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A Note on Performance Limitations in Bandit Problems with Side

Information

Alexander Goldenshluger and Assaf Zeevi

Abstract

We consider a sequential adaptive allocation problem which is formulated as a traditional two armed

bandit problem but with one important modi£cation: at each time step t, before selecting which arm

to pull, the decision maker has access to a random variable Xt which provides information on the

reward in each arm. Performance is measured as the fraction of time an inferior arm (generating lower

mean reward) is pulled. We derive a minimax lower bound that proves that in the absence of suf£cient

statistical “diversity” in the distribution of the covariate X , a property that we shall refer to as lack of

persistent excitation, no policy can improve on the best achievable performance in the traditional bandit

problem without side information.

Keywords: Two-armed bandit, side information, inferior sampling rate, allocation rule, lower

bound.

I. INTRODUCTION

Sequential allocation problems, otherwise known as multi-armed bandit problems, arise fre-

quently in various areas of statistics, adaptive control, marketing, and economics. The £rst

instance in this class of problems was introduced by Robbins (1952), and since then many

variants thereof have been studied extensively in numerous different contexts [see, e.g., Berry

and Fristedt (1985), Gittins (1989)].

In the prototypical two–armed bandit problem there are two statistical populations character-

ized by univariate density functions fθi(x), i = 1, 2, where θi are unknown parameters belonging

to a parameter set Θ. At each stage t one can sample an observation Yt = Y
(i)
t either from the

£rst (i = 1) or from the second (i = 2) population. The policy π is a sequence of random

Research partially supported by NSF grant DMI-0447562, and by the US-Israel Binational Science Foundation (BSF) grant

# 2006075

A. Goldenshluger is with the Department of Statistics, Haifa University, Haifa 31905, Israel e-mail: goldensh@stat.haifa.ac.il

A. Zeevi is with the Graduate School of Business, Columbia University, New York, NY 10027 USA e-mail: as-

saf@gsb.columbia.edu

This version: March 24, 2010 DRAFT



2

variables π1, π2, . . . taking values in {1, 2}, and such that at each time t, πt is only allowed

to depend on past observations and allocation decisions. The total mean reward up to stage n

associated with the policy π is

Rn(π, θ) = Eπ,n
θ

n
∑

t=1

Yt,

where Eπ,n
θ denotes expectation w.r.t. the joint distribution Pπ,n

θ of observations collected up to

stage n when θ = (θ1, θ2), and under the policy π. The quality of a policy π is typically compared

with the reward R∗
n(θ) = Rn(π

∗, θ) of the oracle rule π∗, that is, the rule which knows θ1 and

θ2 and at each stage selects the best arm. The regret of a policy π is the de£ned as follows,

Ln(π, θ) := R∗
n(θ)−Rn(π, θ),

and the goal is to develop a policy π such that the regret is as small as possible. In fact, it is

not dif£cult to verify that the regret can be expressed as

Ln(π, θ) = |µ1 − µ2| Eπ,n
θ [Tinf(n)],

where µi is the mean reward under θi for i = 1, 2, and Tinf(n) is the inferior sampling rate, or

the total number of times the policy π sampled the inferior population (i.e., the one generating

lower mean reward).

In the outlined setup, Lai and Robbins (1985) proposed a policy π̂ such that

Ln(π̂, θ) ≤ [C(θ) + o(1)] lnn, n→∞, (1)

where C(θ) is a constant depending on θ = (θ1, θ2) and the underlying density functions fθi ,

i = 1, 2. It was also shown that the proposed policy cannot be improved upon in the following

sense: among all policies such that for each £xed θ one has that Ln(π, θ) = o(na) for every

a > 0, there does not exist a policy with regret smaller than the bound in (1). For related results

and extensions we refer to Lai (1987), Anantharam, Varaiya and Warland (1987a, 1987b), Lai

and Yakowitz (1995), Kulkarni and Lugosi (2000), and Auer, Cesa-Bianchi and Fischer (2002).

