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Abstract

We consider a novel class of non-linear models for time series analysis based on mixtures of local

autoregressive models, which we call MixAR models. MixAR models are constructed so that at any
given point time, one of a number of alternative AR models describes its dynamics. The driving
AR model is randomly selected from the set of m possible models via according to a state (lag
vector) dependent probability distribution. Thus, the MixAR process is a Markov chain with a
transition kernel that takes the form of a mixture distribution with non-constant (state dependent)
weights. This structure gives MixAR models considerable flexibility, as will be indicated both
theoretically and via example. The theoretical aspects of MixAR models that we examine include
stochastic stability of MixAR processes, parameter estimation algorithms, and approximation of
quite general underlying prediction functions, when the true process is not of the MixAR family.
We complement this study with some numerical examples, which seem to indicate that the out-
of-sample performance is competitive, in spite of the fairly large number of parameters in MixAR
models. Prediction results on benchmark time series are compared to linear and non-linear models.

KEY WORDS: Mixtures of autoregressions, non-linear models, prediction, mixtures of distribu-
tions, EM algorithm, Markov chains, stochastic stability.

1 Introduction

The general framework of linear autoregressive moving average (ARMA) models has dominated much

of the research in time series analysis in the statistics and engineering communities. However, the need

to model non-linear features of processes commonly encountered in nature, as well as utilize the models

for forecasting purposes, have led to increasing interest in non-linear modeling techniques. We will

review some of these below, in Section 3.
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In this work we introduce a new class of models, substantially extending the classic AR models, yet

retaining much of their structural simplicity. The main idea is, at first sight, not that different from

the threshold autoregressive (TAR) models of Tong [see, e.g., Tong (1983, 1990) for an overview]. The

key assumption is that locally in the state space the time series follows a linear model. The simplest

version of this structure is an AR model. Tong, and later others, developed the idea that the state space

can be partitioned by comparing a lagged variable to a fixed threshold, or to several thresholds. Each

region has an associated AR model, which determines the dynamics of the process while it remains in

that region. Thus, conditional on the value of the lagged variable (or variables), the process follows the

corresponding AR model. Our approach is somewhat different.

Let (Xt)t≥0 denote a real valued time series, i.e., a discrete time stochastic process. Fix d ∈ N,

and write Xt−1
t−d for the lag vector (Xt−1, . . . ,Xt−d). Throughout we use capital letters to denote

random variables, while Corresponding realizations are written using lower case, e.g., xt. Vector valued

quantities are distinguished from scalars using boldface notation. Without further background and

definitions, we proceed to give an informal presentation of the mixture of autoregressions (MixAR)

model in a way that is meant to clarify its structure. A more rigorous definition will be given in Section

2. In the sequel, d denotes the dimension of the lag-vector, and m is used to denote the number of

AR components in a given MixAR model. Then, with obvious terminology, we say that a time series

follows a MixAR(m; d) process if
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where (ε
(j)
t )t≥0 j = 1, 2, . . . ,m are mutually independent i.i.d., zero mean, Gaussian noise processes with

(possibly) different variances σ2
j . The gj(·;θg) are chosen so that

∑

j gj(·;θg) ≡ 1, and gj(·;θg) ≥ 0, so

that they can be interpreted as a probability distribution over the m component AR models.

Implicit in (1) is a randomization process at each time step, which determines the governing AR

equation for the process at the next time step. It is this aspect of the model that is most novel,

generates its non-linearity, and gives rise to most of its interesting properties, while at the same time

allowing it to remain theoretically and computationally amenable. The precise functional form of the

gj ’s will be specified in the sequel.
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The main ideas underlying this model were first introduced in the neural network literature by Ja-

cobs et al. (1991) [see also Jordan and Jacobs (1994) for related work] in the context of a regression

problem. The model used there was termed mixtures of experts. Some numerical results were obtained

by Waterhouse and Robinson (1996) for the prediction of acoustic vectors, and by Peng et al. (1996)

for speech recognition. Both use a variant of mixtures of experts known as a hierarchical mixture of

experts. Recently, some theoretical aspects of the mixtures of experts in the context of non-linear

regression were studied by Zeevi et al. (1998).

The main contributions of this paper are the following:

1. The derivation of conditions that ensure stochastic stability (i.e., existence and uniqueness of a

stationary version, and rates of convergence to stationarity) for MixAR processes; see Theorems

5.1 and 5.2.

2. Some discussion of the generality of MixAR processes, from the point of view of approximating

arbitrary prediction functions; see Theorem 6.1.

3. The study of a computationally efficient parameter estimation scheme via a generalized expectation–

maximization algorithm, and conditions for convergence of this algorithm; see Algorithm 7.1 and

Proposition 7.1.

4. A numerical study that validates the effectiveness of MixAR models in practice; see, e.g., Tables

1 and 2. This study highlights the benefits of retaining local linear structure both in terms of

interpretation as well as model specification; see the discussion in Section 8.2 and Figures 4 and

5.

We also include a fairly broad discussion of where this model fits into the existing literature, and

indicate in which ways it fundamentally differs from existing non-linear models. Since MixAR models,

by construction, involve a large number of parameters, we add a discussion on the issue ‘parameters

and parsimony’. The purpose of this discussion is to indicate, mainly via reference to recent literature,

why MixAR out-of-sample performance is not impaired by apparent over-parameterization. We do not

have a complete explanation at this point, and consider this important topic a main avenue for further

investigation.
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Here is a road map to the various sections in the paper. Section 1 is devoted mainly to presenting

the MixAR model in detail, while Section 3 discusses its relationship with other non-linear models

in the literature. Section 4 discusses the issue of apparent ‘over-parameterization’ in MixAR models.

Stochastic stability of MixAR processes is discussed in Section 5. The issue of generality, by which we

mean the ability to approximate a wide class of prediction functions, is discussed in Section 6. In Section

7 we present an efficient algorithm for parameter estimation, and briefly study some of its properties.

Numerical results are given in Section 8, and Section 9 wraps up the main part of the paper discussing

the main significance of the results. All proofs are relegated to Appendix A, while Appendix B contains

the specifics of the various models used in the numerical study.

Acknowledgement: We are extremely grateful to two excellent referees, whose comments and crit-

icisms did a lot to improve the final version of the paper. One referee went above and beyond the call

of duty and checked some of the numerics in Section 8, thus pinpointing a systematic error in some of

our computations. We are particularly grateful to him/her. Any remaining errors are, of course, our

responsibility.

2 Model Formulation

Let X = (Xt)t≥0 be a discrete time, real valued, stochastic process. As above, letXt−1
t−d = (Xt−1, . . . ,Xt−d)

denote the vector of its lagged values. Then, X is said to be Markov of order d if

P(Xt ∈ B|Xt−1
0 ) = P(Xt ∈ B|Xt−1

t−d)

almost surely, for all Borel sets B, and all t ≥ d.

Let n(x;µ, σ) denote the density of a Gaussian r.v. with mean µ and variance σ2, and ν(·) the

corresponding probability measure over B(R).

Definition 2.1 X is said to follow a mixture of autoregressions, or MixAR(m; d), model if it is Markov

of order d and is equipped with transition probability kernel

P
(

Xt ∈ B|Xt−1
t−d = x;θ

)

=

m
∑

j=1

gj(x;θg)ν(B;θT
j x + θj,0, σj), (2)
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for every Borel set B ∈ B(R), and x ∈ R
d. Here θj := [θj,1, . . . , θj,d]

T ∈ R
d, θg = [aT

1 , b1, . . . ,a
T
m, bm]T ∈

R
m(d+1), while θ ≡ [θT

1 , θ1,0, . . . ,θ
T
m, θm,0,θ

T
g , σ

2
1, . . . , σ

2
m]T ∈ R

2m(d+1)+m denotes the full parameter

vector specifying the model. The weighting function gj is a multinomial logit, specifically,

gj(x;θg) ≡
exp(aT

j x + bj)
∑m

k=1 exp(aT
k x + bk)

, j = 1, . . . ,m . (3)

Remark 2.1 The specification of the weighting functions gj as multinomial logits follows the original

presentation of mixtures of experts, in the context of non-linear regression, by Jacobs et al. (1991).

Obviously, other functions will also work here (e.g., radial basis functions).Our results on the generality

of the MixAR models do however require that these functions obey some more technical restrictions

[for more details see Zeevi et al. (1998), in particular their Assumption 2 specifies such conditions]. The

results we obtain in Section 8 indicate that from a practical standpoint this choice works quite well.

Nevertheless, the basic approach and results of this paper will also work for other prudent choices.

It is immediate from (2) that the conditional density of an observation of Xt, given the current state

(lag vector) Xt−1
t−d = x, is a mixture of Gaussians with means θ

T
j x+θj,0 and variances σ2

j . The Gaussian

components have a straightforward interpretation; each is the conditional density associated with a local

Gaussian AR(d) process

Xt = θ
T
j X

t−1
t−d + θj,0 + ε

(j)
t

where ε
(j)
t ∼ N (0, σ2

j ). Note that the lags of the AR models need not be identical, but for the purpose

of writing out the model one can always choose the largest lag and ‘pad out’ all the corresponding

parameter vectors with zeros. Note also that, despite our choice of terminology, it is clear that our

choice of transition kernel does not follow standard mixture model formulations [cf. Titterington (1985)]

in that the distribution over classes is a function of the state vector xt−1
t−d, rather than being constant.

As mentioned above, it is precisely this aspect of the model that endows the MixAR model with non-

linearity, concurrently the mixture structure retains tractability. The process of course is no longer

Gaussian (as opposed to linear models), although the local structure is linear.
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3 Relation to Other Models

Since the MixAR model described above bears at least superficial similarity to many others in the

literature, we will attempt to indicate the precise nature of this relation.

The first attempts to incorporate non-linearity and non-stationarity arose in the statistics literature

mainly through the contribution of two workers. The first, Maurice Priestley, introduced what he called

‘state dependent models’ in which processes were treated as locally linear [for an account of these models

see Priestley (1988)]. Later, Tong (1983,1990) also modified the linear methodology in this spirit by

introducing threshold autoregressive (TAR) models. There a threshold variable controls the switching

between different autoregressive models. These models are conceptual antecedents of MixAR, and can

formally be written as

Xt = θ
T
j X

t−1
t−d + θj,0 + ε

(j)
t if Xt−1

t−d ∈ R(j) (4)

where j = 1, 2, . . . ,m, and {R(j)}1≤j≤m is a partition of R
d. This model is denoted TAR(m; d), though

to allow for different AR orders often the notation TAR(m; d1, d2, . . . , dm) is used. Typically, the general

assignment rule xt−1
t−d ∈ R(j) is implemented via the much simplified Xt−k ∈ [rj−1, rj) with {rj} the so

called threshold variables and k the delay parameter [for more details see Tong (1990, pp. 98-103)].

In order to compare the MixAR and TAR models, assume for the moment that {ε(j)t } in the TAR

model are i.i.d. Gaussian with mean 0 and variance σ2
j . Then the conditional probability measure for

the TAR(m; d) model can be written as

P(Xt ∈ B|Xt−1
t−d = x) =

m
∑

j=1

I{x∈R(j)}ν(B;θT
j x + θj,0, σj) (5)

with IA the indicator function of the set A, and ν as before. Comparing this to (2), we see that the TAR

model can be framed as a degenerate mixture model, with class probabilities that are state dependent

but which, for each state, put all their mass on only one of the classes. Consequently, the conditional

TAR transition kernel remains Gaussian, unlike the MixAR case.

