gallien (2007), Rusmevichientong

et al. (2010) and Sauré and Zeevi (2013), where information on consumer preferences is not known

and needs to be learned over the course of the selling horizon. Caro and Gallien (2007) consider the

setting under which demand for products is independent of each other. Rusmevichientong et al.

(2010) and Sauré and Zeevi (2013) consider the problem of minimizing regret under the MNL

choice model and present an “explore first and exploit later” approach. In particular, a selected set

of assortments are explored until parameters can be estimated to a desired accuracy and then the

optimal assortment corresponding to the estimated parameters is offered for the remaining selling

horizon. The exploration period depends on certain a priori knowledge about instance parameters.

Assuming that the optimal and next-best assortment are “well separated,” Sauré and Zeevi (2013)

show an asymptotic O(N logT ) regret bound, while Rusmevichientong et al. (2010) establish a

O(N 2 log2 T ) regret bound; recall N is the number of products and T is the time horizon. However,

their algorithm relies crucially on a priori knowledge of system parameters which is not readily

available in practice. As will be illustrated later, absence of this knowledge, these algorithms can

perform quite poorly. In this work, we focus on approaches that simultaneously explore and exploit

demand information, do not require any a priori knowledge or assumptions, and whose performance

is in some sense best possible; thereby, making our approach more universal in its scope.

Our problem is closely related to the multi-armed bandit (MAB) paradigm (cf. Robbins 1952).

A naive mapping to that setting would consider every assortment as an arm, and as such, given the

combinatorial nature of the problem would lead to exponentially many arms. Popular extensions

of MAB for large scale problems include the linear bandit (e.g., Auer 2003, Rusmevichientong and

Tsitsiklis 2010) and generalized linear bandit (Filippi et al. 2010) formulations. However, these do

not apply directly to our problem, since the revenue corresponding to an assortment is nonlinear in

problem parameters. Other works (see Chen et al. 2013) have considered versions of MAB where

one can play a subset of arms in each round and the expected reward is a function of rewards

for the arms played. However, this approach assumes that the reward for each arm is generated

independently of the other arms in the subset. This is not the case typically in retail settings, and

in particular, in the MNL choice model where purchase decisions depend on the assortment of

products offered in a time step. In this work, we use the structural properties of the MNL model,

along with techniques from MAB literature, to optimally explore and exploit in the presence of a

large number of alternatives (assortments).

1.2. Contributions

Parameter independent online algorithm and regret bounds. We give an efficient online

algorithm that judiciously balances the exploration and exploitation trade-off intrinsic to our prob-

lem and achieves a worst-case regret bound of O(
√
NT logNT ) under a mild assumption, namely
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that the no-purchase is the most “frequent” outcome. The assumption regarding no-purchase is

quite natural and a norm in online retailing for example. To the best of our knowledge, this is the

first such policy with provable regret bounds that does not require prior knowledge of instance

parameters of the MNL choice model. Moreover, the regret bound we present for this algorithm is

non-asymptotic. The “big-oh” notation is used for brevity and only hides absolute constants.

We also show that for “well separated” instances, the regret of our policy is bounded by

O
(
min

(
N 2 logNT/∆,

√
NT logNT

))
where ∆ is the “separability” parameter. This is comparable

to the regret bounds, O (N logT/∆) and O
(
N 2 log2 T/∆

)
, established in Sauré and Zeevi (2013)

and Rusmevichientong et al. (2010) respectively, even though we do not require any prior informa-

tion on ∆ unlike the aforementioned work. It is also interesting to note that the regret bounds hold

true for a large class of constraints, e.g., we can handle matroid constraints such as assignment,

partition and more general totally unimodular constraints (see Davis et al. 2013). Our algorithm

is predicated on upper confidence bound (UCB) type logic, originally developed to balance the

aforementioned exploration-exploitation trade-off in the context of the multi-armed bandit (MAB)

problem (cf. Lai and Robbins 1985). In this paper the UCB approach, also known as optimism

in the face of uncertainty, is customized to the assortment optimization problem under the MNL

model.

Lower bounds. We establish a non-asymptotic lower bound for the online assortment optimization

problem under the MNL model. In particular, we show that for the cardinality constrained problem

under the MNL model, any algorithm must incur a regret of Ω(
√
NT/K), where K is the bound on

the number of products that can be offered in an assortment. This bound is derived via a reduction

to a parametric multi-armed bandit problem, for which such lower bounds are constructed by

means of information theoretic arguments. This result establishes that our online algorithm is

nearly optimal, the upper bound being within a factor of
√
K of the lower bound. A recent work

by Chen and Wang (2017) demonstrates a lower bound of Ω(
√
NT ) for the MNL-Bandit problem,

thus suggesting that our algorithm’s performance is optimal even with respect to its dependence

on K.

Computational study. We present a computational study that highlights several salient fea-

tures of our algorithm. In particular, we test the performance of our algorithm over instances with

varying degrees of separability between optimal and sub-optimal solutions and observe that the

performance is bounded irrespective of the “separability parameter.” In contrast, the approach of

Sauré and Zeevi (2013) “breaks down” and results in linear regret for some values of the “sepa-

rability parameter.” We also present results of a simulated study on a real world data set, where

we compare the performance of our algorithm to that of Sauré and Zeevi (2013). We observe that
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the performance of our algorithm is sub-linear, while the performance of Sauré and Zeevi (2013)

is linear, which further emphasizes the limitations of “explore first and exploit later” approaches

and highlights the universal applicability of our approach.

Outline. In Section 2, we give the precise problem formulation. In Section 3, we present our

algorithm for the MNL-Bandit problem, and in Section 4, we prove the worst-case regret bound of

Õ(
√
NT ) for our policy. In Section 5, we present our non-asymptotic lower bound on regret for any

algorithm for MNL-Bandit. In Section 6, we present two extensions including improved logarithmic

regret bound for “well-separated” instances and regret bound when the “no purchase” assumption

is relaxed. In Section 7, we present results from our computational study.

2. Problem formulation

The basic assortment problem. In our problem, at every time instance t, the seller selects an

assortment St ⊂ {1, . . . ,N} and observes the customer purchase decision ct ∈ St ∪ {0}, where {0}

denotes the no-purchase alternative, which is always available for the consumer. As noted earlier,

we assume consumer preferences are modeled using a multinomial logit (MNL) model. Under this

model, the probability that a consumer purchases product i at time t when offered an assortment

St = S ⊂ {1, . . . ,N} is given by,

pi(S) := P (ct = i|St = S) =


vi

v0 +
∑

j∈S vj
, if i∈ S ∪{0}

0, otherwise,
(2.1)

for all t, where vi is the attraction parameter for product i in the MNL model. The random variables

{ct : t = 1,2, . . .} are conditionally independent, namely, ct conditioned on the event {St = S} is

independent of c1, . . . , ct−1. Without loss of generality, we can assume that v0 = 1. It is important

to note that the parameters of the MNL model vi, are not known to the seller. From (2.1), the

expected revenue when assortment S is offered and the MNL parameters are denoted by the vector

v is given by

R(S,v) =E

[∑
i∈S

ri1{ct = i|St = S}

]
=
∑
i∈S

rivi
1 +

∑
j∈S vj

, (2.2)

where ri is the revenue obtained when product i is purchased and is known a priori.

We consider several naturally arising constraints over the assortments that the retailer can offer.

These include cardinality constraints (where there is an upper bound on the number of products

that can be offered in the assortment), partition matroid constraints (where the products are

partitioned into segments and the retailer can select at most a specified number of products from

each segment) and joint display and assortment constraints (where the retailer needs to decide both

the assortment as well as the display segment of each product in the assortment and there is an
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upper bound on the number of products in each display segment). More generally, we consider the

set of totally unimodular (TU) constraints on the assortments. Let x(S)∈ {0,1}N be the incidence

vector for assortment S ⊆ {1, . . . ,N}, i.e., xi(S) = 1 if product i∈ S and 0 otherwise. We consider

constraints of the form

S = {S ⊆ {1, . . . ,N} |A x(S)≤ b, 0≤ x≤ 1} , (2.3)

where A is a totally unimodular matrix and b is integral (i.e., each component of the vector b is

an integer). The totally unimodular constraints model a rich class of practical assortment planning

problems including the examples discussed above. We refer the reader to Davis et al. (2013) for a

detailed discussion on assortment and pricing optimization problems that can be formulated under

the TU constraints.

Admissible Policies. To define the set of policies that can be used by the seller, let U be a

random variable, which encodes any additional sources of randomization and (U,U ,Pu) be the

corresponding probability space. We define {πt, t= 1,2, . . .} to be measurable mappings as follows:

π1 :U→S

πt :U×St−1×{0, . . . ,N}t−1→S, for each t= 2,3, . . . ,

where S is as defined in (2.3). Then the assortment selection for the seller at time t is given by

St =

{
π1(U), t= 1

πt(U, c1, . . . , ct−1, S1, . . . , St−1), t= 2,3, . . . .
(2.4)

For further reference, let {Ht : t = 1,2, . . .} denote the filtration associated with the policy π =

(π1, π2, . . . , πt, . . .). Specifically,

H1 = σ(U)

Ht = σ(U, c1, . . . , ct−1, S1, . . . , St−1), for each t= 2,3, . . . .

We denote by Pπ{.} and Eπ{.} the probability distribution and expectation value over path space

induced by the policy π.

The online assortment optimization problem. The objective is to design a policy π =

(π1, . . . , πT ) that selects a sequence of history dependent assortments (S1, S2, . . . , ST ) so as to max-

imize the cumulative expected revenue,

Eπ

(
T∑
t=1

R(St,v)

)
, (2.5)

where R(S,v) is defined as in (2.2). Direct analysis of (2.5) is not tractable given that the param-

eters {vi, i = 1, . . . ,N} are not known to the seller a priori. Instead we propose to measure the
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performance of a policy π via its regret. The objective then is to design a policy that approximately

minimizes the regret defined as

Regπ(T,v) =
T∑
t=1

R(S∗,v)−Eπ[R(St,v)], (2.6)

where S∗ is the optimal assortment for (2.2), namely, S∗ = argmax
S∈S

R(S,v). This exploration-

exploitation problem, which we refer to as MNL-Bandit, is the focus of this paper.

3. The proposed policy

In this section, we describe our proposed policy for the MNL-Bandit problem. The policy is designed

using the characteristics of the MNL model based on the principle of optimism under uncertainty.

3.1. Challenges and overview

A key difficulty in applying standard multi-armed bandit techniques to this problem is that the

response observed on offering a product i is not independent of other products in assortment S.

Therefore, the N products cannot be directly treated as N independent arms. Our policy utilizes

the specific properties of the dependence structure in MNL model to obtain an efficient algorithm

with order
√
NT regret.

Our policy is based on a non-trivial extension of the UCB algorithm in Auer et al. (2002), which

is predicated on Lai and Robbins (1985). It uses the past observations to maintain increasingly

accurate upper confidence bounds for the MNL parameters {vi, i = 1, . . . ,N}, and uses these to

(implicitly) maintain an estimate of expected revenue R(S,v) for every feasible assortment S. In

every round, our policy picks the assortment S with the highest optimistic revenue. There are

two main challenges in implementing this scheme. First, the customer response to being offered

an assortment S depends on the entire set S, and does not directly provide an unbiased sample

of demand for a product i ∈ S. In order to obtain unbiased estimates of vi for all i ∈ S, we offer

a set S multiple times: specifically, it is offered repeatedly until a no-purchase occurs. We show

that proceeding in this manner, the average number of times a product i is purchased provides

an unbiased estimate of the parameter vi. The second difficulty is the computational complexity

of maintaining and optimizing revenue estimates for each of the exponentially many assortments.

To this end, we use the structure of the MNL model and define our revenue estimates such that

the assortment with maximum estimated revenue can be efficiently found by solving a simple

optimization problem. This optimization problem turns out to be a static assortment optimization

problem with upper confidence bounds for vi’s as the MNL parameters, for which efficient solution

methods are available.
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3.2. Details of the policy

We divide the time horizon into epochs, where in each epoch we offer an assortment repeatedly until

a no purchase outcome occurs. Specifically, in each epoch `, we offer an assortment S` repeatedly.

Let E` denote the set of consecutive time steps in epoch `. E` contains all time steps after the end

of epoch `− 1, until a no-purchase happens in response to offering S`, including the time step at

which no-purchase happens. The length of an epoch |E`| conditioned on S` is a geometric random

variable with success probability defined as the probability of no-purchase in S`. The total number

of epochs L in time T is implicitly defined as the minimum number for which
∑L

`=1 |E`| ≥ T .

At the end of every epoch `, we update our estimates for the parameters of MNL, which are used

in epoch `+ 1 to choose assortment S`+1. For any time step t ∈ E`, let ct denote the consumer’s

response to S`, i.e., ct = i if the consumer purchased product i∈ S`, and 0 if no-purchase happened.

We define v̂i,` as the number of times a product i is purchased in epoch `,

v̂i,` :=
∑
t∈E`

1(ct = i). (3.1)

For every product i and epoch `≤ L, we keep track of the set of epochs before ` that offered an

assortment containing product i, and the number of such epochs. We denote the set of epochs by

Ti(`) and the number of epochs by Ti(`). That is,

Ti(`) = {τ ≤ ` | i∈ Sτ} , Ti(`) = |Ti(`)|. (3.2)

We compute v̄i,` as the number of times product i was purchased per epoch,

v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ . (3.3)

We show that for all i ∈ S`, v̂i,` and v̄i,` are unbiased estimators of the MNL parameter vi (see

Corollary A.1 ) Using these estimates, we compute the upper confidence bounds, vUCBi,` for vi as,

vUCBi,` := v̄i,` +

√
v̄i,`

48 log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
. (3.4)

We establish that vUCBi,` is an upper confidence bound on the true parameter vi, i.e., vUCBi,` ≥ vi, for

all i, ` with high probability (see Lemma 4.1). The role of the upper confidence bounds is akin to

their role in hypothesis testing; they ensure that the likelihood of identifying the parameter value is

sufficiently large. We then offer the optimistic assortment in the next epoch, based on the previous

updates as follows,

S`+1 := argmax
S∈S

max
{
R(S, v̂) : v̂i ≤ vUCBi,`

}
, (3.5)
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where R(S, v̂) is as defined in (2.2). We later show that the above optimization problem is equivalent

to the following optimization problem (see Lemma A.3).

S`+1 := argmax
S∈S

R̃`+1(S), (3.6)

where R̃`+1(S) is defined as,

R̃`+1(S) :=

∑
i∈S

riv
UCB
i,`

1 +
∑
j∈S

vUCBj,`

. (3.7)

We summarize the steps in our policy in Algorithm 1. Finally, we may remark on the computa-

Algorithm 1 Exploration-Exploitation algorithm for MNL-Bandit

1: Initialization: vUCBi,0 = 1 for all i= 1, . . . ,N

2: t= 1 ; `= 1 keeps track of the time steps and total number of epochs respectively

3: while t < T do

4: Compute S` = argmax
S∈S

R̃`(S) =

∑
i∈S

riv
UCB
i,`−1

1+

∑
j∈S

vUCBj,`−1

5: Offer assortment S`, observe the purchasing decision, ct of the consumer

6: if ct = 0 then

7: compute v̂i,` =
∑

t∈E`
1(ct = i), no. of consumers who preferred i in epoch `, for all i∈ S`

8: update Ti(`) = {τ ≤ ` | i∈ S`} , Ti(`) = |Ti(`)|, no. of epochs until ` that offered product i

9: update v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ , sample mean of the estimates

10: update vUCBi,` =v̄i,` +

√
v̄i,`

48 log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
; `= `+ 1

11: else

12: E` = E` ∪ t, time indices corresponding to epoch `

13: end if

14: t= t+ 1

15: end while

tional complexity of implementing (3.5). The optimization problem (3.5) is formulated as a static

assortment optimization problem under the MNL model with TU constraints, with model param-

eters being vUCBi,` , i = 1, . . . ,N (see (3.6)). There are efficient polynomial time algorithms to solve

the static assortment optimization problem under MNL model with known parameters (see Avad-

hanula et al. 2016, Davis et al. 2013, Rusmevichientong et al. 2010). We will now briefly comment
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on how Algorithm 1 is different from the existing approaches of Sauré and Zeevi (2013) and Rus-

mevichientong et al. (2010) and also why other standard “bandit techniques” are not applicable

to the MNL-Bandit problem.