The described allocation model assumes sequential sampling from two “homogeneous” pop-

ulations. However, in many practical situations some additional information can be utilized for

allocation purposes. In particular, imagine that at each stage t a random covariate Xt is given,

and the reward in each arm now depends also on the value of this side observation. In this

manner, the £rst arm may be superior for one value of the covariate but inferior for a different

one. For examples of such formulations we refer to Woodroofe (1979, 1982), Clayton (1989),

Sarkar (1991), Yang and Zhu (2002), Wang, Kulkarni and Poor (2005), Langford and Zhang

(2008), Goldenshluger and Zeevi (2009) and references therein. One of the main questions that

arise in this context is whether additional information translates into performance improvement
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vis-a-vis the traditional bandit setting summarized above. Some instances where it is possible to

achieve bounded regret were given in Lai and Robbins (1984), Wang, Kulkarni and Poor (2005)

and Goldenshluger and Zeevi (2009).
This paper identi£es a key property of the side information which affects the intrinsic com-

plexity of the allocation problem. In particular, we show that the expected inferior sampling

rate cannot be bounded unless a suitable assumption is imposed on the variability or “diversity”

that characterizes the covariates. To that end, we consider a very simple setting of a two-armed

bandit problem with discrete valued covariates such that the rewards in each arm are governed by

linear regression models. We derive a minimax lower bound on the expected number of inferior

arm selections which is shown to be of the order lnn when the total number of samples taken

is n; see Theorem 1 in Section 2. Our proof introduces a new bounding technique predicated

on information theoretic arguments, which helps in elucidating the fundamental complexity of

sequential allocation problems.
The diversity property alluded to above can be described also as persistence of excitation; a

term that is often used in the adaptive control and system identi£cation literature. In the context

of our problem this property can be characterized informally as follows: the distribution of the

covariates is such that under the an oracle sampling rule it is possible to learn about conditional

distributions of the rewards associated with each arm, without having to incur errors in the arm

selections; see De£nition 1 in Section 2 for a more precise description. In the absence of this

characteristic, any policy must sample the inferior arm a large number of times, as this is the

only way to eventually distinguish which arm should be pulled for each covariate value. Our

results indicate that without persistence of excitation it is not possible to construct policies in

which the expected number of incorrect arm selections stays bounded as n→∞. In particular,

according to Theorem 2 in Section 2, the expected inferior sampling rate diverges to in£nity at

the same rate as that characterizing the traditional bandit problem of Lai and Robbins (1985).

In other words, in the absence of persistent excitation, the side information does not lead to any

improvement in the expected inferior sampling rate.

II. FORMULATION AND MAIN RESULTS

A. Description of the model.

Consider the following formulation of a two–armed bandit problem. One observes a sequence

X1, X2, . . . of i.i.d. random variables with common distribution PX sequentially in time. At each

stage t, one can allocate the covariate Xt to i-th arm (i = 1, 2) of the bandit machine obtaining

the response Yt = Y
(i)
t , where

Y
(i)
t = αi + βiXt + ε

(i)
t , i = 1, 2. (2)
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Here θi = (αi, βi) ∈ R2 are unknown parameters, and ε(i)t are the i.i.d. normal random variables

with zero mean and variance σ2, independent of Xt. If the i-th arm is selected at stage t, the

obtained reward is equal to Y
(i)
t , and the goal is to maximize the total expected reward up to

the stage n. In what follows we refer to θ = (θ1, θ2) = (α1, β1, α2, β2) as a con£guration and

regard it as a vector in R4.
By policy π we mean a sequence of random variables π1, π2, . . . taking values in {1, 2} such

that πt is measurable with respect to the σ–£eld Ft−1 generated by the previous observations

X1, Y1, . . . , Xt−1, Yt−1, and by the current covariate value Xt. Let π∗ = π∗(θ, x) be the oracle

rule, which at each time t prescribes

π∗t := π∗(θ,Xt) = argmax
i=1,2

{αi + βiXt}, t = 1, 2, . . . . (3)

The inferior sampling rate of a policy π is given by Tinf(n) =
∑n

t=1 I{πt 6= π∗t }, where I{·}
is the indicator function. Let Θ be a set of parameter values. We will measure quality of a policy

π by its maximal expected inferior sampling rate over Θ,

Sn(π,Θ) := sup
θ∈Θ

Eπ,n
θ [Tinf(n)],

where Eπ,t
θ denotes expectation with respect to the distribution Pπ,t

θ of the observations Yt =
(X1, Y1, . . . , Xt−1, Yt−1, Xt) from the model (2) associated with con£guration θ and policy π.

The minimax expected inferior sampling rate is de£ned by

S∗
n(Θ) = inf

π
Sn(π,Θ),

where inf is taken over all possible policies π = {πt}. We next study the behavior of S∗
n(Θ) for

a natural choice of parameter set Θ.

B. A lower bound on the inferior sampling rate.

In order to state our £rst result we introduce the following notation and de£nitions.

Let θ = (θ1, θ2) be a con£guration, and let η be a positive real number. We say that parameters

of the arms θ1, θ2 ∈ R2 are η–separated if ‖θ1 − θ2‖ ≥ η where ‖ · ‖ is the Euclidean norm.

