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The stochastic multi-armed bandit (MAB) problem is a common model for sequential decision problems. In
the standard setup, a decision maker has to choose at every instant between several competing arms, each of
them provides a scalar random variable, referred to as a “reward.” Nearly all research on this topic considers
the total cumulative reward as the criterion of interest. This work focuses on other natural objectives that
cannot be cast as a sum over rewards, but rather more involved functions of the reward stream. Unlike
the case of cumulative criteria, in the problems we study here the oracle policy, that knows the problem
parameters a priori and is used to “center” the regret, is not trivial. We provide a systematic approach to such
problems, and derive general conditions under which the oracle policy is sufficiently tractable to facilitate
the design of optimism-based (upper confidence bound) learning policies. These conditions elucidate an
interesting interplay between the arm reward distributions and the performance metric. Our main findings
are illustrated for several commonly used objectives such as conditional value-at-risk, mean-variance trade-
offs, Sharpe-ratio, and more.
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1. Introduction Consider a sequential decision making problem where at each stage one of K

independent alternatives is to be selected. When choosing alternative i at stage t (also referred to

as time t), the decision maker receives a reward Xt that is distributed according to some unknown

distribution F (i), i= 1, . . . ,K and is independent of t. (Where unambiguous, we avoid indexing Xt

with i, and leave that implicit; the information will be encoded in the policy that governs said

choices, which will be detailed in what follows.) At time t, the decision maker has accumulated

a vector of rewards (X1, . . . ,Xt). In our setting, performance criteria are defined by a function

Ũ that maps the reward vector to a real-valued number. As Ũ (X1, . . . ,Xt) is a random quantity,

we consider the accepted notion of expected performance, i.e., EŨ (X1, . . . ,Xt), assuming this

expectation exists and is finite. An oracle, with full knowledge of the arms’ distributions, will make

a sequence of selections based on this information so as to maximize the expected performance

criterion. This serves as a benchmark for any other policy which does not have such information

a priori, and hence needs to learn it on the fly. The gap between the former (performance of the
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oracle) and the latter (performance of the policy) represents the usual notion of regret in the
learning problem.

The most ubiquitous performance criterion in the literature concerns the long run average reward,
which involves the empirical mean, Ũave(X1, . . . ,Xt) = 1

t

∑t

s=1Xs. In this case, the oracle rule, that
maximizes the expected value of the above, just samples from the distribution with the highest
mean value, namely, it selects i∗ ∈ arg max{

∫
xdF (i)(x)}. Learning algorithms for such problems

date back to Robbins’ paper [20] and were extensively studied subsequent to that. In particular,
the seminal work of [16] establishes that the normalized (per epoch) regret in this problem, when
the arms are “well separated,” cannot be made smaller than O(logT/T ), and there exist learning
algorithms that achieve this regret by maximizing a confidence bound modification of the empirical
mean. (When the arms are not well separated, equivalent statements hold with order-1/

√
T .) Since

then, this class of policies has come to be known as UCB, or upper confidence bound policies.
Some strands of literature that have emerged from this include [4] (non-asymptotic analysis of
UCB-policies), [18] (empirical confidence bounds or KL-UCB), [2] (Thompson sampling based
algorithms), and various works which consider an adversarial formulation (see, e.g., [5]).

Main research questions. In this paper we are interested in studying the above problem
for more general path dependent objectives that are of interest beyond just the vanilla average.
Many of these objectives bear an interpretation as “risk criteria” insofar as they focus on a finer
probabilistic nature of the primitive distributions than the mean, and typically relate to the spread
or tail behavior. Examples include: the so-called Sharpe ratio, which is the ratio between the mean
and standard deviation; value-at-risk (V aRα) which focuses on the α percentile of the distribution
(with α small); or a close counterpart that integrates (averages) the values out in the tail beyond
that point known as the expected shortfall (or conditional value at risk; CV aRα). The last example
is of further interest as it belongs to the class of coherent risk measures which has various attractive
properties from the risk theory perspective. A discussion thereof is beyond the scope of this paper;
cf. [3] for further details. In our problem setting, the above criteria are applied via the function Ũ
to the empirical observations, and then the decision maker seeks, as before, to optimize its expected
value. A typical example where such criteria may be of interest is that of clinical trials (one of
the original motivations for the development of the MAB framework). More specifically, suppose
several new drugs are sequentially tested on individuals who share similar characteristics. If we
consider average performance, we may conclude that the best choice is a drug with a non-negligible
fatality rate but a high success rate. If we wish to control the fatality rate then using CV aRα for
example may be appropriate.

While some of the above mentioned criteria have been examined in the decision making and
learning literature (see references below), the analysis tends to be driven by specific properties
of the criterion in question and is very much done on a case-by-case basis. One of the purposes
of this paper is to present a more unified approach to a large set of such problems. One of the
main obstacles that arises under the non-cumulative criteria is the more complicated structure
of the oracle rule. In particular, unlike the case of the mean objective, here the oracle rule need
not select the same arm throughout the horizon of the problem. This presents further obstacles
in identifying and characterizing a learning policy, as most such blueprints call for minimizing
regret by mimicking the oracle rule. To that end, as our analysis will flesh out, under suitable
conditions the oracle policy can be approximated (asymptotically) by a simple policy, that is, one
that statically selects a single arm. This simplification can be leveraged to address the learning
problem which becomes more tractable and amenable to optimism-based design principles. It is
therefore of interest to understand and characterize in what instances does this simplified structure
exist. This is one of the main thrusts of the paper.

Main contributions of this paper. In this paper we consider a general approach to the
analysis of performance criteria where the oracle policy is a simple policy. We identify a class of
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criteria that we term Empirical Distribution Performance Measures (EDPM). In particular, let F̂
be the empirical distribution of the vector (X1, . . . ,Xt), i.e., F̂ (y) is the fraction of rewards less or
equal to real valued y. An EDPM evaluates performance by means of a function U , which maps
F̂ to R, i.e., U (F̂ ) = Ũ (X1, . . . ,Xt). Alternatively, U may also serve to evaluate the distributions
of the random variables Xs (s= 1, . . . , t). These evaluations may be aggregated to form a different
type of performance criteria that we term “pseudo regret,” and consider as an intermediate learning
goal. Our main results provide easily verifiable explicit conditions that characterize the asymptotic
behavior of the oracle rule, and culminate in a UCB-type learning algorithm with eitherO(logT/T )
or O(1/

√
T ) normalized regret (depending on the properties of U and the arm distributions).

Previous works on bandits that concern path-dependent and risk criteria. Sequential
performance measures of the type considered here were previously studied in [21], which considered
the Mean-Variance of the sequence and presented the MV-UCB, and MV-DSEE algorithms, and
[27, 26], which complete the regret analysis of said algorithms and also consider performance under
Value at Risk. [30] also consider the Mean-Variance and give a Thompson sampling-based method.
Additionally, [1] consider a constrained bandit problem with a concave objective. This may, for
example, capture the Mean-Variance setting, however, it is not the main focus of the paper and
the results are restricted to order O(

√
T ) regret (or order-1/

√
T normalized regret in our setting).

Other works consider simpler performance measures that are more closely related to our notion
of pseudo regret. [11] present the MaRaB algorithm which uses CV aRα in its implementation,
however, they analyze the average reward performance, and do so under the assumptions that
α= 0, and the assumption that the CV aRα and average optimal arms coincide. [23] also consider
CV aRα and give a sample-wise optimistic algorithm. [6] consider the concentration of risk measures
and apply it exclusively to bound CV aRα pseudo regret. It should be noted that some of their
findings, and in particular the pseudo regret bound, where previously established in [8], which
is an antecedent to the present paper. [31] consider criteria based on the mean and variance
of distributions, and present and analyze the ϕ − LCB algorithm. We note that these criteria
correspond to a much narrower class of problems than the ones considered here. [17] presents and
analyzes the RA-UCB algorithm which considers the measure of entropic risk with a parameter λ.

Slightly farther afield, other works consider the best arm identification or simple regret settings.
[13] propose distribution independent algorithms for a linear combination of the mean and CV aRα
measures. [15] consider the estimation of CV aRα for both light and heavy tailed distributions, and
provide an algorithm for best CV aRα arm identification. [25] consider a general functional of the
arm distributions and demonstrate results on Mean-Variance, V aRα, and CV aRα best arm and
simple regret. [29] consider a Mean-Variance best arm identification. [9] consider a quantile risk
constrained setting for best arm identification.

Finally, we mention two alternative settings that consider quantile-based sequential performance
measures such as V aRα and CV aRα. [24] consider the convergence of approximate dynamic pro-
gramming in Markov Decision Processes (MDP), and [12] consider a stochastic optimization setting
with bandit feedback. The approach in our paper is quite distinct from these.

Organization. Throughout, all proofs are provided as a sketch that communicates their key
ideas, with the full details deferred to the Appendix. In Section 2 we give initial motivation for our
suggested class of performance criteria. In Section 3 we formulate the problem setting, oracle rule,
and regret metric under non-cumulative criteria. In Section 4 we provide the main results, and in
Section 5 we demonstrate them on well-known risk criteria. We also include some negative examples,
which illustrate the implications of violation of the proposed conditions, indicating in some way
the necessity of such conditions in achieving the unifying theme in our proposed framework.

2. A Motivating Example In the standard bandit setting, for a sequence of integrable
random variables we are interested in designing a policy π that maximizes the average reward
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U ave
π = E

[∑T

t=1Xπ,t

]
, or, equivalently, minimizes regret compared to an oracle strategy, which is

known to pull a single arm throughout the horizon. It is well known that optimistic strategies
achieve optimal performance in this setting. Now, suppose we seek to design a policy π that
maximizes UCV aRα

π = E
[

1
dtαe

∑dtαe
s=1 X

∗
π,s

]
, where X∗π,s is the sth order statistic of (Xπ,1, . . . ,Xπ,t).

This is known as Conditional Value at Risk (CV aRα) or Expected Shortfall, at percentile level
α∈ (0,1), and is a widely accepted performance measure from the risk literature.

Question: Can we minimize regret using an optimistic strategy?

To answer this, we first need to understand what constitutes an optimistic strategy, which in turn
requires that we further understand the oracle rule, which is aware of the true distributions of the
arms. The current formulation of UCV aRα

π presents it as a direct function of the reward sequence.
While this is is very intuitive, it is in fact a sequence of mappings (one for each sample size) that
do not naturally share a domain; studying this sequence can be challenging. In lieu of that, we first
observe that UCV aRα

π may be reformulated in terms of a single function that evaluates the sequence
of empirical reward distributions F̂ π

t , where F̂ π
t (x) is the fraction of rewards less than or equal to

x. Formally, UCV aRα
π = EUCV aRα

(
F̂ π
t

)
where

UCV aRα
(
F
)

= max
z∈R

z− 1

α

∫ z

−∞
F (x)dx,

is the accepted notion for measuring CV aRα for a random variable X with cumulative distribution
function F . In Appendix A we show that essentially any performance measure that is invariant to
the order of the reward sequence may be reformulated as EU

(
F̂ π
t

)
for some function U . Impor-

tantly, this captures many well-known performance measures such as Mean-Variance, Entropic
Risk, Sharpe Ratio, and more.

Having restricted ourselves to the class of performance measures that can be expressed this way,
we have obtained a consistent way to evaluate performance, which is independent of the time t.
Our study now turns to investigating the properties of the function U , in conjunction with the
arm distributions, that allow for an optimistic strategy. In the case of CV aRα, if we only assume
sub-Gaussian arm distributions, we find that UCV aRα may be non-smooth, and our framework can
only guarantee a regret of O(1/

√
T ) using an optimistic strategy. However, if for example the arm

distributions have positive density around their α percentile then we show that the same strategy
only incurs O(logT/T ) regret. The remainder of this paper will flesh out these ideas and provide
a set of easy to verify conditions that yield the results discussed in this section.

3. Problem Formulation

Model and admissible policies. Consider a standard MAB with K= {1, . . . ,K}, the set of
arms. Arm i∈K is associated with a sequence Xi,t (t≥ 1) of i.i.d random variables with distribution
F (i) ∈ D, the set of all distributions on the real line. When pulling arm i for the tth time, the
decision maker receives reward Xi,t, which is independent of the remaining arms, i.e., the variables
Xi,t (for all i∈K, t≥ 1) are mutually independent.

We define the set of admissible policies (strategies) of the decision maker in the following way.
Let τi(t) be the number of times arm i was pulled up to time t. Let V be a random variable
over a probability space (V,V, Pv) which is independent of the rewards. An admissible policy
π = (π1, π2, . . .) is a random process recursively defined by

πt := πt
(
V,π1, . . . , πt−1,Xπ,1, . . . ,Xπ,t−1

)
(1)

τi(t) =
t∑

s=1

1{πs = i} (2)

Xπ,t :=Xi,τi(t), given the event {πt = i}. (3)



Cassel et al.: MAB Beyond Cumulative Objective
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuccript number!) 5

We denote the set of admissible policies by Π, and note that admissible policies π are non antici-
pating, i.e., depend only on the past history of actions and observations, and allow for randomized
strategies via their dependence on V . Formally, let {Ht}∞t=0 be the filtration defined by Ht =
σ(V,π1,Xπ,1, . . . , πt,Xπ,t), then πt is Ht−1 measurable.

Empirical Distribution Performance Measures (EDPM). The classical bandit opti-
mization criterion centers on the empirical mean, i.e., 1

t

∑t

s=1Xπ,s. We generalize this by considering
criteria that are based on the empirical distribution. Formally, the empirical distribution of a real
number sequence x1, . . . , xt is obtained through the mapping F̂t :Rt→D, given by,

F̂t(x1, . . . , xt; ·) =
1

t

t∑
s=1

I[xs,∞](·), (4)

where I[a,b](·) is the indicator function of the interval [a, b] defined on the extended real line, i.e.

I[a,b](y) =

{
1 , y ∈ [a, b]

0 , y /∈ [a, b].

Of particular interest to this work are the empirical distributions of the reward sequence under
policy π, and of arm i. We denote these respectively by,

F̂ π
t (·) := F̂t(Xπ,1, . . . ,Xπ,t; ·) (5)

F̂
(i)
t (·) := F̂t(Xi,1, . . . ,Xi,t; ·). (6)

The decision maker possesses a function U :D→ R, which measures the “quality” of a distribu-
tion. The resulting criterion is called EDPM, and the decision maker aims to maximize EU

(
F̂ π
T

)
.

(Throughout it is assumed implicitly that the class of distributions and performance functions is
such that this expectation exists and is finite valued.)

Oracle and regret. For given horizon T , the oracle policy π∗(T ) = (π∗1(T ), π∗2(T ), . . .) is one
that achieves optimal performance given full knowledge of the arm distributions F (i) (i ∈ K).
Formally, it satisfies

π∗(T )∈ arg max
π∈Π

E
[
U
(
F̂ π
T

)]
. (7)

Similarly to the classic bandit setting, we define a notion of regret that compares the performance
of policy π to that of π∗(T ). The expected (normalized) regret of policy π ∈Π at time T is given
by,

Rπ(T ) := E
[
U
(
F̂
π∗(T )
T

)
−U

(
F̂ π
T

)]
. (8)

We note that this definition is normalized with respect to the horizon T , thus transforming familiar
regret bounds such as O(logT ) into O( logT

T
). With that convention we smply refer to the above as

the “regret” without added qualifiers.