Remark 1 (Universality) Note that Algorithm 1 does not require any prior knowl-

edge/information about the problem parameters v (other than the assumption vi ≤ v0, which is

subsequently relaxed in Algorithm 3). This is in contrast with the approaches of Sauré and Zeevi

(2013) and Rusmevichientong et al. (2010), which require the knowledge of the “separation gap,”

namely, the difference between the expected revenues of the optimal assortment and the second-best

assortment. Assuming knowledge of this “separation gap,” both these existing approaches explore

a pre-determined set of assortments to estimate the MNL parameters within a desired accuracy,

such that the optimal assortment corresponding to the estimated parameters is the (true) optimal

assortment with high probability. This forced exploration of pre-determined assortments is avoided

in Algorithm 1, which offers assortments adaptively, based on the current observed choices. The

confidence regions derived for the parameters v and the subsequent assortment selection, ensure

that Algorithm 1 judiciously maintains the balance between exploration and exploitation that is

central to the MNL-Bandit problem.

Remark 2 (Estimation Approach) Because the MNL-Bandit problem is parameterized with

parameter vector (v), a natural approach is to build on standard estimation approaches like max-

imum likelihood (MLE), where the estimates are obtained by optimizing a loss function. However,

the confidence regions for estimates resulting from such approaches are either:

1. asymptotic and are not necessarily valid for finite time with high probability, or

2. typically depend on true parameters, which are not known a priori. For example, finite time

confidence regions associated with maximum likelihood estimates require the knowledge of

sup
v∈V

I(v) (see Borovkov 1984), where I is the Fisher information of the MNL choice model and

V is the set of feasible parameters (that is not known apriori). Note that using I(vMLE) instead

of sup
v∈V

I(v) for constructing confidence intervals would only lead to asymptotic guarantees and

not finite sample guarantees.

In contrast, in Algorithm 1, we solve the estimation problem by a sampling method designed

to give us unbiased estimates of the model parameters. The confidence bounds of these estimates

and the algorithm do not depend on the underlying model parameters. Moreover, our sampling

method allows us to compute the confidence regions by simple and efficient “book keeping” and

avoids computational issues that are typically associated with standard estimation schemes such

as MLE. Furthermore, the confidence regions associated with the unbiased estimates also facilitate
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a tractable way to compute the optimistic assortment (see (3.5), (3.6) and Step-4 of Algorithm 1),

which is less accessible for the MLE estimate.

Remark 3 (Alternative Approaches) Recently, Thompson Sampling (TS) has attracted con-

siderable attention and several studies (Oliver and Li 2011, May et al. 2012) have demonstrated

that TS significantly outperforms the state of the art bandit policies in practice. Typically, TS

approaches proceed by assuming a prior distribution on the underlying parameters (v in the MNL-

Bandit problem) and at every time step the posterior distribution on the parameters is updated

based on the observed rewards and an arm (assortment) is selected with its posterior probability of

it being the best arm. To implement a TS approach for the MNL-Bandit problem, one would need

to specify the choice of prior, address the tractability of posterior sampling, etc. These issues also

impede the analysis of such an algorithm. For example, in all existing work (Agrawal and Goyal

2017, Agrawal and Goyal 2013) on worst-case regret analysis for TS, the prior is chosen to allow

a conjugate posterior, which permits theoretical analysis. For general posteriors, only Bayesian

regret bounds have been proven, which are much weaker than the regret notion we consider in this

paper. We return to discuss TS sampling in the concluding remarks of the paper.

4. Main results

In what follows, we make the following assumptions.
Assumption 4.1

1. The MNL parameter corresponding to any product i∈ {1, . . . ,N} satisfies vi ≤ v0 = 1.

2. The family of assortments S is such that S ∈ S and Q⊆ S implies that Q∈ S.

The first assumption is equivalent to the ‘no purchase option’ being the most likely outcome.

We note that this holds in many realistic settings, in particular, in online retailing and online

display-based advertising. The second assumption implies that removing a product from a feasible

assortment preserves feasibility. This holds for most constraints arising in practice including cardi-

nality, and matroid constraints more generally. We would like to note that the first assumption is

made for ease of presentation of the key results and is not central to deriving bounds on the regret.

In section 6.2, we relax this assumption and derive regret bounds that hold for any parameter

instance.

Our main result is the following upper bound on the regret of the policy stated in Algorithm 1.

Theorem 1 (Performance Bounds for Algorithm 1) For any instance v = (v0, . . . , vN) of

the MNL-Bandit problem with N products, ri ∈ [0,1] and Assumption 4.1, the regret of the policy

given by Algorithm 1 at any time T is bounded as,

Regπ(T,v)≤C1

√
NT logNT +C2N log2NT,

where C1 and C2 are absolute constants (independent of problem parameters).
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4.1. Proof Outline

In this section, we provide an outline of different steps involved in proving Theorem 1.

Confidence intervals. The first step in our regret analysis is to prove the following two properties

of the estimates vUCBi,` computed as in (3.4) for each product i. Specifically, that vi is bounded

by vUCBi,` with high probability, and that as a product is offered an increasing number of times,

the estimates vUCBi,` converge to the true value with high probability. Intuitively, these properties

establish vUCBi,` as upper confidence bounds converging to actual parameters vi, akin to the upper

confidence bounds used in the UCB algorithm for MAB in Auer et al. (2002). We provide the

precise statements for the above mentioned properties in Lemma 4.1. These properties follow from

an observation that is conceptually equivalent to the IIA (Independence of Irrelevant Alternatives)

property of MNL, and shows that in each epoch τ , v̂i,τ (the number of purchases of product i)

provides an independent unbiased estimates of vi. Intuitively, v̂i,τ is the ratio of probabilities of

purchasing product i to preferring product 0 (no-purchase), which is independent of Sτ . This also

explains why we choose to offer Sτ repeatedly until no-purchase occurs. Given these unbiased i.i.d.

estimates from every epoch τ before `, we apply a multiplicative Chernoff-Hoeffding bound to prove

concentration of v̄i,`.

Validity of the optimistic assortment. The product demand estimates vUCBi,`−1 were used in

(3.7) to define expected revenue estimates R̃`(S) for every set S. In the beginning of every epoch

`, Algorithm 1 computes the optimistic assortment as S` = arg maxS R̃`(S), and then offers S`

repeatedly until no-purchase happens. The next step in the regret analysis is to leverage the fact

that vUCBi,` is an upper confidence bound on vi to prove similar, though slightly weaker, properties

for the estimates R̃`(S). First, we show that estimated revenue is an upper confidence bound on

the optimal revenue, i.e., R(S∗,v) is bounded by R̃`(S`) with high probability. The proof for these

properties involves careful use of the structure of MNL model to show that the value of R̃`(S`) is

equal to the highest expected revenue achievable by any feasible assortment, among all instances

of the problem with parameters in the range [0, vUCBi ], i= 1, . . . , n. Since the actual parameters lie in

this range with high probability, we have R̃`(S`) is at least R(S∗,v) with high probability. Lemma

4.2 provides the precise statement.

Bounding the regret. The final part of our analysis is to bound the regret in each epoch. First,

we use the fact that R̃`(S`) is an upper bound on R(S∗,v) to bound the loss due to offering

the assortment S`. In particular, we show that the loss is bounded by the difference between the

“optimistic” revenue estimate, R̃`(S`), and the actual expected revenue, R(S`). We then prove a

Lipschitz property of the expected revenue function to bound the difference between these estimates



Agrawal, Avadhanula, Goyal and Zeevi: MNL-Bandit: A Dynamic Learning Approach to Assortment Selection
Submitted to Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 13

in terms of errors in individual product estimates |vUCBi,` − vi|. Finally, we leverage the structure of

the MNL model and the properties of vUCBi,` to bound the regret in each epoch. Lemma 4.3 provides

the precise statements of above properties.

In the rest of this section, we make the above notions precise. Finally, in Appendix A.3, we

utilize these properties to complete the proof of Theorem 1.

4.2. Upper confidence bounds

In this section, we will show that the upper confidence bounds vUCBi,` converge to the true parameters

vi from above. Specifically, we have the following result.

Lemma 4.1 For every `= 1, · · · ,L, we have:

1. vUCBi,` ≥ vi with probability at least 1− 6
N`

for all i= 1, . . . ,N .

2. There exists constants C1 and C2 such that

vUCBi,` − vi ≤C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)
,

with probability at least 1− 7
N`

.

We first establish that the estimates v̂i,`, `≤L are unbiased i.i.d estimates of the true parameter vi

for all products. It is not immediately clear a priori if the estimates v̂i,`, `≤L are independent. In

our setting, it is possible that the distribution of the estimate v̂i,` depends on the offered assortment

S`, which in turn depends on the history and therefore, previous estimates, {v̂i,τ , τ = 1, . . . , `− 1}.
In Lemma A.1, we show that the moment generating function of v̂i,` conditioned on S` only depends

on the parameter vi and not on the offered assortment S`, there by establishing that estimates are

independent and identically distributed. Using the moment generating function, we show that v̂i,`

is a geometric random variable with mean vi, i.e., E(v̂i,`) = vi. We will use this observation and

extend the classical multiplicative Chernoff-Hoeffding bounds (see Mitzenmacher and Upfal (2005)

and Babaioff et al. (2015)) to geometric random variables. The proof is provided in Appendix A.1

4.3. Optimistic estimate and convergence rates

In this section, we show that the estimated revenue converges to the optimal expected revenue from

above. First, we show that the estimated revenue is an upper confidence bound on the optimal

revenue. In particular, we have the following result.

Lemma 4.2 Suppose S∗ ∈ S is the assortment with highest expected revenue, and Algorithm 1

offers S` ∈ S in each epoch `. Then, for every epoch `, we have

R̃`(S`)≥ R̃`(S∗)≥R(S∗,v) with probability at least 1− 6

`
.
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In Lemma A.3, we show that the optimal expected revenue is monotone in the MNL parameters.

It is important to note that we do not claim that the expected revenue is in general a monotone

function, but only the value of the expected revenue corresponding to the optimal assortment

increases with increase in the MNL parameters. The result follows from Lemma 4.1, where we

established that vUCBi,` > vi with high probability. We provide the detailed proof in Appendix A.2.

The following result provides the convergence rates of the estimate R̃`(S`) to the optimal expected

revenue.

Lemma 4.3 If ri ∈ [0,1], there exists constants C1 and C2 such that for every ` = 1, · · · ,L, we

have

(1 +
∑

j∈S`
vj)(R̃`(S`)−R(S`,v))≤C1

√
vi log (

√
N`+1)

|Ti(`)|
+C2

log (
√
N`+1)

|Ti(`)|
,

with probability at least 1− 13
`
.

In Lemma A.4, we show that the expected revenue function satisfies a certain kind of Lipschitz con-

dition. Specifically, the difference between the estimated, R̃`(S`), and expected revenues, R`(S`), is

bounded by the sum of errors in parameter estimates for the products, |vUCBi,` −vi|. This observation

in conjunction with the “optimistic estimates” property will let us bound the regret as an aggre-

gated difference between estimated revenues and expected revenues of the offered assortments.

Noting that we have already computed convergence rates between the parameter estimates earlier,

we can extend them to show that the estimated revenues converge to the optimal revenue from

above. We complete the proof in Appendix A.2.

5. Lower bounds and near-optimality of the proposed policy

In this section, we consider the special case of TU constraints, namely, a cardinality constrained

assortment optimization problem, and establish that any policy must incur a regret of Ω(
√
NT/K).

More precisely, we prove the following result.

Theorem 2 (Lower bound on achievable performance) There exists a (randomized)

instance of the MNL-Bandit problem with v0 ≥ vi , i= 1, . . . ,N , such that for any N and K, and

any policy π that offers assortment Sπt , |Sπt | ≤K at time t, we have for all T ≥N that,

Regπ(T,v) :=Eπ

(
T∑
t=1

R(S∗,v)−R(Sπt ,v)

)
≥C

√
NT

K
,

where S∗ is (at-most) K-cardinality assortment with maximum expected revenue, and C is an

absolute constant.



Agrawal, Avadhanula, Goyal and Zeevi: MNL-Bandit: A Dynamic Learning Approach to Assortment Selection
Submitted to Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 15

Remark 4 (Optimality) Theorem 2 establishes that Algorithm 1 is optimal if we assume K to

be fixed. We note that the assumption that K is fixed holds in many realistic settings, in particular,

in online retailing, where there are a large number of products, but only fixed number of slots

to show these products. Algorithm 1 is nearly optimal if K is also considered to be a problem

parameter, with the upper bound being within a factor of
√
K of the lower bound. In recent work,

Chen and Wang (2017) established a lower bound of Ω
(√

NT
)

for the MNL-Bandit problem, when

K <N/4, thus suggesting that Algorithm 1 is optimal even with respect to its dependence on K.

For the special case of the unconstrained MNL-Bandit problem (i.e., K =N), the regret bound of

Algorithm 1 can be improved to O(
√
|S∗|T ), where |S∗| is the size of the optimal assortment (see

Appendix A.4) and the optimality gap for the unconstrained setting is
√
|S∗|.

5.1. Proof overview

For ease of exposition, we focus here on the case where K <N , and present the proof for lower

bound when K =N in Appendix E.1. To that end, we will assume that K <N for the rest of this

section. We prove Theorem 2 by a reduction to a parametric multi-armed bandit (MAB) problem,

for which a lower bound is known.

Definition 5.1 (MAB instance IMAB) Define IMAB as a (randomized) instance of MAB problem

with N ≥ 2 Bernoulli arms (reward is either 0 or 1) and the probability of the reward being 1 for

arm i is given by,

µi =

{
α, if i 6= j,
α+ ε, if i= j,

for all i= 1, . . . ,N,

where j is set uniformly at random from {1, . . . ,N}, α< 1 and ε= 1
100

√
Nα
T

.

Throughout this section we will use the terms algorithm and policy interchangeably. An algorithm

A is referred to as online if it adaptively selects a history dependent At ∈ {1, . . . , n} at each time t

as in (2.4) for the MAB problem.

Lemma 5.1 For any N ≥ 2, α < 1, T and any online algorithm A that plays arm At at time t,

the expected regret on instance IMAB is at least
εT

6
. That is,

RegA(T,µµµ) :=E

[
T∑
t=1

(µj −µAt)

]
≥ εT

6
,

where, the expectation is both over the randomization in generating the instance (value of j), as

well as the random outcomes that result from pulled arms.
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The proof of Lemma 5.1 is a simple extension of the proof of the Ω(
√
NT ) lower bound for the

Bernoulli instance with parameters 1
2

and 1
2

+ ε (for example, see Bubeck and Cesa-Bianchi 2012),

and has been provided in Appendix E for the sake of completeness. We use the above lower bound

for the MAB problem to prove that any algorithm must incur at least Ω(
√
NT/K) regret on the

following instance of the MNL-Bandit problem.

Definition 5.2 (MNL-Bandit instance IMNL) Define IMNL as the following (randomized)

instance of MNL-Bandit problem with K-cardinality constraint, N̂ = NK products, parameters

v0 =K and for i= 1, . . . , N̂ ,

vi =

{
α, if d i

K
e 6= j,

α+ ε, if d i
K
e= j,

where j is set uniformly at random from {1, . . . ,N}, α< 1, and ε= 1
100

√
Nα
T

and ri = 1.

We will show that any MNL-Bandit algorithm has to incur a regret of Ω
(√

NT
K

)
on instance

IMNL. The main idea in our reduction is to show that if there exists an algorithm AMNL for MNL-

Bandit that achieves o(
√

NT
K

) regret on instance IMNL, then we can use AMNL as a subroutine to

construct an algorithm AMAB for the MAB problem that achieves strictly less than εT
6

regret on

instance IMAB in time T , thus contradicting the lower bound of Lemma 5.1. This will prove Theorem

2 by contradiction.

5.2. Construction of the MAB algorithm using the MNL algorithm

Algorithm 2 Algorithm AMAB

1: Initialization: t= 0, `= 0

2: while t≤ T do

3: Update `= `+ 1

4: Call AMNL, receive assortment S` ⊂ [N̂ ]

5: Repeat until ‘exit loop’

6: With probability 1
2
, send Feedback to AMNL ‘no product was purchased’, exit loop

7: Update t= t+ 1

8: With probability 1
2K

, pull arm At = d i
K
e, where i∈ S`

9: With probability 1
2
− |S`|

2K
, continue the loop (go to Step-5)

10: If reward is 1, send Feedback to AMNL ‘i was purchased’ and exit loop

11: end loop

12: end while
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Algorithm 2 provides the exact construction of AMAB, which simulates the AMNL algorithm as a

“black-box.” Note that AMAB pulls arms at time steps t= 1, . . . , T . These arm pulls are interleaved

by simulations of AMNL steps (Call AMNL , Feedback to AMNL ). When step ` of AMNL is simulated, it

uses the feedback from 1, . . . , `−1 to suggest an assortment S`; and recalls a feedback from AMAB on

which product (or no product) was purchased out of those offered in S`, where the probability of

purchase of product i∈ S` is vi
/

(v0 +
∑

i∈S`
vi). Before showing that the AMAB indeed provides the

right feedback to AMNL in the `th step for each `, we introduce some notation.