Nevertheless, at least in the case of threshold variables inducing interval partitions of R, the MixAR

processes can easily be made to approximate TAR processes. For example, consider the simplest TAR

process with only one threshold. All that is required is to note that logit functions can be made to

approximate indicator functions; i.e. [1 + exp{α(r − x)]−1 → I(−∞,r](x) as α → ∞. Details as to how
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to extend this fact to more than two regimes are left to the reader. However, if one considers a TAR

model with an arbitrary partitions of the real line into measurable sets, then there may not be any

MixAR process of finite complexity (i.e. finite m) that can approximate it. Consequently, neither of

these classes of processes is a strict subset of the other.

Numerous other models have also been introduced with the underlying idea of preserving local lin-

earity. Some of the more prominent in recent years have been the functional coefficient autoregressive

model (FAR) of Chen and Tsay (1993), which in some sense generalizes the TAR model, and some of

its variants such as EXPAR of Haggan and Ozaki (1981), STAR and SETAR [cf. Tong (1983, 1990)],

and the adaptive splines threshold autoregressive model (ASTAR) of Lewis and Stevens (1991). The

recently proposed FAR and ASTAR models consider more general schemes of partitioning the state

space, with the inherent expense of complicating the specification and estimation tasks. None of these,

however, exhibit the same type of non-linearity as in the MixAR model.

Another related model is the NEAR(d) model of Chan (1988), developed initially in the setting of time

series with non-negative values and exponential marginal distributions. In this model, Xt is generated

by one of d different AR models, with each linear model assigned a fixed probability. That is,

Xt = βIt
Xt−It

+ εt

with It a discrete random variable taking values in the set {0, 1, . . . , d}, independently of the previous

values of X. While the two models are not completely comparable, it is obviously that the MixAR

model is considerably richer, in part since it allows the component choice to be dependent on the lagged

variables, and allows each AR component to be of full order.

A somewhat similar idea was introduced in the Econometrics literature, under the name of ‘regime

switching models’. The philosophy underlying these models is that there may be occasional shifts in

the mean, variance, or autoregressive dynamics of the time series. Hamilton (1990) proposes to model

a time series as Gaussian AR(d) with mean that depends on the state of an independent (hidden)

Markov chain. For this model, a simple algorithm for maximum likelihood estimation exits, namely

the expectation–maximization (EM) algorithm. We will see in Section 7 that the same algorithm is

also applicable in our setting, although we consider a more general construction (at least for the case of

scalar valued time series). The idea of regime switching models is also part of Tjøstheim’s (1986) work,
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introducing a class of ‘doubly stochastic models’. One such model is

Xt =

d
∑

j=1

Θ
(j)
t Xt−j + εt

with {Θ(j)
t } a stochastic process independent of εt. For instance, one may take a hidden Markov chain

with the vector (Θ1,Θ2, . . . ,Θd) a stochastic functional defined on the Markov chain. For further

references the reader is referred to the monograph of Tong (1990), Granger and Teräsvirta (1993) who

emphasize economic applications as well, and the review paper by Tjøstheim (1994).

4 On Parameters and Parsimony

One of the fundamental principles of time series analysis over the past few decades has been that of

parsimony, which seems to have originated in Tukey (1961). In the words of Box and Jenkins (1976),

this demands ‘employing the smallest possible number of parameters for adequate representation’. One

of the strengths of ARMA models among the class of linear time series modeling has indeed been their

long acknowledged achievement of parsimony, and considerable experience has led to a central limit

theorem based rule of thumb saying that more than 30 data points are needed for each estimated

parameter.

While parsimony seems to be also a feature that would be desirable in non-linear models, it is not

at all clear that the same rule of thumb should apply here. In fact, recent investigations of wide

classes of quite different non-linear structures indicate that the ‘old’ parameter/data ratio might not

be the right thing to be looking at. In particular, over the last few years several general statistical

models have been proposed which attempt to construct a complex model by forming a convex linear

combination of simple ‘base’ models. Three examples that follow this approach are the mixtures of

experts of Jacobs et al. (1991), and in particular its incarnation in terms of the MixAR models that

we are proposing, the method of ‘bagging’ introduced by Breiman [cf. Breiman (1998) for a detailed

discussion], and the ‘boosting’ technique reviewed in detail in Freund et. al. (1998). These models are

currently under vigorous investigation within the statistics community. While the specific methodology

of each is slightly different, the overall structure of the final estimation is the same, namely a convex

combination of ‘simple’ estimators. In bagging, a set of bootstrap samples is constructed, an estimator

is formed from each and a convex combination of these estimators is then formed. In boosting, an initial
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estimator is formed based on the data, the data is then re-sampled, giving larger weight to data points

for which the error of the previous estimator is large, and a new estimator is then formed based on

the re-sampled data. Finally, a convex combination is constructed where each estimator is weighted

according to its empirical performance. In the mixture of experts situation, the basic model itself is a

convex combination in the sense that the underlying conditional density assumes the form of a mixture

distribution, with the novelty that the coefficients in the combination are themselves data-dependent.

The associated predictor is then a convex (data-dependent) combination of linear (AR) predictors.

While very little theory has yet been developed, considerable empirical investigation has unquestion-

ably demonstrated that both bagging and boosting lead to excellent performance, in spite of the fact

that in many cases the number of parameters is of the same order as the number of data points. To

be specific, consider for example Breiman’s (1998) study of the performance of ‘arcing’ (a variant of

boosting) on several classification problems. In one scenario, he uses a training set of size 300 to con-

struct a convex combination of 50, 100, 250 and even 500 (!!) classification trees. Clearly the number

of parameters here, for any reasonable definition of ‘parameter’, exceeds the number of samples in

the training set. Quite surprisingly, Breiman finds that aggregating 500 trees drives the test set error

down to nearly the Bayes risk. Moreover, on several benchmark data sets he observes that the test set

(out-of-sample) error decreases with the number of trees in the aggregated classifier. In other words,

increasing the number of parameters far beyond the cardinality of the training set results in superior

out-of-sample performance [for exact details see Breiman (1998, §3.3 and §3.4)]. Similar results have

been reported by Freund and Schapire (1996), experimenting with their boosting algorithm.

Recent theory also seems to indicate that counting parameters may not be adequate for characterizing

the complexity and parsimony of certain classes of models, particularly when convex combinations of

‘simple’ models are used. An interesting and important theoretical contribution is the work of Bartlett

(1998) [see also Bartlett et al. (1996)], where examples of estimators possessing an infinite number of

parameters are presented, for which excellent convergence rates can be established. It turns out that

in these situations there is an alternative quantity, termed the ‘fat-shattering dimension’, conceptually

related to Vapnick-Cervonenkis dimension, which controls the complexity of the model. In this setting,

empirical evidence is even backed up by theoretical results [e.g., Lee et al (1996), and the recent book

by Anthony and Bartlett (1999)].
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While this situation is anathema to the conventional wisdom, it seems that the type of procedures

described above possess some inherent feature which avoids overfitting. To quote Friedman, Hastie and

Tibshirani (1998) “One fascinating issue not covered in this paper is the fact that boosting, whatever

flavor, seldom seems to overfit, no matter how many terms are included in the additive expansion”.

Since the number of terms in their system is directly proportional to the number of parameters, it seems

that in this case the number of parameters is a very poor indicator of the complexity of the model.

Friedman et al. conclude their article with the statement: “Whatever the explanation, the empirical

evidence is strong; the introduction of boosting by Schapire, Freund and colleagues has brought an

exciting and important set of new ideas to the table”.

Overall, the bottom line of all this literature is that when dealing with non-linear models, estimation

involving convex combinations of simple estimators seems remarkably free of the classical problems of

overfitting, and specific algorithms and models (bagging, boosting, arcing, and mixtures of experts)

play a much more significant rôle than is captured by a simple count of parameters.

The connection between this literature and the MixAR model is via the mixture structure of the

latter. Specifically, one defines a Markov structure by taking a transition kernel that is a mixture

(or convex combination) of Gaussian densities, corresponding to local AR models. The important

additional ingredient is to allow the coefficients of the mixture to depend on the data. Consequently,

there is some hope, and partial evidence (but no proofs), that MixAR may also be ‘free’ of the usual

concern of over-parameterisation, as described above.

The proof of the pudding is in the eating, however, and that is the purpose of Section 8, where we look

at a number of examples. In all of these, we split our data set into two parts. The first part, the training

set, was used for model fitting and parameter estimation, and the second for assessing prediction quality.

In all the examples the number of parameters used was large, in one case over half the number of data

points, and so one would expect the fit for a MixAR model to be significantly better on the training set

than that of competing models with fewer parameters. That this is the case is therefore not a surprise.

However, one would also expect ‘overfitting’ to lead to an immediate degradation of predictive capabilty.

This was simply not the case as Tables 1 and 2 in Section 8 indicate.
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5 Probabilistic Properties

In this section we study some basic probabilistic properties of MixAR processes. As in the study of

the simple AR processes, the most fundamental issues involve finding sufficient conditions to ensure

the stochastic stability of the process. In particular, we need to know when a MixAR process will be

stationary, or, equivalently, when a stationary probability measure exists. Since MixAR(m; 1) processes

are Markov, the existence and uniqueness of such a measure imply that the process is ergodic. This is

the minimal regularity we require in order to make useful inferences about the process, since it ensures,

for example, that we can expect to find consistent parameter estimates, and also imply central limit

theorems for estimators.

For MixAR(m; d) processes with d > 1, we use the standard trick of replacing X by the vector process

Yt := Xt−1
t−d . The fact that X is Markov of order d implies that Y = (Yt) is a Markov chain; i.e. Markov

of order 1. We now need to find a stationary distribution for (Yt), a problem which is equivalent to

finding an ‘initial distribution’ for X1, . . . ,Xd−1. Since the first coordinate of Yt follows the sample

path of Xt, ergodic and rate theorems for Yt imply equivalent results for Xt.

To start, we first recall some basic definitions related to the study of Markov chains. We focus on

the scalar case for simplicity, but the setting generalizes directly to vector valued processes. Let X be

a MixAR(m; 1) process, and let π be a probability measure satisfying

π(B) =

∫

R

p(x,B)π(dx), ∀B ∈ B(R),

with

p(x,B) ≡ p(X1 ∈ B|X0 = x)

=
m
∑

j=1

gj(x;θg)ν(B; θjx+ θj,0, σj).

We also write pn(x,B) for the n-step transition probability P (Xn−1 ∈ A|X0 = x). If such a measure

π exists, it is called the invariant probability measure, and we can construct a stationary probability

measure P for the process X using the standard bottom–up method to obtain marginals, followed with

an application of the Kolmagorov extension theorem [for a standard application see Meyn and Tweedie

(1993, pp. 66)]. If π is unique then the process is also ergodic. Under some further conditions, the

rate at which the process settles down to its stationary behavior can also be ascertained. The above
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are the main two measures of stochastic stability that will be employed in the sequel; the following

two theorems summarize sufficient conditions. We treat MixAR(m; 1) processes separately, since a

more detailed analysis can be performed here, and the conditions are more concise. Unfortunately, in

the analysis of the general MixAR process we have only been able to obtain rather strong sufficient

conditions.