Assumptions. Beyond the existence and finiteness of expectations, flagged earlier, we make
the following assumption throughout. Let the simplex in RK be

∆ =
{
p= (p1, . . . , pK)∈RK

∣∣∣ ∑K

i=1 pi = 1, pi ≥ 0 ∀i∈K
}
,

and define the set of all convex combinations of the arms’ reward distributions by

D∆ =
{
Fp =

∑K

i=1 piF
(i)
∣∣∣ p∈∆

}
. (9)
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Let i∗ ∈ arg maxU
(
F (i)

)
be an “optimal” arm. We assume that

U
(
F
)
≤U

(
F (i∗)

)
,∀F ∈D∆.

While there is a potential loss of generality here, we could not find any interesting performance
measure that violates this inequality. In particular, it provably holds when U is quasiconvex, which
will always be the case in our examples.

4. Main Results When defining an objective, it was sufficient to consider U as a mapping
from D (a set) to R. Moving forward, our analysis relies on properties such as continuity and
differentiability, which require that we consider U as a mapping between seminormed spaces. To
that end D is a subset of an infinite dimensional vector space for which norm equivalence does not
hold. This hints at the importance of using the “correct” (semi)norm for each U . As a result, our
analysis is done with respect to a general seminorm ‖·‖ and its matching seminormed space L‖·‖.
We therefore consider EDPMs as mappings U :L‖·‖→R.

The goal of this work is to provide a generic analysis of the regret, similar to that of the classical
bandit setting, and which culminates in the following result.

Theorem (Informal meta-result). There exists an efficient algorithm such that:
1. Under suitable regularity conditions obtains regret Rπ(T ) =O( logT√

T
);

2. Under an additional smoothness condition obtains regret Rπ(T ) =O( logT
T

).

In what follows, we introduce the technical details required to make this statement rigorous. This
culminates in Section 4.5, where Theorem 4 gives the desired statement, and where we also explain
how the standard bandit setting fits into our framework. Unlike the classical bandit setting, the
oracle policy π∗(T ), defined in (7), need not choose a single arm. Since the typical learning algo-
rithms are structured to emulate the oracle rule, we need to first understand the structure of the
oracle policy before we can analyze Rπ(T ).

4.1. Insights From the Infinite Horizon Oracle The oracle problem in (7) does not admit
a tractable solution, in the absence of further structural assumptions. In this section we consider
a relaxation of the oracle problem which examines asymptotic behavior. We provide conditions
under which this behavior is “simple” thus suggesting it as a proxy for the finite time performance.
More concretely, let Uπ = lim inft→∞U

(
F̂ π
t

)
be the worst case asymptotic performance of policy

π, then the infinite horizon oracle π∗(∞) = (π∗1(∞), π∗2(∞), . . .) satisfies

π∗(∞)∈ arg max
π∈Π

E[Uπ ]. (10)

Note that Uπ is well defined as the limit inferior of a sequence of random variables, however (as
indicated earlier) we require that its expectation exist for (10) to be well defined.

Simple oracle. In the traditional Multi-Armed Bandit problem, the oracle policy, which
selects a single arm throughout the horizon, is clearly simple. It may seem intuitive that EDPMs
always admit a such a simple infinite horizon oracle policy. However, in (F.3.4) we give counter
examples, which arise from the “bad behavior” that is still allowed by this objective. The following
result gives sufficient conditions for EDPMs to be “well behaved.”

Theorem 1 (EDPM admits a simple oracle policy). Suppose an EDPM, U : L‖·‖→ R, is

continuous on D∆, and that limt→∞‖F̂ (i)
t −F (i)‖ = 0 almost surely for all i ∈K. Then the single

arm policy that always chooses i∗ is an infinite horizon oracle policy, as defined in (10).
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Proof sketch. (see full details in Appendix B) First, define that arm pulling ratio p̂i(t) = τi(t)/t,
and notice that the empirical distribution may be written as F̂ π

t =
∑K

i=1 p̂i(t)F̂
(i)
t . Since p(t) ∈∆,

which is closed and compact, we have that any subsequence of t has a further subsquence, tl, such
that p(tl)→ p∈∆. Next, since we assumed that limt→∞‖F̂ (i)

t −F (i)‖= 0 almost surely, we conclude
that F̂ π

tl
→ Fp. Applying the continuity assumption we conclude that Uπ = lim inft→∞U

(
F̂ π
t

)
≤

liml→∞U
(
F̂ π
tl

)
= U

(
Fp
)
≤ U

(
F (i∗)

)
. We conclude the proof by showing that similar arguments

imply that the proposed simple oracle policy achieves this upper bound.
Remark. Theorem 1 depends not only on U but also on the given distributions F (i). Meaning, it
may hold for a given U only for some distributions, and thus the choice of a seminorm is important
in order to get sharp conditions on the viable reward distributions. For example, consider the
supremum norm given by ‖f‖∞ = supx∈R |f(x)|. By the Glivenko-Cantelli theorem ([28]), it satisfies
the convergence condition for any given distributions F (i), i∈K. However, in most cases, continuity
holds only if the distributions have bounded support.

4.2. Regret Decomposition Having gained some understanding of the infinite horizon ora-
cle, we consider a regret decomposition that uses the infinite horizon performance as a benchmark.
Let

F π
T =

1

T

T∑
t=1

F (πt) =
1

T

K∑
i=1

τi(T )F (i), (11)

be the pseudo empirical distribution, where we recall that F (i) is the distribution associated with
arm i∈K, and i∗ is such that U

(
F
)
≤U

(
F (i∗)

)
, for all F ∈D∆. The regret may now be decomposed

as

Rπ(T ) = E
[
U
(
F̂
π∗(T )
T

)
−U

(
F
π∗(T )
T

)]
︸ ︷︷ ︸

J1(T )

+ E
[
U
(
F
π∗(T )
T

)
−U

(
F (i∗)

)]
︸ ︷︷ ︸

J2(T )

+ E
[
U
(
F (i∗)

)
−U

(
F π
T

)]
︸ ︷︷ ︸

R̄π (T )

+ E
[
U
(
F π
T

)
−U

(
F̂ π
T

)]
︸ ︷︷ ︸

J3(T )

.

(12)

The term R̄π(T ) represents what we believe to be the correct notion of pseudo regret in our
setting. Unlike the standard bandit pseudo regret 1

T
E
[∑T

t=1U
(
F (i∗)

)
−U

(
F (πt)

)]
, which aggregates

a policy’s decisions in reward space, here aggregation occurs in distribution space and then evaluates
to a reward via U . We note that in the standard average reward setting U is linear and both notions
coincide. However, in the general non-linear setting, the previous notion may underestimate the
regret and is thus unsatisfactory.

The remaining terms in (12) may be viewed as a decomposition into error terms that measure
discrepancy between distributions via the criterion U . As hinted at by our notation, these may be
bounded essentially independently of the learning algorithm’s policy π. The term J2(T ) measures
the difference between the optimal infinite horizon arm pulling mixture, which is a single arm, and
that of the finite horizon oracle. Notice that by definition of i∗ we always have that J2(T )≤ 0. The
terms J1(T ) and J3(T ), which we refer to as horizon gaps, measure the convergence of empirical
distributions to their appropriate infinite horizon counterparts, which are given by pseudo empirical
distributions. While bounding these proves to be the crux of our problem, we begin by proposing
a learning algorithm that minimizes the pseudo regret.
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4.3. Learning Algorithm Theorem 1 presented conditions for understanding the asymptotic
behavior of performance. As we now seek a finite time analysis (of the pseudo regret), it stands to
reason to employ the following stronger conditions, which quantify the rate of convergence.

Definition 1 (Stable EDPM). We say that U is stable with respect to a seminorm ‖·‖ if there
exist υ, b > 0, q≥ 1 such that:

1. U admits ω
(
x
)

= b(x+xq) as a local modulus of continuity for all F ∈D∆, i.e.,

|U
(
F
)
−U

(
G
)
| ≤ ω

(
‖F −G‖

)
, ∀F ∈D∆,G∈L‖·‖.

2. Recalling F̂
(i)
t from (6), we have that for all i∈K, t≥ 1

P
(
‖F̂ (i)

t −F (i)‖ ≥ x
)
≤ 2exp

(
−υtx2

)
, ∀x> 0.

Pseudo regret decomposition. In the traditional bandit setting, which considers the average
reward, the analysis of the regret is well understood. The same analysis extends to any linear
EDPM, i.e., when U is linear. This follows straightforwardly as such rewards can be formulated
as the usual average criterion with augmented arm distributions. Linearity facilitates the regret
analysis by providing a decomposition of contributions from each sub-optimal arm. Define the
standard single arm sub-optimality gap

∆i =U
(
F (i∗)

)
−U

(
F (i)

)
,

where we recall that i∗ ∈ arg maxU
(
F (i)

)
is the optimal arm. The regret of a linear EDPM is given

by, Rπ(T ) = 1
T

∑
i 6=i∗∆iEτi(T ). Departing from the simple realm of linearity, we seek a similar

decomposition of the pseudo regret. To that end, denote the diameter of D∆ and the maximum
gap ratio respectively as

D= max
i,j∈K
‖F (i)−F (j)‖ ρ= max

i∈K
‖F (i∗)−F (i)‖/∆i, (13)

where the latter essentially measures how well the chosen seminorm captures the sub-optimality
gaps. We provide the following result, which is proved in Appendix C.

Lemma 1 (Pseudo regret decomposition). Let U be a stable EDPM, then U is L-Lipschitz
over D∆ with L= b(1 +Dq−1), and we have that

R̄π(T )≤ Lρ

T

∑
i 6=i∗

∆iEτi(T ).

Learning algorithm. We present U −UCB, a natural adaptation of (α,ψ)−UCB (see [7])
to a stable EDPM. Let,

φ(y) = min

{
υ
( y

2b

)2

, υ
( y

2b

)2/q
}

φ−1(x) = max

{
2b
(x
υ

)1/2

,2b
(x
υ

)q/2}
,

where υ, b, q are the parameters of Definition 1. The U −UCB policy is given by,

πU−UCBt ∈ arg max
i∈K

[
U
(
F̂

(i)

τi(t−1)

)
+φ−1

(
α log t

τi(t− 1)

)]
, t≥K + 1, (14)

where for 1≤ t≤K, it samples each arm once as initialization.
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Theorem 2 (U−UCB Pseudo Regret). Let U be a stable EDPM. If ∆i > 0 for all i 6= i∗, then
for L defined in Lemma 1 and α> 2 we have that

R̄U−UCB(T )≤ Lρ

T

∑
i 6=i∗

(
α∆i logT

φ(∆i/2)
+
α+ 6

α− 2
∆i

)
.

Proof sketch. (see full details in Appendix C) The proof uses standard techniques from
the UCB literature and consists of the following steps. First, we show that if at round t, the
algorithm chooses sub-optimal arm i that was pulled more than order-logT times, then we have
significantly overestimated this arm and underestimated the optimal arm. Second, we bound the
probability of this estimation failure using standard concentration arguments that are deduced
from stability (Definition 1). We conclude that after choosing sub-optimal arm i for order-logT
times, the probability of choosing it again is very small, and thus the expected number of sub-
optimal arm pulls is order-logT . Finally, the proof is concluded by plugging this result into the
pseudo regret decomposition, given in Lemma 1.

4.4. Bounding the Horizon Gaps Recall that the horizon gap of a policy π ∈Π is given by∣∣E[U (F̂ π
T

)
−U

(
F π
T

)]∣∣. At their core, our bounds on the horizon gaps follow from the convergence
of the empirical to pseudo empirical distribution. This convergence is quantified by the following
lemma.
Lemma 2 (Empirical Distribution Tail Bound). Suppose that Requirement 2 of stability holds,
then

P
(
‖F̂ π

T −F π
T ‖>x

)
≤ 2KT exp

(
−υTx

2

K2

)
,∀T ≥ 1, x≥ 0.

The proof decomposes the deviation into its contributions from each arm and uses Requirement 2
of stability, single arm concentration of the empirical distribution, and several union bounds to
conclude the desired result. See full details in Section D.1. We now present our first bound on the
horizon gap, which is uniform over all policies π ∈Π.

Proposition 1 (Uniform horizon gap bound). Suppose that U is a stable EDPM. Then we

have that for all T ≥ 4qK2 logKT
υ∣∣∣E[U (F̂ π

T

)
−U

(
F π
T

)]∣∣∣≤ 4b

(
K2 logKT

υT

)1/2

,∀π ∈Π.

The proof uses Requirement 1 of stability, local modulus of continuity, to get that∣∣∣E[U (F̂ π
T

)
−U

(
F π
T

)]∣∣∣≤E
[
ω
(
‖F̂ π

T −F π
T ‖
)]

= bE
[
‖F̂ π

T −F π
T ‖+ ‖F̂ π

T −F π
T ‖

q
]
, (15)

and then uses the tail sum formula together with the tail bound in Lemma 2 to obtain the final
bound. See full details in Appendix D.

The result of Proposition 1 exhibits a dependence on the time horizon T which may be quite
loose. To see this, consider a linear U . It is relatively easy verify that the left hand side of (15) is
zero, while its right hand side behaves as 1/

√
T even when K = 1.

In order to obtain improved bounds, we require a notion of smoothness. Formally, let L
(
L‖·‖,R

)
be the space of bounded linear functionals on L‖·‖. Assuming U is differentiable on F ∈D∆, then
its differential ∂U

(
F
)
∈L
(
L‖·‖,R

)
is well defined, and we denote its (linear) operation on G∈L‖·‖

by ∂U
(
F
)
·G.
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Definition 2 (Smooth EDPM). An EDPM, U :L‖·‖→R, is smooth if it is differentiable on D∆,
and there exist β ≥ 0,M0 > 0 such that for any F ∈D∆,G∈L‖·‖ satisfying ‖G−F‖ ≤M0 we have
that

|U
(
G
)
−U

(
F
)
− ∂U

(
F
)
· (G−F )| ≤ 1

2
β‖G−F‖2

This definition is a standard notion from optimization, stated for our infinite dimensional function
space. The following result shows that “reasonable” policies enjoy a smaller horizon gap under the
smoothness assumption.

Theorem 3 (Improved horizon gap bound). Suppose that U is a stable and smooth EDPM

with M0 =∞. Letting J2
T = 4K2 logKT

υT
, we have that for any policy π ∈Π and fixed F ∈D∆∣∣∣E[U (F̂ π

T

)
−U

(
F π
T

)]∣∣∣≤ βJ2
T +βJTE‖F π

T −F‖,

for all T ≥ T0, which is polynomial in problem parameters.

The proof may be found in Appendix D. It explicitly identifies the parameter T0, and also addresses
the case of M0 <∞, which gives an additional low order term. Notice that J2

T =O(logT/T ) and
thus any policy whose arm pull frequencies converge in expectation at a rate of O(

√
logT/T ) has

horizon gap of O(logT/T ). In particular, this clearly holds for U −UCB.

Proof (sketch). First, a simple calculation shows that EF̂ π
t = EF π

t . Next, since ∂U is a linear
operator, we conclude that E

[
∂U
(
F
)
· (F̂ π

T −F π
T )
]

= 0 for all F ∈D∆. We thus obtain the following
decomposition ∣∣∣E[U (F̂ π

T

)
−U

(
F π
T

)]∣∣∣≤E
∣∣∣U (F̂ π

T

)
−U

(
F π
T

)
− ∂U

(
F π
T

)
· (F̂ π

T −F π
T )︸ ︷︷ ︸

δ1

∣∣∣
+ E

∣∣∣(∂U (F π
T

)
− ∂U

(
F
))
· (F̂ π

t −F π
T )︸ ︷︷ ︸

δ2

∣∣∣,
To bound E|δ1| we use smoothness to get that

E|δ1| ≤
1

2
βE
[
‖F̂ π

T −F π
T ‖

2
]
,

and using the tail sum formula together with the tail bound in Lemma 2 bounds E|δ1|.
Finally, to bound E|δ2| we first use the Cauchy–Schwarz inequality together with smoothness to

get that

E|δ2| ≤E
[
‖∂U

(
F π
T

)
− ∂U

(
Fγ
)
‖‖F̂ π

T −F π
T ‖
]
≤ βE

[
‖F π

T −F‖‖F̂ π
T −F π

T ‖
]
.