Let M` denote the length of the loop at step `, more specifically, the cumulative number of times,

AMNL was executing steps 6, 8 or 9 in the `th step before exiting the loop. For every i ∈ S` ∪ 0,

let ζi` denote the event that the feedback to AMNL from AMAB after step ` of AMNL is “product i is

purchased”. We have,

P(M` =m ∩ ζi`) =
vi

2K

(
1

2K

∑
i∈S`

(1− vi)+
1

2
− |S`|

2K

)m−1

for each i∈ S` ∪{0}.

Hence, the probability that AMAB ’s feedback to AMNL is “product i is purchased” is,

pS`(i) =
∞∑
m=1

P(M` =m ∩ ζi`) =
vi

v0 +
∑

q∈S`
vq
.

This establish that AMAB provides the appropriate feedback to AMNL .

5.3. Proof of Theorem 2

We prove the result by establishing three key results. First, we upper bound the regret for the

MAB algorithm, AMAB . Then, we prove a lower bound on the regret for the MNL algorithm, AMNL .

Finally, we relate the regret of AMAB and AMNL and use the established lower and upper bounds to

show a contradiction.

For the rest of this proof, assume that L is the total number of calls to AMNL in AMAB . Let S∗ be

the optimal assortment for IMNL. For any instantiation of IMNL, it is easy to see that the optimal

assortment contains K items, all with parameter α+ ε, i.e., it contains all i such that d i
K
e = j.

Therefore, V (S∗) =K(α+ ε) =Kµj. Note that if an algorithm offers an assortment, S`, such that

|S`|<K, then we can improve the regret incurred by this algorithm for the MNL-Bandit instance

IMNL by offering an assortment Ŝ` = S` ∪ {i} for some i 6∈ S`. Since our focus is on lower bounding

the regret, we will assume, without loss of generality, that |S`|=K for the rest of this section.

Upper bound for the regret of the MAB algorithm. The first step in our analysis is to

prove an upper bound on the regret of the MAB algorithm, AMAB on the instance IMAB. Let us

label the loop following the `th call to AMNL in Algorithm 2 as `th loop. Note that the probability
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of exiting the loop is p=E[ 1
2

+ 1
2
µAt ] = 1

2
+ 1

2K
V (S`), where V (S`)

∆
=
∑

i∈S`
vi. In every step of the

loop until exited, an arm is pulled with probability 1/2. The optimal strategy would pull the best

arm so that the total expected optimal reward in the loop is
∑∞

r=1(1− p)r−1 1
2
µj =

µj
2p

= 1
2Kp

V (S∗).

Algorithm AMAB pulls a random arm from S`, so total expected algorithm’s reward in the loop is∑∞
r=1(1−p)r−1 1

2K
V (S`) = 1

2Kp
V (S`). Subtracting the algorithm’s reward from the optimal reward,

and substituting p, we obtain that the total expected regret of AMAB over the arm pulls in loop ` is

V (S∗)−V (S`)

(K +V (S`))
.

Noting that V (S`)≥Kα, we have the following upper bound on the regret for the MAB algorithm.

RegAMAB
(T,µµµ)≤ 1

(1 +α)
E

(
L∑
`=1

1

K
(V (S∗)−V (S`))

)
, (5.1)

where the expectation in equation (5.1) is over the random variables L and S`.

Lower bound for the regret of the MNL algorithm. Here, we derive a lower bound on the

regret of the MNL algorithm, AMNL on the instance IMNL. Specifically,

RegAMNL
(L,v) = E

[
L∑
`=1

V (S∗)

v0 +V (S∗)
− V (S`)

v0 +V (S`)

]

≥ 1

K(1 +α)
E

[
L∑
`=1

(
V (S∗)

1 + ε
1+α

−V (S`)

)]
.

Therefore, it follows that,

RegAMNL
(L,v)≥ 1

(1 +α)
E

[
L∑
`=1

1

K
(V (S∗)−V (S`))−

εv∗L

(1 +α)2

]
, (5.2)

where v∗ = α+ ε and the expectation in equation (5.2) is over the random variables L and S`.

Relating the regret of the MNL algorithm and the MAB algorithm. Finally, we relate

the regret of the MNL algorithm AMNL and MAB algorithm AMAB to derive a contradiction. The

first step in relating the regret involves relating the length of the horizons of AMNL and AMAB, L and

T respectively. Note that, after every call to AMNL (“Call AMNL” in Algorithm 2), many iterations

of the following loop may be executed; in roughly 1/2 of those iterations, an arm is pulled and t

is advanced (with probability 1/2, the loop is exited without advancing t). Therefore, T should be

at least a constant fraction of L. Lemma E.3 in Appendix E makes this precise by showing that

E(L)≤ 3T .

Now we are ready to prove Theorem 2. From (5.1) and (5.2), we have

RegAMAB
(T,µµµ)≤E

(
RegAMNL

(L,v) +
εv∗L

(1 +α)2

)
.
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For the sake of contradiction, suppose that the regret of the AMNL , RegAMNL
(L,v)≤ c

√
N̂L
K

for a

constant c to be prescribed below. Then, from Jensen’s inequality, it follows that,

RegAMAB
(T,µµµ) ≤ c

√
N̂E(L)

K
+
εv∗E(L)

(1 +α)2
.

From lemma E.3, we have that E(L)≤ 3T . Therefore, we have, c

√
N̂E(L)

K
= c
√
NE(L)≤ c

√
3NT =

cεT
√

3
α
< εT

12
on setting c < 1

12

√
α
3
. Also, using v∗ = α+ ε≤ 2α, and setting α to be a small enough

constant, we can get that the second term above is also strictly less than εT
12

. Combining these

observations, we have
RegAMAB

(T,µµµ)< εT
12

+ εT
12

= εT
6
,

thus arriving at a contradiction. �

6. Extensions

In this section, we consider two extensions of the MNL-Bandit problem. In the first extension, we

consider problem instances that are “well separated” and present an improved logarithmic regret

bound. We will then consider a setting where the “no purchase” assumption (vi ≤ v0 for all i) is

relaxed and present a modified algorithm that works for more general class of MNL parameters

and establish Õ(
√
BNT ) regret bounds.

6.1. Improved regret bounds for “well-separated” instances

In this section, we derive an O(logT ) regret bound for Algorithm 1 for instances that are “well

separated.” In Section 4, we established worst case regret bounds for Algorithm 1 that hold for all

problem instances satisfying Assumption 4.1. Although our algorithm ensures that the exploration-

exploitation tradeoff is balanced at all times, for problem instances that are “well separated,” our

algorithm quickly converges to the optimal solution leading to better regret bounds. More specifi-

cally, we consider problem instances where the optimal assortment and “second best” assortment

are sufficiently “separated” and derive a O(logT ) regret bound that depends on the parameters

of the instance. Note that, unlike the regret bound derived in Section 4 that holds for all problem

instances satisfying Assumption 4.1, the bound we derive here only holds for instances having

certain separation between the revenues corresponding to optimal and second best assortments.

In particular, let ∆(v) denote the difference between the expected revenues of the optimal and

second-best assortment, i.e.,

∆(v) = min
{S∈S|R(S,v) 6=R(S∗,v)}

{R(S∗,v)−R(S)}. (6.1)

We have the following result.
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Theorem 3 (Performance Bounds for Algorithm 1 in “well separated” case) For any

instance v = (v0, . . . , vN) of the MNL-Bandit problem with N products, ri ∈ [0,1] and Assumption

4.1, the regret of the policy given by Algorithm 1 at any time T is bounded as,

Regπ(T,v)≤B1

(
N 2 logT

∆(v)

)
+B2,

where B1 and B2 are absolute constants.

Proof outline. In this setting, we analyze the regret by separately considering the epochs that

satisfy certain desirable properties and the ones that do not. Specifically, we denote epoch ` as a

“good” epoch if the parameters vUCBi,` satisfy the following property,

0≤ vUCBi,` − vi ≤C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)
,

and we call it a “bad” epoch otherwise, where C1 and C2 are constants as defined in Lemma 4.1.

Note that every epoch ` is a good epoch with high probability (1− 13
`

) and we show that regret

due to “bad” epochs is bounded by a constant (see Appendix C). Therefore, we focus on “good”

epochs and show that there exists a constant τ , such that after each product has been offered in

at least τ “good” epochs, Algorithm 1 finds the optimal assortment. Based on this result, we can

then bound the total number of “good” epochs in which a sub-optimal assortment can be offered

by our algorithm. Specifically, let

τ =
4NC logNT

∆2(v)
, (6.2)

where C = max{C2
1 ,C2}. Then we have the following result.

Lemma 6.1 Let ` be a “good” epoch and S` be the assortment offered by Algorithm 1 in epoch `.

If every product in assortment S` is offered in at least τ “good epochs,” i.e. Ti(`)≥ τ for all i, then

we have R(S`,v) =R(S∗,v) .

We prove Lemma 6.1 in Appendix C. The next step in the analysis is to show that Algorithm

1 will offer a small number of sub-optimal assortments in “good” epochs. We make this precise in

the following observation whose proof amounts to a simple counting exercise using Lemma 6.1 (see

full proof in Appendix C.)

Lemma 6.2 Algorithm 1 cannot offer sub-optimal assortments in more than Nτ “good” epochs.

The proof for Theorem 3 follows from the above result. In particular, noting that the number of

epochs in which sub-optimal assortment is offered is small, we re-use the regret analysis of Section

4 to bound the regret by O(N 2 logT ). We provide a rigorous proof in Appendix C for the sake of
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completeness. Note that for the special case of cardinality constraints, we have |S`| ≤K for every

epoch `. By modifying the definition of τ in (6.2) to τ = 4KC logNT/∆2(v) and following the

above analysis, we can improve the regret bound to O(NK logT ) for this case. Specifically, we

have the following.

Corollary 6.1 (Performance bounds in well separated case under cardinality constraints)

For any instance v = (v0, . . . , vN) of the MNL-Bandit problem with N products and cardinality

constraint K, ri ∈ [0,1] and v0 ≥ vi for all i, the regret of the policy given by Algorithm 1 at any

time T is bounded as,

Regπ(T,v)≤B1

NK logNT

∆(v)
+B2,

where, B1 and B2 are absolute constants and ∆(v) is defined in (6.1).

It should be noted that the bound obtained in Corollary 6.1 is similar in magnitude to the regret

bounds obtained by Sauré and Zeevi (2013), when K is assumed to be fixed, and is strictly better

than the regret bound O(N 2 log2 T ) established by Rusmevichientong et al. (2010). Moreover, our

algorithm does not require the knowledge of ∆(v), unlike the aforementioned papers which build

on a conservative estimate of ∆(v) to implement their proposed policies.

6.2. Relaxing the “no purchase” assumption

In this section, we extend our approach (Algorithm 1) to the setting where the assumption that vi ≤
v0 for all i is relaxed. The essential ideas in the extension remain the same as our earlier approach,

specifically optimism under uncertainty, and our policy is structurally similar to Algorithm 1.

The modified policy requires a small but mandatory initial exploration period. However, unlike

the works of Rusmevichientong et al. (2010) and Sauré and Zeevi (2013), the exploratory period

does not depend on the specific instance parameters and is constant for all problem instances.

Therefore, our algorithm is parameter independent and remains relevant for practical applications.

Moreover, our approach continues to simultaneously explore and exploit after the initial exploratory

phase. In particular, the initial exploratory phase is to ensure that the estimates converge to the

true parameters from above particularly in cases when the attraction parameter vi (frequency of

purchase), is large for certain products. We describe our approach in Algorithm 3.

We can extend the analysis in Section 4 to bound the regret of Algorithm 3 as follows.

Theorem 4 (Performance Bounds for Algorithm 3) For any instance v = (v0, . . . , vN), of

the MNL-Bandit problem with N products, ri ∈ [0,1] for all i = 1, . . . ,N , the regret of the policy

corresponding to Algorithm 3 at any time T is bounded as,

Regπ(T,v)≤C1

√
BNT logNT +C2N log2NT +C3NB logNT,
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Algorithm 3 Exploration-Exploitation algorithm for MNL-Bandit general parameters

1: Initialization: vUCBi,0 = 1 for all i= 1, . . . ,N

2: t= 1 ; `= 1 keeps track of the time steps and total number of epochs respectively

3: Ti(1) = 0 for all i= 1, . . . ,N

4: while t < T do

5: Compute S` = argmax
S∈S

R̃`(S) =

∑
i∈S

riv
UCB
i,`−1

1+

∑
j∈S

vUCBj,`−1

6: if Ti(`)< 48 log (
√
N`+ 1) for some i∈ S` then

7: Consider Ŝ ={i|Ti(`)< 48 log (
√
N`+ 1)}

8: Choose S` ∈ S such that S` ⊂ Ŝ

9: end if

10: Offer assortment S`, observe the purchasing decision, ct of the consumer

11: if ct = 0 then

12: compute v̂i,` =
∑

t∈E`
1(ct = i), no. of consumers who preferred i in epoch `, for all i∈ S`

13: update Ti(`) = {τ ≤ ` | i∈ S`} , Ti(`) = |Ti(`)|, no. of epochs until ` that offered product i

14: update v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ , sample mean of the estimates

15: update vUCB2i,` =v̄i,` + max
{√

v̄i,`, v̄i,`
}√

48 log (
√
N`+1)

Ti(`)
+ 48 log (

√
N`+1)

Ti(`)

16: `= `+ 1

17: else

18: E` = E` ∪ t, time indices corresponding to epoch `

19: end if

20: t= t+ 1

21: end while

where C1, C2 and C3 are absolute constants and B = max{maxi
vi
v0
,1}.

Proof outline. Note that Algorithm 3 is very similar to Algorithm 1 except for the initial

exploratory phase. Hence, to bound the regret we first prove that the initial exploratory phase is

indeed bounded and then follow the approach discussed in Section 4 to establish the correctness of

the confidence intervals, the optimistic assortment, and finally deriving the convergence rates and

regret bounds. We make the above notions precise and provide the complete proof in Appendix B.

7. Computational study

In this section, we present insights from numerical experiments that test the empirical performance

of our policy and highlight some of its salient features. We study the performance of Algorithm 1
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from the perspective of robustness with respect to the “separability parameter” of the underlying

instance. In particular, we consider varying levels of separation between the revenues corresponding

to the optimal assortment and the second best assortment and perform a regret analysis numer-

ically. We contrast the performance of Algorithm 1 with the approach in Sauré and Zeevi (2013)

for different levels of separation. We observe that when the separation between the revenues corre-

sponding to optimal assortment and second best assortment is sufficiently small, the approach in

Sauré and Zeevi (2013) breaks down, i.e., incurs linear regret, while the regret of Algorithm 1 only

grows sub-linearly with respect to the selling horizon. We also present results from a simulated

study on a real world data set.

7.1. Robustness of Algorithm 1

Here, we present a study that examines the robustness of Algorithm 1 with respect to the instance

separability. We consider a parametric instance (see (7.1)), where the separation between the

revenues of the optimal assortment and next best assortment is specified by the parameter ε and

compare the performance of Algorithm 1 for different values of ε.

Experimental setup. We consider the parametric MNL setting with N = 10, K = 4, ri = 1 for

all i and utility parameters v0 = 1 and for i= 1, . . . ,N ,

vi =

{
0.25 + ε, if i∈ {1,2,9,10}
0.25, else ,

(7.1)

where 0< ε < 0.25, specifies the difference between revenues corresponding to the optimal assort-

ment and the next best assortment. Note that this problem has a unique optimal assortment,

{1,2,9,10} with an expected revenue of 1 + 4ε/2 + 4ε and next best assortment has revenue of

1 + 3ε/2 + 3ε. We consider four different values for ε, ε= {0.05,0.1,0.15,0.25}, where higher value

of ε corresponds to larger separation, and hence an “easier” problem instance.

Results. Figure 1 summarizes the performance of Algorithm 1 for different values of ε. The results

are based on running 100 independent simulations, the standard errors are within 2%. Note that

the performance of Algorithm 1 is consistent across different values of ε; with a regret that exhibits

sub linear growth. Observe that as the value of ε increases the regret of Algorithm 1 decreases.

While not immediately obvious from Figure 1, the regret behavior is fundamentally different in

the case of “small” ε and “large” ε. To see this, in Figure 2 we focus on the regret for ε = 0.05

and ε= 0.25 and fit to logT and
√
T respectively. (The parameters of these functions are obtained

via simple linear regression of the regret vs logT and
√
T respectively). It can be observed that

the regret is roughly logarithmic when ε = 0.25, and in contrast roughly behaves like
√
T when

ε = 0.05. This illustrates the theory developed in Section 6.1, where we showed that the regret
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Figure 1 Performance of Algorithm 1 measured as the regret on the parametric instance (7.1). The graphs

illustrate the dependence of the regret on T for “separation gaps” ε= 0.05,0.1,0.15 and 0.25 respectively.
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Figure 2 Best fit for the regret of Algorithm 1 on the parametric instance (7.1). The graphs (a), (b) illustrate

the dependence of the regret on T for “separation gaps” ε= 0.05, and 0.25 respectively. The best y =

β1 logT +β0 fit and best y= β1
√
T +β0 fit are superimposed on the regret curve.

grows logarithmically with time, if the optimal assortment and next best assortment are “well

separated,” while the worst-case regret scales as
√
T .