For the MixAR(m; 1) case we assume, without loss of generality, that the AR components have been

ordered so that a1 ≤ a2 ≤ · · · ≤ am, where the aj parameterize gj as in (3). The following theorem (as

well as its extension to general MixAR(m; d) processes), is based on sufficient conditions for stochastic

stability of Markov chains on general state space. Our main reference for this is Meyn and Tweedie

(1993). The proof, which is deferred to Appendix A, provides the details, definitions and quotes auxiliary

results from Meyn and Tweedie (1993). Here, and in the sequel, we use the notation xn = O(an) if

lim supn→∞ xn/an <∞.

Theorem 5.1 Let X follow a MixAR(m; 1) model, with m > 1. Suppose θ1 < 1, θm < 1, and θ1θm < 1.

Then, π exists, is unique, and the process is geometrically ergodic. In particular, there exists r > 1 such

that supB∈B(R) |pn(x,B) − π(B)| = O(r−n).

We pause to make several comments on this result.

Remark 5.1 1. The theorem tells us that it suffices to restrict attention to the two local AR(1) models

in the mixture that are ‘dominant’ in terms of the behavior of g1(x;θg) and gm(x;θg) for sufficiently

large positive x values and negative x values respectively. Let us call them the ‘extreme’ models. A

priori, it seems plausible that if all local autoregressive models are stable (in the sense that |θj | < 1),

then the MixAR(m; 1) model would be stable as well. This is in fact correct, but the theorem asserts a

more refined result. Roughly, if the two ‘extreme’ AR models cause an average ‘drift’ towards 0, then

the MixAR(m; 1) model is stable. Note that it suffices to have this so called ‘drift’, and in fact the

two ‘extreme’ AR models need not be stable simultaneously. We note in passing that the conditions

in Theorem 5.1 are similar to the ones obtained for TAR processes by Tong and co-workers [cf. Tong

(1990), §4.1 for more details].

2. The ergodicity of X is sufficient to obtain strong laws of large numbers (via the ergodic theorem), and

12



a central limit theorem (via, say, martingale methods). Both limit theorems are crucial in establishing

large sample properties of estimators, e.g., maximum likelihood. These implications are briefly discussed

in Section 7. Geometric ergodicity, i.e., the property that the n-step transition probabilities converge

in total variation (and weakly) to the marginal stationary distribution with a uniform geometric rate,

also implies that the process is exponentially β-mixing [cf. Bradley (1984), for a discussion of mixing

conditions]. The latter is useful in deriving further probabilistic properties of the process, such as

uniform strong laws for empirical processes driven by MixAR processes.

3. The conditions in Theorem 5.1 are not meant to be exhaustive, but they do cover the obvious cases.

For example, it is easy to check from the proof of the Theorem that if |θj | ≤ 1 and the global parameter

θ ∈ T1 ∩ T2, where T1 = {(θm = 1, θm,0 < 0), (θm = −1, θm,0 > 0)} and T2 = {(θ1 = 1, θ1,0 > 0), (θ1 =

−1, θ1,0 < 0)}, then there exists a unique invariant probability measure π and so the process is ergodic.

We now turn to the general MixAR(m; d) process, with (d ≥ 1). Set

αk ≡ max
j=1,2,...,m

|θj(k)|, k = 1, 2, . . . ,m,

where θj(k) is the k-th component of the parameter vector θj (defining the j-th autoregression in the

MixAR model). Let ‖ · ‖ denote the usual Euclidean norm. The following theorem, the proof of which

is also in Appendix A, establishes sufficient conditions for geometric ergodicity of the MixAR process.

Theorem 5.2 Let X follow a MixAR(m; d) model. Assume that the polynomial

P(z) = zd −
d
∑

k=1

αkz
d−k, z ∈ C

has all its zeros in the open unit disk, z < 1. Then, the vector process Yt = Xt−1
t−d has a unique

stationary probability measure, and is geometrically ergodic in the sense of of Theorem 5.1.

Note that if d = 1, Theorem 5.2 requires that α1 < 1, i.e. max1≤i≤m |θi| < 1. While this is consistent

with Theorem 5.1 (a), which is close to sharp, it is clear that for d > 1 our results are rather stringent.

Further investigation is needed here.
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6 Approximating Non-linear Prediction Functions

In this section we will focus on a basic approximation property of the MixAR model; viz. its ability to

provide high quality prediction for general stationary processes. Our discussion is meant to be indicative

of the flexibility of the model, and not comprehensive.

Consider a strictly stationary, real valued, discrete time process X with E|Xt|2 < ∞. Then it is well

known that the optimal (in mean squared error sense) predictor (generally non-linear) of Xt given the

past (i.e., its past filtration) is the conditional mean. If X is Markov order d, then this is given by the

conditional expectation

f(x) = E[Xt|Xt−1
t−d = x] . (6)

Suppose we propose a MixAR(m; d) model for the underlying process X, which may not, in fact, follow

such a model. One of a plethora of measures of closeness for such an approximation is closeness of

predictions. That, given a sufficiently large m, we can always do well on this count is the content of

Theorem 6.1 following, the proof of which is in Appendix A. We require a little notation first. Let

fm(x;θ)
△
=

∫

R

xP (dx|Xt−1
t−d = x;θ)

=

m
∑

j=1

gj(x;θg)[θ
T
j x + θj,0] (7)

where P (·|Xt−1
t−d = x;θ) is the transition kernel of the MixAR(m; d) process, as in (2). It is clear that if

X is a MixAR process, then fm is the optimal (non-linear) mean square predictor. In general, however,

this will not be the case (i.e., when X is not a MixAR(m; d) process).

Let µ denote the d-dimensional stationary distribution of (Xt, . . . ,Xt+d), and let Lq(Rd, µ), q ∈ [0,∞)

be the space of measurable functions, for which ‖f‖q ≡
∫

|f |qdµ < ∞. Then we have the following

result, which we state for general q, but which is of primary statistical interest when q = 2.

Theorem 6.1 Let X be a strictly stationary order d Markov process. Assume that the d order marginal

µ has a density with respect to Lebesgue measure, continuous and bounded on R
d. Then, for every

q ∈ [1,∞) for which E|Xt|q < ∞, and all ǫ > 0, there exists an m sufficiently large, and a stationary

MixAR(m; d) process, for which

‖f − fm‖Lq(Rd,µ) < ǫ .
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where f and fm are defined in (6) and (7).

Remark 6.1 1. While the result of Theorem 6.1 seems standard at first glance, the proof is a little

tricky. In similar situations, such as the corresponding results for TAR models and their variants [cf.

Tong (1983)], the fact that the state space is being partitioned into clearly defined sets via indicator

(simple) functions makes the approximation of Lq functions technically easier. In contrast, the partition

induced by the weighting functions gj in the MixAR model raises some technical difficulties. In fact, it

is not at all clear whether one generates a ‘rich’ enough partition in this manner.

2. Under stronger assumptions on the underlying true process, one can go beyond Theorem 6.1 and

actually obtain degree of approximation results. For example, suppose that P(Xt ∈ [−K,K]) = 1, for

some finite K, and that f (the prediction function) is ‘smooth enough’, in that f is in a Sobolev ball

W q
r (L); i.e. f has r continuous derivatives whose Lq norms are uniformly bounded over [−K,K]d. In

this case Zeevi et. al. (1998) show that there is a constant c, dependent only on r, d, q and K, such

that

sup
f∈W q

r

inf
fm

‖f − fm‖Lq([−T,T ]d,µ) ≤
c

mr/d
.

7 Parameter Estimation

We now turn to the issues of parameter estimation and statistical inference for MixAR processes. We will

concentrate exclusively on maximum likelihood (ML) methods, and focus on efficient implementation

of the estimation algorithm. Asymptotics are only briefly discussed, as they are based on well known

results on estimation in Markov processes [cf. Billingsley (1961)], and recent results pertaining to ML

estimation in mixtures of experts [cf. Jiang and Tanner (1999, 2000)].

Let DN = {Xt}N
t=1 be a sample from a stationary, ergodic, MixAR(m; d) process. The likelihood

equations are

L(DN ;θ) = p(X1,X2 . . . ,XN ;θ)

= p(X1,X2, . . . ,Xd;θ)
N
∏

t=d+1

p(Xt|Xt−1,Xt−2, . . . ,Xt−d;θ) (8)

with p(x1, x2, . . . , xd;θ) the d-dimensional marginal of the stationary distribution.
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We first tackle the algorithmic problem of obtaining a ML estimator θ̂N of θ from (8). As a non-

linear model, it is not, a priori, clear whether efficient and robust procedures exist for estimating the

parameters of the MixAR(m; d) via the maximum likelihood (ML) method. It turns out however that

a very efficient estimation procedure, the so-called Expectation–Maximization (EM) algorithm [see,

Dempster et al. (1977)] can be applied. This algorithm has been extensively studied and utilized in

related contexts. [See Titterington et al. (1985), for a comprehensive summary.] The algorithm was also

formulated by Jordan and Jacobs (1994) in the context of a regression problem (for i.i.d. data), using

the mixture of experts model. In Jordan and Xu (1996), theoretical convergence results were obtained.

Based on the two cited references, we adapt the algorithm to our situation.

Before discussing the details of the estimation algorithm we make the standard step of neglecting the

terms involving the first d observations in (8), and working with the reduced likelihood equation. On

substituting the transition kernel of the MixAR (2) we have

L(DN ;θ) =

N
∏

t=d+1

m
∑

j=1

gj(X
t−1
t−d ;θg)n(Xt;θ

T
j X

t−1
t−d + θj,0, σj) (9)

with n(x;µ, σ) the Gaussian density. Set

θ̂N ≡ arg max
θ

L(DN ;θ) .

Direct maximization of the reduced likelihood (9), or equivalently its logarithm, needs to be avoided,

essentially because of the complexity arising from the mixture structure of the MixAR transition kernel

which leads to logarithms of sums. To avoid this difficulty, we turn to the EM algorithm.

The essence of the EM algorithm lies in augmenting the original data with a set of missing variables,

which in our set up are chosen to be indicator variables, indicating which of the AR mixture components

generated a given sample. The complete data likelihood then assumes the simple double product form

P (Z|θ) =
N
∏

t=d+1

m
∏

j=1

[

gj(X
t−1
t−d ;θg)n(Xt;θ

T
j X

t−1
t−d + θj,0, σj)

]Ij
t

, (10)

where

Ij
t =

{

1 if Xt is generated by the j-th mixture component,
0 otherwise.

and Z = {Xt, {Ij
t }m

j=1}N
t=d+1 denotes the set of observed and missing variables. The logarithm of (10)

is

logP (Z|θ) =

N
∑

t=d+1

m
∑

j=1

Ij
t log

[

gj(X
t−1
t−d ;θg)n(Xt;θ

T
j X

t−1
t−d + θj,0, σj)

]

(11)
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This is a random variable in the missing data, and so in the next step we take an expectation with

respect to them. Thus, we have the complete expected log-likelihood

Q(θ|θ(k)) ≡ E logP (Z|θ)

=

N
∑

t=d+1

m
∑

j=1

τ
(k)
t,j log[gj(X

t−1
t−d ;θg]

+

N
∑

t=d+1

m
∑

j=1

τ
(k)
t,j log

(

n(Xt;θjX
t−1
t−d + θj,0, σj)

)

(12)

where the superscript (k) denotes the iteration step of the algorithm, θ
(k) denotes the parameter vector

for that iteration, and E(·) is the expectation operator with respect to the distribution of the missing

data.