Similarly, if θ and θ′ are two different con£gurations then they are η–separated if ‖θ− θ ′‖ ≥ η.

With each con£guration θ we associate the real number τ(θ) = (α2 − α1)/(β1 − β2) which is

the x–coordinate of the intersection point of the two regression lines de£ned in (2).

(A) {Xt} are i.i.d. random variables taking values ±1 with probability 1/2.

Theorem 1: Let Assumption (A) hold, and let

Θη := {θ = (θ1, θ2) : τ(θ) = 0, ‖θ1 − θ2‖ ≥ η}.
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Then for all n large enough

S∗
n(Θη) ≥ Cσ2η−2 lnn, (4)

where C is an absolute constant.
Remarks:

1) By de£niton of Θη, for any con£guration θ = (θ1, θ2) ∈ Θη, θ1 and θ2 are η–separated.

Futhemore, condition τ(θ) = 0 along with Assumption (A) ensures that the best arm

depends on Xt for all θ ∈ Θη.

2) The method of proof we employ does not rely on the change-of-measure argument that

was £rst introduced by Lai and Robbins (1985), and since then adopted by many other

subsequent papers.

3) The proof of Theorem 1 shows that the lower bound (4) already holds for S∗
n

(

{θ(0), θ(1)}
)

where the worst–case con£gurations θ (0), θ(1) ∈ Θη are independent of n, and given by

θ(0) = (0, 0, 0, η) and θ(1) = (η, η, η, 0).

The last remark leads to the following straightforward result.
Corollary 1: Let Assumption (A) hold; then for any policy π there exists a con£guration

θ ∈ {θ(0), θ(1)} such that

lim sup
n→∞

Eπ,n
θ [Tinf(n)]

lnn
> 0.

It is worth noting that in the setting where the covariate distribution PX is discrete, Wang,

Kulkarni and Poor (2005) showed that in certain cases the regret can be £nite. The above results

indicate that even in the simplest instances of this problem the regret cannot be bounded unless

a suitable assumption on the variability or diversity of the covariates is imposed.

C. Relation to traditional bandit problems.

The order of the lower bound in Theorem 1 is identical to that of Lai and Robbins (1985,

Theorem 2), derived in the traditional bandit problem without side information. An obvious

question that arises in the context of Theorem 1 is whether the bound stated there is achievable.

To that end, imagine that each of the values of the covariate indexes a distinct and independent

bandit machine. Consider the policy π̂ that for the sequence of times in which Xt = 1 follows

the strategy given in Lai and Robbins (1985, Section 3), ignoring all actions and observations

associated with the sequence of times in which the covariate value is Xt = −1, and vice versa. It

then follows straightforwardly from Lai and Robbins (1985, Theorem 3) that this policy achieves

Sn(π̂,Θη) ≤ C ′σ2η−2 lnn,

where C ′ is an absolute constant. That is, the policy that decouples the problem into two

independent traditional bandit problems is optimal up to a constant factor. Thus, if one views
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the complexity of bandit problems as being characterized by the expected inferior sampling rate,

then the problem we described above is essentially equivalent to traditional bandit problems

without side information.

D. The role of persistent excitation.

The lower bound of Theorem 1 is a manifestation of a general fact: the expected inferior

sampling rate cannot be bounded as n tends to in£nity unless an assumption on suitable variability

or “diversity” in the values of the covariates is imposed. To spell this out in mathematical terms,

de£ne £rst for a given policy π, the subset J π
i (t) of the set of indices {1, . . . , t− 1} when the

policy π selects the i–th arm, Jπi (t) = {1 ≤ s < t : πs = i}.
De£nition 1: (persistence of excitation) We say that a policy π does not induce persistent

excitation for a con£guration θ, if there exists a positive constant K < ∞ such that for i = 1

or i = 2 and for all t

Pπ,t
θ

{

λmin

(

∑

s∈Jπi (t)

ZsZ
T
s

)

≤ K
}

= 1, (5)

where λmin(·) is the minimal eigenvalue of a matrix, and Zs = (1, Xs)
T . By convention

∑

∅ = 0.

Remarks:

1) Our de£nition of persistent excitation pertains to the linear regression model (2), but it

can be easily adapted to other settings. The absence of persistent excitation in the sense of

De£nition 1 means that the Fisher information about arm parameters does not grow when

observations are sampled according the policy π.

2) The setting of Theorem 1 provides a concrete example of absence of persistent excitation.