7.2. Comparison with existing approaches

In this section, we present a computational study comparing the performance of our algorithm to

that of Sauré and Zeevi (2013). (To the best of our knowledge, Sauré and Zeevi (2013) is currently

the best existing approach for our problem setting.) To be implemented, their approach requires

certain a priori information of a “separability parameter”; roughly speaking, measuring the degree

to which the optimal and next-best assortments are distinct from a revenue standpoint. More

specifically, their algorithm follows an explore-then-exploit approach, where every product is offered
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for a minimum duration of time that is determined by an estimate of said “separability parameter.”

After this mandatory exploration phase, the parameters of the choice model are estimated based

on the past observations and the optimal assortment corresponding to the estimated parameters

is offered for the subsequent consumers. If the optimal assortment and the next best assortment

are “well separated,” then the offered assortment is optimal with high probability, otherwise,

the algorithm could potentially incur linear regret. Therefore, the knowledge of this “separability

parameter” is crucial. For our comparison, we consider the exploration period suggested by Sauré

and Zeevi (2013) and compare it with the performance of Algorithm 1 for different values of

separation (ε). We will see that for any given exploration period, there is an instance where the

approach in Sauré and Zeevi (2013) “breaks down” or in other words incurs linear regret, while

the regret of Algorithm 1 grows sub-linearly (O(
√
T ), more precisely) for all values of ε as asserted

in Theorem 1.

Experimental setup and results. We consider the parametric MNL setting as described in

(7.1) and for each value of ε ∈ {0.05,0.1,0.15,0.25}. Since the implementation of the policy in

Sauré and Zeevi (2013) requires knowledge of the selling horizon and minimum exploration period

a priori, we take the exploration period to be 20 logT as suggested in Sauré and Zeevi (2013)

and the selling horizon T = 106. Figure 3 compares the regret of Algorithm 1 with that of Sauré

and Zeevi (2013). The results are based on running 100 independent simulations with standard

error of 2%. We observe that the regret for Sauré and Zeevi (2013) is better than the regret of

Algorithm 1 when ε= 0.25 but is worse for other values of ε. This can be attributed to the fact

that for the assumed exploration period, their algorithm fails to identify the optimal assortment

within the exploration phase with sufficient probability and hence incurs a linear regret for ε =

0.05,0.1 and 0.15. Specifically, among the 100 simulations we tested, the algorithm of Sauré and

Zeevi (2013) identified the optimal assortment for only 7%,40%,61% and 97% cases, when ε =

0.05,0.1,0.15, and 0.25, respectively. This highlights the sensitivity to the “separability parameter”

and the importance of having a reasonable estimate for the exploration period. Needless to say,

such information is typically not available in practice. In contrast, the performance of Algorithm

1 is consistent across different values of ε, insofar as the regret grows in a sub-linear fashion in all

cases.

7.3. Performance of Algorithm 1 on a simulation of real data

Here, we present the results of a simulated study on a real data set and compare the performance

of Algorithm 1 to that of Sauré and Zeevi (2013).
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Figure 3 Comparison with the algorithm of Sauré and Zeevi (2013). The graphs (a), (b), (c) and (d) compares

the performance of Algorithm 1 to that of Sauré and Zeevi (2013) on problem instance (7.1), for ε=

0.05,0.1,0.15 and 0.25 respectively.

Attribute Attribute Values

price Very-high, high, medium, low
maintenance costs Very-high, high, medium, low

# doors 2, 3, 4, 5 or more
passenger capacity 2, 4, more than 4
luggage capacity small, medium and big
safety perception low, medium, high
Table 1 Attribute information of cars in the database

Data description. We consider the “UCI Car Evaluation Database” (see Lichman (2013)) which

contains attributes for N = 1728 cars and consumer ratings for each car. The exact details of the

attributes are provided in Table 1. Rating for each car is also available. In particular, every car is

associated with one of the following four ratings, unacceptable, acceptable, good and very good.

Assortment optimization framework. We assume that the consumer choice is modeled by

the MNL model, where the mean utility of a product is linear in the values of attributes. More

specifically, we convert the categorical attributes described in Table 1 to attributes with binary
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values by adding dummy attributes (for example “price very high”, “price low” are considered as

two different attributes that can take values 1 or 0). Now every car is associated with an attribute

vector mi ∈ {0,1}22, which is known a priori and the mean utility of product i is given by the inner

product

µi = θ ·mi i= 1, . . . ,N,

where θ ∈R22 is some fixed but initially unknown attribute weight vector. Under this model, the

probability that a consumer purchases product i when offered an assortment S ⊂ {1, . . . ,N} is

assumed to be,

pi(S) =


eθ·mi

1 +
∑

j∈S e
θ·mj

, if i∈ S ∪{0}

0, otherwise,

(7.2)

Let m = (m1, . . . ,mN). Our goal is to offer assortments S1, . . . , ST at times 1, . . . , T respectively

such that the cumulative sales are maximized or alternatively, minimize the regret defined as

Regπ(T,m) =
T∑
t=1

(∑
i∈S∗

pi(S)−
∑
i∈St

pi(St)

)
, (7.3)

where

S∗ = arg max
S

∑
i∈S

eθ·mi

1 +
∑

j∈S e
θ·mj

.

Note that regret defined in (7.3) is a special case formulation of the regret defined in (2.6) with

ri = 1 and vi = eθ·mi for all i= 1, . . . ,N .

Experimental setup and results. We first estimate a ground truth MNL model as follows. Using

the available attribute level data and consumer rating for each car, we estimate a logistic model

assuming every car’s rating is independent of the ratings of other cars to estimate the attribute

weight vector θ. Specifically, under the logistic model, the probability that a consumer will purchase

a car whose attributes are defined by the vector m ∈ {0,1}22 and the attribute weight vector θ is

given by

pbuy(θ,m)
∆
= P (buy|θ) =

eθ·m

1 + eθ·m
.

For the purpose of training the logistic model on the available data, we consider the consumer

ratings of “acceptable,” “good,” and “very good” as success or intention to buy and the consumer

rating of “unacceptable” as a failure or no intention to buy. We then use the maximum likelihood

estimate θMLE for θ to run simulations and study the performance of Algorithm 1 for the realized

θMLE. In particular, we compute θMLE that maximizes the following regularized log-likelihood

θMLE = argmax
θ

N∑
i=1

log pbuy(θ,mi)−‖θ‖2.
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Figure 4 Comparison with the algorithm of Sauré and Zeevi (2013) on real data. The graph compares the per-

formance of Algorithm 1 to that of Sauré and Zeevi (2013) on the “UCI Car Evaluation Databse’ for

T = 107.

The objective function in the preceding optimization problem is convex and therefore we can use

any of the standard convex optimization techniques to obtain the estimate, θMLE. It is important to

note that the logistic model is only employed to obtain an estimate for θ, θMLE. The estimate θMLE

is assumed to be the ground truth MNL model and is used to simulate the feedback of consumer

choices for our learning Algorithm 1 and the learning algorithm proposed by Sauré and Zeevi

(2013).

We compare the performance of Algorithm 1 with that of Sauré and Zeevi (2013), in terms

of regret as defined in (7.3) with θ = θMLE and at each time index, the retailer can only show

at most k = 100 cars. We implement Sauré and Zeevi (2013)’s approach with their suggested

mandotary exploration period, which explores every product for at least 20 logT periods. Figure

4 plots the regret of Algorithm 1 and the Sauré and Zeevi (2013) policy, when the selling horizon

is T = 107. The results are based on running 100 independent simulations and have a standard

error of 2%. We can observe that while the initial regret of Sauré and Zeevi (2013) is smaller,

the regret grows linearly with time, suggesting that the exploration period was too small. This

further illustrates the shortcomings of an explore-then-exploit approach which requires knowledge

of underlying parameters. In contrast, the regret of Algorithm 1 grows in a sublinear fashion with

respect to the selling horizon and does not require any a priori knowledge on the parameters,

making a case for the universal applicability of our approach.

8. Conclusions and future work

Summary and main insights. In this paper, we have studied the dynamic assortment selection

problem under the widely used multinomial logit choice model. Formulating the problem as a
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parametric multi-arm bandit problem, we present a policy that learns the parameters of the choice

model while simultaneously maximizing the cumulative revenue. Focusing on a policy that would

be universally applicable, we highlight the limitations of existing approaches and present a novel

computationally efficient algorithm, whose performance (as measured by the regret) is nearly-

optimal. Furthermore, our policy is adaptive to the complexity of the problem instance, as measured

by “separability” of items. The adaptive nature of the algorithm is manifest in its “rate of learning”

the unknown instance parameters, which is more rapid if the problem instance is “less complex.”

Limitations and future research. In this work we primarily focused on developing an algorithm

that would be broadly applicable. In so doing, we only consider the setting where every product

has its own utility parameter and has to be estimated separately. However, in many settings a large

number of products are effectively described by a small number of product features, via what is

often referred to as factor model. An important extension of our problem would be to consider a

policy that leverages the relation between products as measured via their features, and achieves a

regret bound that is independent of the number of products and only depends on the dimensionality

of feature space.

Another interesting direction is to consider the settings where the consumers are heterogeneous.

If the consumer type is known a priori, then we can easily generalize our algorithm to learn only

model parameters of that type. In a recent work, Kallus and Udell (2016) consider the setting of

heterogeneous consumers where each consumer segment follows a separate MNL model, but the

underlying structure of these parameters over all the segments has low dimension. Assuming the

consumer type is observable a priori, they present an explore first exploit later approach to dynam-

ically learn the preferences of heterogeneous consumer population. Their work also demonstrates

significant improvements in performance in comparison to trivially extending the existing dynamic

learning approaches (Sauré and Zeevi 2013, Rusmevichientong et al. 2010) to learn a different MNL

model for each consumer type. Generalizing our work to design a parameter independent algorithm

to learn the preferences of heterogeneous consumers with an underlying low rank structure would

be an important extension with significant practical implications.

As discussed earlier, Thompson Sampling is a natural algorithm for the MNL-Bandit problem.

Despite being empirically superior to other bandit policies, TS-based algorithms remain challenging

to analyze and theoretical work on TS is limited. An interesting direction is to consider a TS-based

approach for the MNL-Bandit problem and derive similar regret bounds to the ones obtained in

this paper. Due to its combinatorial nature, selecting a suitable prior and efficiently updating the

posterior present a significant challenge in designing a good TS-based algorithm for the MNL-

Bandit problem. Some preliminary results in this direction are reported in Agrawal et al. (2017).
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A. Proof of Theorem 1

In this section, we provide a detailed proof of Theorem 1 following the outline discussed in Section

4.1. The proof is organized as follows. In Section A.1, we complete the proof of Lemma 4.1 and in

Section A.2, we prove Lemma 4.2 and Lemma 4.3. Finally, in Section A.3, we utilize these results

to complete the proof of Theorem 1.

A.1. Properties of estimates vUCBi,` : Proof of Lemma 4.1

First, we prove Lemma 4.1. To complete the proof, we establish certain properties of the estimates

vUCBi,` , and then extend these properties to establish the necessary properties of v̂i,` and v̄i,`.

Lemma A.1 (Moment Generating Function) The moment generating function of estimate

conditioned on S`, v̂i, is given by,

Eπ
(
eθv̂i,`

∣∣∣S`)=
1

1− vi(eθ− 1)
, for all θ≤ log

1 + vi
vi

, for all i= 1, · · · ,N.

Proof. From (2.1), we have that probability of no purchase event when assortment S` is offered

is given by

p0(S`) =
1

1 +
∑

j∈S`
vj
.

Let n` be the total number of offerings in epoch ` before a no purchased occurred, i.e., n` = |E`|−1.

Therefore, n` is a geometric random variable with probability of success p0(S`). And, given any



Agrawal, Avadhanula, Goyal and Zeevi: MNL-Bandit: A Dynamic Learning Approach to Assortment Selection
Submitted to Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 33

fixed value of n`, v̂i,` is a binomial random variable with n` trials and probability of success given

by

qi(S`) =
vi∑
j∈S`

vj
.

In the calculations below, for brevity we use p0 and qi respectively to denote p0(S`) and qi(S`).

Hence, we have

Eπ
(
eθv̂i,`

)
=En`

{
Eπ
(
eθv̂i,`

∣∣n`)} . (A.1)

Since the moment generating function for a binomial random variable with parameters n,p is

(peθ + 1− p)n, we have

Eπ
(
eθv̂i,`

∣∣n`)=En`
{(
qie

θ + 1− qi
)n`} . (A.2)

For any α, such that α(1− p)< 1, if n is a geometric random variable with parameter p, then we

have

E(αn) =
p

1−α(1− p)
.

Since n` is a geometric random variable with parameter p0 and by definition of qi and p0, we have,

qi(1− p0) = vip0, it follows that for any θ < log 1+vi
vi

, we have,

En`
{(
qie

θ + 1− qi
)n`}=

p0

1− (qieθ + 1− qi) (1− p0)
=

1

1− vi(eθ− 1)
. (A.3)

The result follows from (A.1), (A.2) and (A.3). �

From the moment generating function, we can establish that v̂i,` is a geometric random variable

with parameter 1
1+vi

. Thereby also establishing that v̂i,` and v̄i,` are unbiased estimators of vi. More

specifically, from Lemma A.1, we have the following result.

Corollary A.1 (Unbiased Estimates) We have the following results.

1. v̂i,`, `≤L are i.i.d geometrical random variables with parameter 1
1+vi

, i .e. for any `, i

Pπ (v̂i,` =m) =

(
vi

1 + vi

)m(
1

1 + vi

)
∀m= {0,1,2, · · · }.

2. v̂i,`, `≤L are unbiased i.i.d estimates of vi, i .e. Eπ (v̂i,`) = vi ∀ `, i.

From Corollary A.1, it follows that v̂i,τ , τ ∈ Ti(`) are i.i.d geometric random variables with mean

vi. We will use this observation and extend the multiplicative Chernoff-Hoeffding bounds discussed

in Mitzenmacher and Upfal (2005) and Babaioff et al. (2015) to geometric random variables and

derive the following result.

Lemma A.2 (Concentration Bounds) If vi ≤ v0 for all i, for every epoch `, in Algorithm 1,

we have the following concentration bounds.
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1. Pπ

|v̄i,`− vi|>
√

48v̄i,`
log (
√
N`+ 1)

Ti(`)
+

48 log (`+ 1)

Ti(`)

≤ 6

N`
.

2. Pπ

|v̄i,`− vi|>
√

24vi
log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)

≤ 4

N`
.

3. Pπ

(
v̄i,` >

3vi
2

+
48 log (

√
N`+ 1)

Ti(`)

)
≤ 3

N`
.

Note that to apply standard Chernoff-Hoeffding inequality (see p.66 in Mitzenmacher and Upfal

2005), we must have the individual sample values bounded by some constant, which is not the case

with our estimates v̂i,τ . However, these estimates are geometric random variables and therefore

have extremely small tails. Hence, we can extend the Chernoff-Hoeffding bounds discussed in

Mitzenmacher and Upfal (2005) and Babaioff et al. (2015) to geometric variables and prove the

above result. Lemma 4.1 follows directly from Lemma A.2 (see below.) The proof of Lemma A.2 is

long and tedious and in the interest of continuity, we complete the proof in Appendix D. Following

the proof of Lemma A.2, we obtain a very similar result that is useful to establish concentration

bounds for the general parameter setting.

Proof of Lemma 4.1: By design of Algorithm 1, we have,

vUCBi,` = v̄i,` +

√
48v̄i,`

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
. (A.4)

Therefore from Lemma A.2, we have

Pπ
(
vUCBi,` < vi

)
≤ 6

N`
. (A.5)

The first inequality in Lemma 4.1 follows from (A.5). From triangle inequality and (A.4), we have,∣∣vUCBi,` − vi
∣∣≤ ∣∣vUCBi,` − v̄i,`

∣∣+ |v̄i,`− vi|
=

√
48v̄i,`

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
+ |v̄i,`− vi| .

(A.6)

From Lemma A.2, we have

Pπ

(
v̄i,` >

3vi
2

+
48 log (

√
N`+ 1)

Ti(`)

)
≤ 3

N`
,

which implies

Pπ

48v̄i,`
log (
√
N`+ 1)

Ti(`)
> 72vi

log (
√
N`+ 1)

Ti(`)
+

(
48 log (

√
N`+ 1)

Ti(`)

)2
≤ 3

N`
,
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Using the fact that
√
a+ b <

√
a+
√
b, for any positive numbers a, b, we have,

Pπ

√48v̄i,`
log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
>

√
72vi

log (
√
N`+ 1)

Ti(`)
+

96 log (
√
N`+ 1)

Ti(`)

≤ 3

N`
,

(A.7)

From Lemma A.2, we have,

Pπ

|v̄i,`− vi|>
√

24vi
log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)

≤ 4

N`
. (A.8)

From (A.6) and applying union bound on (A.7) and (A.8), we obtain,

P

∣∣vUCBi,` − vi
∣∣> (
√

72 +
√

24)

√
vi log (

√
N`+ 1)

Ti(`)
+

144 log (
√
N`+ 1)

Ti(`)

≤ 7

N`
.