The defining equation for τ
(k)
t,j is

τ
(k)
t,j =

gj(X
t−1
t−d ;θ(k)

g )n(Xt;θ
(k)
j Xt−1

t−d + θ
(k)
j,0 , σ

(k)
j )

∑m
i=1 gi(X

t−1
t−d ;θ(k)

g )n(Xt;θ
(k)
j Xt−1

t−d + θ
(k)
j,0 , σ

(k)
j )

. (13)

Thus τ
(k)
t,j may be interpreted as the posterior probability of classifying Xt to the j-th class in the

mixture, having observed the lag vector Xt−1
t−d and given the current parameter fit θ

(k).

The process of formulating (12) and (13) is called the expectation step (E). With the complete likeli-

hood Q at hand, we now turn to the second step of the EM algorithm, namely the maximization step

(M). The objective of the maximization step is to maximize Q(·|θ(k)), and consequently [see the proofs

in Dempster et al. (1977) and Wu (1983)], the likelihood (9) is maximized as well. Differentiating with

respect to θ and going through some algebra yields the parameter update equations

σ
(k+1)
j =

(

1
∑N

t=d+1 τ
(k)
t,j

N
∑

t=d+1

τ
(k)
t,j [Xt − θ

(k)
j Xt−1

t−d − θ
(k)
j,0 ][Xt − θ

(k)
j Xt−1

t−d − θ
(k)
j,0 ]T

)1/2

[

(θ
(k+1)
j )T , θj,0

]T

= (R
(k)
j )−1c

(k)
j

θ
(k+1)
g = θ

(k)
g + α

∂Q(θ)

∂θg

∣

∣

∣

∣

θ=θ
(k)

(14)

where the matrix Rj and the vector cj are given by

R
(k)
j =

N
∑

t=d+1

τ
(k)
t,j Xt−1X T

t−1

c
(k)
j =

N
∑

t=d+1

τ
(k)
t,j Xt−1xt , (15)
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and the (d + 1)-dimensional vector Xt−1 is given by X T
t−1 =

[

(Xt−1
t−d)T , 1

]

. Note that, in principle,

the update of θg is not given by an explicit equation, and so requires numerical optimization. In this

work we use the steepest ascent algorithm, as evident in the update equation, where α is the step size

obtained from a line search. By defining this step of steepest ascent we are actually in the framework of

the GEM (generalized EM) algorithm [cf. Dempster et al. (1977)], although for consistency we continue

refering to it simply as EM.

One of the main advantages of the above estimation algorithm is its straightforward implementation.

The global convergence result given in Proposition 7.1 asserts that under quite general conditions, the

algorithm will terminate. As far as our practical experience with the algorithm is concerned, we have

not experienced any problems in quite a few test cases which we investigated, some of which are reported

in Section 8. Slow convergence has been noted, however. As in all non-linear optimization problems

the usual ‘rule of thumb’ applies, namely, one should experiment with multiple initial conditions.

In summary, the algorithm is as follows.

Algorithm 7.1

1. Initialize: Fix δ > 0 ( a tolerance parameter), set k = 0 (counter), and set an initial parameter

value θ
(0).

• E step: Compute the τ
(k)
t,j in (13).

• M step:

M1. Compute σ
(k+1)
j ,θ

(k+1)
j , θj,0 for j = 1, 2, . . . ,m using the re-estimation equations in (14).

M2. Update the value of θ
(k)
g by performing one step of steepest ascent as given in the last

equation in (14).

2. Stopping rule: Compute the new value of Q(θ(k+1)|θ(k+1)) and inspect the ascent condition

∣

∣

∣
Q(θ(k+1)|θ(k)) −Q(θ(k)|θ(k))

∣

∣

∣
> δ .

If this holds then increment k and goto E, else terminate with the current value of θ.
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Having cast the optimization problem as an EM algorithm one can utilize the theoretical results

concerning its convergence properties. In particular, it is well known that the local convergence rate

of the EM algorithm is linear [cf. Redner and Walker (1984)]. A detailed discussion of convergence

properties of the particular variant presented above is beyond the scope of this paper. Some details can

be found in the work of Jordan and Xu (1996) on the EM algorithm applied to mixtures of experts.

However, for completeness of presentation we give the following proposition, which summarizes the key

characteristic. A sketch of the proof, which is quite standard, is given in Appendix A.

Proposition 7.1 Let L(θ) = logP
(

Xn
d+1;θ

)

, and let {θ(k)} be the sequence produced by Algorithm

7.1. Suppose that that the sequence {θ(k)} is contained in a compact subset of R
2m(d+1). Then,

(1) All limit points of {θ(k)} are stationary points of L(θ)

(2) L(θ(k)) converges monotonically to L∗ := L(θ∗), for some stationary point θ
∗.

If in addition {θ : L(θ) = L∗} = {θ∗}, then

θ
(k) −→ θ

∗

as k → ∞.

Note, that in order to obtain convergence of the sequence θ
(k) one needs to impose the more strict

condition of the limit set of stationary points being a singleton. Consequently, under the conditions of

Proposition 7.1, we have that θ
(k) converges to θ̂N , the ML estimator, if this maximizer is the unique

stationary point of the likelihood.

We complete this section with a brief discussion of the properties of the ML estimator, starting

with the issue of identifiability. In mixture models, this is a rather subtle point which requires special

interpretation. In what follows, we adopt the convention of distinguishing between parameterizations,

only if they are not permutations on the index class j = 1, 2, . . . ,m (i.e. a simple relabeling among

classes). For more details see the review paper by Redner and Walker (1984). The only point that

does require some care arises from the fact that in our case the means of the Gaussian components

are affine transformations of the lag vector, µj = θ
T
j xt−1

t−d + θj,0, and not fixed parameters. However,
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distinct parameterizations (θj , θj,0) will necessarily result in µj = µi only on sets of Lebesgue measure

0 (hyperplanes in R
d). In addition, we require that the parametrization of the weight functions gj be

defined via the first m− 1 (in lexicographical order, say) vectors θg. This is due to the normalization

of the gj ’s. In what follows, we assume the model is identifiable in the above sense. For more details on

the issue of identifiability see the recent work by Jiang and Tanner (2000, Theorem 1 and Corollary 1).

Assume that the MixAR process is both stationary and ergodic, sufficient conditions for which are

given in Theorems 5.1 and 5.2. Let Yt = (Xt, . . . ,Xt−d+1) be the usual vector valued Markov process,

and set

u(Yt−1,Yt;θ) ≡ log p(Yt|Yt−1;θ).

Let uk and ukℓ denote the first and second order derivatives of u(w, z;θ) with respect to the components

of θ. Let J = (Jkℓ) be the Fisher information matrix, with Jkℓ ≡ E[ukuℓ]. The empirical counterpart

is easily obtained by taking the expectation w.r.t. the empirical distribution. Then , under mild side

conditions, Theorems 2.1 and 2.2 of Billingsley (1961, pp. 10-14) apply, and establish that the MLE

θ̂N is a consistent, and asymptotically normal estimator of θ0 (the underlying parameter vector of the

MixAR process), so that

θ̂N
p→ θ0, and

√
N(θ̂N − θ0) ⇒ N (0, J−1), as N → ∞,

where
p→ denotes convergence in probability, and ⇒ denotes convergence in distribution. We do not

pursue the technical details of these arguments, which are somewhat tedious, but the essential arguments

follow as in the i.i.d. case which is treated nicely in Jiang and Tanner (1999).

8 Numerical Examples

We will now illustrate the power and versatility of the MixAR model by applying it to simulated data

and some benchmark time series. In our study, linear (ARMA) models, as well as threshold (TAR)

models, will in general constitute the reference point; in doing so we quote the best results cited in the

literature when available.

In the past few years, neural networks have become a popular tool in both modeling and forecasting

in many fields. As a parametric model, they have been applied to problems of signal processing, time
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series analysis and prediction. [For a review and recent contributions see Weigend and Gershenfeld

(1994).] Although neural nets are not mainstream statistical models for time series analysis, their

recent popularity and extensive use has led us to include them as yet another reference point. When

referring to a neural network model NN(m; d) we mean a feed-forward network, with an input layer of

dimension d, a hidden layer withm sigmoidal units, and one linear output unit. This network realizes the

function fm(x) =
∑m

j=1 αjσ(wT
j x + bj) with σ(x) being the sigmoid function σ(x) = 1/(1 + exp(−x)),

and αj , bj ∈ R, wj ∈ R
d. For more details see Weigend et al. (1990), and Granger and Teräsvirta

(1993).

8.1 Preliminaries

The following applies to the time series analyzed in Section 8.4 and 8.5 respectively. Each data set was

partitioned into two (or more) subsets. The initial portion was used for estimation purposes, and so is

referred to as the training set. The second subset was not revealed during the estimation phase, and

was subsequently used to evaluate the performance of the fitted model. This subset will be referred to

as the prediction set. This is particularly important to keep in mind when reading the results, since

in both benchmark time series the fitted MixAR model involves a number of parameters that is of the

order of 1/3–1/2 of the number of observations in the training set.

In one case (the Lynx trapping sequence) we applied a logarithmic variance stabilizing transforma-

tion; all reference to the series will henceforth be understood to be refering to the transformed series.

Also, sequences were normalized using a linear transformation to the interval [0, 1], so as to avoid stan-

dard numerical problems associated with the non-linear programming part of the estimation algorithm.

Prediction values were transformed back to the original scale. The estimation algorithm that was im-

plemented was the EM variant discussed in Section 7, using MATLAB code. In the sequel we will use the

normalized mean squared error which is denoted NMSE for brevity. This accuracy measure is defined

as follows. For any subset of the time series S, and any predictor X̂,

NMSE(S, T ) =

∑

t∈S [Xt − X̂t(X
t−1
t−d ; T )]2

∑

t∈S [Xt − X̄(S)]2

=
1

σ̂2
S

1

|S|
∑

t∈S

[Xt − X̂t]
2 . (16)

Where T denotes the training set, X̄(S) is the empirical mean over S, and X̂t(X
t−1
t−d ; T ) and is the
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predictor based on the parameters estimated using the set T . The notation | · | means the cardinality of

a set. It is quite obvious that this global measure is rather coarse, in particular in our setting where the

transition kernel of the MixAR Markov chain is a mixture, and thus not unimodal. However the NMSE

is such a standard and frequently used measure of fit, that we will use it here as well. In particular, it

enables an easy comparison of the performance of MixAR with other models, as presented in Sections

8.4 and 8.5.

To shed some light on the dynamics of the MixAR model, and in particular the weighting function

gj(·) which determines the local AR behavior, we present for one test case the entropy of the probability

weights {gj} defined as

H{g}(X
t−1
t−d = x) = −

m
∑

j=1

gj(x;θg) log2 gj(x;θg),

for each value of the lag-vector, and is a measure of the extent to which the AR models are ‘mixed’.

The extreme points are the assignment of probability one to a particular AR model (entropy 0), and a

uniform distribution over all m models (entropy log2m).

8.2 MixAR Model Specification

To specify a MixAR(m; d) model, one must determine the number of linear AR models involved (m)

and the maximal lag size (d).

1. Determining the lag size (d): Since the MixAR model has local AR models, we anticipate

that the order of these models can be roughly determined in the same manner as in the case of

linear models (e.g, via spectral analysis). In this respect, the local linear structure of MixAR

is essential to make this ‘leap of faith’. In practice, our numerical results seem to confirm that

this is not a bad approximation. A careful look at the dynamics of the MixAR process (see for

example Figures 3 and 5) seem to indicate that this may not be as big a ‘leap’ as it may seem

at first glance. Note that without the local linear structure we would not be able to approach

the problem in this straightforward way and would have to resort to methods from non-linear

dynamical systems.
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2. Determining the number of AR models (m): We propose a rather simple minded algo-

rithm for model specification. Again, our approach makes use of the fact that the MixAR is a

combination of local linear models. Schematically, we propose

Set m=2

Set precision level delta > 0

Call estimation_algorithm(m)

While all |parameters_AR_j - parameters_AR_i|> delta do

m=m+1

call estimation_algorithm(m)

End

This amounts to gradually increasing the number of local models until the parameters of two local

AR models ‘degenerate’, in the sense that the differences between parameter values are below a

specified threshold δ. In practice, this degeneracy occurs rather dramatically, so that the issue of

setting δ does not seem to pose a difficulty.

Remark 8.1 The ‘model selection’ criterion we propose for setting m is subject to immediate concerns.

It is heuristic, and does not build on a rigorous procedure such as hypothesis testing. Moreover, given

the structure of the MixAR model, (see the discussion in Section 4), one can expect that for moderate

length time series, the fitted model will end up with a number of parameters that is a sizable fraction

of the number of observations. This is what we have observed in practice, and in particular in both of

the benchmark time series we analyze below. It thus seems unreasonable to expect that the asymptotic

considerations behind the usual variable/model selection methods could be justified and applied in an

automated fashion. At this point we do not have an alternative solid theory to offer. However, we

believe strongly that until such a theory emerges a simple minded heuristic is preferable to false use of

more ‘rigorous’ procedures. Our practical experience with the MixAR model, the estimation algorithm

and the crude ‘model selection’ procedure, indicates that this ‘rule of thumb’ seems to work quite well.
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8.3 Simulated TAR Data

We start with an example of data generated by a TAR model. As explained in Section 3, the MixAR

model should be capable of reproducing TAR dynamics, and so the fitted parameters from a simulated

TAR data set should be consistent with the local linear structure of the that model.To see how this

works, consider a time series constructed from two linear regimes as follows:

Xt =

{

0.8Xt−1 + 1 + εt Xt−1 < 0
−0.5Xt−1 − 0.6 + εt Xt−1 ≥ 0

where εt ∼ N (0, σ2) with σ = 0.2. This is an example of a first order TAR model, TAR(2;1,1), with

the same noise level in each region. We simulated 100 data points from this model, and used them

as a training set for a MixAR(2; 1), composed of two local AR(1) models. Figure 1 summarizes the

performance results of the MixAR(2; 1). The local patterns may be best understood from Figure 1(b),
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Figure 1: Analysis of TAR generated data. (a) Simulated data points and local AR models fitted by
the MixAR(2; 1) model (solid line), observed in (Xt,Xt−1); (b) local AR model probabilities g1(·) and
g2(·) respectively.
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showing the two AR(1) models that had been fitted, superimposed on the TAR generated data (viewed

in the lagged variable plane). The parameter estimates for the two AR models were respectively,

θ1 = 0.7501, θ1,0 = 0.9244 for the first, and θ2 = −0.6004, θ2,0 = −0.4655 for the second. It is clear

from viewing Figure 1(b) that the state-dependent probabilities (g1 and g2) degenerate in this case,

thus best approximating the underlying threshold model generating the data. Indeed, the magnitude

of the elements of θg (parameterizing the gj ’s) was very large (on the scale of 100), enabling the type of

behavior seen in Figure 1(b). Together, the results shown in Figure 1 demonstrate that the MixAR(2;1)

exactly captures the essence of the underlying stochastic process. We note in passing that the essence of

this example is qualitative. Clearly, one observes that the estimated parameters of the local AR models

have non-negligible bias. However, the point to be taken here is that the essence of the dynamics of the

underlying process are well captured.

8.4 Canadian Lynx Time Series

Analysis of the Canadian lynx time series is summarized in Figure 2. Recall, we analyze the series after

applying a logarithmic (base 10 logarithm) variance stabilizing transformation. Observations from the

period of 1821–1920 constituted the training set, while 1921–1934 was used as the prediction set. The

graphs display a normalized time scale; 1–93 training set, and 94–107 is the prediction set. Using the

model specification procedure outlined in Section 8.2, we have chosen a MixAR(3; 6) that utilizes three

AR(6) models, thus having a total of 45 parameters. We should note that spectral analysis leads one

to entertain two possibilities for the lag size: there is one dominant peak at ≈ 10 years, and the second

at ≈ 5 [see the discussion in Tong (1990), p. 365, for further details]. We ended up considering a model

with lag d = 6, since we found it to performs marginally better than the model with d = 5. The values

of the estimated parameters are given in Appendix B.

Note that the realization of the log lynx data deviates from the anticipated reversibility structure of a

Gaussian linear model, as it rises to, and falls from, its local maximum at different rates. Consequently,

it is natural to consider a non-linear model. The MixAR captures this phenomenon as different AR

models are ‘assigned’ to the rising and falling patterns accordingly, as shown in Figure 2(d). For the

estimation portion of the sequence, the residual error sequence seems reasonably random; i.e., the

residual ACF and PACF do not show serial correlation. The details are omitted.
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Figure 2: Analysis of the log transformed Canadian lynx time series (1821-1934). (a) The log lynx
time series. (b) One step prediction of the MixAR(3; 6) model (+, line) for the training set (1-93)
and prediction set (94-107), superimposed on the original data series. (c) Entropy H(g) of the AR
component probabilities {gj}. (d) Most probable AR model (largest value of {gj}3

j=1).
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To contrast the performance of the MixAR with other models, we quote results that have been

obtained in analyzing the log-lynx time series using the following models.

(i) A linear model: AR(12) given in Brockwell and Davis (1991, p. 550)

(ii) A threshold model: TAR(2;8,3) studied in Lim and Tong (1980) [see also Tong (1983), p. 190].

(iii) Two parsimonious non-linear models: a bilinear model considered by Subba and Gabr (1984, p.

204), and an AR(2) random coefficient varying model studied by Nichols and Quinn (1982, p.

144). The results are taken from Brockwell and Davis (1991, p. 552).

Model Training set Prediction set

AR(12) 0.1159 0.1392
TAR(2; 8, 3) 0.1320 0.1052
Bilinear — 0.0964
Random coefficient varying AR(2) — 0.0981
MixAR(3; 6) 0.1214 0.0732

Table 1: NMSE results for the log-lynx series training and prediction sets

The performance of the MixAR can probably be best appreciated by noting, from Table 1, the

significant decrease in prediction error when using the MixAR model, as compared to the other models

listed there. What is particularly interesting is that the fit on the training set is not notably better for

the highly parametrized MixAR model, compared with the more ‘parsimonious’ TAR model, although

a priori one might have expected this. Also, note that the significantly reduced prediction error is

also surprising, since the large number of parameters in the MixAR model would suggest overfitting

resulting in reduced out-of-sample performance.

Some further evidence supporting the prediction quality of MixAR can be drawn from Figure 3, which

depicts the one-step predictions for the prediction set. Figure 3(b) shows the state dependency of the

model; different patterns are described by the local AR models. It is clear from Figure 3(a) that the

resulting predictions track the the out-of-sample values very well.

8.5 Sunspots Time Series

The Wölfer sunspot number data set is perhaps one of the most extensively studied time series in the

literature; it makes a natural benchmark. Although yearly averages of this sunspot activity have been
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Figure 3: MixAR forecasting characteristics for the 14 point prediction set of the log–transformed
Canadian lynx time series. (a) Prediction set and MixAR(3; 6) one step prediction performance (+,
line), superimposed on the original series. (b) Probabilities assigned to the three local AR models.
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recorded since 1700, the exact underlying mechanism has not yet been accounted for. The rise to peaks

tends to be sharper than the subsequent falling pattern, leading to the assumption of a non-linear

structure [see, e.g., Tong (1990), §7.3, for a detailed discussion].

The data set was divided into a training set (1700-1920) and two prediction sets: Prediction set I

(1921-1955), and II (1956-1979). In the first stage of the specification of the MixAR model we set the

lag size to be d = 12, as the series exhibits a clear cycle of about 10-12 years. The smoothed periodogram

clearly shows 10−1 as the first dominant frequency, and 12−1 as the second [cf. Tong (1990, §7.3) and

Brockwell and Davis (1991, p. 354) for further details]. Following the model specification procedure

outline in Section 8.2, a MixAR(3; 12) model was fitted to the data based on the 221 points in the

training set; a total of 81 parameters are used in the fitted model.
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Figure 4: Analysis of the Wölfer number, sunspot time series. (a) Sunspot time series divided into
the training set (1-209) and prediction set I (210-243), and II (244-267). (b) MixAR(3; 12) one step
prediction (+, line), superimposed on the original data series. (c) Most probable AR model (highest
value {gj}3

j=1).

Figure 4 describes the results obtained for this model; graphs display normalized time scale. The
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MixAR(3, 12) one step prediction fits the training set quite well, but accuracy deteriorates as a function

of time. This is quite evident in the second prediction set, which is characterized with relatively high

variability (σ̂2 = 2852) compared to the training set (σ̂2 = 1174) and first prediction set (σ̂2 = 1674).

For the training set, the residual error sequence seems to pass most reasonable tests for randomness

(e.g., serial correlation and sign tests). The details are omitted. Figure 5 shows the one-step prediction

results and the probabilities assigned to the component AR models for the two prediction sets. Notice

in Figure 4(a) the different rate characterizing the rises to, and falls from, local maxima, and the

approximate 12 year cyclic behavior. It has been argued by several researchers [see the discussion in

Brockwell and Davis (1991), and Tong (1990, §7.3)] that the ‘rise’ patterns and ‘fall’ patterns indicate

non-linear dynamics. In this context the MixAR model apparently captures this behavior by assigning

a linear model to each regime, and using the third for the lower peaks in the series which have a different

fall rate. This is evident in Figure 4(c), as well as the results for the prediction sets shown in Figure

5. The implication is that the model successfully extrapolates the training set patterns to the out-of-

sample new observations in the prediction sets. This is somewhat surprising given the large number

of parameters in the MixAR model relative to the size of the training set (less that 3 observations per

fitted parameter). Another obvious result is the decrease in the prediction quality as we compare the

error of prediction sets I and II in Figure 5)(a) and (c). Note, that from Figure 5)(b) and (d) it is

clear that in the second prediction set only two (out of the three) local AR models are used. This

indicates that this set does not exhibit patterns similar to those contained in the training set and the

first prediction set, which were ‘assigned’ to the third local AR model. Recall also that prediction set

II is exhibits much more variance compared with the training set and prediction set I.

To contrast the performance of the MixAR with other models, we quote results that have been

reported in the literature for the following models.

(i) Linear model: AR(9) obtained by Subba and Gabr (1984, p. 196) using the AIC criterion.

(ii) Threshold models: TAR(2;4,12) reported by Tong [see, e.g., Tong (1983, p. 241)]. The results

appear in Tong and Lim (1980).

(iii) Neural networks: NN(3;12), i.e., a sigmoidal feedforward neural network with 3 sigmoidal units

(‘hidden layer’) and 12 input units. This network realizes the regression function fm(x) = α0 +
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Figure 5: Analysis of the Wölfer number, sunspot prediction set I and II. (a) One-step prediction results
for the MixAR(3; 12) model (+, line) superimposed on prediction set I. (b) Probabilities assigned to
the component AR models, prediction set I. (c) One-step prediction results for the MixAR(3; 12) model
(+, line) superimposed on prediction set II. (d) Probabilities assigned to the component AR models,
prediction set II.
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∑3
k=1 αkσ(wT

k x+bk), with αk, bk ∈ R and wk ∈ R
12. This architecture was studied in the context

of the sunspot series by Weigend et al. (1990).

We summarize the results in Table 2, quoting the results for models (ii) and (iii) from the respective

references. Detailed results for model (i) where not given in the original reference, therefore we used

the model suggested by Subba and Gabr to reproduce the relevant results.

Model Training set Prediction set I Prediction set II

AR(9, 1) 0.1705 0.1099 0.1679
TAR(2; 4, 12) 0.1268 0.0889 0.1448
NN(3; 12) 0.1072 0.0789 0.1837
MixAR(3; 12) 0.1190 0.0862 0.1912

Table 2: NMSE for the training set and both prediction sets in the sunspots time series.

The results summarized in Table 2 clearly show that the MixAR performance is competitive with

both complex nonlinear models (neural networks), as well as more parsimonious ones (AR and TAR).

However, it is also clear that for the second prediction set, the MixAR performance degrades somewhat.

It is worth noting, however, that the models we cite in this study were all regularized (except for the

MixAR model), so as to improve their out-of-sample performance. The AR was model selected using

Akaike’s information criterion [cf. Subba and Gabr (1984) for more details]. The TAR model was also

judiciously specified and model selected [see Tong (1983, pp. 231-241) for the main ideas, and Tong and

Lim (1980) for a more detailed account]. The neural network used by Weigend et al. (1990) was trained

using cross-validation and the number of non-linear functions in the additive expansion was carefully

regularized [cf. §4.1.2 of Weigend et al. (1990)]. The authors discuss the issue of over-fitting and ways

to avoid it in this class of models, in particular the use of cross validation and a method they term

‘weight decay’. In contrast, the MixAR was specified using the procedure outlined in Section 8.2, and

no regularization was incorporated in the specification/model selection procedure. Indeed the model

that was selected had 81 parameters for a data set of length 221. Despite this, there is no substantial

evidence of overfitting in the predictions, in particular in the first prediction set. It seems plausible that

more refined model selection procedures will give rise to improved results.
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9 Concluding Remarks

The main thrust of this paper is two-fold. First, we set out to describe some basic properties of

the MixAR class of models, focusing on stochastic stability, generality, and learning algorithms. The

results and proofs expose a basic fact: the analysis of this class of models is greatly simplified, essentially

made tractable, by the special structure of MixAR models. Secondly, we investigate, via a preliminary

numerical study, whether or not this model is indeed reasonable to apply in practice. The results of

the numerical study emphasize again the same key idea; the combination of local linear models via the

proposed mixture structure gives rise to an intuitive model that is easy to interpret, and performs well.

The results show that, despite the large number of parameters (relative to the short lengths of data sets

we consider), MixAR models do not suffer from substantial degradation in out-of-sample performance.

The interpretability of MixAR models is a key in the heuristic specification procedure we propose.

The MixAR modeling framework does raise a number of interesting questions and challenges. For a

start, we do not currently have a theoretically sound model selection procedure to offer. Rather, we

adopted a rather heuristic approach which exploited the special structure of the MixAR model. This

method was certainly successful in practice. Nevertheless, one would certainly want to develop more

refined, and certainly more automated methods. Moreover, the large number of parameters (relative

to the number of data points) will typically preclude asymptotic analysis, e.g., large sample hypothesis

testing. At this point we do not have any concrete alternative methodology to offer, and consider this

a very important and challenging area for future research. Of course in ‘large enough’ data sets this

issue will not pose a difficulty.

Extensions of the basic model that we have presented here are also clearly of interest. Among these

must be MixAR processes with heavy-tailed noise, and MixARMA processes. Other forms of the

weighting functions gj should also be considered, although we feel confident that the model is reasonably

robust as far as this is concerned.

A Proofs of Theorems

Proof of Theorem 5.1: The proof follows a standard line of attack for analyzing the stability of
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Markov chains over a general state space. An excellent reference, whose results we use throughout the

proof, is Meyn and Tweedie (1993). For brevity we will refer to this as MT. Since the proof involves

several technical details, we will first outline the main steps and ideas.

Step 10: We prove that the Markov chain defined by the MixAR(m; 1) process is λ-irreducible (MT,

p. 87), where λ denotes Lebesque measure. This assures that the chain enters every set A ∈ B(R),

with λ(A) > 0, almost surely in a finite number of steps. It also ensures the existence of a maximal

irreducability measure ψ, which appears in all the main theorems we quote from MT.

Step 20: The proof of geometric ergodicity (and stability in general) relies on finding an appropriate

Lyapunov test function, which satisfies the so-called Foster-Lyapunov conditions. Theorem 16.0.2 of

MT, involves the right conditions for geometric ergodicity. For the application of the last theorem, we

also require that the chain (Xt)t≥0 is aperiodic, but this is readily seen to hold for the MixAR Markov

chain. Note, that condition V1 of MT (p. 190), is sufficient to prove Harris recurrent (MT, p. 200). In

that case, an invariant measure exists, and is unique up to constant multiples. However, it may not

be finite. An application of the stronger criterion V2 (MT, p. 262) and Theorem 11.0.1 (MT, p. 256),

concludes that the invariant measure is finite, and so π exists and is unique. Consequently the chain is

ergodic. As it turns out, the conditions needed to ensure the existence and uniqueness of the (finite)

invariant measure, are tantamount (in this example) to the conditions ensuring geometric ergodicity.

We now turn to the details of the proof. For completeness, recall the transition kernel of the

MixAR(m; 1) process:

p(Xt ∈ B|Xt−1 = x;θ) =
m
∑

j=1

gj(x;θg)ν(B; θjx+ θj,0, σj),

with θ a fixed parameterization, and B ∈ B(R). Here, as before, ν(B;µ, σ) is the probability measure

corresponding to the Gaussian distribution with mean µ and variance σ2. The associated density is

denoted n(x;µ, σ2). For Borel B, define the hitting time

τB = inf{n ≥ 1 : Xn ∈ B} .

10. Proof of λ-irreducability: It is clear that

P (τB <∞|X0 = x) ≥ P (X1 ∈ B|X0 = x) > 0
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for Borel B such that λ(B) > 0, and x ∈ R. The last inequality is due to the fact that the transition

probability kernel possesses an almost everywhere positive density. It follows that the Markov chain

(Xt)t≥0 is λ-irreducible.

20. Proof of geometric ergodicity: We deviate slightly from the notation in MT, in order to clarify some

definitions. From Theorem 16.0.2 (MT, p. 384) it suffices to prove that if for some ρ ∈ (0, 1) there exists

a test function V : R → R
+, a compact set K, and a finite number M such that

(∆V )(x) ≡ E[V (X1)|X0 = x] − ρV (x) ≤
{

M, x ∈ K,
−1, x ∈ Kc,

(17)

then π exists, is unique, and in addition supB |pn(x,B) − π(B)| → 0 at a geometric rate. Here ∆

is defined formally as ∆ ≡ P − ρI, and it is the right definition of drift for our purposes (note that

the definition is slightly different than that used in MT). Note that MT use the concept of petite sets

to generalize the notion of compact sets. However, the transition kernel of the MixAR implies that

it is weak Feller (MT, p. 128), and consequently Proposition 6.2.8 (MT, p. 136) concludes that every

compact set is petite. The issue here is the ‘right’ choice of Lyapunov function V , and corresponding

set K.

From the conditions of Theorem 5.1, there must exist two positive real numbers a and b such that

−a/b < θ1 < 1

−b/a < θm < 1 .

Let us take

V (x) =

{

ax, x > 0,
−bx, x ≤ 0 .

In what follows, let

Φ(z) =

∫ z

−∞

n(u; 0, 1)du ,
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the Gaussian CDF. We will evaluate (∆V )(x) for x ∈ R
+ and subsequently for x ∈ R

−. We have

(∆V )(x) = E[V (X1)|X0 = x] − ρax

(a)

≤ a+ b√
2π

∑

j

gj(x;θg)σj − b
∑

j

gj(x;θg)[θjx+ θj,0]Φ

(

−θjx+ θj,0

σj

)

+a
∑

j

gj(x;θg)[θjx+ θj,0]

[

1 − 2Φ

(

−θjx+ θj,0

σj

)]

− aρx

≤ C1 − b
∑

j

gj(x;θg)θjxΦ

(

−θjx+ θj,0

σj

)

+a
∑

j

gj(x;θg)θjx

[

1 − 2Φ

(

−θjx+ θj,0

σj

)]

− aρx

where (a) follows from evaluating a
∫

R+ un(u;µ, σ)du and b
∫

R−
un(u;µ, σ)du for the m Gaussian com-

ponents of the mixture, and C1 is a constant depending on a, b,maxj |σj | and maxj |θj,0|. Observe

that: (1) g1(x) → 1 for x → ∞, and gj(x) → 0 for j > 1, in particular |gj(x)| ≤ exp{−(θ1 − θj)x}

thus, gj(x)x
k = o(1) for all k ∈ N; (2) Φ : R ∪ {−∞,∞} → [0, 1]. Fix δ ∈ (1 − ρ, 1). Then, by (1)

and (2) there exists r > 0 and an interval K1 =: [−r, r] ⊂ R such that on Kc
1 = [−r, r]c we have

maxj>1 |gj(x)θjx| ≤ δ/m and g1(x) > 1 − δ. There are two cases to consider.

case(i) θ1 > 0 : On Kc we have

−b
∑

j

gj(x;θg)θjxΦ

(

−θjx+ θj,0

σj

)

≤ −bδ − b(1 − δ)θ1x ≤ 0

thus

(∆V )(x) ≤ C1 + aδ + ax
(

(1 − δ)θ1 − ρ)
)

and it is clear that if θ1 < 1 we can choose r1 sufficiently large (and r1 ≥ r) such that on Kc
1 = [−r1, r1]c

we have (∆V )(x) ≤ −1 while (∆V )(x) is clearly uniformly bounded on K1.

case(ii) θ1 < 0 : On Kc we have

−b
∑

j

gj(x;θg)θjxΦ

(

−θjx+ θj,0

σj

)

≤ −bθ1x

while

a
∑

j

gj(x;θg)θjx

[

1 − 2Φ

(

−θjx+ θj,0

σj

)]

≤ aδ + (1 − δ)aθ1x ≤ aδ

thus

(∆V )(x) ≤ C1 + aδ − x
(

b(1 − δ)θ1 + aρ)
)
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and it is clear that if θ1 > −a/b we can choose r2 sufficiently large (and r2 ≥ r) such that on Kc
2 we

have (∆V )(x) ≤ −1 while (∆V )(x) is uniformly bounded on K2.

Combining the two cases, we conclude that for −a/b < θ1 < 1 we can choose r′ = max{r1, r2} such

that K ′ = [−r′, r′] is the desired compact set, associated with our choice of Lyapunov function V . By

symmetry, we can go thru the same arguments for the case of x ∈ R
− and get that for −b/a < θm < 1

we can choose a compact set K ′′ such that the Lyapunov stability condition (17) is met. Summarizing,

we have established that if θ1 < 1, θm < 1 and θ1θm < 1, then for some (all) 0 < ρ < 1 there exists

V and K = K ′ ∪ K ′′, such that the Foster–Lyapunov condition (17) is satisfied. This concludes the

proof.

Proof of Theorem 5.2: As usual, set Yt = [Xt, . . . ,Xt−d+1]
T . That the vectorized Markov chain

Yt is λ-irreducible follows straightforwardly using the same arguments as in the proof of Theorem 5.1.

That it is aperiodic is also easily verified. Motivating the derivations to follow is the choice of the test

function V (y) = ‖y‖2 (the purpose of V (·) is detailed in the proof of Theorem 5.1). Define the following

matrices and vectors

Aj
△
=















θj(1) θj(2) · · · θj(d− 1) θj(d)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















d×d

D
△
=















α1 α2 · · · αd−1 αd

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















d×d

and bj ≡ [θj,0, 0, 0, . . . , 0]T ∈ R
d. Here, and in what follows, set

αk ≡ max
j=1,2,...,m

|θj(k)|, k = 1, 2, . . . ,m,

where θj(k) is the k-th component of the parameter vector θj (defining the j-th autoregression in the

MixAR model). Let {εj,t} be a family of mutually independent, zero mean, Gaussian variables such

that for each j = 1, 2, . . . ,m, {εj,t}t≥0 are independent identically distributed zero mean Gaussian with

variance σ2
j . Set Zj,t ≡ [εj,t, 0, 0, . . . , 0]T ∈ R

d. Let {It}t≥0 be a sequence of mutually independent,

integer valued random variables such that, given Xt−1
t−d ,

It = j with probability gj(X
t−1
t−d ;θg),
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j = 1, . . . ,m. Using these definitions, we can write the MixAR(m; d) process as

Yt = AIt
Yt−1 + bIt

+ ZIt,t. (18)

It is easily verified that ‖Aj‖ > 1 for all j (where ‖ · ‖ denotes the spectral matrix norm) and conse-

quently direct application of the stability criterion, as in the proof of Theorem 4.1, is not immediate.

However, we can apply a variation of the stability criterion, as in Tjøstheim (1989, Lemma 3.1), that

is suited to our setting.

Lemma A.1 (Tjøstheim, 1989) Let Yt be an aperiodic Markov chain, and h a fixed integer. If (Yth)

is geometrically ergodic then so is (Yt).

The same implication holds also for the properties of recurrence, transience, and positive Harris recur-

rence.

Straightforward algebra now yields

Yt+h−1 =

(

h−1
∏

i=0

AIt+i

)

Yt−1 +

h−2
∑

i=0





h−1
∏

j=i+1

AIt+j



bIt+i

+

h−2
∑

i=0





h−1
∏

j=i+1

AIt+j



ZIt+i,t+i + bIt+h−1
+ ZIt+h−1,t+h−1. (19)

Taking conditional expectations of ‖Yt‖ and the It, and applying the triangle inequality yields

E [‖Yt+h−1‖|Yt−1 = y] ≤ E

[∥

∥

∥

∥

∥

h−1
∏

i=0

AIt+i
Yt−1

∥

∥

∥

∥

∥

|Yt−1 = y

]

+E





∥

∥

∥

∥

∥

∥

h−2
∑

i=0





h−1
∏

j=i+1

AIt+j



bIt+i

∥

∥

∥

∥

∥

∥

|Yt−1 = y





+E





∥

∥

∥

∥

∥

∥

h−2
∑

i=0





h−1
∏

j=i+1

AIt+j



ZIt+i,t+i

∥

∥

∥

∥

∥

∥

|Yt−1 = y





+E
[∥

∥bIt+h−1

∥

∥ |Yt−1 = y
]

+ E
[∥

∥ZIt+h−1,t+h−1

∥

∥ |Yt−1 = y
]

≡ E1 + E2 + E3 + E4 + E5 (20)

To evaluate the terms in the above expression we proceed as follows. First, note that

E5 ≤ max
j=1,2,...,m

E [‖Zj,t‖ |Yt−1 = y] ≤ max
j=1,2,...,m

σj ≡ σmax,
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and, similarly,

E4 ≤ max
j=1,2,...,m

‖bj‖ = max
j=1,2,...,m

|θj,0| = α0

The following property of matrix norms, the proof of which is temporarily deferred, will be useful.

Proposition A.1 Let {Ak}k ∈ R
d×d be any finite collection of matrices and let D ∈ R

d×d be such that

|(Ak)ij | ≤ (D)ij for i, j,= 1, 2, . . . , d and for all k. Then

∥

∥

∥

∥

∥

m
∏

k=1

Ak

∥

∥

∥

∥

∥

≤ ‖Dm‖,

where ‖ · ‖ is the spectral matrix norm.

We now evaluate the remaining three terms E1, E2, E3. A straightforward application of Proposition

A.1 gives

E1 ≤ E

[∥

∥

∥

∥

∥

h−1
∏

i=0

AIt+i

∥

∥

∥

∥

∥

‖Yt−1‖|Yt−1 = y

]

≤
∥

∥Dh
∥

∥ ‖y‖,

and

E3

(a)

≤ E





h−2
∑

i=0

∥

∥

∥

∥

∥

∥

h−1
∏

j=i+1

AIt+j

∥

∥

∥

∥

∥

∥

‖ZIt+i,t+i‖|Yt−1 = y





≤
h−2
∑

i=0

∥

∥Dh−1−i
∥

∥E
[

‖ZIt+i,t+i‖|Yt−1 = y
]

(b)

≤
h−2
∑

i=0

∥

∥Dh−1−i
∥

∥σmax

≡ C3(θ, h)

where (a) follows from Minkowski’s inequality, and (b) follows from the the bound on E5. Here C(θ, h)

is a constant depending only on the parameters of the MixAR model θ and on h. The same steps

applied to E2 yield

E2 ≤
h−2
∑

i=0

∥

∥Dh−1−i
∥

∥α0 ≡ C2(θ, h).

To finish the proof observe that

det (zI − D) = P(z),
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and by assumption all roots of P(z) are less than 1 in modulus. Thus, |λmax(D)| < 1, where λmax(D)

is the largest eigenvalue of D in modulus. Consequently, since limh ‖Dh‖1/h → λmax(D), there exists a

ρ < 1 and h(ρ) such that ‖Dh(ρ)‖ ≤ ρ. This implies that for the above choice of ρ and h(ρ) we have

E [‖Yt+h−1‖|Yt−1 = y] ≤
∥

∥Dh
∥

∥ ‖y‖ + C2 + C3 + α0 + σmax

≤ ρ‖y‖ + C(θ, h, ρ) .

To apply the stability criterion for geometric ergodicity in Theorem 4.1, let V (y) = ‖y‖, and K =

{y : ‖y‖ ≤ 2C/(1 − ρ)}. Consequently, on Kc, we have

E [‖Yt+h−1‖|Yt−1 = y] ≤ ρ‖y‖ + C ≤ ρ+ 1

2
‖y‖ (21)

by choice of Kc. Since (ρ+ 1)/2 < 1, the proof is complete.

Remark A.1 Tjøstheim (1989, Theorem 4.5) gives sufficient conditions for the stability of a multi-

variate TAR(m; d) model [for further discussion see Tong (1990)]. In spite of the apparent similarity

in the formulation of the MixAR(m; d) in (18) and the TAR(m; d) model, we cannot apply Tjøstheim’s

result, since the k-cycle assumption made there is not plausible in the MixAR setting.

We now prove Proposition A.1. Let A ∈ R
d×d and D be such that |Aij | ≤ Dij (in all cases we refer

to the i, j elements in the matrices in question). Denote |y| = [|y1|, |y2|, . . . , |yd|]T . Then

‖A‖ ≡ sup
y 6=0

‖Ay‖
‖y‖

(a)

≤ sup
y 6=0

‖D|y|‖
‖y‖

(b)
= ‖D‖

where (a) follows since |Ay| ≤ D|y| by the triangle inequality and (b) follows from the fact that

the matrix D has all elements non-negative, thus allowing us to restrict attention to vectors y with

non-negative elements in taking the supremum.

Now, let A,B ∈ R
d×d and D be such that |Aij |, |Bij | ≤ Dij . Then

|(AB)ij | =

d
∑

k=1

(A)ik(B)kj ≤
d
∑

k=1

|Aik||Bkj | ≤
d
∑

k=1

(D)ik(D)kj = (D2)ij

and using the previous result we have that ‖AB‖ ≤ ‖D2‖. Repeated application of the above concludes

the proof.
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Proof of Theorem 6.1: The proof proceeds in three steps, somewhat condensed to avoid introducing

machinery and notation that are beyond the scope and purpose of this paper.

10: The first step establishes that f ∈ Lq(Rd, µ), where µ is the stationary distribution of Xt−1
t−d .

∫

|f(x)|qµ(dx) =

∫

|E[Xt|Xt−1
t−d = x]|qµ(dx)

≤
∫

E
[

|Xt|q |Xt−1
t−d = x

]

µ(dx)

= E|Xt|q,

which is finite by assumption.

20. The second step is to show that the model prediction function fm(x;θ) =
∑

j gj(x;θg)[θ
T
j x + θj,0]

is in the vector space Lq(Rd, µ).

∫

|fn(x;θ)|qµ(dx) =

∫

∣

∣

∣

∣

∣

∣

m
∑

j=1

gj(x;θg)[θ
T
j x + θj,0]

∣

∣

∣

∣

∣

∣

q

µ(dx)

≤
∫ m
∑

j=1

gj(x;θg)|θT
j x + θj,0|qµ(dx)

≤ 2q−1

∫ m
∑

j=1

gj(x;θg)|θT
j x|qµ(dx) + 2q−1

∫ m
∑

j=1

gj(x;θg)|θj,0|qµ(dx)

≤ 2q−1

∫ m
∑

j=1

gj(x;θg)‖θj‖q‖x‖qµ(dx) + 2q−1 max
j

|θj,0|q

≤ 2q−1 max
j

‖θj‖q

∫

‖x‖qµ(dx) + c1

≤ 2q−1c2d
qE|Xt|q + c1,

and the last line is finite by the moment assumption on Xt and since the parameters take values in

compact sets. For an explicit identification of these compact sets the reader is referred to Zeevi et

al. (1998).

30. The third step is an application of Theorem A.1 of Zeevi et al. (1998), adapted to the above functional

class. A straightforward adaptation of Theorem A.1 in this paper gives us the following lemma.

Lemma A.2 Let K ⊂ R
d be compact. For any f ∈ Lq(K,λ), and any ǫ > 0, there exists an m

sufficiently large (depending on f and ǫ), and a corresponding function f∗m(x;θ) =
∑m

j=1 αjgj(θg;x),

so that

‖f − f∗m‖Lq([−1,1]d,λ) < ǫ,
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where λ denotes the Lebesgue measure on R
d.

Note that a consequence of the proof is that it actually suffices to work with a MixAR with locally

constant components; i.e. AR models that have only a constant term. Although this is hardly very

interesting statistically, a corollary of the lemma is that the coefficients θj may be chosen with arbitrary

restrictions without affecting the inherent approximation capacity of the model prediction function fm.

Now, since f, fm ∈ Lq(Rd, µ) there exists a T ∈ R such that

∫

Rd\[−T,T ]d
|f − fm|qdµ < ǫ

2
,

and, since µ has a bounded continuous density function,

∫

[−T,T ]d
|f − fm|qdµ ≤ C

∫

[−T,T ]d
|f − fm|qdλ,

which subsequently can be made smaller than ǫ/2 (for m sufficiently large) following Lemma A.2.

Sketch of Proof for Proposition 7.1: The key here is an application of the so-called global con-

vergence theorem (cf. Luenberger, 1973, p. 125). Since both Q(·;θ) and Q(θ; ·) are continuous for all

θ ∈ Θ, and by the basic properties of the steepest ascent algorithm [cf. Luenberger (1973), ch. 7.6]

we have, using Corollary 2 of Luenberger (1973, p. 125), that the composite algorithm given in 7.1

is a closed point-to-point mapping. Thus, by Theorem 1 and Theorem 4 of (Wu, 1983) we have the

result.

B Specification of Models in Section 8

In this section we present the full specification of the models used in Sections 8.4 and 8.5.

B.1 Models Used for Canadian Lynx Time Series

For each model used in Section 8.4 we give the values of all estimated parameters. In all cases these

are quoted from the respective sources, excluding of course the MixAR model.

1. AR(12): This model was fitted using the AICC (corrected Akaike’s Information Criterion) by
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Brockwell and Davis (1990, p. 550). They obtain

Xt = 1.123 + 1.084Xt−1 − 0.477Xt−2 + 0.265Xt−3 − 0.218Xt−4 + 0.180Xt−9 − 0.224Xt−12 + εt,

with Eε2t = 0.0396.

2. TAR(2;8,3): This model was fitted by Tong and Lim (1980). We quote the estimated model from

Tong (1983, p. 190).

Xt =











0.5240 + 1.0360Xt−1 − 0.1760Xt−2 + 0.1750Xt−3 − 0.4340Xt−4 + 0.3460Xt−5

− 0.3030Xt−6 + 0.2170Xt−7 + 0.0040Xt−8 + ε
(1)
t if Xt ≤ 3.1160

2.6560 + 1.4250Xt−1 − 1.1620Xt−2 − 0.1090Xt−3 + ε
(2)
t if Xt > 3.1160

where the Var[ε
(1)
t ] = 0.0255 and Var[ε

(2)
t ] = 0.0516.

3. A bilinear model studied by Subba and Gabr [see, e.g., Subba and Gabr (1984, p. 204)]. This

model takes the general form

Xt + a1Xt−1 + a2Xt−2 + a3Xt−3 + a4Xt−4 + a9Xt−5 + a12Xt−12

= a0 + b3,9Xt−3εt−9 + b9,9Xt−9εt−9 + b6,2Xt−6εt−2 + b1,1Xt−1εt−1

+ b2,7Xt−2εt−7 + b4,2Xt−4εt−2 + εt

With fitted parameters (quoted from Subba and Gabr’s study):

a1 = −0.7728 a2 = 0.0916 a3 = −0.0831 a4 = 0.2615
a4 = 0.2615 a9 = −0.2256 a12 = 0.2458 a0 = −1.4863
b3,9 = −0.7893 b9,9 = 0.4798 b6,2 = 0.3902 b1,1 = 0.1326
b2,7 = 0.0794 b4,2 = −0.3212

4. A random coefficient AR(2) studied by Nicholls and Quinn [see, e.g., Nicholls and Quinn (1982),

p. 143]. We quote the parameters from their study.

Xt = 2.8802 + (1.4132 + Z
(1)
t )(Xt−1 − 2.8802) + (−0.7942 + Z

(2)
t )(Xt−1 − 2.8802) + εt

where {Z(1)
t , Z

(1)
t } are i.i.d. multivariate zero mean Gaussian r.v.’s independent of all other r.v.’s,

with

E[Z
(1)
t , Z

(1)
t ][Z

(1)
t , Z

(1)
t ]T =

[

0.0701 −0.0406
−0.0406 0.0492

]

and Eε2t = 0.0391.
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5. MixAR(3;6), fitted via the procedure discussed in Section 8.2, and using Algorithm 7.1. Recall

that we had normalized the log-lynx time series to the unit interval using a translation and re-

scaling. The fitted model was

Xt =



































1.1491Xt−1 − 0.3656Xt−2 + 0.2932Xt−3 − 0.4552Xt−4 + 0.4189Xt−5

− 0.1683Xt−6 + 0.1441 + ε
(1)
t w.p. g1(X

t−1
t−d ;θg)

0.5283Xt−1 + 0.9234Xt−2 − 1.1189Xt−3 + 0.5174Xt−4 − 0.6379Xt−5

+ 0.3086Xt−6 + 0.1929 + ε
(2)
t w.p. g2(X

t−1
t−d ;θg)

1.3208Xt−1 − 0.5921Xt−2 + 0.0661Xt−3 − 0.5637Xt−4 + 0.1120Xt−5

+ 0.1578Xt−6 + 0.2841 + ε
(3)
t w.p. g3(X

t−1
t−d ;θg)

with the estimated parameters for the multinomial logit function gj being

t− 1 t− 2 t− 3 t− 4 t− 5 t− 6
j = 1: 0.8784 1.7511 4.6790 10.3615 0.3490 3.9757 -5.5212
j = 2: 1.1866 -4.5887 -10.3318 -17.8458 -9.8066 -5.7954 12.1835
j = 3: -1.5152 1.8276 5.3746 6.9576 8.6806 2.3046 -5.8366

where the displayed values are for bj , aj,1, . . . , aj,6 for j = 1, 2, 3. Recall

gj(x,θg) ≡
exp(aT

j x + bj)
∑m

k=1 exp(aT
k x + bk)

, j = 1, . . . ,m .

The variances associated with the local AR models were respectively: 0.0051, 0.0015, and 0.0340

(these numbers have already been scaled up to correct for the transformation to [0, 1]).

B.2 Models Used for Sunspots Time Series

For each model used in Section 8.4 we give the values of all estimated parameters. In all cases these

are quoted from the respective sources, excluding the case of the MixAR model.

1. AR(9): This model was fitted using the AIC (Akaike’s Information Criterion) by Subba and Gabr

(1984, p. 196). They obtain

Xt = 8.5086 + 1.2163Xt−1 − 0.4670Xt−2 − 0.1416Xt−3 + 0.1691Xt−4

−0.1473Xt−5 + 0.0543Xt−6 − 0.0534Xt−7 + 0.0667Xt−8 + 0.1129Xt−9 + εt,

with Eε2t = 199.27.

2. TAR(2;4,12): This model was fitted by Tong and Lim (1980)

Xt =















10.544 + 1.6920Xt−1 − 1.1592Xt−2 + 0.2367Xt−3 + 0.1503Xt−4 + ε
(1)
t if Xt ≤ 36.6

7.8041 + 0.7432Xt−1 − 0.0409Xt−2 − 0.2020Xt−3 + 0.1730Xt−4 − 0.2266Xt−5

+ 0.0189Xt−6 + 0.1612Xt−7 − 0.2560Xt−8 + 0.3190Xt−9 − 0.3891Xt−10

+ 0.4306Xt−11 − 0.3970Xt−12 + ε
(2)
t if Xt > 36.6
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where the Varε
(1)
t = 254.64 and Varε

(2)
t = 66.8.

3. NN(3;12) fitted by Weigend et al. (1990). Recall that the neural network realizes the additive

expansion

fm(x) = α0 +

3
∑

k=1

αkσ(wT
k x + bk) ,

with αk, bk ∈ R and wk ∈ R
12. In their analysis Weigend et al. (1990) normalize the sunspots series

to the unit interval by dividing all values by 191.2. Their estimated parameters are: α0 = 0.798,

α1 = −1.565, α2 = 2.247 and α3 = −1.599. The corresponding values of bj ’s were b1 = −0.858,

b2 = −1.960 and b3 = −0.512. The values for the vectors wj are as follows (for j = 1, 2, 3)

t− 1 t− 2 t− 3 t− 4 t− 5 t− 6 t− 7 t− 8 t− 9 t− 10 t− 11 t− 12
0.114 -0.200 0.317 0.030 0.500 -0.129 -0.255 -0.060 -1.101 -0.328 -0.646 0.153
0.814 -3.103 -0.995 -0.168 0.533 0.000 0.414 1.078 -0.048 -0.039 -0.094 -0.205
-4.010 -0.362 -0.293 -0.160 -0.208 0.215 0.198 0.869 0.703 0.130 0.080 0.000

The estimated (scaled up) variance was: σ2 = 125.87.

4. A MixaR(3;12): Recall that we had normalized the time series (by dividing the values by 191.2)

so that values lie in the unit interval. The parameters were fitted using Algorithm 7.1.

Xt =



























































0.7755Xt−1 + 0.0021Xt−2 − 0.1744Xt−3 + 0.1158Xt−4

− 0.1329Xt−5 − 0.0697Xt−6 + 0.1973Xt−7 − 0.1634Xt−8 + 0.1423Xt−9

− 0.1330Xt−10 + 0.0979Xt−11 + 0.0584Xt−12 + 0.0319 + ε
(1)
t w.p. g1(X

t−1
t−d ;θg)

0.9410Xt−1 + 0.5574Xt−2 − 1.4491Xt−3 + 0.8714Xt−4

− 0.6319Xt−5 − 0.0716Xt−6 + 0.5728Xt−7 − 0.3843Xt−8 − 0.1595Xt−9

+ 0.1628Xt−10 + 0.0264Xt−11 + 0.0423Xt−12 + 0.0931 + ε
(2)
t w.p. g2(X

t−1
t−d ;θg)

1.0874Xt−1 − 0.3137Xt−2 − 0.7351Xt−3 + 0.6386Xt−4

− 0.1347Xt−5 + 0.4621Xt−6 − 0.6249Xt−7 + 0.7624Xt−8 − 0.3772Xt−9

− 0.1825Xt−10 + 0.5235Xt−11 − 0.2524Xt−12 + 0.1276 + ε
(3)
t w.p. g3(X

t−1
t−d ;θg)

The estimated parameters for the multinomial logit function gj were

t− 1 t− 2 t− 3 t− 4 t− 5 t− 6
j = 1: -0.3244 -8.4759 12.3953 -0.0876 1.0168 -0.1975 0.0185
j = 2: 4.5782 -6.4894 -6.7294 1.0699 4.1966 -2.6170 -2.7179
j = 3: -2.2408 15.8723 -3.3894 -1.0070 -4.7607 3.7900 1.8148

t− 7 t− 8 t− 9 t− 10 t− 11 t− 12
j = 1: 5.6104 1.3044 -3.5242 3.8971 -2.7666 3.5431
j = 2: -5.6577 -3.6030 2.3371 -10.2604 9.1528 0.1161
j = 3: 1.0747 1.3794 0.7436 6.4400 -4.6413 -1.6831

where the displayed values are for bj , aj,1, . . . , aj,6 for j = 1, 2, 3. Recall

gj(x,θg) ≡
exp(aT

j x + bj)
∑m

k=1 exp(aT
k x + bk)

, j = 1, . . . ,m .
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The variances associated with the local AR models were respectively: 80.6112, 7.3315, and 315.6292

(these numbers have already been scaled up accordingly to correct for the transformation to [0, 1]).
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