Now, for small deviations we have that

E
[
|δ2|1

{
‖F̂ π

T −F π
T ‖ ≤ JT

}]
≤ βJTE‖F π

T −F‖.

On the other hand, recalling that D is the diameter of D∆, we get that

E
[
|δ2|1

{
‖F̂ π

T −F π
T ‖>JT

}]
≤ βDE

[
‖F̂ π

T −F π
T ‖1

{
‖F̂ π

T −F π
T ‖>JT

}]
,

and using the tail sum formula together with Lemma 2, and summing the two inequalities bounds
E|δ2|, and concludes the proof. �
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4.5. Regret Bound In order to conclude our regret bounds, we require the following defini-
tion.

Definition 3 (Linear gap). We say U has a linear gap if there exists η > 0 such that

U
(
F
)
≤U

(
F (i∗)

)
− 1

η
‖F −F (i∗)‖ ,∀F ∈D∆.

This assumption will be seen to hold for our examples, in particular, the following result gives mild
sufficient conditions. See proof in Appendix E.

Proposition 2. Suppose U is convex over D∆ and ∆i > 0 for all i 6= i∗, then U has a linear gap
with η= ρ, where ρ is defined in (13).

Summarizing our observations thus far, the informal statement of our main findings is made
concrete by the following result.

Theorem 4 (U−UCB regret). Suppose an EDPM, U , is stable, smooth with M0 =∞, and has
a linear gap. Letting L= b(1 +Dq−1), the regret of running U −UCB is bounded as

RU−UCB(T )≤ Lρ

T

∑
i 6=i∗

(
α∆i logT

φ(∆i/2)
+
α+ 6

α− 2
∆i

)
+

12βK2 logKT

υT
,

for all T ≥ T1, which is polynomial in problem parameters.

For a detailed proof, which includes the exact dependence of T1 on the problem parameters, and
an additional low order term when M0 <∞, see Appendix E.

Proof (sketch). First, using Theorem 3 with F = F (i∗) and large enough T we get that

J1(T ) = E
[
U
(
F̂
π∗(T )
T

)
−U

(
F
π∗(T )
T

)]
≤ 4βK2 logKT

υT
+

1

η
E‖F π∗(T )

T −F (i∗)‖,

J3(T ) = E
[
U
(
FU−UCB
T

)
−U

(
F̂U−UCB
T

)]
≤ 6βK2 logKT

υT
,

where for J3(T ) we bounded the second term of Theorem 3 using the fact that Theorem 2 actually
bounds LE‖FU−UCB

T −F (i∗)‖. Second, using the linear gap assumption we get that

J2(T ) = E
[
U
(
F
π∗(T )
T

)
−U

(
F (i∗)

)]
≤−1

η
E‖F π∗(T )

T −F (i∗)‖.

Finally, recall that in (12) we decompose the regret as Rπ(T ) = R̄π(T ) + J1(T ) + J2(T ) + J3(T ).
Combining the above and using Theorem 2 to bound R̄U−UCB(T ) concludes the proof. �
Remark 1. Notice that even in the absence of the smoothness and linear gap assumptions, we
may still apply Proposition 1 to obtain a weaker regret bound in which the last two terms of
Theorem 4 are replaced by 8b

√
K2 logKT/υT . In Section 5 we will show that typical examples

satisfy Theorem 4, however, we also give two cases where this weaker bound is the best that can
be achieved within our framework.

Example: Average Reward We summarize our approach for the familiar bandit average
reward setting that, in our EDPM formulation, is given by U ave

(
F
)

=
∫
R xdF (x). Notice that

U ave is linear and so the regret decomposition in (12) becomes trivial, i.e., J1 = J2 = J3 = 0 and
Rπ(T ) = R̄π(T ). For simplicity, suppose that the rewards are constrained to the interval [0,1], and
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consider the seminorm ‖F‖ = |U ave
(
F
)
|. Notice that ∆i = ‖F (i∗)−F (i)‖, and thus ρ = 1. Using

Hoeffding’s inequality we get that U ave is stable with υ = 2, b= 1/2, q = 1, and thus L= 1. Since
U ave is linear, it is clearly smooth with β = 0 and M0 =∞. Plugging all parameters into Theorem 4
we recover the standard regret bound for average reward bandits

RU−UCB(T )≤ 1

T

∑
i 6=i∗

(
2α logT

∆i

+ ∆i

α+ 6

α− 2

)
. (16)

Discussion Our main result demonstrates that the EDPM formulation allows us to convert
difficult questions in learning under sequential performance criteria to, essentially, simple questions
in functional analysis. Roughly speaking, any quasiconvex function, U , that, for an appropriate
seminorm, is twice differentiable and grows at most polynomially, can be be accommodated by our
framework (at least for some arm distributions), i.e., may be learned efficiently. We note that our
results focused solely on the time horizon parameter T , and we suspect that the dependence on
the number of arms K can be improved. The main issue there is the squared dependence on K
in the tail bound of the empirical distribution (Lemma 2), and subsequently in the horizon gap
(Theorem 3). It is not clear whether this could be improved uniformly over all policies π ∈Π, or
whether this should be done only for near optimal policies. As a motivating example, it is clear that
a single arm policy has horizon gap that does not depend on K. As the optimal policy is close to
a single arm policy, we expect that its dependence on K should be weak, perhaps even sub-linear.
This would make the horizon gap a low order term compared to the pseudo regret and establish an
equivalence between the two notions of regret. We leave this as an open question for future work.
So far, we demonstrated how the standard average reward setting fits into our framework. In the
following section we use our framework to analyze various well-known performance measures from
the risk literature.

5. Illustrative Examples The purpose of this section is, first and foremost, to show the rela-
tive ease with which various performance criteria can be analyzed within the framework developed
in the previous sections. To make the exposition more accessible, we forego detailed introductions
of the various criteria as well as various other technical details. Our main focus is to show the use
of Theorem 4, after which we give some edge cases that demonstrate the subtleties and limitations
of our framework. We refer the interested reader to Appendix F for the complete details. We make
the following assumption throughout this section.

Assumption 1. The rewards are restricted to the interval [0,1], i.e., the support of F (i) is in [0,1]
for all i∈K.

This assumption is intended to simplify the exposition and can always be replaced by an appro-
priate “light tailed” condition.

5.1. Linear EDPMs We begin with with a few examples of linear EDPMs, which are essen-
tially standard stochastic multi-armed bandit settings with augmented arm distributions.

Average reward is the classic bandit performance criterion, which is given by U ave
(
F
)

=∫
R xdF (x). For a given reward sequence, it is explicitly stated as

U ave
(
F̂ π
T

)
=

1

T

T∑
t=1

Xπ,t.
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Squared reward is a less typical performance measure on its own but will serve us in what
follows. It is given by U sqr

(
F
)

=
∫
R x

2dF (x), and in terms of the reward sequence as

U sqr
(
F̂ π
T

)
=

1

T

T∑
t=1

(Xπ,t)
2.

Below Target Semi-Variance (TSV) measures the negative variation from a threshold
parameter r ∈R. The goal here is to minimize the variation and since our setting is expressed in
terms of maximization, we state its negation UTSV

(
F
)

=−
∫
R(x− r)21{x≤ r}dF (x). In terms of

the reward sequence this stated as

UTSV
(
F̂ π
T

)
=

1

T

T∑
t=1

(Xπ,t− r)21{Xπ,t ≤ r}.

The Analysis for all linear EDPMs follows in a similar fashion to the average reward demon-
strated in Section 4.5, with the only potential change being the value of υ. More formally, let U lin be
any linear EDPM. We define the seminorm ‖F‖= |U lin

(
F
)
|, which implies that ∆i = ‖F (i∗)−F (i)‖,

and consequently ρ= 1. Requirement 1 of stability clearly holds with b= 1/2, q= 1, and thus L= 1.
Recalling the empirical distribution and indicator functions from (4), Hoeffding’s inequality implies
Requirement 2 of stability holds with υ= 2/ϑlin where

ϑlin = max
x,y∈[0,1]

[
U lin

(
I[x,∞]

)
−U lin

(
I[y,∞]

)]2
,

is the squared length of the reward interval under U lin, which in the examples above is at most
1. Since U lin is linear, it is clearly smooth with β = 0 and M0 =∞. Plugging all parameters into
Theorem 4 we recover the standard bandit regret bound given in (16).

5.2. Composite EDPMs Moving on to more complex performance criteria, we consider
compositions of linear EDPMs. Such criteria are often used to state a trade-off between multiple
objectives. A partial list of widely used risk metrics which we consider here consists of: Entropic
Risk, Variance, Mean-Variance (Markowitz), Sharpe ratio, and Sortino ratio. Formally, we say an
EDPM Uh is composite if there exist linear EDPMs U (1), . . . ,U (n) and h :Rn→R such that

Uh
(
F
)

= h
(
U (1)

(
F
)
, . . . ,U (n)

(
F
))
.

Considering this class under the seminorm ‖F‖= ‖(U (1)
(
F
)
, . . . ,U (n)

(
F
)
)‖2, where ‖·‖2 is the `2

norm in Rn, the verification of our framework becomes easy, as seen in the following result.

Lemma 3 (Informal). Suppose U (1), . . . ,U (n) are linear, and stable, then:
1. If h admits a polynomial local modulus of continuity, then Uh is stable;
2. If h is locally smooth, then Uh is smooth;
3. If h is convex then so is Uh.

The formal statement along with its proof may be found in Section F.2. Verifying Lemma 3 is
typically very easy, often amounting to bounding the gradient and hessian of h, and yields all the
needed properties to invoke Theorem 4 and obtain an O(logT/T ) regret bound for U −UCB.

Entropic risk is a risk assessment measure that uses an exponential utility function with risk
aversion parameter θ > 0. It is given by

U ent
(
F
)

=−1

θ
log

(∫
R

exp(−θx)dF (x)

)
=−1

θ
log
(
U exp

(
F
))
,

where U exp
(
F
)

=
∫
R exp(−θx)dF (x) is a linear EDPM and thus U ent is composite with h

(
x
)

=
− 1
θ

logx, which is convex. Since the rewards are in [0,1], we can bound the derivatives of h to
conclude that it satisfies Lemma 8 with b= 1

2θ
exp(θ), q= 1, υ= 2, β = 1

θ
exp(2θ), and M0 =∞.
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Variance measures the empirical squared deviation from the mean reward. As we seek to
minimize this deviation, it is given by

Uvar
(
F
)

=−
[
U sqr

(
F
)
−
[
U ave

(
F
)]2]

,

and thus h
(
x1, x2

)
= x2

1 − x2, which is convex. It is then easy to verify that Lemma 8 holds with

b=
√

5, q= 2, υ= 1/2, β = 2, and M0 =∞.

Mean-variance (Markowitz) measures performance as an additive trade-off between the
empirical mean and variance. For ρ≥ 0 it is given by

UMV
(
F
)

=U ave
(
F
)

+ ρUvar
(
F
)
,

and thus h
(
x1, x2

)
= x+ ρ(x2

1 − x2), which is convex. A simple calculation shows that Lemma 8
holds with b= 2(1 + ρ), q= 2, υ= 1/2, β = 2ρ, and M0 =∞.

Sharpe ratio measures performance as a ratio between the empirical mean and variance. For
r ∈R and ε0 > 0 it is given by

USh
(
F
)

=
U ave

(
F
)
− r√

ε0−Uvar
(
F
) ,

and thus h
(
x1, x2

)
= (x1 − r)/

√
ε0−x2

1 +x2. The parameter r is essentially a threshold for the
average reward, while ε0 is a regularization parameter. Unlike the previous examples, where h was
convex, here it is only quasiconvex. While a quasiconvex function could potentially have no linear
gap, we show that Sharpe ratio has a linear gap with a slightly worse constant. The calculation is
technical and deferred to Appendix F.

Sortino ratio is Sharpe ratio with variance replaced by below target semi-variance. As such,
for r ∈R and ε0 > 0 it is given by

USo
(
F
)

=
U ave

(
F
)
− r√

ε0−UTSV
(
F
) ,

and thus h
(
x1, x2

)
= (x1 − r)/

√
ε0−x2. Similar to Sharpe ratio, here h is also quasiconvex. The

resulting analysis is thus similar, if perhaps a bit simpler, and we defer it to Appendix F.

5.3. Non-composite EDPMs We now consider two examples of non-composite criteria. The
first, CV aRα, is found to be smooth and stable under appropriate conditions. The second, V aRα,
is stable but appears to be non-smooth. In both cases the resulting conditions possess a more
particular nature than those presented for composite EDPMs.

Conditional Value at Risk (CVaRα) is the average reward below percentile level α∈ (0,1),
which is given by

UCV aRα
(
F
)

= max
z∈R

z− 1

α

∫ z

−∞
F (x)dx. (17)

We note that a more explicit expression can be obtained by plugging in the maximizer z∗ =
UV aRα

(
F
)
, which is the Value at Risk of F , defined in (20). Now, in order to invoke Theorem 4

we need to show that CV aRα is convex, stable and smooth.
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Convexity is immediate since the expression in (17) is a maximum over linear functions, which
is convex. For stability, we use the norm

‖F‖= max

{
‖F‖∞,

∣∣∣∫ 0

−∞
xdF (x)

∣∣∣, ∣∣∣∫ ∞
0

xdF (x)
∣∣∣}, (18)

where ‖F‖∞ = maxx∈R |F (x)| is the `∞ norm. The two additional terms may be foregone when the
rewards are constrained to [0,1]. The concentration of ‖F‖∞ follows from the Dvoretzky-Kiefer-
Wolfowitz inequality [19], while the other two follow from Hoeffding’s inequality. A further technical
calculation yields the desired modulus of continuity and thus stability is concluded with parameters
b = 4/αmin{α,1−α}, q = 2, υ = 2/3. Recalling Remark 1, we can now conclude that U − UCB
obtains regret O(

√
logT/T ) for any bounded reward distributions.

We would like to show that CV aRα is smooth and thus conclude the requirements for Theorem 4.
However, we find that even for bounded distributions, CV aRα may be non-smooth (see Figure 1).
To overcome this limitation, we require that the arm distributions have a positive density around
their α percentile. Formally, we require that there exist bα > 0,Mα ≥D such that

|F
(
UV aRα

(
F
)

+ bαy
)
−α| ≥ |y| ,∀F ∈D∆, y ∈ [−Mα,Mα], (19)

where UV aRα
(
F
)

is the Value at Risk of F , defined in (20). This condition is one of the subtleties
that arise from our framework. With it, we show that CV aRα is smooth with β = 2bα/α and
M0 =Mα and thus obtain the desired O(logT/T ) regret bound. Without it, we provide a numerical
experiment (see Figure 1), suggesting that the horizon gap truly behaves as Ω(

√
1/T ) as suggested

by our framework.