Lemma 4.1 follows from the above inequality and (A.5). �

A.2. Properties of estimate R̃(S): Proof of Lemma 4.2 and Lemma 4.3

In this section, we prove Lemma 4.2 and Lemma 4.3. To complete the proofs, we will establish

two auxiliary results, in the first result (see Lemma A.3) we show that the expected revenue

corresponding to the optimal assortment is monotone in the MNL parameters v and in the second

result (see Lemma A.4) we bound the difference between the estimate of the optimal revenue and

the true optimal revenue.

Lemma A.3 (Optimistic Estimates) Assume 0 ≤ wi ≤ vUCBi for all i = 1, · · · , n. Suppose S is

an optimal assortment when the MNL are parameters are given by w. Then, R(S,vUCB)≥R(S,w).

Proof. We prove the result by first showing that for any j ∈ S, we have R(S,wj) ≥ R(S,w),

where wj is vector w with the jth component increased to vUCBj , i.e. wji = wi for all i 6= j and

wjj = vUCBj . We can use this result iteratively to argue that increasing each parameter of MNL to

the highest possible value increases the value of R(S,w) to complete the proof.

If there exists j ∈ S such that rj <R(S), then removing the product j from assortment S yields

higher expected revenue contradicting the optimality of S. Therefore, we have

rj ≥R(S). ∀j ∈ S.

Multiplying by (vUCBj −wj)(
∑

i∈S/j wi + 1) on both sides of the above inequality and re-arranging

terms, we can show that R(S,wj)≥R(S,w). �

We would like to remind the readers that Lemma A.3 does not claim that the expected revenue

is in general a monotone function, but only that the value of the expected revenue corresponding

to the optimal assortment is monotone in the MNL parameters.
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Proof of Lemma 4.2: Let Ŝ,w∗ be maximizers of the optimization problem,

max
S∈S

max
0≤wi≤vUCBi,`

R(S,w).

Assume vUCBi,` > vi for all i. Then from Lemma A.3 it follows that,

R̃`(S`) = max
S∈S

R(S,vUCB` )≥max
S∈S

max
0≤wi≤vUCBi,`

R(S,w)≥R(S∗,v). (A.9)

From Lemma 4.1, for each ` and i∈ {1, · · · ,N}, we have that,

P
(
vUCBi,` < vi

)
≤ 6

N`
.

Hence, from union bound, it follows that,

P

(
N⋂
i=1

{
vUCBi,` < vi

})
≥ 1− 6

`
. (A.10)

Lemma 4.2 follows from (A.9) and (A.10). � �

Lemma A.4 (Bounding Regret) If ri ∈ [0,1] and 0≤ vi ≤ vUCBi,` for all i∈ S`, then

R̃`(S`)−R(S`,v)≤
∑

j∈S`

(
vUCBj,` − vj

)
1+
∑

j∈S`
vj

.

Proof. Since 1 +
∑

i∈S`
vUCBi,` ≥ 1 +

∑
i∈S`

vi,`, we have

R̃`(S`)−R(S`,v)≤
∑

i∈S`
riv

UCB
i,`

1+
∑

j∈S`
vUCBj,`

−
∑

i∈S`
rivi

1+
∑

j∈S`
vUCBj,`

,

≤
∑

i∈S`

(
vUCBi,` − vi

)
1 +

∑
j∈S`

vUCBj,`

≤
∑

i∈S`

(
vUCBi,` − vi

)
1 +

∑
j∈S`

vj
.

Proof of Lemma 4.3: From Lemma A.4, we have,(
1 +

∑
j∈S`

vj

)(
R̃`(S`)−R(S`,v)

)
≤
∑
j∈S`

(
vUCBj,` − vj

)
. (A.11)

From Lemma 4.1, we have that for each i= 1, · · · ,N and `,

P

vUCBi,` − vi >C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

≤ 7

N`
.

Therefore, from union bound, it follows that,

P

 N⋂
i=1

vUCBi,` − vi <C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)


≥ 1− 7

`
. (A.12)

Lemma 4.3 follows from (A.11) and (A.12).
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A.3. Putting it all together: Proof of Theorem 1

In this section, we utilize the results established in the previous sections and complete the proof

of Theorem 1.

Let S∗ denote the optimal assortment, our objective is to minimize the regret defined in (2.6),

which is same as

Regπ(T,v) =Eπ

{
L∑
`=1

|E`| (R(S∗,v)−R(S`,v))

}
, (A.13)

Note that L, E` and S` are all random variables and the expectation in equation (A.13) is over

these random variables. Let H` be the filtration (history) associated with the policy upto epoch `.

In particular,

H` = σ(U,C1, · · · ,Ct(`), S1, · · · , St(`)),

where t(`) is the time index corresponding to the end of epoch `. The length of the `th epoch, |E`|

conditioned on S` is a geometric random variable with success probability defined as the probability

of no-purchase in S`, i.e.

p0(S`) =
1

1 +
∑

j∈S`
vj
.

Let V (S`) =
∑

j∈S`
vj, then we have Eπ

(
|E`|

∣∣∣ S`)= 1+V (S`). Noting that S` in our policy is deter-

mined by H`−1, we have Eπ
(
|E`|
∣∣∣H`−1

)
= 1+V (S`). Therefore, by law of conditional expectations,

we have

Regπ(T,v) =Eπ

{
L∑
`=1

Eπ
[
|E`| (R(S∗,v)−R(S`,v))

∣∣∣H`−1

]}
,

and hence the regret can be reformulated as

Regπ(T,v) =Eπ

{
L∑
`=1

(1 +V (S`)) (R(S∗,v)−R(S`,v))

}
, (A.14)

the expectation in equation (A.14) is over the random variables L and S`. For the sake of brevity,

for each `∈ 1, · · · ,L, let

∆R`=(1 +V (S`)) (R(S∗,v)−R(S`,v)) . (A.15)

Now the regret can be reformulated as

Regπ(T,v) =Eπ

{
L∑
`=1

∆R`

}
. (A.16)

Let Ti denote the total number of epochs that offered an assortment containing product i. For all

`= 1, . . . ,L, define events A` as,

A` =
N⋃
i=1

vUCBi,` < vi or vUCBi,` > vi +C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 .



Agrawal, Avadhanula, Goyal and Zeevi: MNL-Bandit: A Dynamic Learning Approach to Assortment Selection
38 Submitted to Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

From union bound, it follows that

Pπ (A`)≤
N∑
i=1

Pπ

vUCBi,` < vi or vUCBi,` > vi +C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 ,

≤
N∑
i=1

Pπ
(
vUCBi,` < vi

)
+Pπ

vUCBi,` > vi +C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 .

Therefore, from Lemma 4.1, we have,

Pπ(A`)≤
13

`
. (A.17)

Since A` is a “low probability” event (see (A.17)), we analyze the regret in two scenarios, one when

A` is true and another when Ac` is true. We break down the regret in an epoch into the following

two terms:

Eπ (∆R`) =E
[
∆R` ·1(A`−1) + ∆R` ·1(Ac`−1)

]
.

Using the fact that R(S∗,v) and R(S`,v) are both bounded by one and V (S`)≤N in (A.15), we

have ∆R` ≤N + 1. Substituting the preceding inequality in the above equation, we obtain,

Eπ (∆R`)≤ (N + 1)Pπ(A`−1) +Eπ
[
∆R` ·1(Ac`−1)

]
.

Whenever 1(Ac`−1) = 1, from Lemma A.3, we have R̃`(S
∗)≥R(S∗,v) and by our algorithm design,

we have R̃`(S`)≥ R̃`(S∗) for all `≥ 1. Therefore, it follows that

Eπ {∆R`} ≤ (N + 1)Pπ(A`−1) +Eπ
{[

(1 +V (S`))(R̃`(S`)−R(S`,v))
]
·1(Ac`−1)

}
.

From the definition of the event, A` and Lemma A.4, it follows that,

[
(1 +V (S`))(R̃`(S`)−R(S`,v))

]
·1(Ac`−1)≤

∑
i∈S`

C1

√
vi log (

√
N`+ 1)

Ti(`)
+
C2 log (

√
N`+ 1)

Ti(`)

 .

Therefore, we have

Eπ {∆R`} ≤ (N + 1)Pπ (A`−1) +C
∑
i∈S`

Eπ

√vi log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 , (A.18)

where C = max{C1,C2}. Combining equations (A.14) and (A.18), we have

Regπ(T,v)≤Eπ


L∑
`=1

(N + 1)Pπ (A`−1) +C
∑
i∈S`

√vi log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 .
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Therefore, from Lemma 4.1, we have

Regπ(T,v)≤CEπ


L∑
`=1

N + 1

`
+
∑
i∈S`

√
vi log

√
NT

Ti(`)
+
∑
i∈S`

log
√
NT

Ti(`)

 ,

(a)

≤ CN logT +CN log2
√
NT +CEπ

(
n∑
i=1

√
viTi log

√
NT

)
,

(b)

≤ CN logT +CN log2NT +C
N∑
i=1

√
vi log (NT )Eπ(Ti).

(A.19)

Inequality (a) follows from the observation that L≤ T , Ti ≤ T ,

Ti∑
Ti(`)=1

1√
Ti(`)

≤
√
Ti, and

Ti∑
Ti(`)=1

1

Ti(`)
≤ logTi,

while Inequality (b) follows from Jensen’s inequality.

For any realization of L, E`, Ti, and S` in Algorithm 1, we have the following relation

L∑
`=1

n` ≤ T.

Hence, we have Eπ
(∑L

`=1 n`

)
≤ T. Let F denote the filtration corresponding to the offered assort-

ments S1, · · · , SL, then by law of total expectation, we have,

Eπ

(
L∑
`=1

n`

)
=Eπ

{
L∑
`=1

EF (n`)

}
=Eπ

{
L∑
`=1

1 +
∑
i∈S`

vi

}
,

=Eπ

{
L+

n∑
i=1

viTi

}
=Eπ{L}+

n∑
i=1

viEπ(Ti).

Therefore, it follows that ∑
viEπ(Ti)≤ T. (A.20)

To obtain the worst case upper bound, we maximize the bound in equation (A.19) subject to the

condition (A.20) and hence, we have Regπ(T,v) =O(
√
NT logNT +N log2NT ). �

A.4. Improved regret bounds for the unconstrained MNL-Bandit

Here, we focus on the special case of the unconstrained MNL-Bandit problem and use the analysis

of Appendix A.3 to establish a tighter bound on the regret for Algorithm 1. First, we note that, in

the case of the unconstrained problem, for any epoch `, with high probability, the assortment, S`

suggested by Algorithm 1 is a subset of the optimal assortment, S∗. More specifically, the following

holds.
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Lemma A.5 Let S∗ = argmax
S∈{1,··· ,N}

R(S,v) and S` be the assortment suggested by Algorithm 1. Then

for any `= 1, · · · ,L, we have,

Pπ (S` ⊂ S∗)≥ 1− 6

`
.

Proof. If there exists a product i, such that ri ≥R(S∗,v), then following the proof of Lemma

A.3, we can show that R(S∗ ∪ i,v)≥R(S∗,v) and similarly, if there exists a product i, such that

ri <R(S∗,v), we can show that R(S∗\{i},v)≥R(S∗,v). Since there are no constraints on the set

of feasible assortment, we can add and remove products that will improve the expected revenue.

Therefore, we have,

i∈ S∗ if and only if ri ≥R(S∗,v). (A.21)

Fix an epoch `, let S` be the assortment suggested by Algorithm 1. Using similar arguments as

above, we can show that,

i∈ S` if and only if ri ≥R(S`,v
UCB
` ). (A.22)

From Lemma 4.2, we have ,

Pπ
(
R(S`,v

UCB
` )≥R(S∗,v)

)
≥ 1− 6

`
. (A.23)

Lemma A.5 follows from (A.21), (A.22) and (A.23). �

From Lemma A.5, it follows that Algorithm 1 only considers products from the set S∗ with high

probability, and hence, we can follow the proof in Appendix A.3 (by replacing N with |S∗|) to

derive sharper regret bounds. In particular, we have the following result,

Corollary A.2 (Performance Bounds for unconstrained case) For any instance, v =

(v0, . . . , vN) of the MNL-Bandit problem with N products and no constraints, ri ∈ [0,1] and v0 ≥ vi
for i= 1, . . . ,N , there exists finite constants C1 and C2, such that the regret of the policy defined

in Algorithm 1 at any time T is bounded as,

Regπ(T,v)≤C1

√
|S∗|T logNT +C2N logNT.

B. Proof of Theorem 4

The proof for Theorem 4 is very similar to the proof of Theorem 1. Specifically, we first prove that

the initial exploratory phase is indeed bounded and then follow the proof of Theorem 1 to establish

the correctness of confidence intervals, optimistic assortment and finally deriving the convergence

rates and regret bounds.

Bounding Exploratory Epochs. We would denote an epoch ` as an “exploratory epoch”

if the assortment offered in the epoch contains a product that has been offered in less than
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48 log (
√
N`+ 1) epochs. It is easy to see that the number of exploratory epochs is bounded by

48N logNT , where T is the selling horizon under consideration. We then use the observation that

the length of any epoch is a geometric random variable to bound the total expected duration of

the exploration phase. Hence, we bound the expected regret due to explorations.

Lemma B.1 Let L be the total number of epochs in Algorithm 3 and let EL denote the set of

“exploratory epochs,” i.e.

EL =
{
`
∣∣∣ ∃ i∈ S` such that Ti(`)< 48 log (

√
N`+ 1)

}
,

where Ti(`) is the number of epochs product i has been offered before epoch `. If E` denote the time

indices corresponding to epoch ` and vi ≤Bv0 for all i= 1, . . . ,N , for some B ≥ 1, then we have

that,

Eπ

(∑
`∈EL

|E`|

)
< 49NB logNT,

where the expectation is over all possible outcomes of Algorithm 3.

Proof. Consider an ` ∈ EL, note that |E`| is a geometric random variable with parameter

1/V (S`) + 1. Since vi ≤Bv0, for all i and we can assume without loss of generality v0 = 1, we have

|E`| as a geometric random variable with parameter p, where p≥ 1/(B|S`|+ 1). Therefore, we have

the conditional expectation of |E`| given that assortment S` is offered is bounded as,

Eπ (|E`| | S`)≤B|S`|+ 1. (B.1)

Note that after every product has been offered in at least 48 logNT epochs, then we do not have

any exploratory epochs. Therefore, we have that∑
`∈EL

|S`| ≤ 48N logNT.

Substituting the above inequality in (B.1), we obtain

Eπ

(∑
`∈EL

|E`|

)
≤ 48BN logNT + 48N logNT. �

Confidence Intervals. We will now show a result analogous to Lemma 4.1, that establish the

updates in Algorithm 3, vUCB2i,` , as upper confidence bounds converging to actual parameters vi.

Specifically, we have the following result.

Lemma B.2 For every epoch `, if Ti(`)≥ 48 log (
√
N`+ 1) for all i∈ S`, then we have,

1. vUCB2i,` ≥ vi with probability at least 1− 6
N`

for all i= 1, · · · ,N .
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2. There exists constants C1 and C2 such that

vUCB2i,` − vi ≤C1 max{
√
vi, vi}

√
log (
√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)
,

with probability at least 1− 7
N`
.

The proof is very similar to the proof of Lemma 4.1, where we first establish the following concen-

tration inequality for the estimates v̂i,`, when Ti(`)≥ 48 log (
√
N`+ 1) from which the above result

follows. The proof of Lemma B.3 is provided in Appendix D.

Lemma B.3 If in epoch `, Ti(`) ≥ 48 log (
√
N`+ 1) for all i ∈ S`, then we have the following

concentration bounds

1. Pπ

|v̄i,`− vi| ≥max
{√

v̄i,`, v̄i,`
}√48 log (

√
N`+ 1)

n
+

48 log (
√
N`+ 1)

n

≤ 6

N`
.

2. Pπ

|v̄i,`− vi| ≥max{
√
vi, vi}

√
24 log (

√
N`+ 1)

n
+

48 log (
√
N`+ 1)

n

≤ 4

N`
.

3. Pπ

(
v̄i,` >

3vi
2

+
48 log (

√
N`+ 1)

Ti(`)

)
≤ 3

N`
.