In particular, since there is only a single point mass within the set in which each arm is

superior, the oracle policy satis£es (5) for any con£guration θ ∈ Θ η.

Armed with this notion, we state the following result.

Theorem 2: Suppose that Xt are non–degenerate i.i.d. random variables, |Xt| ≤ r, ∀t. Let π∗

be the oracle rule, and assume that π∗ does not induce persistent excitation for some con£guration

θ(0) = (θ1, θ2) such that ‖θ1 − θ2‖ = η for some η > 0. Then there exists a con£guration θ (1)

satisfying ‖θ(0) − θ(1)‖ = C1η such that for all suf£ciently large n

S∗
n({θ(0), θ(1)}) ≥ C2σ

2η−2 lnn,

where constants C1 and C2 depend on r and PX only.
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Remarks:

1) Theorem 2 gives a necessary condition for boundedness of the expected inferior sampling

rate. In particular, if the oracle rule π∗ does not induce persistent excitation, then the

expected inferior sampling rate is unbounded.

2) Note that in the traditional bandit setting of Lai and Robbins (1985), the oracle rule trivially

does not induce persistent excitation in the sense of (5). Hence the growth of the expected

inferior sampling rate can be inferred from the absence of this property.

3) The exact characterization of constants C1 and C2 is given the proof.

III. PROOFS

A. The key lemma.

The following general result plays a central role in our derivation of lower bounds on the

expected inferior sampling rate.

Lemma 1: Let Θ be a parameter set, and let θ(0), θ(1) ∈ Θ be a pair of con£gurations such

that

π∗(θ(0), x) 6= π∗(θ(1), x), ∀x ∈ supp(PX) (6)

Let

K
(

Pπ,t

θ(0)
,Pπ,t

θ(1)

)

= Eπ,t

θ(0)

[

ln
Pπ,t

θ(0)

Pπ,t

θ(1)

(Yt)
]

be the Kullback–Leibler divergence between distributions of observation Yt when θ = θ(0) and

θ = θ(1), and policy π is applied. Then for arbitrary policy π and all n one has

Sn(π,Θ) ≥
1

4

n
∑

t=1

exp
{

−K
(

Pπ,t

θ(0)
,Pπ,t

θ(1)

)

}

. (7)

Remarks:

1) The condition that the parameter set Θ contains a pair of con£gurations (θ (0), θ(1)) satis-

fying (6) ensures that the preference of an arm can be changed at every x ∈ supp(PX) by

the choice of a con£guration.

2) It is worth pointing out that lower bounds on Sn(π,Θ) can be established also in terms

of other distance measures; see Tsybakov (2009, Chapter 2).
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Proof of Lemma 1: The proof is based on a standard reduction to a hypothesis testing

problem.

Let π∗ be the oracle rule. For any two con£gurations θ (0) and θ(1) from Θ and any £xed policy

π we have

Sn(π,Θ) = sup
θ∈Θ

Eπ,n
θ [Tinf(n)]

= sup
θ∈Θ

n
∑

t=1

Pπ,t
θ (πt 6= π∗t )

≥ 1

2

n
∑

t=1

[

Pπ,t

θ(0)
(πt 6= π∗t ) + Pπ,t

θ(1)
(πt 6= π∗t )

]

. (8)

Fix t = 1, . . . , n, and consider the problem of testing the hypothesis

H0 : θ = θ(0) = (α1, β1, α2, β2) versus H1 : θ = θ(1) = (α′
1, β

′
1, α

′
2, β

′
2)

from observations Yt collected under the policy π. De£ne the event D t = {ω : α1 + β1Xt ≥
α2 + β2Xt} and consider the following Ft−1–measurable random variable

pt = pt(ω) =

{

1, ω ∈ Dt

2, ω 6∈ Dt.

By de£nition pt = π∗(θ(0), Xt), or, in other words, pt = π∗t under hypothesis H0. At the same

time, it follows from (6) that pt 6= π∗(θ(1), Xt), or, equivalently, pt 6= π∗t under H1.

Now consider the following test ψt = I(πt 6= pt). The meaning of the event (ψt = 1) is that

H0 is rejected while (ψt = 0) means that H0 is accepted. The error probabilities of the test ψt
are the following

Pπ,t

θ(0)
(ψt = 1) = Pπ,t

θ(0)
(πt 6= pt) = Pπ,t

θ(0)
(πt 6= π∗t )

Pπ,t

θ(1)
(ψt = 0) = Pπ,t

θ(1)
(πt = pt) = Pπ,t

θ(1)
(πt 6= π∗t ).

Therefore

Pπ,t

θ(0)
(πt 6= π∗t ) + Pπ,t

θ(1)
(πt 6= π∗t ) = Pπ,t

θ(0)
(ψt = 1) + Pπ,t

θ(1)
(ψt = 0). (9)

Using the lower bound in terms of the Kullback–Leibler divergence on the sum of error proba-

bilities in hypotheses testing [see, e.g., Tsybakov (2009, Theorem 2.2)] we obtain that

Pπ,t

θ(0)
(ψt = 1) + Pπ,t

θ(1)
(ψt = 0) ≥

1

2
exp

{

−K(Pπ,t

θ(0)
,Pπ,t

θ(1)
)
}

.

Combining this inequality with (8) and (9) we complete the proof.
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B. Proof of Theorem 1

Let us introduce the following notation. For £xed π we let J π
i (t) be the subset of indices from

{1, 2, . . . , t− 1} when the policy π selects i-th arm. Let Ti(t) denote the cardinality of Jπi (t).

Let η > 0, and consider the following two con£gurations

θ(0) = (θ1, θ2) = (α1, β1, α2, β2) = (0, 0, 0, η)

θ(1) = (θ′1, θ
′
2) = (α

′
1, β

′
1, α

′
2, β

′
2) = (η, η, η, 0).

Clearly, ‖θ1−θ2‖ = η, ‖θ′1−θ′2‖ = η, and τ(θ(0)) = τ(θ(1)) = 0; hence θ(0), θ(1) ∈ Θη. Note also

that under con£guration θ (0) the £rst arm is superior when Xt = −1 and inferior when Xt = 1.

The preference of arms is changed when θ = θ(1): now the £rst arm is superior when Xt = 1

and inferior when Xt = −1. This means that π∗(θ(0), x) 6= π∗(θ(1), x) for any x ∈ {−1, 1}, so

that condition (6) is ful£lled, and Lemma 1 can be applied.

For £xed t we have

ln
dPπ,t

θ(0)

dPπ,t

θ(1)

(Yt) = − 1

2σ2

∑

s∈Jπ1 (t)

Y 2s −
1

2σ2

∑

s∈Jπ2 (t)

(Ys − ηXs)
2

+
1

2σ2

∑

s∈Jπ1 (t)

(Ys − η − ηXs)
2 +

1

2σ2

∑

s∈Jπ2 (t)

(Ys − η)2

= − 1

2σ2

∑

s∈Jπ1 (t)

η(1 +Xs)[2Ys − η(1 +Xs)]

− 1

2σ2

∑

s∈Jπ2 (t)

η(1−Xs)(2Ys − ηXs − η).

Therefore

K(Pπ,t

θ(0)
,Pπ,t

θ(1)
) = − 1

2σ2
Eπ,t

θ(0)

{

∑

s∈Jπ1 (t)

η(1 +Xs)[2ε
(1)
s − η(1 +Xs)]

}

− 1

2σ2
Eπ,t

θ(0)

{

∑

s∈Jπ2 (t)

η(1−Xs)[2ε
(2)
s − η(1−Xs)]

}

=
η2

2σ2
Eπ,t

θ(0)

{

∑

s∈Jπ1 (t)

(1 +Xs)
2
}

+
η2

2σ2
Eπ,t

θ(0)

{

∑

s∈Jπ2 (t)

(1−Xs)
2
}

, (10)
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where the last equality follows because

Eπ,t

θ(0)

∑

s∈Jπi (t)

ε(i)s = Eπ,t

θ(0)

t−1
∑

s=1

Eπ,t

θ(0)

[

ε(i)s I(πs = 2)|Fs−1

]

= Eπ,t

θ(0)

t−1
∑

s=1

I(πs = 2)Eπ,t

θ(0)

[

ε(i)s
]

= 0

Eπ,t

θ(0)

∑

s∈Jπi (t)

ε(i)s Xs = Eπ,t

θ(0)

t−1
∑

s=1

Eπ,t

θ(0)

[

ε(i)s XsI(πs = 2)|Fs−1

]

= Eπ,t

θ(0)

t−1
∑

s=1

XsI(πs = 2)Eπ,t

θ(0)

[

ε(i)s
]

= 0.

Let T (x)i (t) denote the number of times the i-th arm was pulled up until time t when Xs = x,

i.e., T (x)i (t) =
∑t−1

s=1 I(πs = i,Xs = x). With this notation the expression on the right hand side

of (10) takes the form

K(Pπ,t

θ(0)
,Pπ,t

θ(1)
) =

η2

2σ2
Eπ,t

θ(0)

{

∑

s∈Jπ1 (t)∩{s:Xs=1}

(1 +Xs)
2
}

+
η2

2σ2
Eπ,t

θ(0)

{

∑

s∈Jπ2 (t)∩{s:Xs=−1}

(1−Xs)
2
}

=
2η2

σ2
Eπ,t

θ(0)

[

T
(1)
1 (t) + T

(−1)
2 (t)

]

=
2η2

σ2
Eπ,t

θ(0)

[

Tinf(t)
]

, (11)

where the last equality is a consequence of the fact that under con£guration θ (0) the £rst arm is

inferior at x = 1 and the second arm is inferior at x = −1.
Combining this result with (7) we obtain

Sn ≥ 1

4

n
∑

t=1

exp
{

− 2η
2

σ2
Eπ,t

θ(0)
[Tinf(t)]

}

≥ 1

4

n
∑

t=1

exp
{

− 2η
2

σ2
sup
θ∈Θ

Eπ,t
θ [Tinf(t)]

}

=
1

4

n
∑

t=1

exp
{

− 2η
2

σ2
St

}

,

≥ n

4
exp

{

− 2η
2

σ2
Sn

}

(12)

where for brevity we write St := St(π,Θ), and the last step follows since {St} is a non-

decreasing sequence. Note that (12) holds for any policy π and for all n. Then the assertion of

the theorem follows from the fact that the inequality (12) is ful£lled only if for any ε ∈ (0, 1)
the numerical sequence {Sn} satis£es for all n large enough Sn ≥ 1

2
σ2η−2(1− ε) lnn.
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C. Proof of Theorem 2

For a given policy π let us denote

Qπ
i (t) =

∑

s∈Jπi (t)

ZsZ
T
s , i = 1, 2.

By the premise of the theorem the oracle rule π∗ does not induce persistent excitation for a

con£guration θ (0) = (θ1, θ2) = (α1, β1, α2, β2); hence (5) holds with θ replaced by θ(0) for i = 1

or i = 2. Without loss of generality assume (5) holds only for the second arm: for all t

λmin{Qπ∗

2 (t)} ≤ K, Pπ∗,t

θ(0)
− a.s. (13)

It is easily seen from Step 1 below that if (5) holds for both arms, then the minimax lower

bound can be constructed as in the proof of Theorem 1. For the sake of de£niteness we assume

also that β2 > 0.

The proof proceeds in two steps. First, we show that under conditions of the theorem the

following statement holds: either (i) Qπ∗

2 (t) = O; or (ii) λmin{Qπ∗

2 (t)} = 0 for all t (here O is

2× 2 zero matrix). Second, we construct worst–case con£gurations and apply Lemma 1.

Step 1: Assume that (13) holds. Because Xt, t = 1, . . . .n are i.i.d. random variables, the

following two situations are possible:

(i) P(θT2 Zs ≥ θT1 Zs) = 0, i.e., the second arm is never pulled under the oracle rule π∗;

(ii) P(θT2 Zs ≥ θT1 Zs) > 0, i.e., under the oracle rule π∗ the second arm is pulled a number of

times that tends to in£nity as t→∞, but the absense of excitation is caused by insuf£cient

diversity of values of Xt allocated to the second arm.

In the case (i) the second arm is inferior for all x, Jπ∗2 (t) = ∅, and hence Qπ∗

2 (t) = O for all t.

Now we consider the case (ii). Write for brevity X̃s = XsI(θ
T
2 Zs ≥ θT1 Zs) and note that

X̃s = Xs for those indices s where the oracle rule π∗ selects the second arm. Write also

T̃2(t) =
∑t−1

s=1 I(θ
T
2 Zs ≥ θT1 Zs). We have T̃2(t)→∞ as t→∞, and since Xt are i.i.d. random

variables by the strong law of large numbers

T̃2(t)

t

a.s.→ P(θT2 Zs ≥ θT1 Zs), as t→∞.

With introduced notation one has

Qπ∗

2 (t) =

[

T̃2(t)
∑t−1

s=1 X̃s
∑t−1

s=1 X̃s

∑t−1
s=1 X̃

2
s

]

, ∀t.

A straightforward calculation shows that

λmin{Qπ∗

2 (t)} =
1

2

{

t−1
∑

s=1

X̃2
s + T̃2(t)−

[(

t−1
∑

s=1

X̃2
s + T̃2(t)

)2

− 4T̃2(t)
t−1
∑

s=1

X̃2
s +4

(

t−1
∑

s=1

X̃s

)2]1/2}
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which together with (13) implies that for any t

0 ≤ 1

T̃2(t)

t−1
∑

s=1

X̃2
s −

( 1

T̃2(t)

t−1
∑

s=1

X̃s

)2

≤ 4K

T̃2(t)

( 1

T̃2(t)

t−1
∑

s=1

X̃2
s + 1

)

.

Letting t → ∞ and using the strong law of large number we obtain that the expression on the

right hand side tends to 0 while the left hand side converges to

EX̃2
s

P(θT2 Zs ≥ θT1 Zs)
−
[

EX̃s

P(θT2 Zs ≥ θT1 Zs)

]2

almost surely. Hence

E
(

XsI{θT2 Zs ≥ θT1 Zs)
)2
=

[

EXsI{θT2 Zs ≥ θT1 Zs}
]2

P{θT2 Zs ≥ θT1 Zs}
. (14)

Note that the Cauchy–Schwarz inequality implies that the left hand side of (14) is always greater

than or equal to the right hand side. The equality in (14) is possible only if for some constant

x0, Xs(ω) = x0 on the event {ω : θT2 Zs(ω) ≥ θT1 Zs(ω)}. This shows that if (13) holds and Xt’s

are i.i.d. random variables then in case (ii) the distribution of Xt has only a single atom x0 in

the set {x : α2 + β2x ≥ α1 + β1x}. Under these circumstances

Qπ∗

2 (t) = T̃2(t)

[

1 x0

x0 x20

]

, ∀t, (15)

and λmin{Qπ∗

2 (t)} = 0, ∀t. Moreover, since the distribution of Xt is non-degenerate, the two

lines intersect in the interval [−r, r]. Recall that β2 > 0. The following two cases are possible:

β2 > β1 and β2 < β1. If β2 > β1 then arm 2 is inferior at any point x ∈ [−r, x0) ∩ supp(PX).
In addition, because (5) does not hold for arm 1, P{Xt ∈ (−r, x0)} > 0. If β2 < β1 then arm 2

is inferior at any point x ∈ (x0, r] and a similar conclusion holds for that interval. For the sake

of de£niteness we suppose that β2 > β1; the proof for the case of β2 < β1 goes along the same

lines.

Step 2: Let π be an arbitrary policy. Using the de£ntion of Qπ
i (t), we can write

Qπ
i (t) =

∑

s∈Jπi (t)∩J
π∗

i (t)

ZsZ
T
s +

∑

s∈Jπi (t)\J
π∗

i (t)

ZsZ
T
s

=: Gi(t) +Bi(t).

In words, Gi(t) is the design matrix corresponding to the pulls of the i-th arm when it is superior,

while Bi(t) is the design matrix corresponding to the inferior pulls of the i-th arm. Let Tinf,i(t)

denote the number of pulls of i–th arm up until time t when it is inferior; then the inferior

sampling rate is Tinf(t) = Tinf,1(t) + Tinf,2(t).
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Let θ(1) = (θ′1, θ
′
2) be another con£guration that will be speci£ed later. Using previously

introduced notation, we can write

K(Pπ,t

θ(0)
,Pπ,t

θ(1)
) =

1

2σ2
Eπ,t

θ(0)

{

(θ1 − θ′1)
TQπ

1 (t)(θ1 − θ′1) + (θ2 − θ′2)
TQπ

2 (t)(θ2 − θ′2)
}

=
1

2σ2
Eπ,t

θ(0)

{

(θ1 − θ′1)
TG1(t)(θ1 − θ′1) + (θ1 − θ′1)

TB1(t)(θ1 − θ′1)

+ (θ2 − θ′2)
TG2(t)(θ2 − θ′2) + (θ2 − θ′2)

TB2(t)(θ2 − θ′2)
}

. (16)

Because Jπ2 (t)∩ Jπ
∗

2 (t) ⊆ Jπ
∗

2 (t) we have that Qπ∗

2 (t)−G2(t) is a non–negative de£nite matrix

for all t. Therefore

(θ2 − θ′2)
TG2(t)(θ2 − θ′2) ≤ (θ2 − θ′2)

TQπ∗

2 (t)(θ2 − θ′2) a.s. (17)

Now we are in a position to specify the worst–case con£guration θ (1) = (θ′1, θ
′
2). We always

choose θ′1 = θ1. The choice of θ′2 is the following.

Case (i): Here we take θ′2 = (α′
2, β

′
2) = (α2 + 2η(r ∨ 1), β2). Because arm 2 is inferior

at all x ∈ supp(PX) and ‖θ1 − θ2‖ = η, the above choice of θ′2 ensures that the preference of

arms is switched at all x ∈ supp(PX) for the con£guration θ (1), i.e., π∗(θ(0), x) 6= π∗(θ(1), x),

∀x ∈ supp(PX). Hence Lemma 1 can be applied.

Case (ii): We consider the following construction. Let e = (e1, e2)T be a unit vector such

that

e1 + x0e2 = 0. (18)

In view of (15), e belongs to the null space of the matrices Qπ∗

2 (t), ∀t, and e = e(1) or e = e(2)

where

e(1) :=

(

− x0
√

1 + x20
,

1
√

1 + x20

)T

, e(2) :=

(

x0
√

1 + x20
,− 1
√

1 + x20

)T

. (19)

For γ > 0 put

θ′2 = θ2 + γe = (α2 + γe1, β2 + γe2). (20)

The idea is to choose γ > 0 and e ∈ {e(1), e(2)} (and con£guration θ ′2 via (20)) so that the

preferences of arms left of point x0 are switched. For this purpose it is suf£cient to equate the

two regression lines under con£guration θ (1) at the point x = −r.
First we recall that the second arm is inferior at any x ∈ [−r, x0) under θ(0); in particular,

α2 − β2r < α1 − β1r. In order to have α′
2 − β′

2r = α1 − β1r we should choose e2 < 0 because,

by (18) and (20),

α′
2 − β′

2r = α2 − β2r − γe2(x0 + r).
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Therefore we put e = e(2). Solving the system of equations

α′
2 + β

′
2x0 = α2 + β2x0

α′
2 − β′

2r = α1 − β1r.

with respect to α′
2 and β ′

2 we obtain

β2 − β′
2 =

α2 − α1 + (β1 − β2)r

x0 + r
, α′

2 − α2 = (β2 − β′
2)x0,

which, in turn, yields

γ2 = ‖θ2 − θ′2‖2 =
1 + x20
(x0 + r)2

[

α2 − α1 + (β1 − β2)r
]2

. (21)

Taking into account that ‖θ1 − θ2‖ = η we have the following straightforward bounds on γ

(r ∧ 1)η
√

1 + x20
x0 + r

≤ γ ≤
√
2(r ∨ 1)η

√

1 + x20
x0 + r

. (22)

Thus, the choice θ′2 = θ2 + γe with e = e(2) [see (19)] and γ given in (21) ensures that arm 2

is no longer inferior at any x ∈ [−r, x0). Since, by Step 1, m := P{Xt ∈ (−r, x0)} > 0, under

con£guration θ (1) preference of the arms is changed for all x ∈ A := (−r, x0) ∩ supp(PX).
Then, restricting steps (8) and (9) to the event A, a straightforward calculation shows that the

result of Lemma 1 holds with a factor m multiplying the RHS in (7).

Note that in both cases by construction (θ2 − θ′2)
TQπ∗

2 (t)(θ2 − θ′2) = 0, ∀t. Therefore using

(17) we have the following upper bound on the expression under the expectation sign on the

right hand side of (16)

(θ1 − θ′1)
TQπ

1 (t)(θ1 − θ′1) + (θ2 − θ′2)
TQπ

2 (t)(θ2 − θ′2)

≤ (θ2 − θ′2)
TG2(t)(θ2 − θ′2) + (θ2 − θ′2)

TB2(t)(θ2 − θ′2)

≤ (θ2 − θ′2)
TQπ∗

2 (t)(θ2 − θ′2) + (θ2 − θ′2)
TB2(t)(θ2 − θ′2)

= (θ2 − θ′2)
TB2(t)(θ2 − θ′2)

≤ γ2(1 + r2)Tinf,2(t),

where the last inequality follows from the fact that ‖θ2 − θ′2‖ = γ, and

λmax{B2(t)} ≤ tr{B2(t)} =
∑

s∈Jπ2 (t)\J
π∗

2 (t)

ZT
s Zs ≤ (1 + r2)Tinf,2(t).

We have used also the fact that |Xt| ≤ r, ∀t, and the cardinality of the set Jπ2 (t)\Jπ
∗

2 (t) equals

Tinf,2(t). Thus, it follows from (16) that

K(Pπ,t

θ(0)
,Pπ,t

θ(1)
) ≤ γ2

2σ2
(1 + r2)Eπ,t

θ(0)
[Tinf(t)],
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and therefore by the modi£cation of Lemma 1 discussed above,

Sn ≥
m

4

n
∑

t=1

exp
{

− γ2(1 + r2)

2σ2
St

}

.

This inequality and (22) yield the announced result.
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