Value at Risk (VaRα) is the reward at percentile α∈ (0,1), which is given by

UV aRα
(
F
)

= inf
x∈R

{
x
∣∣ F (x)≥ α

}
. (20)

We show that V aRα is quasiconvex, however, as previously mentioned, we could not find any set
of conditions that ensure the smoothness of V aRα, and thus we cannot invoke Theorem 4. On a
positive note, we show that for distributions satisfying (19), stability holds under the semi-norm in
((18)) and with parameters b= max{bα, (Mα + 2)/min{α,1−α}Mα}, q = 1, υ = 2/3. We conclude
that O(

√
logT/T ) regret is obtainable by our framework (by means of Remark 1). We conjecture

that improved regret is possible for V aRα when the arm distributions are also twice differentiable,
but it is not clear whether this could be achieved through the smoothness condition.

Notice that the stability issues of V aRα are such that even Theorem 1 (single arm infinite
horizon oracle) is not satisfied without further assumptions on the arm distributions. Concretely,
denote the α level set of a function F ∈D by Lα(F ) = {x∈R

∣∣F (x) = α}, then Theorem 1 holds if
|Lα(α)| ≤ 1 for all F ∈D∆. Intuitively, this condition ensures that the arm distributions do not have
a flat region at their α percentile. If such a flat region exists, then arbitrarily small perturbations
to the distribution may change the percentile by a constant, thus causing the instability issue.
Interestingly, even in the presence of this instability, we have the following result.

Proposition 3 (VaRα oracle policy). For α∈ (0,1), V aRα always admits a simple oracle policy
π∗(∞), i.e., choosing a single arm throughout the horizon is asymptotically optimal.

5.4. A numerical illustration of an edge case When considering the existence of simple
oracle policies, Proposition 3 essentially means that stability, while a sufficient condition, is not
necessary. However, for the purpose of regret analysis, we highlight the importance of stability by
means of a simulation. Note that Theorem 4 relies on a suitably fast diminishing horizon gap (see
J1(T ), J3(T ) in (12)). We calculate this gap in a simple simulation with K = 1 arms. This is done
for three different distributions, each not satisfying a different subset of the previously discussed
conditions for stability and or smoothness. Figure 1 displays the simulation results, which show
that the obtained rate is slower than the desired logT

T
which is achieved in Theorem 3.
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Figure 1. V aRα and CV aRα horizon gap for “bad” distributions. (F1) has |L0.5(F )| > 1 and has no density to
the right of the percentile; (F2) has no density around percentile α= 0.5; and (F3) is not differentiable. The figures
essentially show that limT→∞ J1(T )/f(T ) = c > 0 thus claiming that J1(T ) behaves as f(T ), which is slower than the
desired O( logT

T
).

6. Open Problems and Future Directions One main question that we leave open is the
dependence of the regret on the number of arms K. We conjecture that a finer analysis of the
horizon gap may reduce it from our K2 logK to either K or K logK. The subject of lower bounds
remains open as well. Future directions may include a more complete taxonomy of performance
criteria, or an extension of this framework to different settings (e.g., adversarial or contextual).
Additionally, we note that the majority of our proof techniques also apply to non-quasiconvex
criteria. If such criteria are found to be of interest then extending the framework to this case may
be appealing.

A future direction of great interest is to consider a Markov decision model for the dynamics. The
same criteria of interest are still relevant, but now it is unclear whether a simple (Markov) policy
could approximate the oracle and if so, at what rate.
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Appendix A: EDPMs as Permutation Invariant Performance Measures The follow-
ing continues the discussion in Section 2 on the motivation behind EDPMs and their relation to
permutation invariant performance measures. Let

{
Ũt
}∞
t=1

, where Ũt : Rt→ R is a function that
measures the quality of a given reward sequence of length t. A decision maker may then wish to
maximize the expected performance, i.e., EŨt(Xπ,1, . . . ,Xπ,t). It makes sense that the preferences
of the decision maker remain fixed over time. This means Ũt (t ≥ 1) should, in some sense, be
time invariant. However, such an invariance is hard to grasp when the functions Ũt do not share
a domain. One way of addressing this issue is to assume that Ũt is permutation invariant, i.e., it
maps all the permutations of its reward sequence to the same value. We provide a formal definition
in the proof of the following (known) result.
Lemma 4 (Permutation invariant function representation). Ũt is permutation invariant if and

only if, there exists Ut : D → R such that, Ũt(x1, . . . , xt) = Ut

(
F̂t(x1, . . . , xt)

)
, where F̂t(·) is the

empirical distribution mapping defined in (4).
The representation given in Lemma 4 suggests D as a shared domain thus making it simple

to define time invariance. We conclude that EDPMs describe the objectives that are time and
permutation invariant.
Proof of Lemma 4. We start with a few definitions. Let Σt denote the set of t × t permuta-
tion matrices (binary and doubly stochastic). Ũt is said to be permutation invariant if Ũt(σx1:t) =
Ũt(x1:t) for all x1:t ∈Rt and σ ∈Σt. Let, D̂t =

{
F̂t(x1:t)

∣∣ x1:t ∈Rt
}

, be the set of empirical distribu-

tions created from t elements (the image of F̂t). Let,

F̂−1
t

(
F̂
)

=
{
x1:t ∈Rt

∣∣∣ F̂t(x1:t) = F̂
}
,

be the inverse image of F̂t at F̂ ∈ D̂t. Let,

Σ(x1:t) =
{
σx1:t

∣∣∣ σ ∈Σt

}
,

be the set of all permutations of x1:t. We can now begin the proof.

First direction: Suppose Ũt(x1, . . . , xt) = Ut

(
F̂t(x1, . . . , xt)

)
. Notice that F̂t is indeed permu-

tation invariant as permuting its input simply reorders its finite sum thus not changing the value.
This clearly implies that Ũt is permutation invariant.

Second direction: Suppose that Ũt is permutation invariant. Furthermore, assume that for any

x1:t ∈Rt, we have that, F̂−1
t

(
F̂t(x1:t))

)
= Σ(x1:t). Then, define g : D̂t→Rt in the following way. For

any F̂ ∈ D̂t choose arbitrarily g
(
F̂
)
∈ F̂−1

n (F̂ )). Further define Ut :D→R by,

Ut(F ) =

{
Ũt(g(F )) F ∈ D̂t
0 otherwise.

Then we have that, g
(
F̂t(x1:t)

)
∈ F̂−1

t

(
F̂t(x1:t)

)
= Σ(x1:t), and thus there exists σg(x) ∈ Σt, such

that g
(
F̂t(x1:t)

)
= σg(x)x1:t. We conclude that,

Ut

(
F̂t(x1:t)

)
= Ũt

(
g(F̂t(x1:t))

)
= Ũt

(
σg(x)x1:t

)
= Ũt(x1:t),

where the last step uses the permutation invariance of Ũt.

Proof of assumption: We show that for any x1:t ∈Rt, we have that, F̂−1
t

(
F̂t(x1:t)

)
= Σ(x1:t)

thus concluding the proof. Let y1:t ∈ Σ(x1:t) then there exists σ ∈ Σt such that y1:t = σx1:t. Since
F̂t is permutation invariant then,

F̂t(y1:t) = F̂t(σx1:t) = F̂t(x1:t) =⇒ y1:t ∈ F̂−1
t

(
F̂t(x1:t)

)
,
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and so Σ(x1:t) ⊆ F̂−1
t

(
F̂t(x1:t)

)
. On the other hand, let y1:t ∈ F̂−1

t

(
F̂t(x1:t)

)
, then we have that,

F̂t(y1:t) = F̂t(x1:t). Take σ∗x, σ
∗
y ∈ Σt such that, x∗1:t = σ∗xx1:t, y

∗
1:t = σ∗yy1:t are sorted in ascending

order. Suppose in contradiction that x∗1:t 6= y∗1:t and let,

s0 = min
{
s∈ {1, . . . , t}

∣∣∣ x∗s0 6= y∗s0

}
be the first index where x∗1:t and y∗1:t differ. Without loss of generality assume that x∗s0 < y

∗
s0

, then
we have that,

F̂t(y
∗
1:t)(x

∗
s0

) =
1

t

t∑
s=1

I[y∗s ,∞]

(
x∗s0
)

=
1

t

s0−1∑
s=1

I[y∗s ,∞]

(
x∗s0
)

=
1

t

s0−1∑
s=1

I[x∗s ,∞]

(
x∗s0
)
< F̂t(x

∗
1:t)
(
x∗s0
)
,

where the strict inequality follows since I[x∗s0 ,∞]

(
x∗s0
)

= 1, and if s0 = 1, then the empty sum is in

fact zero. This contradicts F̂t(y1:t) = F̂t(x1:t) and so, x∗1:t = y∗1:t. Since, permutation matrices are
invertible then, y1:t = σ∗y

−1σ∗xx1:t. It is well known that σ∗y
−1σ∗x is always a permutation matrix. So,

y1:t ∈Σ(x1:t) and we conclude that F̂−1
t

(
F̂t(x1:t)

)
= Σ(x1:t), as desired. �

Appendix B: Proofs of Section 4.1 Denote the fraction of time at which arm i was pulled
by

p̂i(T ) =
τi(T )

T
, (21)

where τi(T ) is defined in (2). Recall the definitions of F̂ π
T and F̂

(i)
T given in (5) and (6). The following

Lemma is the main argument of the proof of Theorem 1.
Lemma 5 (F̂ π

T sub-convergence). Suppose limt→∞‖F̂ (i)
t −F (i)‖= 0 almost surely for all i∈K. Let

p= (p1, . . . , pK)∈∆ and {tl}∞l=1 be a random vector and subsequence. If

lim
l→∞
‖p̂(tl)− p‖= 0 Almost Surely,

Then

lim
l→∞
‖F̂ π

tl
−Fp‖= 0 Almost Surely,

where Fp is defined in (9).
Proof. We rearrange the expression of F̂ π

T such that the sum is over actions and instead of time:

F̂ π
T =

1

T

T∑
t=1

I[Xπ,t,∞] =
K∑
i=1

τi(T )

T

[
1

τi(T )

τi(T )∑
t=1

I[Xπ,t,∞]

]
=

K∑
i=1

p̂i(T )F̂
(i)

τi(T ).

Then we have that

‖F̂ π
tl
−Fp‖= ‖

K∑
i=1

p̂i(tl)F̂
(i)

τi(tl)
− piF (i)‖

= ‖

[
K∑
i=1

p̂i(tl)F̂
(i)

τi(tl)
− p̂i(tl)F (i)

]
+

[
K∑
i=1

p̂i(tl)F
(i)− piF (i)

]
‖

≤ ‖
K∑
i=1

p̂i(tl)
(
F̂

(i)

τi(tl)
−F (i)

)
‖+ ‖

K∑
i=1

F (i)(p̂i(tl)− pi)‖
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≤
K∑
i=1

p̂i(tl)‖F̂ (i)

τi(tl)
−F (i)‖+

K∑
i=1

‖F (i)‖|p̂i(tl)− pi|

≤
K∑
i=1

p̂i(tl)‖F̂ (i)

τi(tl)
−F (i)‖︸ ︷︷ ︸

(∗)

+K max
1≤i≤K

‖F (i)‖‖p̂(tl)− p‖∞︸ ︷︷ ︸
(∗∗)→0

.

The first and second inequalities follows by the triangle inequality and homogeneity of norms. The
third follows by Hölder’s inequality. By the Lemma’s assumption (∗∗)→ 0. We show that the same
holds for (*). It is enough to show the convergence of the summands in order to conclude the
overall convergence of this finite sum. By the Lemma’s assumption we have that

lim
l→∞
‖F̂ (i)

τi(tl)
−F (i)‖=

{
0 , liml→∞ τi(tl) =∞
‖F̂ (i)

τ −F (i)‖ , liml→∞ τi(tl) = τ <∞
Almost Surely,

where we used the fact that τi(t) is non-decreasing and thus always converges. Now since both
parts of (*) converge then we have that,

lim
l→∞

p̂i(tl)‖F̂ (i)

τi(tl)
−F (i)‖= lim

l→∞
p̂i(tl) lim

l→∞
‖F̂ (i)

τi(tl)
−F (i)‖

=

{
0 , liml→∞ τi(tl) =∞
pi‖F̂ (i)

τ −F (i)‖ , liml→∞ τi(tl) = τ <∞
Almost Surely.

Noticing that

lim
l→∞

τi(tl) = τ <∞ =⇒ pi = lim
l→∞

p̂i(tl) = lim
l→∞

τi(tl)

tl
= 0,

the proof is concluded. �
Proof of Theorem 1. The remainder of the proof consists of applying Lemma 5. We begin by
proving EUπp =U

(
Fp
)
. Let p∈∆ define the simple policy πp. Using the strong law of large numbers

([22]) on each coordinate of p̂(t), we conclude that

lim
t→∞
‖p̂(t)− p‖∞ = 0 Almost Surely.

Applying Lemma 5 we get that

lim
t→∞
‖F̂ πp

t −Fp‖= 0 Almost Surely.

Since U is assumed to be continuous, we have that,

Uπp = lim inf
t→∞

U
(
F̂ πp

t

) a.s
= lim

l→∞
U
(
F̂ πp

tl

) a.s
= U

(
Fp
)
,

where {tl}∞l=1 is the (random) subsequence that achieves the limit inferior. Taking expectation,
we conclude that EUπp = U

(
Fp
)
. Now since ∆ is compact and U

(
Fp
)

is continuous, then by the
Weierstrass theorem we have that there exists p∗ ∈∆ such that,

U
(
Fp∗
)

= max
p∈∆

U
(
Fp
)
. (22)

We now show that πp
∗

is optimal thus concluding the first part of the proof. Let {tm}∞m=1 be a
(random) subsequence satisfying the limit inferior. The we have that

Uπ = lim inf
t→∞

U
(
F̂ π
t

) a.s
= lim

m→∞
U
(
F̂ π
tm

)
= (∗∗).



Cassel et al.: MAB Beyond Cumulative Objective
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuccript number!) 21

Noticing again that ∆ is compact, we have that for any policy π ∈ Π, there exist p ∈ ∆ and
{tl}∞l=1 ⊆ {tm}

∞
m=1 (both random) satisfying liml→∞‖p̂(tl)− p‖∞ = 0 almost surely. Using Lemma 5,

(22), and the continuity of U we get,

(∗∗) a.s= lim
l→∞

U
(
F̂ π
tl

) a.s
= U

(
Fp
)
≤U

(
Fp∗
)

= EUπp∗ ,

and taking expectation we have EUπ ≤EUπp∗ for all π ∈Π, i.e., πp
∗

= π∗(∞).
Moving on to the second part of the Theorem, notice that ∆ is convex, compact and its set of

extreme points is also compact (discrete). So, returning to (22) and using the quasiconvexity of
U , we notice that a maximizer is attained at an extreme point of ∆. Formally, there exists i∗ ∈K
such that

U
(
Fei∗

)
= max

p∈∆
U
(
Fp
)
,

where {ei}Ki=1 are the standard unit vectors in RK . Continuing as before we conclude that πei∗ =
π∗(∞) as desired. �

Appendix C: Proofs of Section 4.3
Proof of Lemma 1. We begin by proving the Lipschitz property. Using the local modulus of
continuity assumed by stability we get that for any F1,F2 ∈D∆

|U
(
F1

)
−U

(
F2

)
| ≤ b(‖F1−F2‖+ ‖F1−F2‖q)
= b
(

1 + ‖F1−F2‖q−1
)
‖F1−F2‖

≤ b
(
1 +Dq−1

)
‖F1−F2‖

=L‖F1−F2‖,

as desired. Next, we show the pseudo regret decomposition. Using quasiconvexity as in the second
part of Theorem 1, there exists i∗ ∈K such that Fp∗ = F (i∗). Using the Lipschitz constant L, and
the triangle inequality we thus have that,

R̄π(T ) = E
[
U
(
F (i∗)

)
−U

(
F π
T

)]
≤LE‖F (i∗)−F π

T ‖

=LE‖ 1

T

K∑
i=1

τi(T )
(
F (i∗)−F (i)

)
‖

≤ L

T
E

[
K∑
i=1

τi(T )‖F (i∗)−F (i)‖

]
≤ Lρ

T

∑
i6=i∗

∆iEτi(T ).

�
Proof of Theorem 2. We begin with the following concentration result due to Requirement 2 of
stability.

P
(
|U
(
F̂

(i)
t

)
−U

(
F (i)

)
| ≥ x

)
≤ P
(
b
(
‖F̂ (i)

t −F (i)‖+ ‖F̂ (i)
t −F (i)‖q

)
≥ x
)

≤ P
(
‖F̂ (i)

t −F (i)‖ ≥ x

2b

)
+P
(
‖F̂ (i)

t −F (i)‖ ≥
( x

2b

)1/q
)

≤ 2exp

(
−υt

( x
2b

)2
)

+ 2exp

(
−υt

( x
2b

)2/q
)

≤ 4exp(−tφ(x)).

(23)
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Now, for all i∈K and 1≤ t≤ T denote the events

V t
i =

{
U
(
F̂

(i)

τi(t−1)

)
>U

(
F (i)

)
+φ−1

(
α log t

τi(t− 1)

)}
,

V t
∗ =

{
U
(
F̂

(i∗)
τi∗ (t−1)

)
+φ−1

(
α log t

τi∗(t− 1)

)
≤U

(
F (i∗)

)}
,

and their complements by V t
i , V t

∗ respectively. Using the union bound and (23) we have that

P(V t
i ) = P

(
U
(
F̂

(i)

τi(t−1)

)
−φ−1

(
α log t

τi(t− 1)

)
>U

(
F (i)

))
≤ P
(

max
1≤s≤t

{
U
(
F̂ (i)
s

)
−φ−1

(
α log t

s

)}
>U

(
F (i)

))
≤

t∑
s=1

P
(
U
(
F̂ (i)
s

)
−φ−1

(
α log t

s

)
>U

(
F (i)

))
≤

t∑
s=1

P
(
|U
(
F̂ (i)
s

)
−U

(
F (i)

)
| ≥ φ−1

(
α log t

s

))
≤

t∑
s=1

4exp

(
−sφ

(
φ−1

(
α log t

s

)))
≤

t∑
s=1

4

tα
=

4

tα−1
.

The same holds for P(V t
∗ ), and so we obtain

P(V t
i ∪V t

∗ )≤ P(V t
i ) +P(V t

∗ )≤ 8

tα−1
. (24)

Next, we denote u= α logT
φ(∆i/2)

, and show that{
πU−UCBt = i

}
∩{τi(t− 1)≥ u} ⊆ V t

i ∪V t
∗ . (25)

Indeed, assume in contradiction that
{
πU−UCBt = i

}
∩ {τi(t− 1)≥ u} ∩ V t

i ∩ V t
∗ 6= ∅, then noticing

that {τi(t− 1)≥ u} implies
{

∆i ≥ 2φ−1
(
α log t
τi(t−1)

)}
we have:

U
(
F̂

(i∗)
τi∗ (t−1)

)
+φ−1

(
α log t

τi∗(t− 1)

)
>U

(
F (i∗)

)
=U

(
F (i)

)
+ ∆i

≥U
(
F (i)

)
+ 2φ−1

(
α log t

τi(t− 1)

)
≥U

(
F̂

(i)

τi(t−1)

)
+φ−1

(
α log t

τi(t− 1)

)
,

which implies that πU−UCBT 6= i, thus contradicting our assumption. Finally, denoting

t0 = max
1≤t≤T

{
t
∣∣∣ τi(t− 1)≤max{u,1}

}
,

and using (24) and (25) we have that

Eτi(T ) = E

[
T∑
t=1

1
{
πU−UCBt = i

}]
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= E

[
t0∑
t=1

1
{
πU−UCBt = i

}
+

T∑
t=t0+1

1
{
πU−UCBt = i

}]

= E

[
τi(t0) +

T∑
t=t0+1

1
{
πU−UCBt = i

⋂
τi(t− 1)≥ u

}]

≤E

[
u+ 1 +

T∑
t=K+1

1
{
πU−UCBt = i

⋂
τi(t− 1)≥ u

}]

= u+ 1 +
T∑

t=K+1

P
(
πU−UCBt = i

⋂
τi(t− 1)≥ u

)
≤ u+ 1 +

T∑
t=K+1

P(V t
i ∪V t

∗ )

≤ u+ 1 +
T∑

t=K+1

8

tα−1
≤ u+ 1 +

∫ ∞
K

8

tα−1
dt≤ u+ 1 +

8

(α− 2)Kα−2
≤ u+

α+ 6

α− 2
.

Combining this with the expression for the pseudo regret given in Lemma 1 we obtain the desired.
�

Appendix D: Proofs of Section 4.4 We first need the following technical lemma whose
proof may be found in Section D.1.
Lemma 6. Suppose that Requirement 2 of stability holds. Then for any integer d≥ 1, policy π ∈Π,
and K,T such that logKT ≥ 3, we have that:

1. E‖F̂ π
T −F π

T ‖
d ≤ [1 + dm!]

(
K2 logKT

υT

)d/2
, where m=

⌈
d
2
− 1
⌉
;

2. E‖F̂ π
T −F π

T ‖
d ≤ 2

(
K2 logKT

υT

)1/2

for all T ≥ 4dK2 logKT
υ

;

3. E
[
‖F̂ π

T −F π
T ‖

d
1
{
‖F̂ π

T −F π
T ‖>M

}]
≤ 1

T2 for all T ≥ 4dK2 logKT
υ

,M 2 ≥ 4dK2 logKT
υT

;

Proof of Proposition 1. We use Requirement 1 of stability together with the second part of
Lemma 6 to get that∣∣∣E[U (F̂ π

T

)
−U

(
F π
T

)]∣∣∣≤E|U
(
F̂ π
T

)
−U

(
F π
T

)
|

≤ b
[
E‖F̂ π

T −F π
T ‖+ E‖F̂ π

T −F π
T ‖

q
]

≤ 4b

(
K2 logKT

υT

)1/2

.

�
Proof of Theorem 3. First, notice that EF̂ π

T = EF π
T for any π ∈Π. This is easily seen as,

EF̂ π
T = E

[
1

T

T∑
t=1

I[Xπ,t,∞]

]
= E

[
1

T

T∑
t=1

E
[
I[Xπ,t,∞]

∣∣πt]
]

= E

[
1

T

T∑
t=1

F (πt)

]
= EF π

T .

Since ∂U is a linear operator, we conclude that

E
[
∂U
(
F
)
· (F̂ π

T −F π
T )
]

= 0, ∀F ∈D∆.

With this in mind, we have the following decomposition∣∣∣E[U (F̂ π
T

)
−U

(
F π
T

)]∣∣∣≤E
∣∣∣U (F̂ π

T

)
−U

(
F π
T

)
− ∂U

(
F π
T

)
· (F̂ π

T −F π
T )︸ ︷︷ ︸

δ1

∣∣∣
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+ E
∣∣∣(∂U (F π

T

)
− ∂U

(
Fγ
))
· (F̂ π

t −F π
T )︸ ︷︷ ︸

δ2

∣∣∣,
We bound E|δ1|,E|δ2| to conclude the proof. For E|δ1|, recalling the parameter M0 in Definition 2
(smoothness), we use smoothness together with the first part of Lemma 6 to get that

E
[
|δ1|1

{
‖F̂ π

T −F π
T ‖ ≤M0

}]
≤ 1

2
βE
[
‖F̂ π

T −F π
T ‖

2
]
≤ 3βK2 logKT

2υT
.

Next, we use stability (modulus of continuity) together with part 3 of Lemma 6, which holds due
to our assumption on M0, to get that

E
[
|δ1|1

{
‖F̂ π

T −F π
T ‖>M0

}]
≤E

[
1
{
‖F̂ π

T −F π
T ‖>M0

}(
ω
(
‖F̂ π

T −F π
T ‖
)

+ 2b‖F̂ π
T −F π

T ‖
)]

= bE
[
1
{
‖F̂ π

T −F π
T ‖>M0

}(
‖F̂ π

T −F π
T ‖

q
+ 3‖F̂ π

T −F π
T ‖
)]

≤ 4b1{M0 <∞}
T 2

,

where the first step also used the modulus of continuity to bound the Gateaux derivative of U .
Summing the two inequalities bounds E|δ1|.

Finally, to bound E|δ2| we first use the Cauchy–Schwarz inequality together with smoothness
(Definition 2) to get that

E|δ2| ≤E
[
‖∂U

(
F π
T

)
− ∂U

(
Fγ
)
‖‖F̂ π

T −F π
T ‖
]
≤ βE

[
‖F π

T −Fγ‖‖F̂ π
T −F π

T ‖
]
.

Next, let J2
T = 4K2 logKT

υT
and use the assumption on Fγ to get that

E
[
|δ2|1

{
‖F̂ π

T −F π
T ‖ ≤ JT

}]
≤ βJTE‖F π

T −F‖ ≤
2γβK2 logKT

υT
.

On the other hand, recalling that D is the diameter of D∆, we use part 3 of Lemma 6 to get that

E
[
|δ2|1

{
‖F̂ π

T −F π
T ‖>JT

}]
≤ βDE

[
‖F̂ π

T −F π
T ‖1

{
‖F̂ π

T −F π
T ‖>JT

}]
≤ βD

T 2
.

Summing the two inequalities bounds E|δ2|, and concludes the proof. �

D.1. Technical Side Lemmas
Proof of Lemma 2. We start by using the triangle inequality and the union bound to get,

P
(
‖F̂ π

T −F π
T ‖>x

)
= P

(
‖ 1

T

K∑
i=1

τi(T )
(
F̂

(i)

τi(T )−F
(i)
)
‖>x

)

≤ P

(
1

T

K∑
i=1

τi(T )‖F̂ (i)

τi(T )−F
(i)‖>x

)

≤
K∑
i=1

P
(
τi(T )‖F̂ (i)

τi(T )−F
(i)‖> T

K
x

)
.

Now notice that 0≤ τi(T )≤ T . So we have that,

τi(T )‖F̂ (i)

τi(T )−F
(i)‖ ≤ max

1≤s≤T
s‖F̂ (i)

s −F (i)‖,
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where the case of τi(T ) = s= 0 is dropped as it is clearly not the maximizer. Using this expression
together with the union bound we get that,

P
(
‖F̂ π

T −F π
T ‖>x

)
≤

K∑
i=1

P
(

max
1≤s≤T

s‖F̂ (i)
s −F (i)‖> T

K
x

)
≤

K∑
i=1

T∑
s=1

P
(
‖F̂ (i)

s −F (i)‖> Tx

sK

)
.

Applying Requirement 2 of stability (concentration), we have that

P
(
‖F̂ π

T −F π
T ‖>x

)
≤

K∑
i=1

T∑
s=1

2exp

(
−υs

(
Tx

sK

)2
)

= 2K
T∑
s=1

exp

(
−υT

2x2

sK2

)
≤ 2KT exp

(
−υTx

2

K2

)
,

where in the last step we use the fact that s= T maximizes the summands. �
Proof of Lemma 6. For the first claim, recall that m=

⌈
d
2
− 1
⌉
, and let x0 ≥ 0 be a constant to

be determined later. We begin by using the tail sum formula and exchanging variables to get that

E‖F̂ π
T −F π

T ‖
d

=

∫ ∞
0

P
(
‖F̂ π

T −F π
T ‖

d
>x
)
dx

≤ xd0 +

∫ ∞
xd0

P
(
‖F̂ π

T −F π
T ‖

d
>x
)
dx

= xd0 + dxd0

∫ ∞
1

xd−1P
(
‖F̂ π

T −F π
T ‖>x0x

)
dx (x= (x0x

′)d)

≤ xd0
[
1 + d

∫ ∞
1

x2m+1P
(
‖F̂ π

T −F π
T ‖>x0x

)
dx

]
,

where the last transition used the fact that 2m+1≥ d−1. Next, we use the tail bound in Lemma 2
to get that

E‖F̂ π
T −F π

T ‖
d ≤ xd0

[
1 + 2dKT

∫ ∞
1

x2m+1 exp

(
−υTx

2
0x

2

K2

)
dx.

]
Now, choose x2

0 = K2 logKT
υT

, and using Lemma 7 with a= logKT ≥ 3 to solve this known integral,
we get that

E‖F̂ π
T −F π

T ‖
d ≤ [1 + dm!]

(
K2 logKT

υT

)d/2
.

This holds for all π ∈Π thus concluding the proof of the first claim.
Next, we prove the second claim by showing that, under the assumption on T , the first claim

may be bounded by the desired term. To see this notice that

[1 + dm!]

2

(
K2 logKT

υT

) d−1
2

≤ dd/2
(
K2 logKT

υT

) d−1
2

≤ d1/2

4(d−1)/2
(T ≥ 4dK2 logKT

υ
)

= exp

(
1

2
logd− d− 1

2
log 4

)
≤ exp

(
d− 1

2
− d− 1

2
log 4

)
≤ 1. (logx≤ x− 1)
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Changing sides gives the desired bound, and concludes the proof of the second claim.
Finally, for the third claim, we begin by repeating the first steps of the first claim to get that

E
[
1
{
‖F̂ π

T −F π
T ‖>M

}
‖F̂ π

T −F π
T ‖

d
]
≤E

[
1
{
‖F̂ π

T −F π
T ‖>x1

}
‖F̂ π

T −F π
T ‖

d
]

≤ 2dxd1KT

∫ ∞
1

x2m+1 exp

(
−υTx

2
1x

2

K2

)
dx,

where we choose x2
1 = 4dK2 logKT

υT
≤M. Notice that our choice of T ensures that x1 ≤ 1 and thus

applying Lemma 7 with a= 4d logKT ≥ 3, we get that

E
[
1
{
‖F̂ π

T −F π
T ‖>M

}
‖F̂ π

T −F π
T ‖

d
]
≤ dm!

(KT )4d−1
≤ 1

T 2
,

where the last step also used the fact that T ≥ d. �
Lemma 7. For any real a> 0 and integer m≥ 0 we have that∫ ∞

1

x2m+1 exp (−ax2)dx=
exp(−a)

2am+1

m∑
j=0

m!

j!
aj.

If a≥ 3 then we also have that∫ ∞
1

x2m+1 exp (−ax2)dx≤m! exp (−a)/2.

Proof. Denote f(m) =
∫∞

1
x2m+1 exp (−ax2)dx, and use integration by parts to get that

f(m) =
m

a
f(m− 1) +

exp(−a)

2a
.

Now, plugging m= 0 we get that f(0) = exp (−a)

2a
. Finally, it is trivial to verify that the suggested

solution satisfies the difference equation as well as the initial condition, thus concluding the first
part of the proof. For the second part we use the assumption on a≥ 3 to upper bound the expression
as

f(m)≤ m! exp (−a)

2a

m∑
j=0

1

j!
≤ m!e exp (−a)

2a
≤ m! exp (−a)

2

�

Appendix E: Proofs of Section 4.5
Proof of Proposition 2. Recall that for any F ∈D∆ there exists p∈∆ such that F =

∑K

i=1 piF
(i).

Now, we use convexity to conclude that

U
( K∑
i=1

piF
(i)
)
−U

(
F (i∗)

)
≤

K∑
i=1

pi

(
U
(
F (i)

)
−U

(
F (i∗)

))
=−

K∑
i=1

pi∆i ≤−
1

ρ

K∑
i=1

pi‖F (i)−F (i∗)‖=−1

ρ
‖F −F (i∗)‖,

where ρ, which is defined in (13), is finite since ∆i > 0 for all i 6= i∗. �
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Proof of Theorem 4. We begin by stating the explicit condition on the time horizon T . Letting

J2
T = 4K2 logKT

υT
, we require that T is large enough such that

ρ

T

∑
i 6=i∗

(
α∆i logT

φ(∆i/2)
+
α+ 6

α− 2
∆i

)
≤ JT ≤min

{
1
√
q
,
M0√
q
,

1

ηβ

}
, (26)

which is indeed polynomial in the problem parameters. The first two terms in the minimum are
the basic requirements of Theorem 3, and the third term was chosen such that applying Theorem 3
with F = F (i∗), we get that

J1(T ) = E
[
U
(
F̂
π∗(T )
T

)
−U

(
F
π∗(T )
T

)]
≤ 2βK2 logKT

υT
+

1

η
E‖F π∗(T )

T −F (i∗)‖+
βD+ 4b1{M0 <∞}

T 2
.

Next, notice that the first step in the decomposition of the pseudo regret, which is given in Lemma 1,
is R̄π(T )≤ LE‖FU−UCB

T −F (i∗)‖, and thus the bound in Theorem 2 together with the left hand
side of (26) imply that E‖FU−UCB

T −F (i∗)‖ ≤ JT . Applying Theorem 3 with F = F (i∗) we obtain
that

J3(T ) = E
[
U
(
FU−UCB
T

)
−U

(
F̂U−UCB
T

)]
≤ 6βK2 logKT

υT︸ ︷︷ ︸
3βJ2

T
/2

+
βD+ 4b1{M0 <∞}

T 2
.

Next, using the linear gap assumption we get that

J2(T ) = E
[
U
(
F
π∗(T )
T

)
−U

(
F (i∗)

)]
≤−1

η
E‖F π∗(T )

T −F (i∗)‖.

Finally, recall that in (12) we decompose the regret as Rπ(T ) = R̄π(T ) + J1(T ) + J2(T ) + J3(T ).
Combining the above and using Theorem 2 to bound R̄U−UCB(T ) concludes the proof. �
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Online Companion

Appendix F: Details of Section 5 In this section we provide the missing details from
Section 5. For the most part, our goal is to verify stability and smoothness, which are the conditions
for Theorem 4. We note that Theorem 1 will typically hold as long as |U

(
F (i)

)
|<∞. The exception

to this rule is V aRα, for which we will require an additional assumption for this to hold. However,
we also show that a single arm infinite horizon oracle always exists, even without this assumption.

In what follow we continue to operate under Assumption 1, which bounds the rewards. This is
mostly to make the exposition more concise, and we state explicitly the places where it is indeed
necessary.

F.1. Linear EDPMs We expand on the application of Hoeffding’s inequality for the stability
of linear EDPMs, and note that this could easily be replaced by a sub-Gaussian type assumption.
Recall that for a linear EDPM U lin, we use the seminorm ‖F‖= |U lin

(
F
)
|. We thus have that

‖F̂ (i)
t −F (i)‖= |U lin

(
F̂

(i)
t −F (i)

)
|=

∣∣∣∣∣1t
t∑

s=1

U lin
(
I[Xi,s,∞]

)
−U lin

(
F (i)

)∣∣∣∣∣,
where the last transition used the definition of the empirical distribution in (6), and the linearity
of U lin. Notice that the linearity of U lin also implies that U lin

(
F (i)

)
= EU lin

(
I[Xi,s,∞]

)
. We now have

a sum of zero mean i.i.d random variables that take values in an interval of squared length

ϑlin = max
x,y∈[0,1]

[
U lin

(
I[x,∞]

)
−U lin

(
I[y,∞]

)]2
,

and thus invoking Hoeffding’s inequality we get that U lin satisfies Requirement 2 of stability with
υ= 2/ϑlin.

F.2. Composite EDPMs Recall that an EDPM is composite if there exist U (1), . . .U (n) and
h :Rn→R such that

Uh
(
F
)

= h
(
U (1)

(
F
)
, . . . ,U (n)

(
F
))
.

For a set S ⊆D let

Uh
(
S
)

=
{(
U (1)

(
F
)
, . . . ,U (n)

(
F
))
∈Rn

∣∣∣ ∀F ∈ S}.
be its image under the linear mappings that compose Uh. Lemma 3 is made formal in the following
result.
Lemma 8 (Composite EDPM). Suppose U (1), . . . ,U (n) are linear, and stable with parameter υ0.
Then:

1. If h admits a polynomial local modulus of continuity, i.e., there exist b > 0, q≥ 1 such that

|h
(
x
)
−h
(
y
)
| ≤ b(‖x− y‖2 + ‖x− y‖q2) ,∀x∈Uh

(
D∆
)
, y ∈Uh

(
L‖·‖

)
,

then Uh is stable with the same b, q and υ= log 2
n log 2n

υ0;

2. If h is locally smooth, i.e., there exist β ≥ 0,M0 > 0 such that for any x∈Uh
(
D∆
)
, y ∈Uh

(
L‖·‖

)
satisfying ‖x− y‖2 ≤M0 we have that

|h
(
y
)
−h
(
x
)
−∇h

(
x
)T

(y−x)| ≤ β

2
‖x− y‖22,

then Uh is smooth with the same parameters;
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3. If h is convex then so is Uh.
Proof. Recall that we consider Uh under the norm

‖F‖= ‖U (1)
(
F
)
, . . . ,U (n)

(
F
)
‖2,

where ‖·‖2 is the `2 norm on Rn. Starting with Requirement 1 of stability, we use the modulus of
continuity assumption on h to get that for all F ∈D∆ and G∈L‖·‖
|Uh
(
F
)
−Uh

(
G
)
|= |h

(
U (1)

(
F
)
, . . . ,U (n)

(
F
))
−h
(
U (1)

(
G
)
, . . . ,U (n)

(
G
))
|

≤ b(‖U (1)
(
F −G

)
, . . . ,U (n)

(
F −G

)
‖2 + ‖U (1)

(
F −G

)
, . . . ,U (n)

(
F −G

)
‖q2)

= b(‖F −G‖+ ‖F −G‖q).

Next, for Requirement 2 we use the stability of the linear EDPMs to get that

P
(
‖F̂ (i)

t −F (i)‖>x
)

= P
(
‖U (1)

(
F̂

(i)
t −F (i)

)
, . . . ,U (n)

(
F̂

(i)
t −F (i)

)
‖2 >x

)
≤min

{
1,

n∑
j=1

P
(
|U (j)

(
F̂

(i)
t −F (i)

)
|> x√

n

)}
(union bound)

≤min

{
1,2n exp(−υ0tx

2

n
)

}
≤ 2exp(− log 2υ0

n log 2n
tx2),

thus concluding stability of Uh, which is the first claim.
Now, moving on to smoothness, we use to chain rule to get that for any F ∈D and G∈L‖·‖

∂U
(
F
)
·G= ∂h

(
U (1)

(
F
)
, . . . ,U (n)

(
F
))
·G=∇h

(
U (1)

(
F
)
, . . . ,U (n)

(
F
))T

(U (1)
(
G
)
, . . . ,U (n)

(
G
)
),

and applying the assumed smoothness of h we get that if ‖F −G‖ ≤M0 then

|Uh
(
G
)
−Uh

(
F
)
− ∂U

(
F
)
· (G−F )|

=
∣∣h(U (1)

(
G
)
, . . . ,U (n)

(
G
))
−h
(
U (1)

(
F
)
, . . . ,U (n)

(
F
))

−∇h
(
U (1)

(
F
)
, . . . ,U (n)

(
F
))T

(U (1)
(
G−F

)
, . . . ,U (n)

(
G−F

)
)
∣∣∣

≤ 1

2
β‖U (1)

(
G−F

)
, . . . ,U (n)

(
G−F

)
‖22

=
1

2
β‖F −G‖2,

thus concluding the smoothness of Uh, which is the second claim.
Finally, if h is convex the Uh is a linear variable on a convex function and as such convex. �

F.2.1. Entropic risk This is the only example where Assumption 1 is indeed necessary for
our framework. We note that this could be removed in the future by expanding our analysis to
an exponential family of moduli of continuity. Recall that in terms of Lemma 8, we have that
h(x) =− 1

θ
logx, which is convex, and x∈ [exp(−θ),1]. Bounding the first derivative, we get that

dh

dx
(x) =− 1

θx
=⇒

∣∣∣∣dhdx(x)

∣∣∣∣≤ 1

θ
exp(θ),

and thus h is Lipschitz with this constant and has a modulus of continuity with parameters b=
1
2θ

exp(θ), q = 1. Next, recalling the second order charachterization of smoothness, we bound the
second derivative, to get that

β ≤ max
x∈[exp(−θ),1]

∣∣∣∣d2h

dx2
(x)

∣∣∣∣= max
x∈[exp(−θ),1]

1

θx2
=

1

θ
exp(2θ),

thus proving the desired properties for Lemma 8.
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F.2.2. Variance Here h
(
x1, x2

)
= x2

1−x2, which is convex. Next, for the modulus of continuity
we have that

|h
(
x1, x2

)
−h
(
y1, y2

)
|= |(x1− y1)(x1 + y1) + (y2−x2)|
≤ (x1− y1)2 + |2x1(x1− y1) + (y2−x2)|
≤
√

1 + 4x2
1(‖x− y‖22 + ‖x− y‖2).

Since (x1, x2)∈Uh
(
D∆
)
, we can bound |x1| ≤maxi∈K|U ave

(
F (i)

)
|. Since the reward is also bounded

in [0,1] we further have that |x1| ≤ 1, giving us the constant b=
√

5. Finally, for smoothness we
may bound the hessian as,

β = max
x1,x2∈R

‖∇2h
(
x1, x2

)
‖=

∥∥∥∥(2 0
0 0

)∥∥∥∥= 2.

F.2.3. Mean-variance (Markowitz) Here we have that for ρ ≥ 0 h(x, y) = x+ ρ(x2 − y),
which is convex. Next, for the modulus of continuity we have that

|h
(
x1, x2

)
−h
(
y1, y2

)
|= |ρ(x1− y1)(x1 + y1) + ρ(y2−x2) + (x1− y1)|
≤ ρ(x1− y1)2 + |(2ρx1 + 1)(x1− y1) + (y2−x2)|
≤
√

1 + (2ρ|x1|+ 1)2(‖x− y‖22 + ‖x− y‖2).

Since (x1, x2)∈Uh
(
D∆
)
, we can bound |x1| ≤maxi∈K|U ave

(
F (i)

)
|. Since the reward is also bounded

in [0,1] we further have that |x1| ≤ 1, giving us the constant b= 2(1 + ρ). Finally, for smoothness
we may bound the hessian as,

β = max
x1,x2∈R

‖∇2h
(
x1, x2

)
‖=

∥∥∥∥(2ρ 0
0 0

)∥∥∥∥= 2ρ.

F.2.4. Sortino ratio Here we have that for r ∈R and ε0 > 0

h
(
x1, x2

)
= (x1− r)/

√
ε0−x2.

Linear gap: Let λ∈∆ and F =
∑K

i=1 λiF
(i). We need to show that

USo
(
F (i∗)

)
−USo

(
F
)
≥ 1

η
‖F (i∗)−F‖.

Denote xi =U ave
(
F (i)

)
, yi =UTSV

(
F (i)

)
, and zi =

√
ε0− yi . Notice that zi is concave in xi, yi and

so we have that √√√√ε0−
K∑
i=1

λiyi ≥
K∑
i=1

λizi.

We conclude that

USo
(
F (i∗)

)
−USo

(
F
)

= h
(
xi∗ , yi∗

)
−h
( K∑
i=1

λixi,
K∑
i=1

λiyi
)

≥ xi∗ − r
zi∗

−
∑K

i=1 λixi− r∑K

i=1 λizi

=

∑K

i=1 λi(zi(xi∗ − r)− zi∗(xi− r))
zi∗
∑K

j=1 λjzj

=
K∑
i=1

λi
zi∑K

j=1 λizi
(
xi∗ − r
zi∗

− xi− r
zi

)≥ zmin

zmax

K∑
i=1

λi∆i,
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where zmin = mini 6=i∗ zi and zmax = maxi∈K zi. Using the gap ratio defined in (13) we get a linear
gap with η= ρzmax/zmin.

Stability: For x∈USo
(
D∆
)

and y ∈USo
(
L‖·‖

)
we have that

|h
(
x1, x2

)
−h
(
y1, y2

)
|=
∣∣∣∣ x1− r√
ε0−x2

− y1− r√
ε0− y2

∣∣∣∣
≤
∣∣∣∣ x1− r√
ε0− y2

− y1− r√
ε0− y2

∣∣∣∣+ ∣∣∣∣ x1− r√
ε0−x2

− x1− r√
ε0− y2

∣∣∣∣
≤ |x1− y1|

ε0

+ |x1− r|
∣∣∣∣√ε0− y2−

√
ε0−x2√

ε0−x2

√
ε0− y2

∣∣∣∣
≤ |x1− y1|

ε0

+
|x1− r|
2ε

3/2
0

|y2−x2|

≤

√
1

ε2
0

+
(x1− r)2

4ε3
0

‖x− y‖2

≤ |x1− r|+ 2

2min{ε0, ε
3/2
0 }
‖x− y‖2.

Since (x1, x2)∈USo
(
D∆
)
, we can bound |x1| ≤maxi∈K|U ave

(
F (i)

)
|. Since the reward is also bounded

in [0,1] we further have that |x1| ≤ 1, giving us the constants b= (|r|+2)/4min{ε0, ε
3/2
0 } and q= 1.

Smoothness: First, we calculate the hessian to get that

∇2h
(
x1, x2

)
=

(
0 1

2(ε0−x2)3/2

1

2(ε0−x2)3/2
3(x1−r)

4(ε0−x2)5/2

)
.

Next, we upper bound its spectral norm to get that. Let w ∈R2 be such that ‖w‖2 ≤ 1. Then we
have that

|wT∇h
(
x1, x2

)
w|=

∣∣∣∣ w1w2

(ε0−x2)3/2
+w2

2

3(x1− r)
4(ε0−x2)5/2

∣∣∣∣
≤ 1

2(ε0−x2)3/2
+

3|x1− r|
4(ε0−x2)5/2

≤ 2ε0 + |x1− r|
4ε

5/2
0

Here we cannot take M0 =∞. However, for any M0 <∞ we can use the above bound to conclude
that the smoothness assumption of Lemma 8 holds with

β =
2ε0 +D+M0 + |r|

4ε
5/2
0

,

where under the assumption that the reward is in [0,1] we further have that D= 1.

F.2.5. Sharpe ratio Here we have that for r ∈R and ε0 > 0

h
(
x1, x2

)
= (x1− r)/

√
ε0−x2

1 +x2.

Linear gap: Let λ∈∆ and F =
∑K

i=1 λiF
(i). We need to show that

USh
(
F (i∗)

)
−USh

(
F
)
≥ 1

η
‖F (i∗)−F‖.



Cassel et al.: MAB Beyond Cumulative Objective
32 Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuccript number!)

Denote xi =U ave
(
F (i)

)
, yi =U sqr

(
F (i)

)
, and zi =

√
ε0−x2

i + yi . Notice that zi is concave in xi, yi
and so we have that √√√√ε0− (

K∑
i=1

λixi)
2

+
K∑
i=1

λiyi ≥
K∑
i=1

λizi.

We conclude that

USh
(
F (i∗)

)
−USh

(
F
)

= h
(
xi∗ , yi∗

)
−h
( K∑
i=1

λixi,
K∑
i=1

λiyi
)

≥ xi∗ − r
zi∗

−
∑K

i=1 λixi− r∑K

i=1 λizi

=

∑K

i=1 λi(zi(xi∗ − r)− zi∗(xi− r))
zi∗
∑K

j=1 λjzj

=
K∑
i=1

λi
zi∑K

j=1 λizi
(
xi∗ − r
zi∗

− xi− r
zi

)≥ zmin

zmax

K∑
i=1

λi∆i,

where zmin = mini 6=i∗ zi and zmax = maxi∈K zi. Using the gap ratio defined in (13) we get a linear
gap with η= ρzmax/zmin.

Stability: For x∈USh
(
D∆
)

and y ∈USh
(
L‖·‖

)
we have that

|h
(
x1, x2

)
−h
(
y1, y2

)
|=

∣∣∣∣∣ x1− r√
ε0−x2

1 +x2

− y1− r√
ε0− y2

1 + y2

∣∣∣∣∣
≤

∣∣∣∣∣ x1− r√
ε0− y2

1 + y2

− y1− r√
ε0− y2

1 + y2

∣∣∣∣∣+
∣∣∣∣∣ x1− r√

ε0−x2
1 +x2

− x1− r√
ε0− y2

1 + y2

∣∣∣∣∣
≤ |x1− y1|

ε0

+ |x1− r|

∣∣∣∣∣
√
ε0− y2

1 + y2−
√
ε0−x2

1 +x2√
ε0−x2

1 +x2

√
ε0− y2

1 + y2

∣∣∣∣∣
≤ |x1− y1|

ε0

+
|x1− r|
2ε

3/2
0

∣∣(x2
1− y2

1) + (y2−x2)
∣∣

≤ |x1− y1|
ε0

+ |x1− r|

∣∣∣∣∣
√
ε0− y2

1 + y2−
√
ε0−x2

1 +x2√
ε0−x2

1 +x2

√
ε0− y2

1 + y2

∣∣∣∣∣
≤ |x1− y1|

ε0

+
|x1− r|
2ε

3/2
0

((x1− y1)2 + 2|x1||x1− y1|+ |y2−x2|)

≤max
{
ε−1

0 ,2ε
−3/2
0 |x1− r|

}(
(x1− y1)2 + (2|x1|+ 1)|x1− y1|+ |y2−x2|

)
≤ 2(1 + |x1|)max

{
ε−1

0 ,2ε
−3/2
0 |x1− r|

}(
‖x− y‖22 + ‖x− y‖2

)
.

Since (x1, x2)∈USh
(
D∆
)
, we can bound |x1| ≤maxi∈K|U ave

(
F (i)

)
|. Since the reward is also bounded

in [0,1] we further have that |x1| ≤ 1, giving us the constants b= 4 max{ε−1
0 ,2ε

−3/2
0 (|r|+ 1)} and

q= 2.
Smoothness: The idea here is to bound the spectral norm of the hessian. This is very similar

to previous examples and in particular to Sortino ratio.

F.3. Non-composite EDPMs. In this section we show the properties of V aRα and CV aRα
required by our framework. Unless stated otherwise, we use the norm defined in (18). We recall
the definitions of CV aRα and V aRα from (17) and (20), and specifically that we have that

UCV aRα
(
F
)

= z∗− 1

α

∫ z∗

−∞
F (x)dx,
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where z∗ = UV aRα
(
F
)
. Before starting, we require the following technical lemma, proved in Sec-

tion F.3.3.
Lemma 9 (CV aRα and VaRα bounds). For any F,G∈L‖·‖ we have that

|UV aRα
(
F
)
−UV aRα

(
G
)
| ≤ 2‖F‖+ ‖F −G‖

min{α,1−α}
,

and

0≤UCV aRα
(
G
)
−UCV aRα

(
F
)

+
1

α

∫ UV aRα(F)

−∞
(G(x)−F (x))dx

≤ 1

α
‖F −G‖|UV aRα

(
F
)
−UV aRα

(
G
)
|.

If additionally (19) holds, F ∈D∆, and ‖F −G‖<Mα then we also have that

|UV aRα
(
F
)
−UV aRα

(
G
)
| ≤ bα‖F −G‖∞.

F.3.1. Conditional Value at Risk (CVaR) The following summarizes the properties of
CV aRα required for applying Theorem 4.
Proposition 4 (CVaRα properties). We have that:

1. CV aRα is convex;
2. CV aRα is stable with parameters b= 4/αmin{α,1−α}, q= 2, υ= 2/3;
3. If (19) holds then CV aRα is smooth with parameters β = 2bα/α and M0 =Mα.

Proof. As previously mentioned, convexity follows from (17), which expresses CV aRα as a maxi-
mum over linear functions.

Stability. Starting with the easier Requirement 2 of stability, the concentration of ‖F̂ (i)
t −F (i)‖∞

follows from the Dvoretzky-Kiefer-Wolfowitz inequality [19] with υ0 = 2, and since the other two
terms are linear, the same holds for them by Hoeffding’s inequality. As in Lemma 8 (but for max
norm), we conclude that Requirement 2 holds with υ= 2 log 2/ log 6≥ 2/3. Next, for Requirement 1,
first notice that∣∣∣∣∣ 1α

∫ UV aRα(F)

−∞
(F (x)−G(x))dx

∣∣∣∣∣≤
∣∣∣∣ 1α
∫ 0

−∞
(F (x)−G(x))dx

∣∣∣∣+
∣∣∣∣∣ 1α
∫ UV aRα(F)

0

(F (x)−G(x))dx

∣∣∣∣∣
≤ 1

α

[
‖F −G‖+ |UV aRα

(
F
)
|‖F −G‖

]
≤ ‖F −G‖

α

[
1 + |UV aRα

(
F
)
|
]
,

and apply this to the second claim of Lemma 9 to get that

|UCV aRα
(
G
)
−UCV aRα

(
F
)
| ≤ ‖F −G‖

α

[
1 + |UV aRα

(
F
)
|+ |UV aRα

(
F
)
−UV aRα

(
G
)
|
]
.

Finally, using the first part of Lemma 9 we get that

|UCV aRα
(
G
)
−UCV aRα

(
F
)
| ≤ ‖F −G‖

α

[
1 + |UV aRα

(
F
)
|+ 2‖F‖+ ‖F −G‖

min{α,1−α}

]
≤ 1

α

(
1 + |UV aRα

(
F
)
|+ max{1,2‖F‖}

min{α,1−α}

)[
‖F −G‖+ ‖F −G‖2

]
,

which is Requirement 1 of stability. Further using Assumption 1, we have that ‖F‖, |UV aRα
(
F
)
| ≤ 1,

and plugging this into the above gives the desired value for b.
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Smoothness. Assume that ∂UCV aRα
(
F
)
·G=− 1

α

∫ UV aRα(F)
−∞ G(x)dx. We show that the smooth-

ness condition holds under this assumption, which in turn implies that this assumption must be true
(see definition of Frechet derivative). To that end, we use the second and third parts of Lemma 9
to get that for any F ∈D∆ and G∈L‖·‖ satisfying ‖F −G‖ ≤Mα we have that∣∣∣∣∣UCV aRα

(
G
)
−UCV aRα

(
F
)
− −1

α

∫ UV aRα(F)

−∞
(G(x)−F (x))dx

∣∣∣∣∣
≤ 1

α
‖F −G‖|UV aRα

(
F
)
−UV aRα

(
G
)
|

≤ 1

2

2bα
α
‖F −G‖2,

as desired. �

F.3.2. Value at Risk (VaR) We begin with the following proposition, which proves the
needed properties of V aRα to get O(1/

√
T ) regret, as described in Remark 1.

Proposition 5 (VaRα properties). We have that:
1. V aRα is quasiconvex;
2. If (19) holds then V aRα is stable with parameters υ= 2/3, q= 1, and

b= max

{
bα,

Mα + 2

min{α,1−α}Mα

}
.

Proof. Starting with quasiconvexity, let F1,F2 ∈ D and λ ∈ [0,1]. Denote Fλ = λF1 + (1−λ)F2,
then by the definition of UV aRα we have that

Fλ
(
max

{
UV aRα

(
F1

)
,UV aRα

(
F2

)})
= λF1

(
max

{
UV aRα

(
F1

)
,UV aRα

(
F2

)})
+ (1−λ)F2

(
max

{
UV aRα

(
F1

)
,UV aRα

(
F2

)})
≥ α.

Using the definition of UV aRα another time we conclude that

UV aRα
(
Fλ
)
≤max

{
UV aRα

(
F1

)
,UV aRα

(
F2

)}
,

which is one of the characterizations of quasiconvexity.
Stability. Since we use the same norm as CV aRα, Requirement 2 is proven by Proposition 4.

As for Requirement 1, if ‖F −G‖<Mα then using the third part of Lemma 9 we have that

|UV aRα
(
F
)
−UV aRα

(
G
)
| ≤ bα‖F −G‖.

On the other hand, if ‖F −G‖ ≥Mα then using the first part of Lemma 9 we have that

|UV aRα
(
F
)
−UV aRα

(
G
)
| ≤ 2‖F‖+ ‖F −G‖

min{α,1−α}

=
‖F −G‖

(
1 + 2‖F‖

‖F−G‖

)
min{α,1−α}

≤
1 + 2‖F‖

Mα

min{α,1−α}
‖F −G‖,

and combining both results we obtain get that stability holds with q= 1 and

b= max

{
bα,

Mα + 2‖F‖
min{α,1−α}Mα

}
.

Further using Assumption 1, we have that ‖F‖ ≤ 1, which gives the desired value of b. �
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The following result shows when V aRα satisfies the conditions of Theorem 1, and thus has a
single arm infinite horizon oracle policy. We note that this holds regardless as shown Proposition 3,
which uses a different approach that is specific to V aRα. Denote the α level set of a function F ∈D
by Lα(F ) = {x∈R

∣∣F (x) = α}.
Proposition 6 (VaRα Theorem 1 conditions). If |Lα(α)| ≤ 1 for all F ∈ D∆. Then UV aRα

satisfies then conditions of Theorem 1, and thus has a single arm infinite horizon oracle policy.
Proof. Unlike the remainder of this section, here we use the norm ‖F‖= ‖F‖∞. By the Glivenko-
Cantelli theorem [28], the convergence of the empirical distribution required in Theorem 1 is
established. It thus remains to show that V aRα is continuous on D∆. Our condition on the level
set can be interpreted in the following way. For any fixed F ∈D∆

y >UV aRα
(
F
)

=⇒ ∃cy > 0, s.t, F (y)≥ α+ cy (27)
y <UV aRα

(
F
)

=⇒ ∃cy > 0, s.t, F (y)≤ α− cy. (28)

Let g : [−α
2
, 1−α

2
]→ R be given by, g(δ) = UV aRα+δ

(
F
)
. We show that g is continuous at 0. g is

monotone non decreasing and so has left and right limits at 0. Let {δn}∞n=1↘ 0 and denote,

lim
n→∞

g(δn) = a+.

By the monotonicity of g we have that a+ ≥ g(0). Using (27) we have that, for any ε > 0,

F (g(0) + ε)≥ α+ cε,

where cε > 0. So, by the expression of UV aRα , we have that,

g(0) + ε≥ g(cε)≥ a+,

where the second inequality follows by the monotonicity of g. So, g(0)≤ a+ ≤ g(0) + ε for all ε > 0
and so a+ = g(0). Now take

{
δ̄n
}∞
n=1
↗ 0 and denote,

lim
n→∞

g(δ̄n) = a−.

A similar set of arguments shows that a− = g(0), and so g is continuous at 0.
By the continuity of g, for any ε > 0, there exists δε > 0 such that for all |β| ≤ δε we have that,

|g(0)− g(β)| ≤ ε.

For any G∈L‖·‖ satisfying ‖F −G‖∞ ≤ δε we have that,

UV aRα
(
F
)
−UV aRα

(
G
)

= g(0)−min
{
y
∣∣∣G(y)≥ α

}
≤ g(0)−min

{
y
∣∣∣ F (y)≥ α− δε

}
= g(0)− g(−δε)≤ ε.

We also have,

UV aRα
(
G
)
−UV aRα

(
F
)

= min
{
y
∣∣∣G(y)≥ α

}
− g(0)

≤min
{
y
∣∣∣ F (y)≥ α+ δε

}
− g(0) = g(δε)− g(0)≤ ε.

We conclude that, |UV aRα
(
F
)
−UV aRα

(
G
)
| ≤ ε thus concluding the continuity of UV aRα onD∆. �

Finally, we prove Proposition 3, showing that V aRα always has a single arm infinite horizon
oracle policy.
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Proof of Proposition 3. We begin calculating the performance of a single arm policy. We then
proceed to show that the performance of any policy is upper bounded by that of the best single
arm policy.
Performance of simple policies. Let πi be the policy that always plays arm i. We claim that,
EUV aRα

πi
=UV aRα

(
F (i)

)
. If F (i) represents a degenerate random variable then the expression holds

trivially. Otherwise, let y <UV aRα
(
F (i)

)
= ai, then there exists δy > 0, such that, F (i)(y)≤ α− δy.

Using the strong law of large numbers [22] we have that

lim
t→∞

F̂ πi

t (y)
a.s
= F (i)(y)≤ α− δy.

Let E be the event on which the convergence occurs. Then ∀ω ∈ E there exists T (ω) such that
∀t > T (ω), we have that,

F̂ πi

t (y,ω)≤ F (i)(y) + δy/2≤ α− δy/2<α.

This implies that UV aRα
(
F̂ πi

t (ω)
)
> y for all t≥ T (ω). We get that UV aRα

πi
≥ y almost surely, and

taking the expectation we get EUV aRα
πi

≥ y. Since this holds for all y <UV aRα
(
F (i)

)
, then,

EUV aRα
πi

≥UV aRα
(
F (i)

)
. (29)

On the other hand, using the Law of the iterated logarithm [14] we get that

limsup
t→∞

t

λ
√

2t log log t

(
F̂ πi

t (ai)−F (i)(ai)
)

= 1 a.s,

where, λ= F (i)(ai)
(
1−F (i)(ai)

)
6= 0 since F (i) is non-degenerate. We conclude that

F̂ πi

t (ai)>F
(i)(ai)≥ α i.o,

and thus

UV aRα
πi

= lim inf
t→∞

UV aRα
(
F̂ πi

t

)
≤ ai a.s. (30)

Taking expectation on both sides, we conclude that

EUV aRα
πi

≤UV aRα
(
F (i)

)
,

which together with (29) proves that EUV aRα
πi

=UV aRα
(
F (i)

)
. Now, recall that in Proposition 5 we

showed that UV aRα is quasiconvex. We thus have that there exists i∗ ∈K such that for all F ∈D∆

UV aRα
(
F
)
≤UV aRα

(
F (i∗)

)
= EUV aRα

πi
∗ = a∗. (31)

Global optimizer. Our purpose will be to show that

F̂ π
t (a∗)−α> 0 i.o. (32)

Similarly to (30), this implies that

UV aRα
π ≤ a∗ a.s,

and taking the expectation we conclude that, EUV aRα
π ≤EUV aRα

πi
∗ , thus concluding the proof.
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By (31), we have that

F π
t (a∗) =

1

t

t∑
s=1

F (πs)(a∗)≥ α.

We thus get that,

F̂ π
t (a∗)−α≥ F̂ π

t (a∗)−F π
t (a∗) =

1

t

t∑
s=1

1{Xπ,s ≤ a∗}−F (πs)(a∗) =
1

t

t∑
s=1

Ys =
1

t
Wt, (33)

where Ys =
[
1{Xπ,s ≤ a∗}−F (πs)(a∗)

]
and Wt =

∑t

s=1 Ys. We split our remaining analysis into two
cases.

The first is when policy π chooses some non-degenerate arm infinitely often (i.o). For this case
we use the Law of the iterated logarithm for martingales given in [10]. We use the same notation
as in [10] aside for denoting the martingale Wt instead of Ut, and its difference sequence by Yt
instead of Xt (to avoid confusion with existing notation). We start by showing Wt is a martingale
with respect to its natural filtration

E[Wt+1|W1, . . . ,Wt]
=Wt + E[Yt+1|W1, . . . ,Wt]
=Wt + E

[
E
[
Yt+1|πt+1

]
|W1, . . . ,Wt

]
=Wt + E[0|W1, . . . ,Wt] =Wt,

where the second equality is the law of total probability in addition to Yt+1|πt+1 being independent
of W1, . . . ,Wt. Furthermore, E|Wt| ≤ t <∞, so Wt is a martingale.

Next, let s2
t =

∑t

s=1 E[Y 2
s |W1, . . . ,Ws−1]. Since π chooses a non-degenerate arm infinitely often

then, s2
t →∞.

Finally, let t0 denote the first time π chooses a non-degenerate arm. So, we can choose Kt in the
following way,

Kt =ϕ(st0)/st0 .

Clearly, there exists K > 0 such that, limsupt→∞Kt <K. Furthermore,

|Yt| ≤

{
0, t < t0

1, t≥ t0
≤Ktst/ϕ(st).

So the conditions of Theorem 1 in [10] are met and we conclude that

limsup
t→∞

Wt/stϕ(st)> 0 a.s.

This means that, Wt > 0 infinitely often and substituting into (33) we conclude that (32) holds.
In the second case, any non-degenerate arm is chosen a finite number of times. Let ib denote the

index of the largest degenerate arm and ab be its value. Clearly,

ab = EUV aRα
πib

≤EUV aRα
πei∗ = a∗.

Denote, Ib =
{
i
∣∣∣ F (i) is degenerate

}
. Since non-degenerate arms are pulled a finite number of times

then,

lim
t→∞

p̂i(t) = 0 ,∀i /∈ Ib,
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where p̂i(t) is defined in (21). Since there are finitely many arms, this implies that

lim
t→∞

∑
i∈Ib

p̂i(t) = 1.

Now, since ab is such that F (i)(ab) = F̂
(i)
t (ab) = 1 for all i∈ Ib, we conclude that

lim
t→∞

F̂ π
t (a∗)≥ lim

t→∞
F̂ π
t (ab)

= lim
t→∞

K∑
i=1

p̂i(t)F̂
(i)
t (ab)

≥ lim
t→∞

∑
i∈Ib

p̂i(t)F̂
(i)
t (ab)

= lim
t→∞

∑
i∈Ib

p̂i(t) = 1.

Since α< 1, we can clearly conclude (32) holds, thus finishing the proof. �

F.3.3. Proof of Lemma 9 We prove the individual claims of Lemma 9.
First claim. We start by showing that for all G∈L‖·‖

|UV aRα
(
G
)
| ≤ ‖G‖

min{α,1−α}
. (34)

Suppose that UV aRα
(
G
)
≥ 0, then we have that

‖G‖ ≥
∫ ∞

0

(1−G(y))dy≥
∫ UV aRα(G)

0

(1−G(y))dy

≥
∫ UV aRα(G)

0

(1−α)dy= (1−α)UV aRα
(
G
)
≥ 0.

On the other hand, suppose that UV aRα
(
G
)
≤ 0, then we have that

‖G‖ ≥
∫ 0

−∞
G(y)dy≥

∫ 0

UV aRα(G)
G(y)dy

≥
∫ 0

UV aRα(G)
αdy=−αUV aRα

(
G
)
≥ 0,

thus concluding (34). Using this result, we have that for all F,G∈L‖·‖

|UV aRα
(
F
)
−UV aRα

(
G
)
| ≤ |UV aRα

(
F
)
|+ |UV aRα

(
G
)
|

≤ ‖F‖+ ‖G‖
min{α,1−α}

≤ 2‖F‖+ ‖F −G‖
min{α,1−α}

,

as desired.
Second claim. We have that

UCV aRα
(
G
)
−UCV aRα

(
F
)
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=UV aRα
(
G
)
− 1

α

∫ UV aRα(G)

−∞
G(y)dy−UV aRα

(
F
)

+
1

α

∫ UV aRα(F)

−∞
F (y)dy

=UV aRα
(
G
)
−UV aRα

(
F
)

+
1

α

∫ UV aRα(F)

UV aRα(G)
G(y)dy− 1

α

∫ UV aRα(F)

−∞
(G(y)−F (y))dy

=
1

α

∫ UV aRα(F)

UV aRα(G)
(G(y)−α)dy− 1

α

∫ UV aRα(F)

−∞
(G(y)−F (y))dy,

and changing sides we get

UCV aRα
(
G
)
−UCV aRα

(
F
)

+
1

α

∫ UV aRα(F)

−∞
(G(y)−F (y))dy=

1

α

∫ UV aRα(F)

UV aRα(G)
(G(y)−α)dy.

It therefore suffices to show that

0≤ 1

α

∫ UV aRα(F)

UV aRα(G)
(G(y)−α)dy≤ 1

α
‖F −G‖|UV aRα

(
F
)
−UV aRα

(
G
)
|.

Beginning with the left inequality, we have that

1

α

∫ UV aRα(F)

UV aRα(G)
(G(y)−α)dy

≥ 1

α

(
UV aRα

(
F
)
−UV aRα

(
G
))(

G
(
min

{
UV aRα

(
G
)
,UV aRα

(
F
)})
−α

)
=


1
α

(
UV aRα

(
F
)
−UV aRα

(
G
))︸ ︷︷ ︸

≤0

(
G
(
UV aRα

(
F
))
−α

)︸ ︷︷ ︸
≤0

,UV aRα
(
G
)
≥UV aRα

(
F
)

1
α

(
UV aRα

(
F
)
−UV aRα

(
G
))︸ ︷︷ ︸

≥0

(
G
(
UV aRα

(
G
))
−α

)︸ ︷︷ ︸
≥0

,UV aRα
(
G
)
<UV aRα

(
F
)

≥ 0,

(35)

where the final inequality holds since G(y)R α for y R UV aRα
(
G
)
. Next, for the right hand side

inequality we have that

1

α

∫ UV aRα(F)

UV aRα(G)
(G(y)−α)dy

=
1

α

∫ UV aRα(F)

UV aRα(G)
(F (y)−α)dy+

1

α

∫ UV aRα(F)

UV aRα(G)
(G(y)−F (y))dy

≤ 1

α

∫ UV aRα(F)

UV aRα(G)
(F (y)−α)︸ ︷︷ ︸

(∗)

+
1

α
‖F −G‖∞|U

V aRα
(
F
)
−UV aRα

(
G
)
|

≤ 1

α
‖F −G‖|UV aRα

(
F
)
−UV aRα

(
G
)
|,

where (∗)≤ 0 is obtained by exchanging the roles of F and G in (35).
Third claim. Consider (19) with y = ‖F −G‖∞ ≤Mα, and notice that F

(
UV aRα

(
F
)

+ y
)
≥ α

for any y≥ 0. Then we have that

F
(
UV aRα

(
F
)

+ bα‖F −G‖∞
)
−α≥ ‖F −G‖∞.
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Using this we get

G
(
UV aRα

(
F
)

+ bα‖F −G‖∞
)
≥ F

(
UV aRα

(
F
)

+ bα‖F −G‖∞
)
−‖F −G‖∞ ≥ α,

which by the definition of UV aRα in (20) implies that

UV aRα
(
G
)
≤UV aRα

(
F
)

+ bα‖F −G‖∞,

and changing sides we get

UV aRα
(
G
)
−UV aRα

(
F
)
≤ bα‖F −G‖∞. (36)

On the other hand, consider (19) with y =−c‖F −G‖∞ ≥−Mα, where 1< c≤ Mα
‖F−G‖∞

. Noticing

that F
(
UV aRα

(
F
)
− y
)
≤ α for any y≥ 0, we have that

−
(
F
(
UV aRα

(
F
)
− cbα‖F −G‖∞

)
−α

)
≥ c‖F −G‖∞,

and changing sides we get

F
(
UV aRα

(
F
)
− cbα‖F −G‖∞

)
≤ α− c‖F −G‖∞.

Using this we get

G
(
UV aRα

(
F
)
− cbα‖F −G‖∞

)
≤ F

(
UV aRα

(
F
)
− cbα‖F −G‖∞

)
+ ‖F −G‖∞

≤ α+ (1− c)‖F −G‖∞
<α,

and using the definition of UV aRα in (20) and changing sides we get

UV aRα
(
G
)
−UV aRα

(
F
)
≥−cbα‖F −G‖∞.

Notice that the constant c may be arbitrarily close to 1. We thus conclude that

UV aRα
(
G
)
−UV aRα

(
F
)
≥−bα‖F −G‖∞,

which combined with (36) implies the desired.

F.3.4. Counter examples

Ubad1 details. Examples such as V aRα are rather uncommon, but, when encountered, their
analysis proves challenging. This fact might motivate a more general framework for EDPMs, ideas
for which, can be drawn from the proof of Proposition 3. The following examples show the types
of problems such frameworks could have or would need to address. Define an EDPM by,

U bad1
(
F
)

=UV aR0.1
(
F
)

+UV aR0.9
(
F
)
,

where the values 0.1, 0.9 were chosen arbitrarily. When the two components of U bad1 are stable
then it is clear that so is U bad1. We show that when this is not the case, then it is possible that no
simple policy is optimal. Consider a problem with two arms having the following distributions,

F (1)(y) =



0 y < 0

y/10 0≤ y < 1

0.1 1≤ y < 5

y/50 5≤ y < 50

1 y≥ 50

F (2)(y) =

{
0 y < 5

1 y≥ 5.
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Notice that F (1), F (2) satisfy the conditions of Theorem 1. So, using an intermediate result of
Theorem 1 we have that limt→∞U

V aR0.9
(
F̂ πp

t

)
=UV aR0.9

(
Fp
)

almost surely. Using this convergence
we get that

lim inf
t→∞

U bad1
(
F̂ πp

t

) a.s
= lim inf

t→∞
UV aR0.1

(
F̂ πp

t

)
+ lim
t→∞

UV aR0.9
(
F̂ πp

t

)
a.s
= UV aR0.1

(
Fp
)

+UV aR0.9
(
Fp
)
.

where the convergence of UV aR0.1
(
F̂ πp

t

)
is an intermediate result in Proposition 3. Evaluating these

last terms we conclude the expression for the performance of a simple policy πp (p= (p1, p2), p1 =
1− p2),

EU bad1
πp =


46 p2 = 0

5 + (45− 50p2)/(1− p2) 0< p2 < 8/9

10 8/9< p2 ≤ 1

It does not attain a maximum over the simplex and thus there is no optimizer inside the set of
simple policies. However, the following non-simple policy is optimal,

π∗bad1
t =

{
2 t= 1 or

(t−1)F̂πt−1(1)+1

t
≥ 0.1

1 otherwise.

We explain why π∗bad1 is an oracle policy. Each of the summands in U bad1 has a simple oracle
policy with appropriate optimal performance. Summing these performances provides an upper
bound on the performance of U bad1. More specifically, U bad1 is bounded by 50. We show that,
π∗bad1 achieves this value and is thus an oracle policy. It is easy to show by induction that for

(t≥ 1), F̂ π∗bad1
t (1)< 0.1. This implies that UV aR0.1

(
F̂ π∗bad1
t

)
≥ 5, but 5 is also an upper bound an so,

lim inft→∞U
V aR0.1

(
F̂ π∗bad1
t

)
= 5. Finally, it is a technical result to show that limt→∞ F̂

π∗bad1
t (5) = 0.1

almost surely, which implies limt→∞ p̂(t)
a.s
= e1 = (1,0). Since UV aR0.9 is stable then this implies that

lim
t→∞

UV aR0.9
(
F̂ π∗bad1

t

) a.s
= UV aR0.9

(
F (1)

)
= 45,

and taking expectation the result is concluded.
The problem exhibited here is the lack of an optimizer within the set of simple policies. A way

of ensuring that this does not occur is to require that the performance of simple policies be upper
semi-continuous (with respect to p).

Ubad2 details. The following example shows that when the performance of simple policies is
not lower semi continuous, then while an optimizer exists within the set of simple policies, it might
not be a global optimizer. Define an EDPM by,

U bad2
(
F
)

=UV aR++
0.1
(
F
)

+ 51
{
F (10−)−F (1+)> 0 or F (1−)> 0

}
,

where,

U+
(
F ;x

)
= max

y∈R

{
y≥ x

∣∣∣ F (y) = F (x)
}

UV aR+
0.1
(
F
)

=

{
UV aR0.1

(
F
)

if F (UV aR0.1
(
F
)
) = 1

U+
(
F ;UV aR0.1

(
F
))

otherwise.

UV aR++
0.1
(
F
)

=

{
UV aR+

0.1

(
F
)

if F (UV aR+
0.1

(
F
)
) = 1

U+
(
F ;UV aR+

0.1

(
F
))

otherwise.
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Consider a problem with two arms having the following distributions,

F (1)(y) =


0 y < 0

0.9 + y/100 0≤ y < 10

1 y≥ 10

,F (2)(y) =


0 y < 1

0.1 1≤ y < 10

1 y≥ 10.

The performance of a simple policy πp (p= (p1, p2), p1 = 1− p2) is given by,

EU bad2
πp =


5 p2 < 8/9

−85 + 10/(1− p2) 8/9≤ p2 < 81/91

6 81/91≤ p2 < 1

10 p2 = 1,

which attains a maximum for p2 = 1. However, the resulting policy is not an oracle policy. The
following non-simple policy is an oracle policy,

π∗bad2
t =

{
1 t= 1

2 otherwise.

To show this, proceed as for U bad1, i.e., see that the individual components are bounded by 10 and 5
respectively, and so the optimal performance is at most 15. It is trivial to verify that π∗bad2 obtains
this reward, thus showing it is an oracle policy. Finally, we describe how EU bad2

πp is obtained. It is
easily seen that for all t≥ 1,

1
{
F̂ πp

t (10−)− F̂ πp

t (1+)> 0 or F̂ πp

t (1−)> 0
}

=

{
1 p2 < 1

0 p2 = 1.

As for UV aR++
0.1

(
F̂ πp

t

)
, when p2 = 1 then for all t≥ 1 we have UV aR++

0.1

(
F̂ πp

t

)
= 10. If p2 < 1 then the

fact that F (1) is strictly increasing causes UV aR++
0.1

(
F̂ πp

t

)
to converge to UV aR0.1

(
F̂ πp

t

)
. We conclude

that,

EU bad2
πp =

{
EUV aR0.1

πp + 5 p2 < 1

10 p2 = 1.
(37)

Calculating EUV aR0.1
πp and substituting it into (37) yields the result.

These examples show that if an EDPM is either not lower or upper semi-continuous then it
might not have a simple oracle policy. However, if it is both lower and upper semi-continuous then
it is continuous and thus Theorem 1 typically holds.
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