Proof of Lemma B.2: By design of Algorithm 3, we have,

vUCB2i,` = v̄i,` + max
{√

v̄i,`, v̄i,`
}√48 log (

√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
. (B.2)

Therefore from Lemma B.3, we have

Pπ
(
vUCB2i,` < vi

)
≤ 6

N`
. (B.3)

The first inequality in Lemma 4.1 follows from (B.3). From (B.2), we have,∣∣vUCB2i,` − vi
∣∣≤ ∣∣vUCBi,` − v̄i,`

∣∣+ |v̄i,`− vi|
= max

{√
v̄i,`, v̄i,`

}√
48

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
+ |v̄i,`− vi| .

(B.4)

From Lemma B.3, we have

Pπ

(
v̄i,` >

3vi
2

+
48 log (

√
N`+ 1)

Ti(`)

)
≤ 3

N`
,

which implies

Pπ

48v̄i,`
log (
√
N`+ 1)

Ti(`)
> 72vi

log (
√
N`+ 1)

Ti(`)
+

(
48 log (

√
N`+ 1)

Ti(`)

)2
≤ 3

N`
,
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Using the fact that
√
a+ b <

√
a+
√
b, for any positive numbers a, b, we have,

Pπ

max
{√

v̄i,`, v̄i,`
}√

48v̄i,`
log (
√
N`+ 1)

Ti(`)
>max{

√
vi, vi}

√
72

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)

≤ 3

N`
,

(B.5)

From Lemma B.3, we have,

Pπ

|v̄i,`− vi|>max{
√
vi, vi}

√
24

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)

≤ 4

N`
. (B.6)

From (B.4) and applying union bound on (B.5) and (B.6), we obtain,

Pπ

∣∣vUCB2i,` − vi
∣∣> (
√

72 +
√

24)max{
√
vi, vi}

√
vi log (

√
N`+ 1)

Ti(`)
+

144 log (
√
N`+ 1)

Ti(`)

≤ 7

N`
.

Lemma B.2 follows from the above inequality and (B.3). �

Optimistic Estimate and Convergence Rates: We will now establish two results analogous

to Lemma 4.2 and 4.3, that show that the estimated revenue converges to the optimal expected

revenue from above and also specify the convergence rate. In particular, we have the following two

results. The proofs of Lemma B.4 and B.5 follow similar arguments to the proofs of Lemma 4.2

and 4.3 respectively and we skip the proofs in interest of avoiding redundancy.

Lemma B.4 Suppose S∗ ∈ S is the assortment with highest expected revenue, and Algorithm 3

offers S` ∈ S in each epoch `. Further, if Ti(`)≥ 48 log (
√
N`+ 1) for all i∈ S`, then we have,

R̃`(S`)≥ R̃`(S∗)≥R(S∗,v) with probability at least 1− 6

N`
.

Lemma B.5 For every epoch `, if ri ∈ [0,1] and Ti(`)≥ 48 log (
√
N`+ 1) for all i∈ S`, then there

exists constants C1 and C2 such that for every `, we have

(1 +
∑

j∈S`
vj)(R̃`(S`)−R(S`,v))≤C1 max

{√
vi, vi

}√
log (
√
N`+1)

|Ti(`)|
+C2

log (
√
N`+1)

|Ti(`)|
,

with probability at least 1− 13
N`
.

B.1. Putting it all together: Proof of Theorem 4

Proof of Theorem 4 is very similar to the proof of Theorem 1. We use the key results discussed

above instead of similar results in Section 4 to complete the proof. Note that E` is the set of

“exploratory epochs,” i.e. epochs in which at least one of the offered product is offered less than

the required number of times. We breakdown the regret as follows:

Regπ(T,v) =Eπ

{∑
`∈EL

|E`| (R(S∗,v)−R(S`,v))

}
︸ ︷︷ ︸

Reg1(T,v)

+Eπ

{∑
` 6∈EL

|E`| (R(S∗,v)−R(S`,v))

}
︸ ︷︷ ︸

Reg2(T,v)

.
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Since for any S, we have, R(S,v)≤R(S∗,v)≤ 1, it follows that,

Regπ(T,v)≤Eπ

{∑
`∈EL

|E`|

}
+Reg2(T,v).

From Lemma B.1, it follows that,

Regπ(T,v)≤ 49NB logNT +Reg2(T,v). (B.7)

We will focus on the second term in the above equation, Reg2(T,v). Following the analysis in

Appendix A.3, we can show that,

Reg2(T,v) =Eπ

{∑
6̀∈EL

(1 +V (S`)) (R(S∗,v)−R(S`,v))

}
. (B.8)

Similar to the analysis in Appendix A.3, for the sake of brevity, we define,

∆R`=(1 +V (S`)) (R(S∗,v)−R(S`,v)) . (B.9)

Now, Reg2(T,v) can be reformulated as

Reg2(T,v) =Eπ

{∑
` 6∈EL

∆R`

}
. (B.10)

Let Ti denote the total number of epochs that offered an assortment containing product i. For all

`= 1, . . . ,L, define events B` as,

B` =
N⋃
i=1

vUCB2i,` < vi or vUCB2i,` > vi +C1 max{
√
vi, vi}

√
log (
√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 .

From union bound, it follows that

Pπ (B`)≤
N∑
i=1

Pπ

vUCB2i,` < vi or vUCB2i,` > vi +C1 max{
√
vi, vi}

√
log (
√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 ,

≤
N∑
i=1

Pπ
(
vUCB2i,` < vi

)
+Pπ

vUCB2i,` > vi +C1 max{
√
vi, vi}

√
log (
√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 .

Therefore, from Lemma B.2, we have,

Pπ(B`)≤
13

`
. (B.11)

Since B` is a “low probability” event (see (B.11)), we analyze the regret in two scenarios: one when

B` is true and another when Bc` is true. We break down the regret in an epoch into the following

two terms.

Eπ (∆R`) =E
[
∆R` ·1(B`−1) + ∆R` ·1(Bc`−1).

]
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Using the fact that R(S∗,v) and R(S`,v) are both bounded by one and V (S`)≤BN in (B.9), we

have ∆R` ≤N + 1. Substituting the preceding inequality in the above equation, we obtain,

Eπ (∆R`)≤B(N + 1)Pπ(B`−1) +Eπ
[
∆R` ·1(Bc`−1)

]
.

Whenever 1(Bc`−1) = 1, from Lemma A.3, we have R̃`(S
∗)≥R(S∗,v) and by our algorithm design,

we have R̃`(S`)≥ R̃`(S∗) for all `≥ 1. Therefore, it follows that

Eπ {∆R`} ≤B(N + 1)Pπ(B`−1) +Eπ
{[

(1 +V (S`))(R̃`(S`)−R(S`,v))
]
·1(Bc`−1)

}
. (B.12)

From the definition of the event, B` and Lemma B.5, we have,[
(1 +V (S`))(R̃`(S`)−R(S`,v))

]
·1(Bc`−1)≤

∑
i∈S`

C1 max{vi,
√
vi}

√
log (
√
N`+ 1)

Ti(`)
+
C2 log (

√
N`+ 1)

Ti(`)

 ,

and therefore, substituting above inequality in (B.12), we have

Eπ {∆R`} ≤B(N + 1)Pπ (B`−1) +C
∑
i∈S`

Eπ

max{vi,
√
vi}

√
log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 , (B.13)

where C = max{C1,C2}. Combining equations (B.7), (B.10) and (B.13), we have

Regπ(T,v)≤ 49BN logNT +Eπ

{
L∑
`=1

B(N + 1)Pπ (A`−1)

}

+
L∑
`=1

Eπ

Cmax{vi,
√
vi}
∑
i∈S`

√ log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 .
Define sets I = {i|vi ≥ 1} and D= {i|vi < 1}. Therefore, we have,

Regπ(T,v)≤ 98NB logNT +CEπ


L∑
`=1

∑
i∈S`

max{
√
vi, vi}

√
log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 ,

(a)

≤ 98NB logNT +CN log2NT +CEπ

(∑
i∈D

√
viTi logNT +

∑
i∈I

vi
√
Ti logNT

)
,

(b)

≤ 98NB logNT +CN log2NT +C
∑
i∈D

√
viEπ(Ti) logNT +

∑
i∈I

vi
√

Eπ(Ti) logNT,

(B.14)

inequality (a) follows from the observation that
√
N ≤N ,L≤ T , Ti ≤ T ,

Ti∑
Ti(`)=1

1√
Ti(`)

≤
√
Ti and

Ti∑
Ti(`)=1

1

Ti(`)
≤ logTi,

while inequality (b) follows from Jensen’s inequality. From (A.20), we have that,∑
viEπ(Ti)≤ T.

To obtain the worst case upper bound, we maximize the bound in equation (B.14) subject to the

above constraint. Noting that the objective in (B.14) is concave, we use the KKT conditions to

derive the worst case bound as Regπ(T,v) =O(
√
BNT logNT +N log2NT +BN logNT ). �
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C. Improved regret bounds for “well separated” instances

Proof of Lemma 6.1: Let V (S`) =
∑

i∈S`
vi. From Lemma 4.3, and definition of τ (see (6.2)), we

have,

R(S∗,v)−R(S`,v)≤ 1

V (S`) + 1

∑
i∈S`

C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 ,

≤∆(v)

(
C1

∑
i∈S`

√
vi

2
√
NC (V (S`) + 1)

+
C2

4C

)
.

(C.1)

From Cauchy-Schwartz inequality, we have∑
i∈S`

√
vi ≤

√
|S`|

∑
i∈S`

vi ≤
√
NV (S`)≤

√
N (V (S`) + 1) .

Substituting the above inequality in (C.1) and using the fact that C = max{C2
1 ,C2}, we obtain

R(S∗,v)−R(S`,v)≤ 3∆(v)

4
. The result follows from the definition of ∆(v). �

Proof of Lemma 6.2: We complete the proof using an inductive argument on N .

Lemma 6.2 trivially holds for N = 1, since when there is only one product, every epoch offers

the optimal product and the number of epochs offering sub-optimal assortment is 0, which is less

than τ . Now assume that for any N ≤M , we have that the number of “good epochs” offering

sub-optimal products is bounded by Nτ, where τ is as defined in (6.2).

Now consider the setting, N =M +1. We will now show that the number of “good epochs” offering

sub-optimal products cannot be more than (M + 1)τ to complete the induction argument. We

introduce some notation, let N̂ be the number of products that are offered in more than τ epochs

by Algorithm 1, EG denote the set of “good epochs”, i.e.,

EG =

`
∣∣∣∣∣∣vUCBi,` ≥ vi or vUCBi,` ≤ vi +C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)
for all i

 , (C.2)

and E sub opt
G be the set of “good epochs” that offer sub-optimal assortments,

E sub opt
G = {`∈ EG |R(S`)<R(S∗)} . (C.3)

Case 1: N̂ =N : Let L be the total number of epochs and S1, · · · , SL be the assortments offered

by Algorithm 1 in epochs 1, · · · ,L respectively. Let `i be the epoch that offers product i for the τ th

time, specifically,

`i
∆
= min{` | Ti(`) = τ} .
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Without loss of generality, assume that, `1 ≤ `2 ≤ · · · ≤ `N . Let Ê sub opt
G be the set of “good epochs”

that offered sub-optimal assortments before epoch `N−1,

Ê sub opt
G =

{
`∈ E sub opt

G

∣∣ `≤ `N−1

}
,

where E sub opt
G is as defined as in (C.3). Finally, let Ê sub opt(N)

G be the set of “good epochs” that offered

sub-optimal assortments not containing product N before epoch `N−1,

Ê sub opt(N)
G =

{
`∈ Ê sub opt

G

∣∣∣N 6∈ S` } .
Every assortment S` offered in epoch ` ∈ Ê sub opt(N)

G can contain at most N − 1 = M products,

therefore by the inductive hypothesis, we have |Ê sub opt(N)
G | ≤Mτ. We can partition Ê sub opt

G as,

Ê sub opt
G = Ê sub opt(N)

G ∪
{
`∈ E sub opt

G

∣∣N ∈ S` } ,
and hence it follows that,

|Ê sub opt
G | ≤Mτ +

∣∣{`∈ E sub opt
G

∣∣N ∈ S` }∣∣ .
Note that TN(`N−1) is the number of epochs until epoch `N−1, in which product N has been offered.

Hence, it is higher than the number of “good epochs” before epoch `N−1 that offered a sub-optimal

assortment containing product N and it follows that,

|Ê sub opt
G | ≤Mτ +TN(`N−1). (C.4)

Note that from Lemma 6.1, we have that any “good epoch” offering sub-optimal assortment must

offer product N , since all the the other products have been offered in at least τ epochs. Therefore,

we have, for any `∈ E sub opt
G \Ê sub opt

G , N ∈ S` and thereby,

TN(`N)−TN(`N−1)≥ |E sub opt
G | − |Ê sub opt

G |.

From definition of `N , we have that TN(`N) = τ and substituting (C.4) in the above inequality, we

obtain

|E sub opt
G | ≤ (M + 1)τ.

Case 2: N̂ <N : The proof for the case when N̂ <N is similar along the lines of the previous case

(we will make the same arguments using N̂ − 1 instead of N − 1.) and is skipped in the interest of

avoiding redundancy. �

Following the proof of Lemma 6.2, we can establish the following result.
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Corollary C.1 The number of epochs that offer a product that does not satisfy the condition,

Ti(`)≥ logNT , is bounded by N logNT. In particular,∣∣∣{` ∣∣∣ Ti(`)< logNT for some i∈ S`
}∣∣∣≤N logNT.

Proof of Theorem 3: We will re-use the ideas from proof of Theorem 1 to prove Theorem 3.

Briefly, we breakdown the regret into regret over “good epochs” and “bad epochs.” First we argue

using Lemma 4.1, that the probability of an epoch being “bad epoch” is “small,” and hence the

expected cumulative regret over the bad epochs is “small.” We will then use Lemma 6.2 to argue

that there are only “small” number of “good epochs” that offer sub-optimal assortments. Since,

Algorithm 1 do not incur regret in epochs that offer the optimal assortment, we can replace the

length of the horizon T with the cumulative length of the time horizon that offers sub-optimal

assortments (which is “small”) and re-use analysis from Appendix A.3. We will now make these

notions rigorous and complete the proof of Theorem 3.

Following the analysis in Appendix A.3, we reformulate the regret as

Regπ(T,v) =Eπ

{
L∑
`=1

(1 +V (S`)) (R(S∗,v)−R(S`,v))

}
, (C.5)

where S∗ is the optimal assortment, V (S`) =
∑

j∈S`
vj and the expectation in equation (C.5) is over

the random variables L and S`. Similar to the analysis in Appendix A.3, for the sake of brevity,

we define,

∆R`=(1 +V (S`)) (R(S∗,v)−R(S`,v)) . (C.6)

Now the regret can be reformulated as

Regπ(T,v) =Eπ

{
L∑
`=1

∆R`

}
. (C.7)

For all `= 1, . . . ,L, define events A` as,

A` =
N⋃
i=1

vUCBi,` < vi or vUCBi,` > vi +C1

√
vi log (

√
N`+ 1)

Ti(`)
+C2

log (
√
N`+ 1)

Ti(`)

 .

Let ξ =
{
`
∣∣∣ Ti(`)< logNT for some i∈ S`

}
. We breakdown the regret in an epoch into the following

terms.

Eπ (∆R`) =Eπ
[
∆R` ·1(A`−1) + ∆R` ·1(Ac`−1) ·1(`∈ ξ) + ∆R` ·1(Ac`−1) ·1(`∈ ξc)

]
.
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Using the fact that R(S∗,v) and R(S`,v) are both bounded by one and V (S`)≤N in (C.6), we

have ∆R` ≤N + 1. Substituting the preceding inequality in the above equation, we obtain,

Eπ (∆R`)≤ (N + 1)Pπ(A`−1) + (N + 1)Pπ (`∈ ξ) +E
[
∆R` ·1(Ac`−1) ·1(`∈ ξc)

]
.

From the analysis in Appendix A.3 (see (A.17)), we have P(A`)≤ 13
`
. Therefore, it follows that,

Eπ (∆R`)≤
13(N + 1)

`
+ (N + 1)Pπ (`∈ ξ) +E

[
∆R` ·1(Ac`−1) ·1(`∈ ξc)

]
.

Substituting the above inequality in (C.7), we obtain

Regπ(T,v)≤ 14N logT + (N + 1)
L∑
`=1

Pπ (`∈ ξ) +Eπ

[
L∑
`=1

∆R` ·1(Ac`−1) ·1(`∈ ξc)

]
.

From Corollary C.1, we have that
∑L

`=1 1(`∈ ξ)≤N logNT. Hence, we have,

Regπ(T,v)≤ 14N logT +N(N + 1) logNT +Eπ

[
L∑
`=1

∆R` ·1(Ac`−1) ·1(`∈ ξc)

]
. (C.8)

Let E sub opt
G be the set of “good epochs” offering sub-optimal products, more specifically,

E sub opt
G

∆
= {` | 1(Ac`) = 1 andR(S`,v)<R(S∗,v)} .

If R(S`,v) =R(S∗,v), then by definition, we have ∆R` = 0. Therefore, it follows that,

Eπ

[
L∑
`=1

∆R` ·1(Ac`−1) ·1(`∈ ξc)

]
=Eπ

 ∑
`∈Esub opt
G

∆R` ·1(`∈ ξc)

 . (C.9)

Whenever 1(Ac`−1) = 1, from Lemma A.3, we have, R̃`(S
∗)≥R(S∗,v) and by our algorithm design,

we have R̃`(S`)≥ R̃`(S∗) for all `≥ 1. Therefore, it follows that

Eπ {∆R` ·1(Ac`)} ≤Eπ
{[

(1 +V (S`))(R̃`(S`)−R(S`,v))
]
·1(Ac`−1) ·1(`∈ ξc)

}
,

≤
∑
i∈S`

C1

√
vi log (

√
N`+ 1)

Ti(`)
+
C2 log (

√
N`+ 1)

Ti(`)

 ·1(`∈ ξc),

≤C
∑
i∈S`

√
vi log (

√
N`+ 1)

Ti(`)
.

(C.10)

where C =C1 +C2, the second inequality in (C.10) follows from the definition of the event, A` and

the last inequality follows from the definition of set ξ. From equations (C.8), (C.9), and (C.10) ,

we have,

Regπ(T,v)≤ 14N 2 logNT +CEπ


∑

`∈Esub opt
G

∑
i∈S`

√
logNT

Ti(`)

 , (C.11)
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Let Ti be the number of “good epochs” that offered sub-optimal assortments containing product

i, specifically,

Ti =
∣∣{`∈ E sub opt

G

∣∣ i∈ S`}∣∣ .
Substituting the inequality

∑
`∈Esub opt
G

1√
Ti(`)
≤
√
Ti in (C.11) and noting that Ti ≤ T , we obtain,

Regπ(T,v)≤ 14N 2 logNT +C
N∑
i=1

Eπ
(√

Ti logT
)
.

From Jenson’s inequality, we have Eπ
(√

T i

)
≤
√

Eπ (Ti) and therefore, it follows that,

Regπ(T,v)≤ 14N logT +NC logNT +C
N∑
i=1

√
Eπ (Ti) logNT.

From Cauchy-Schwartz inequality, we have,
∑N

i=1

√
Eπ (Ti)≤

√
N
∑N

i=1 Eπ (Ti). Therefore, it fol-

lows that,

Regπ(T,v)≤ 14N 2 logNT +C

√√√√N
N∑
i=1

Eπ (Ti) logNT.

For any epoch `, we have |S`| ≤N . Hence, we have
∑N

i=1 Ti ≤N |E
sub opt
G |. From Lemma 6.2, we have

|E sub opt
G | ≤Nτ . Therefore, we have

∑N

i=1 Eπ (Ti)≤N 2τ and hence, it follows that,

Regπ(T,v)≤ 14N 2 logNT +CN
√
Nτ logNT,

≤ 14N 2 logNT +C
N 2 logNT

∆(v)
.

(C.12)

�

D. Multiplicative Chernoff Bounds

We will extend the Chernoff bounds as discussed in Mitzenmacher and Upfal (2005) 1 to geometric

random variables and establish the following concentration inequality.

Theorem 5 Consider n i.i.d geometric random variables X1, · · · ,Xn with parameter p, i.e. for

any i

Pr(Xi =m) = (1− p)mp ∀m= {0,1,2, · · · },

and let µ=E(Xi) = 1−p
p

. We have,

1.

Pr

(
1

n

n∑
i=1

Xi > (1 + δ)µ

)
≤

 exp
(
− nµδ2

2(1+δ)(1+µ)2

)
if µ≤ 1,

exp
(
− nδ2µ2

6(1+µ)2

(
3− 2δµ

1+µ

))
if µ≥ 1 and δ ∈ (0,1).

and

1 (originally discussed in Angluin and Valiant (1977))
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2.

Pr

(
1

n

n∑
i=1

Xi < (1− δ)µ

)
≤

 exp
(
− nδ2µ

6(1+µ)2

(
3− 2δµ

1+µ

))
if µ≤ 1,

exp
(
− nδ2µ2

2(1+µ)2

)
if µ≥ 1.

Proof. We will first bound Pr
(

1
n

∑n

i=1Xi > (1 + δ)µ
)

and then follow a similar approach for

bounding Pr
(

1
n

∑n

i=1Xi < (1− δ)µ
)

to complete the proof.

Bounding Pr
(

1
n

∑n

i=1Xi > (1 + δ)µ
)
:

For all i and for any 0< t< log 1+µ
µ
, we have,

E(etXi) =
1

1−µ(et− 1)
.

Therefore, from Markov Inequality, we have

Pr

(
1

n

n∑
i=1

Xi > (1 + δ)µ

)
= Pr

(
et

∑n
i=1Xi > e(1+δ)nµt

)
,

≤ e−(1+δ)nµt

n∏
i=1

E(etXi),

= e−(1+δ)nµt

(
1

1−µ(et− 1)

)n
.

Therefore, we have,

Pr

(
1

n

n∑
i=1

Xi > (1 + δ)µ

)
≤ min

0<t<log 1+µ
µ

e−(1+δ)nµt

(
1

1−µ(et− 1)

)n
. (D.1)

We have,

argmin
0<t<log 1+µ

µ

e−(1+δ)nµt

(
1

1−µ(et− 1)

)n
= argmin

0<t<log 1+µ
µ

− (1 + δ)nµt−n log (1−µ(et− 1)) , (D.2)

Noting that the right hand side in the above equation is a convex function in t, we obtain the

optimal t by solving for the zero of the derivative. Specifically, at optimal t, we have

et =
(1 + δ)(1 +µ)

1 +µ(1 + δ)
.

Substituting the above expression in (D.1), we obtain the following bound.

Pr

(
1

n

n∑
i=1

Xi > (1 + δ)µ

)
≤
(

1− δ

(1 + δ)(1 +µ)

)nµ(1+δ)(
1 +

δµ

1 +µ

)n
. (D.3)

First consider the setting where µ∈ (0,1).

Case 1a: If µ∈ (0,1): From Taylor series of log (1−x), we have that

nµ(1 + δ) log

(
1− δ

(1 + δ)(1 +µ)

)
≤− nδµ

1 +µ
− nδ2µ

2(1 + δ)(1 +µ)2
,
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From Taylor series for log (1 +x), we have

n log

(
1 +

δµ

1 +µ

)
≤ nδµ

(1 +µ)
,

Note that if δ > 1, we can use the fact that log (1 + δx)≤ δ log (1 +x) to arrive at the preceding

result. Substituting the preceding two equations in (D.3), we have

Pr

(
1

n

n∑
i=1

Xi > (1 + δ)µ

)
≤ exp

(
− nµδ2

2(1 + δ)(1 +µ)2

)
, (D.4)

Case 1b: If µ≥ 1 : From Taylor series of log (1−x), we have that

nµ(1 + δ) log

(
1− δ

(1 + δ)(1 +µ)

)
≤− nδµ

1 +µ
,

If δ < 1, from Taylor series for log (1 +x), we have

n log

(
1 +

δµ

1 +µ

)
≤ nδµ

(1 +µ)
− nδ2µ2

6(1 +µ)2

(
3− 2δµ

1 +µ

)
.

If δ≥ 1, we have log (1 + δx)≤ δ log (1 +x) and from Taylor series for log (1 +x), it follows that,

n log

(
1 +

δµ

1 +µ

)
≤ nδµ

(1 +µ)
− nδµ2

6(1 +µ)2

(
3− 2µ

1 +µ

)
.

Therefore, substituting preceding results in (D.3), we have

Pr

(
1

n

n∑
i=1

Xi > (1 + δ)µ

)
≤

 exp
(
− nδ2µ2

6(1+µ)2

(
3− 2δµ

1+µ

))
if µ≥ 1 and δ ∈ (0,1),

exp
(
− nδµ2

6(1+µ)2

(
3− 2µ

1+µ

))
if µ≥ 1 and δ≥ 1.

(D.5)

Bounding Pr
(

1
n

∑n

i=1Xi < (1− δ)µ
)
:

Now to bound the other one sided inequality, we use the fact that

E(e−tXi) =
1

1−µ(e−t− 1)
,

and follow a similar approach. More specifically, from Markov Inequality, for any t > 0 and 0< δ < 1,

we have

Pr

(
1

n

n∑
i=1

Xi < (1− δ)µ

)
= Pr

(
e−t

∑n
i=1Xi > e−(1−δ)nµt

)
,

≤ e(1−δ)nµt
n∏
i=1

E(e−tXi),

= e(1−δ)nµt
(

1

1−µ(e−t− 1)

)n
.

Therefore, we have

Pr

(
1

n

n∑
i=1

Xi < (1− δ)µ

)
≤min

t>0
e−(1+δ)nµt

(
1

1−µ(e−t− 1)

)n
,
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Following similar approach as in optimizing the previous bound (see (D.1)) to establish the following

result.

Pr

(
1

n

n∑
i=1

Xi < (1− δ)µ

)
≤
(

1 +
δ

(1− δ)(1 +µ)

)nµ(1−δ)(
1− δµ

1 +µ

)n
.

Now we will use Taylor series for log (1 +x) and log (1−x) in a similar manner as described for

the other bound to obtain the required result. In particular, since 1− δ≤ 1, we have for any x> 0

it follows that (1 + x
1−δ )

(1−δ) ≤ (1 +x) . Therefore, we have

Pr

(
1

n

n∑
i=1

Xi < (1− δ)µ

)
≤
(

1 +
δ

1 +µ

)nµ(
1− δµ

1 +µ

)n
. (D.6)

Case 2a. If µ ∈ (0,1): Note that since Xi ≥ 0 for all i, we have a zero probability event if δ > 1.

Therefore, we assume δ < 1 and from Taylor series for log (1−x), we have

n log

(
1− δµ

1 +µ

)
≤− nδµ

1 +µ
,

and from Taylor series for log (1 +x), we have

nµ log

(
1 +

δ

1 +µ

)
≤ nδµ

(1 +µ)
− nδ2µ

6(1 +µ)2

(
3− 2δµ

1 +µ

)
.

Therefore, substituting the preceding equations in (D.6), we have,

Pr

(
1

n

n∑
i=1

Xi < (1− δ)µ

)
≤ exp

(
− nδ2µ

6(1 +µ)2

(
3− 2δµ

1 +µ

))
. (D.7)

Case 2b. If µ≥ 1: For similar reasons as discussed above, we assume δ < 1 and from Taylor series

for log (1−x), we have

n log

(
1− δµ

1 +µ

)
≤− nδµ

1 +µ
− nδ2µ2

2(1 +µ)2
,

and from Taylor series for log (1 +x), we have

n log

(
1 +

δµ

1 +µ

)
≤ nδ

(1 +µ)
.

Therefore, substituting the preceding equations in (D.6), we have,

Pr

(
1

n

n∑
i=1

Xi < (1− δ)µ

)
≤ exp

(
− nδ2µ2

2(1 +µ)2

)
. (D.8)

The result follows from (D.4), (D.5), (D.7) and (D.8). �

Now, we will adapt a non-standard corollary from Babaioff et al. (2015) and Kleinberg et al.

(2008) to our estimates to obtain sharper bounds.
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Lemma D.1 Consider n i.i.d geometric random variables X1, · · · ,Xn with parameter p, i.e. for

any i, P (Xi = m) = (1− p)mp ∀m = {0,1,2, · · · }. Let µ = Eπ(Xi) = 1−p
p

and X̄ =
∑n
i=1Xi
n

. If n >

48 log (
√
N`+ 1), then we have for all n= 1,2, · · · ,

1.

P

∣∣X̄ −µ∣∣>max
{√

X̄, X̄
}√48 log (

√
N`+ 1)

n
+

48 log (
√
N`+ 1)

n

≤ 6

`2
. (D.9)

2.

P

∣∣X̄ −µ∣∣≥max{√µ,µ}

√
24 log (

√
N`+ 1)

n
+

48 log (
√
N`+ 1)

n

≤ 4

`2
, (D.10)

3.

P

(
X̄ ≥ 3µ

2
+

48 log (
√
N`+ 1)

n

)
≤ 3

`2
. (D.11)

Proof. We will analyze the cases µ< 1 and µ≥ 1 separately.

Case-1: µ≤ 1. Let δ = (µ+ 1)
√

6 log (
√
N`+1)

µn
. First assume that δ ≤ 1

2
. Substituting the value of δ

in Theorem 5, we obtain,

P
(
X̄ −µ> δµ

)
≤ 1

N`2
,

P
(
X̄ −µ<−δµ

)
≤ 1

N`2
,

P

∣∣X̄ −µ∣∣< (µ+ 1)

√
6µ log (

√
N`+ 1)

n

≥ 1− 2

N`2
.

(D.12)

Since δ≤ 1
2
, we have P

(
X̄ −µ≤−µ

2

)
≤P

(
X̄ −µ≤−δµ

)
. Hence, from (D.12), we have,

P
(
X̄ −µ≤−µ

2

)
≤ 1

N`2
,

and hence, it follows that,

P
(
2X̄ ≥ µ

)
≥ 1− 1

N`2
. (D.13)

From (D.12) and (D.13), we have,

P

∣∣X̄ −µ∣∣<
√

48X̄ log (
√
N`+ 1)

n

≥P
∣∣X̄ −µ∣∣<

√
24µ log (

√
N`+ 1)

n

≥ 1− 3

N`2
. (D.14)

Since δ≤ 1
2
, we have, P

(
X̄ ≤ 3µ

2

)
≥P

(
X̄ < (1 + δ)µ

)
. Hence, from (D.12), we have

P
(
X̄ ≤ 3µ

2

)
≥ 1− 1

N`2
. (D.15)

Since, µ≤ 1, we have P
(
X̄ ≤ 3

2

)
≥ 1− 1

N`2
and

P

(
X̄ ≤

√
3X̄

2

)
≥ 1− 1

N`2
.
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Therefore, substituting above result in (D.14), the inequality (D.9) follows.

P

∣∣X̄ −µ∣∣>max

{√
X̄,

√
2

3
X̄

}√
48 log (

√
N`+ 1)

n

≤ 4

N`2
. (D.16)

Now consider the scenario, when (µ+ 1)
√

6 log (
√
N`+1)

µn
> 1

2
. Then, we have,

δ1
∆
=

12(µ+ 1)2 log (
√
N`+ 1)

µn
≥ 1

2
,

which implies,

exp

(
− nµδ2

1

2(1 + δ1)(1 +µ)2

)
≤ exp

(
− nµδ1

6(1 +µ)2

)
,

exp

(
− nδ2

1µ

6(1 +µ)2

(
3− 2δ1µ

1 +µ

))
≤ exp

(
− nµδ1

6(1 +µ)2

)
.

Therefore, substituting the value of δ1 in Theorem 5, we have

P

(∣∣X̄ −µ∣∣> 48 log (
√
N`+ 1)

n

)
≤ 2

N`2
. (D.17)

Hence, from (D.17) and (D.16), it follows that,

P

∣∣X̄ −µ∣∣>max

{√
X̄,

√
2

3
X̄

}√
48 log (

√
N`+ 1)

n
+

48 log (
√
N`+ 1)

n

≤ 6

N`2
. (D.18)

Case 2: µµµ≥ 1

Let δ =

√
12 log (

√
N`+1)

n
, then by our assumption, we have δ ≤ 1

2
. Substituting the value of δ in

Theorem 5, we obtain,

P

∣∣X̄ −µ∣∣<µ
√

12 log (
√
N`+ 1)

n

≥ 1− 2

N`2
,

P
(
2X̄ ≥ µ

)
≥ 1− 1

N`2
.

Hence we have,

P

∣∣X̄ −µ∣∣< X̄
√

48 log (
√
N`+ 1)

n

≥P
∣∣X̄ −µ∣∣<µ

√
12 log (

√
N`+ 1)

n

≥ 1− 3

N`2
. (D.19)

By assumption µ≥ 1. Therefore, we have P
(
X̄ ≥ 1

2

)
≥ 1− 1

N`2
and,

P

(
X̄ ≥

√
X̄

2

)
≥ 1− 1

N`2
. (D.20)
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Therefore, from (D.19) and (D.20), we have

P

∣∣X̄ −µ∣∣>max

{
X̄,

√
X̄

2

}√
48 log (

√
N`+ 1)

n

≤ 4

N`2
. (D.21)

We complete the proof by stating that (D.9) follows from (D.18) and (D.21), while (D.10) follows

from (D.14) and (D.19) and (D.11) follows from (D.15) and (D.17). �

From the proof of Lemma D.1, the following result follows.

Corollary D.1 Consider n i.i.d geometric random variables X1, · · · ,Xn with parameter p, i.e. for

any i, P (Xi =m) = (1− p)mp ∀m= {0,1,2, · · · }. Let µ= Eπ(Xi) = 1−p
p

and X̄ =
∑n
i=1Xi
n

. If µ≤ 1,

then we have,

1. P
(∣∣X̄ −µ∣∣>√ 48X̄ log (

√
N`+1)

n
+ 48 log (

√
N`+1)

n

)
≤ 6

N`2
. for all n= 1,2, · · · .

2. P
(∣∣X̄ −µ∣∣≥√ 24µ log (

√
N`+1)

n
+ 48 log (

√
N`+1)

n

)
≤ 4

N`2
for all n= 1,2, · · · .

3. P
(
X̄ ≥ 3µ

2
+ 48 log (

√
N`+1)

n

)
≤ 3

N`2
.

Proof of Lemma A.2 Fix i and `, define the events,

Ai,` =

|v̄i,`− vi|>
√

48v̄i,`
log (
√
N`+ 1)

|Ti(`)|
+

48 log (
√
N`+ 1)

|Ti(`)|

 .

Let v̄i,m =

∑m

τ=1 v̂i,τ
m

. Then, we have,

Pπ (Ai,`)≤ Pπ

max
m≤`

|v̄i,m− vi| −
√

48v̄i,m
log (
√
N`+ 1)

m
− 48 log (

√
N`+ 1)

m

> 0

 ,

= Pπ

 ⋃̀
m=1

|v̄i,m− vi| −
√

48v̄i,m
log (
√
N`+ 1)

m
− 48 log (

√
N`+ 1)

m
> 0


 ,

≤
∑̀
m=1

Pπ

|v̄i,m− vi|>
√

48v̄i,m
log (
√
N`+ 1)

m
− 48 log (

√
N`+ 1)

m

 ,

(a)

≤
∑̀
m=1

6

N`2
≤ 6

N`
.

(D.22)

where inequality (a) in (D.22) follows from Corollary D.1. The first inequality in Lemma A.2 follows

from definition of vUCBi,` , Corollary D.1 and (D.22). The second and third inequality in Lemma A.2

also can be derived in a similar fashion by appropriately modifying the definition of set Ai,`. �

Proof of Lemma B.3 is similar to the proof of Lemma A.2.
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E. Lower Bound

We follow the proof of Ω(
√
NT ) lower bound for the Bernoulli instance with parameters 1

2
. We

first establish a bound on KL divergence, which will be useful for us later.

Lemma E.1 Let p and q denote two Bernoulli distributions with parameters α+ ε and α respec-

tively. Then, the KL divergence between the distributions p and q is bounded by 4Kε2,

KL(p‖q)≤ 4

α
ε2.

Proof.

KL(p‖q) = α · log
α

α+ ε
+ (1−α) log

1−α
1−α− ε

= α

log
1− ε

1−α
1 + ε

α

− log

(
1− ε

1−α

)
,

= α log

(
1− ε

(1−α)(α+ ε)

)
− log

(
1− ε

1−α

)
,

using 1−x≤ e−x and bounding the Taylor series for − log 1−x by x+2∗x2 for x=
ε

1−α
, we have

KL(p‖q)≤ −αε
(1−α)(α+ ε)

+
ε

1−α
+ 4ε2,

= (
2

α
+ 4)ε2 ≤ 4

α
ε2.

�.

Fix a guessing algorithm, which at time t sees the output of a coin at. Let P1, · · · , Pn denote

the distributions for the view of the algorithm from time 1 to T , when the biased coin is hidden

in the ith position. The following result establishes for any guessing algorithm, there are at least

N
3

positions that a biased coin could be and will not be played by the guessing algorithm with

probability at least 1
2

. Specifically,

Lemma E.2 Let A be any guessing algorithm operating as specified above and let t ≤ Nα
60ε2

, for

ε≤ 1
4

and N ≥ 12. Then, there exists J ⊂ {1, · · · ,N} with |J | ≥ N
3

such that

∀j ∈ J, Pj(at = j)≤ 1

2
.

Proof. Let Ni to be the number of times the algorithm plays coin i up to time t. Let P0 be the

hypothetical distribution for the view of the algorithm when none of the N coins are biased. We

shall define the set J by considering the behavior of the algorithm if tosses it saw were according

to the distribution P0. We define,

J1 =

{
i

∣∣∣∣EP0
(Ni)≤

3t

N

}
, J2 =

{
i

∣∣∣∣P0(at = i)≤ 3

N

}
and J = J1 ∩J2. (E.1)
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Since
∑

iEP0
(Ni) = t and

∑
iP0(at = i) = 1, a counting argument would give us |J1| ≥

2N

3
and

|J2| ≥
2n

3
and hence |J | ≥ N

3
. Consider any j ∈ J , we will now prove that if the biased coin is

at position j, then the probability of algorithm guessing the biased coin will not be significantly

different from the P0 scenario. By Pinsker’s inequality, we have

|Pj(at = j)−P0(at = j)| ≤ 1

2

√
2 log 2 ·KL(P0‖Pj), (E.2)

where KL(P0‖Pj) is the KL divergence of probability distributions P0 and Pj over the algorithm.

Using the chain rule for KL-divergence, we have

KL(P0‖Pj) =EP0
(Nj)KL(p||q),

where p is a Bernoulli distribution with parameter α and q is a Bernoulli distribution with param-

eter α+ ε. From Lemma E.1 and (E.1), we have that Therefore,

KL(P0‖Pj)≤
4ε2

α
,

Therefore,

Pj(at = j)≤P0(at = j) +
1

2

√
2 log 2 ·KL(P0‖Pj),

≤ 3

N
+

1

2

√
(2 log 2)

4ε2

α
EP0

(Nj),

≤ 3

N
+
√

2 log 2

√
3tε2

Nα
≤ 1

2
.

(E.3)

The second inequality follows from (E.1), while the last inequality follows from the fact that N > 12

and t≤ Nα
60ε2

�.

Proof of Lemma 5.1 . Let ε =
√

N
60αT

. Suppose algorithm A plays coin at at time t for each

t= 1, · · · , T . Since T ≤ Nα
60ε2

, for all t∈ {1, · · · , T −1} there exists a set Jt ⊂ {1, · · · ,N} with |Jt| ≥ N
3

such that

∀ j ∈ Jt, Pj(j ∈ St)≤
1

2
.

Let i∗ denote the position of the biased coin. Then,

Eπ (µat | i∗ ∈ Jt)≤
1

2
· (α+ ε) +

1

2
·α= α+

ε

2
,

Eπ (µat | i∗ 6∈ Jt)≤ α+ ε.

Since |Jt| ≥ N
3

and i∗ is chosen randomly, we have P (i∗ ∈ Jt)≥ 1
3
. Therefore, we have

µat ≤
1

3
·
(
α+

ε

2

)
+

2

3
· (α+ ε) = α+

5ε

6

We have µ∗ = α+ ε and hence the Regret≥ Tε
6

. �
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Lemma E.3 Let L be the total number of calls to AMNL when AMAB is executed for T time steps.

Then,

E(L)≤ 3T.

Proof. Let η` be the random variable that denote the duration, assortment S` has been consid-

ered by AMAB, i.e. η` = 0, if we no arm is pulled when AMNL suggested assortment S` and η` ≥ 1,

otherwise. We have
L−1∑
`=1

η` ≤ T.

Therefore, we have E
(∑L−1

`=1 η`

)
≤ T . Note that E(η`) ≥ 1

2
. Hence, we have E(L) ≤ 2T + 1 ≤ 3T.

�

E.1. Lower Bound for the unconstrained MNL-Bandit problem (K =N)

We will complete proof of Theorem 2 by showing that the lower bound holds true for the case

when K =N. We will show this by reduction to a parametric multi armed bandit problem with 2

arms.

Definition E.1 (MNL-Bandit instance ÎMNL) Define ÎMNL as the following (randomized)

instance of unconstrained MNL-Bandit problem, N products, with revenues, r1 = 1, r2 = 1+ε
3+2ε

and

ri = 0.01 for all i= 3, · · · ,N, and MNL parameters v0 = 1, vi = 1
2

for all i= 2, · · · ,N , while v1 is

randomly set at { 1
2
, 1

2
+ ε}, where ε=

√
1

32T
.

Preliminaries on the MNL-Bandit instance ÎMNL: Note that unlike the MNL-Bandit instance,

IMNL, where any product can have the biased (higher) MNL parameter, in the MNL-Bandit instance

ÎMNL, only one product (product 1) can be biased. From the proof of Lemma A.5, we have that,

i∈ S∗ if and only if ri ≥R(S∗,v), (E.4)

where S∗ is the optimal assortment for ÎMNL.

Note that the revenue corresponding to assortment {1} is

R({1},v) =


1 + 2ε

3 + 2ε
, if v1 = 1

2
+ ε

1

3
, if v1 = 1

2
.

Note that 1+2ε
3+2ε

> r2 = 1+ε
3+2ε

> 1
3
> r3 = 0.01 and since R(S∗,v)≥R({1},v), from (E.4), we have that

optimal assortment is either {1} or {1,2}, specifically, we have that

S∗ ∈ {{1},{1,2}} .
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Therefore, we have,

S∗ =

{
{1}, if v1 = 1

2
+ ε,

{1,2}, if v1 = 1
2
.

(E.5)

Note that since r3 <
1
3
, for any S and i, such that i≥ 3 and i 6∈ S, we have

R(S,v)>R(S ∪{i},v).

Therefore, if vi = 1
2

+ ε, for any S 6= {1}, we have

R({1},v)−R(S,v)≥R({1},v)−R({1,2},v)≥ ε

20
, (E.6)

and similarly if vi = 1
2
, for any S 6= {1,2}, we have,

R({1},v)−R(S,v)≥R({1,2},v)−R({1},v) =
ε

12
≥ ε

20
, (E.7)

Before providing the formal proof, we first present the intuition behind the result. Any algorithm

that does not offer product 2 when v1 = 1/2 will incur a regret and similarly any algorithm that

offers product 2 when v1 = 1/2 + ε. Hence, any algorithm that attempts to minimize regret on

instance ÎMNL has to quickly learn if v1 = 1/2 + ε or v1 = 1/2. From Chernoff bounds, we know

that we need approximately 1/ε2 observations to conclude with high probability if v1 = 1/2 + ε or

1/2. Therefore in each of these 1/ε2 time steps, we are likely to incur a regret of ε, leading to a

cumulative regret of 1/ε≈
√
T . In what follows, we will formalize this intuition on similar lines to

the proof of Lemma 5.1. First, we present two auxillary results required to prove Lemma 2.

Lemma E.4 Let S be an arbitrary subset of {1, · · · ,N} and PS0 ,PS1 denote the probability distri-

butions over the discrete space {0,1, . . . ,N} governed by the MNL feedback on instance ÎMNL when

the offer set is S and v1 = 1/2 and v1 = 1/2 + ε respectively. In particular, we assume,

PS0 (i) =
1

2 + |S|
×

 0, if i 6∈ S ∪{0},
2, if i= 0,
1 if i∈ S.

, PS1 (i) =
1

2 + |S|+ 2ε1 (1∈ S)
×


0, if i 6∈ S ∪{0},
2, if i= 0,
1 if i∈ S\{1}
1 + 2ε if i= 1.

Then for any S,

KL
(
PS0
∥∥PS1 )≤ 4ε2, (E.8)

where KL is the Kullback-Leibler divergence.
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Proof. If 1 6∈ S , we have PS0 and PS1 to be the same distributions and the Kullback-Leibler

divergence between them is 0. Therefore without loss of generality, assume that 1∈ S.

KL
(
PS0
∥∥PS1 )=

N∑
j=0

PS0 (j) log

(
PS0 (j)

PS1 (j)

)
,

=PS0 (0) log

(
PS0 (0)

PS1 (0)

)
+

∑
j∈{S}\1

PS0 (j) log

(
PS0 (j)

PS1 (j)

)
+PS0 (1) log

(
PS0 r(1)

PS1 (1)

)
,

=
|S|+ 1

|S|+ 2
log

(
1 +

2ε

2 + |S|

)
+

1

|S|+ 2
log

(
1− 2ε(|S|+ 1)

(2 + |S|)(1 + 2ε)

)
,

≤ 2(|S|+ 1)ε

(|S|+ 2)2

(
1− 1

(1 + 2ε)

)
≤ 4ε2,

where the first inequality follows from the fact that for any x∈ (0,1),

log (1 +x)≤ x and log(1−x)≤−x.

�.

Lemma E.5 Let P0 and P1 denote the probability distribution over consumer choices (throughout

the planning horizon T ) when assortments are offered according to algorithm AMNL and feedback

to the algorithm is provided via the MNL-Bandit instances ÎMNL, when v1 = 1/2 and v1 = 1/2 + ε

respectively. Then, we have,

KL (P0‖P1)≤ 4Tε2,

where KL (P0‖P1) is the Kullback-Leibler divergence between the distributions P0 and P1. Specifically,

KL (P0‖P1) =
∑

c∈{0,1,··· ,N}T

P(c) log

(
P(c)

P1(c)

)
, (E.9)

where c∈ {0,1, · · · ,N}T is the observed set of choices by the algorithm AMNL.

Proof. From the chain rule for Kullback-Liebler divergence, it follows that,

KL (P0‖P1) =
T∑
t=1

∑
{c1,··· ,ct−1}∈{0,1,··· ,N}t−1

P0(ct)KL (P0(ct)‖P1(ct)|c1, · · · , ct−1) , (E.10)

where,

KL (P0(ct)‖P1(ct)|c1, · · · , ct−1) =
∑
ct

P0 {ct|c1, · · · , ct−1} log

(
P0 {ct|c1, · · · , ct−1}
P1 {ct|c1, · · · , ct−1}

)
.

Note that assortment offered by AMNL at time t, St is completely determined by the reward history

c1, . . . , ct−1 and conditioned on St, the reward at time t, ct is independent of the reward history

c1, · · · , ct−1. Therefore, it follows that,

P0 (ct|c1, · · · , ct−1) =PSt0 (ct) and P1 (ct|c1, · · · , ct−1) =PSt1 (ct),
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and hence, we have,

KL (P0(ct)‖P1(ct)|c1, · · · , ct−1) =KL
(
PSt0 (ct)

∥∥PSt1 (ct)
)
, (E.11)

where PSt0 and PSt1 are defined as in Lemma E.4. Therefore from (E.10), (E.11) and Lemma E.4,

we have,

KL (P0‖P1) =
T∑
t=1

KL
(
PSt0

∥∥PSt1

)
≤ 4Tε2.

�

Proof of Theorem 2: Fix a guessing algorithm AMNL, which at time t sees the consumer choice

based on the offer assortment St. Let P0 and P1 denote the distributions for the view of the

algorithm from time 1 to T , when v1 = 1
2

and v1 = 1
2

+ ε respectively. Let T2 be the number of

times A offers product 2 and let EP0(T2) and EP1(T2) be the expected number of times product 2

is offered by A.

|EP0(T2)−EP1(T2)| ≤

∣∣∣∣∣
T∑
t=1

P0(2∈ St)−P1(2∈ St)

∣∣∣∣∣ ,
≤

T∑
t=1

|P0(2∈ St)−P1(2∈ St)| ,

≤
T∑
t=1

1

2

√
2 log 2 ·KL (P0‖P1) =

T

2

√
2 log 2 ·KL (P0‖P1),

(E.12)

where KL (P0‖P1) as the Kullback-Leibler divergence between the distributions P0 and P1 as defined

in (E.9) and the last inequality follows from Pinsker’s inequality. From Lemma E.5, we have that,

KL (P0‖P1)≤ 4Tε2.

Substituting the value of ε, we obtain KL (P0‖P1)≤ 1
2

and from (E.12), we have

|EP0(T2)−EP1(T2)| ≤ T

4
. (E.13)

Since v1 can be 1
2

and 1
2

+ ε with equal probability, we have

RegAMNL
(T,v) =

1

2
RegAMNL

(
T,v,

∣∣∣v1 =
1

2

)
+

1

2
RegAMNL

(
T,v,

∣∣∣v1 =
1

2
+ ε

)
. (E.14)

From (E.7) we have that, in every time step we don’t offer product {2}, we incur a regret of at

least ε
20

and hence it follows that,

RegAMNL

(
T,v,

∣∣∣v1 =
1

2

)
≥ ε

20
(T −EP0(T2)),
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and similarly from (E.6) we have that, in every time step we offer product {2}, we incur a regret

of at least ε
20

and hence it follows that,

RegAMNL

(
T,v,

∣∣∣v1 =
1

2
+ ε

)
≥ ε

20
EP1(T2).

Therefore, from (E.14) and (E.13), it follows that,

RegAMNL
(T,v)≥ ε

20
[T − (EP1(T2)−EP0(T2))]≥ 3Tε

80
.

�


