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Abstract

In a multi-armed bandit (MAB) problem a gambler needs to choose at each round
of play one of K arms, each characterized by an unknown reward distribution.
Reward realizations are only observed when an arm is selected, and the gambler’s
objective is to maximize his cumulative expected earnings over some given hori-
zon of play T . To do this, the gambler needs to acquire information about arms
(exploration) while simultaneously optimizing immediate rewards (exploitation);
the price paid due to this trade off is often referred to as the regret, and the main
question is how small can this price be as a function of the horizon length T . This
problem has been studied extensively when the reward distributions do not change
over time; an assumption that supports a sharp characterization of the regret, yet is
often violated in practical settings. In this paper, we focus on a MAB formulation
which allows for a broad range of temporal uncertainties in the rewards, while still
maintaining mathematical tractability. We fully characterize the (regret) complex-
ity of this class of MAB problems by establishing a direct link between the extent
of allowable reward “variation” and the minimal achievable regret, and by estab-
lishing a connection between the adversarial and the stochastic MAB frameworks.

1 Introduction

Background and motivation. In the presence of uncertainty and partial feedback on rewards,
an agent that faces a sequence of decisions needs to judiciously use information collected from
past observations when trying to optimize future actions. A widely studied paradigm that captures
this tension between the acquisition cost of new information (exploration) and the generation of in-
stantaneous rewards based on the existing information (exploitation), is that of multi armed bandits
(MAB), originally proposed in the context of drug testing by [1], and placed in a general setting
by [2]. The original setting has a gambler choosing among K slot machines at each round of play,
and upon that selection observing a reward realization. In this classical formulation the rewards
are assumed to be independent and identically distributed according to an unknown distribution
that characterizes each machine. The objective is to maximize the expected sum of (possibly dis-
counted) rewards received over a given (possibly infinite) time horizon. Since their inception, MAB
problems with various modifications have been studied extensively in Statistics, Economics, Oper-
ations Research, and Computer Science, and are used to model a plethora of dynamic optimization
problems under uncertainty; examples include clinical trials ([3]), strategic pricing ([4]), investment
in innovation ([5]), packet routing ([6]), on-line auctions ([7]), assortment selection ([8]), and on-
line advertising ([9]), to name but a few. For overviews and further references cf. the monographs
by [10], [11] for Bayesian / dynamic programming formulations, and [12] that covers the machine
learning literature and the so-called adversarial setting. Since the set of MAB instances in which one
can identify the optimal policy is extremely limited, a typical yardstick to measure performance of a
candidate policy is to compare it to a benchmark: an oracle that at each time instant selects the arm

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

that maximizes expected reward. The difference between the performance of the policy and that of
the oracle is called the regret. When the growth of the regret as a function of the horizon T is sub-
linear, the policy is long-run average optimal: its long run average performance converges to that of
the oracle. Hence the first order objective is to develop policies with this characteristic. The precise
rate of growth of the regret as a function of T provides a refined measure of policy performance.
[13] is the first paper that provides a sharp characterization of the regret growth rate in the context of
the traditional (stationary random rewards) setting, often referred to as the stochastic MAB problem.
Most of the literature has followed this path with the objective of designing policies that exhibit the
“slowest possible” rate of growth in the regret (often referred to as rate optimal policies).

In many application domains, several of which were noted above, temporal changes in the structure
of the reward distribution are an intrinsic characteristic of the problem. These are ignored in the
traditional stochastic MAB formulation, but there have been several attempts to extend that frame-
work. The origin of this line of work can be traced back to [14] who considered a case where only
the state of the chosen arm can change, giving rise to a rich line of work (see, e.g., [15], and [16]). In
particular, [17] introduced the term restless bandits; a model in which the states (associated with the
reward distributions) of the arms change in each step according to an arbitrary, yet known, stochas-
tic process. Considered a hard class of problems (cf. [18]), this line of work has led to various
approximation approaches, see, e.g., [19], and relaxations, see, e.g., [20] and references therein.

Departure from the stationarity assumption that has dominated much of the MAB literature raises
fundamental questions as to how one should model temporal uncertainty in rewards, and how to
benchmark performance of candidate policies. One view, is to allow the reward realizations to be
selected at any point in time by an adversary. These ideas have their origins in game theory with the
work of [21] and [22], and have since seen significant development; [23] and [12] provide reviews
of this line of research. Within this so called adversarial formulation, the efficacy of a policy over a
given time horizon T is often measured relative to a benchmark defined by the single best action one
could have taken in hindsight (after seeing all reward realizations). The single best action benchmark
represents a static oracle, as it is constrained to a single (static) action. This static oracle can perform
quite poorly relative to a dynamic oracle that follows the optimal dynamic sequence of actions, as
the latter optimizes the (expected) reward at each time instant over all possible actions.1 Thus, a
potential limitation of the adversarial framework is that even if a policy has a “small” regret relative
to a static oracle, there is no guarantee with regard to its performance relative to the dynamic oracle.

Main contributions. The main contribution of this paper lies in fully characterizing the (regret)
complexity of a broad class of MAB problems with non-stationary reward structure by establishing
a direct link between the extent of reward “variation” and the minimal achievable regret. More
specifically, the paper’s contributions are along four dimensions. On the modeling side we formulate
a class of non-stationary reward structure that is quite general, and hence can be used to realistically
capture a variety of real-world type phenomena, yet is mathematically tractable. The main constraint
that we impose on the evolution of the mean rewards is that their variation over the relevant time
horizon is bounded by a variation budget VT ; a concept that was recently introduced in [24] in the
context of non-stationary stochastic approximation. This limits the power of nature compared to the
adversarial setup discussed above where rewards can be picked to maximally damage the policy at
each instance within {1, . . . , T}. Nevertheless, this constraint allows for a very rich class of temporal
changes, and extends most of the treatment in the non-stationary stochastic MAB literature, which
mainly focuses on a finite (known) number of changes in the mean reward values, see, e.g., [25] and
references therein (see also [26] in the adversarial context). It is also consistent with more extreme
settings, such as the one treated in [27] where reward distributions evolve according to a Brownian
motion and hence the regret is linear in T (we explain these connections in more detail in §5).

The second dimension of contribution lies in the analysis domain. For the class of non-stationary
reward distributions described above, we establish lower bounds on the performance of any non-
anticipating policy relative to the dynamic oracle, and show that these bounds can be achieved,
uniformly over the class of admissible reward distributions, by a suitable policy construction. The
term “achieved” is meant in the sense of the order of the regret as a function of the time horizon
T , the variation budget VT , and the number of arms K. More precisely, our policies are shown
to be minimax optimal up to a term that is logarithmic in the number of arms, and the regret is

1Under non-stationary rewards it is immediate that the single best action may be sub-optimal in many
decision epochs, and the performance gap between the static and the dynamic oracles can grow linearly with T .
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sublinear and is of the order of (KVT )
1/3

T 2/3. [26], in the adversarial setting, and [25] in the
stochastic setting, considered non-stationary rewards where the identity of the best arm can change
a finite number of times; the regret in these instances (relative to a dynamic oracle) is shown to be
of order

√
T . Our analysis complements these results by treating a broader and more flexible class

of temporal changes in the reward distributions, yet still establishing optimality results and showing
that sublinear regret is achievable. Our results provide a spectrum of orders of the minimax regret
ranging between order T 2/3 (when VT is a constant independent of T ) and order T (when VT grows
linearly with T ), mapping allowed variation to best achievable performance.

With the analysis described above we shed light on the exploration-exploitation trade off that is
a characteristic of the non-stationary reward setting, and the change in this trade off compared to
the stationary setting. In particular, our results highlight the tension that exists between the need
to “remember” and “forget.” This is characteristic of several algorithms that have been developed
in the adversarial MAB literature, e.g., the family of exponential weight methods such as EXP3,
EXP3.S and the like; see, e.g., [26], and [12]. In a nutshell, the fewer past observations one retains,
the larger the stochastic error associated with one’s estimates of the mean rewards, while at the same
time using more past observations increases the risk of these being biased.

One interesting observation drawn in this paper connects between the adversarial MAB setting, and
the non-stationary environment studied here. In particular, as in [24], it is seen that optimal policy
in the adversarial setting may be suitably calibrated to perform near-optimally in the non-stationary
stochastic setting. This will be further discussed after the main results are established.

Structure of the paper. §2 introduces the basic formulation of the stochastic non-stationary MAB
problem. In §3 we provide a lower bound on the regret that any admissible policy must incur relative
to the dynamic oracle. §4 introduces a policy that achieves that lower bound. §5 contains a brief
discussion. The proof of Theorem 2 appears in the Appendix. While the key ideas that are used
the proof of Theorem 1 are described in §3, the complete proof appears in a supporting material
document that was submitted together with this paper. An empirical analysis of the performance
achieved by the policy described in §4 is included in the supporting material as well.

2 Problem Formulation

Let K = {1, . . . ,K} be a set of arms. Let T = {1, 2, . . . , T} denote the sequence of decision
epochs faced by the decision maker. At any epoch t ∈ T , a decision-maker pulls one of the K arms.
When pulling arm k ∈ K at epoch t ∈ T , a reward Xk

t ∈ [0, 1] is obtained, where Xk
t is a random

variable with expectation µkt = E
[
Xk
t

]
. We denote the best possible expected reward at decision

epoch t by µ∗t , i.e., µ∗t = maxk∈K
{
µkt
}

.

Changes in the expected rewards of the arms. We assume the expected reward of each arm µkt
may change at any decision point. We denote by µk the sequence of expected rewards of arm k:
µk =

{
µkt
}T
t=1

. In addition, we denote by µ the sequence of vectors of all K expected rewards:

µ =
{
µk
}K
k=1

. We assume that the expected reward of each arm can change an arbitrary number of
times, but bound the total variation of the expected rewards:

T−1∑
t=1

sup
k∈K

∣∣µkt − µkt+1

∣∣ . (1)

Let {Vt : t = 1, 2, . . .} be a non-decreasing sequence of positive real numbers such that V1 = 0,
KVt ≤ t for all t, and for normalization purposes set V2 = 2 ·K−1. We refer to VT as the variation
budget over T . We define the corresponding temporal uncertainty set, as the set of reward vector
sequences that are subject to the variation budget VT over the set of decision epochs {1, . . . , T}:

V =

{
µ ∈ [0, 1]

K×T
:

T−1∑
t=1

sup
k∈K

∣∣µkt − µkt+1

∣∣ ≤ VT} .
The variation budget captures the constraint imposed on the non-stationary environment faced by
the decision-maker. While limiting the possible evolution in the environment, it allows for numer-
ous forms in which the expected rewards may change: continuously, in discrete shocks, and of a
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changing rate (Figure 1 depicts two different variation patterns that correspond to the same variation
budget). In general, the variation budget VT is designed to depend on the number of pulls T .

Figure 1: Two instances of variation in the expected rewards of two arms: (Left) Continuous variation in
which a fixed variation budget (that equals 3) is spread over the whole horizon. (Right) “Compressed” instance
in which the same variation budget is “spent” in the first third of the horizon.

Admissible policies, performance, and regret. Let U be a random variable defined over a proba-
bility space (U,U ,Pu). Let π1 : U→ K and πt : [0, 1]t−1×U→ K for t = 2, 3, . . . be measurable
functions. With some abuse of notation we denote by πt ∈ K the action at time t, that is given by

πt =

{
π1 (U) t = 1,
πt
(
Xπ
t−1, . . . , X

π
1 , U

)
t = 2, 3, . . . ,

The mappings {πt : t = 1, . . . , T} together with the distribution Pu define the class of admissible
policies. We denote this class by P . We further denote by {Ht, t = 1, . . . , T} the filtration associ-
ated with a policy π ∈ P , such thatH1 = σ (U) andHt = σ

({
Xπ
j

}t−1

j=1
, U
)

for all t ∈ {2, 3, . . .}.
Note that policies in P are non-anticipating, i.e., depend only on the past history of actions and ob-
servations, and allow for randomized strategies via their dependence on U .

We define the regret under policy π ∈ P compared to a dynamic oracle as the worst-case difference
between the expected performance of pulling at each epoch t the arm which has the highest expected
reward at epoch t (the dynamic oracle performance) and the expected performance under policy π:

Rπ(V, T ) = sup
µ∈V

{
T∑
t=1

µ∗t − Eπ
[
T∑
t=1

µπt

]}
,

where the expectation Eπ [·] is taken with respect to the noisy rewards, as well as to the policy’s
actions. In addition, we denote by R∗(V, T ) the minimal worst-case regret that can be guaranteed
by an admissible policy π ∈ P , that is, R∗(V, T ) = infπ∈P Rπ(V, T ). Then, R∗(V, T ) is the best
achievable performance. In the following sections we study the magnitude ofR∗(V, T ). We analyze
the magnitude of this quantity by establishing upper and lower bounds; in these bounds we refer to
a constant C as absolute if it is independent of K, VT , and T .

3 Lower bound on the best achievable performance

We next provide a lower bound on the the best achievable performance.

Theorem 1 Assume that rewards have a Bernoulli distribution. Then, there is some absolute con-
stant C > 0 such that for any policy π ∈ P and for any T ≥ 1, K ≥ 2 and VT ∈

[
K−1,K−1T

]
,

Rπ(V, T ) ≥ C (KVT )
1/3

T 2/3.

We note that when reward distributions are stationary, there are known policies such as UCB1 and
ε-greedy ([28]) that achieve regret of order

√
T in the stochastic setup. When the environment is

non-stationary and the reward structure is defined by the class V , then no policy may achieve such
a performance and the best performance must incur a regret of at least order T 2/3. This additional
complexity embedded in the stochastic non-stationary MAB problem compared to the stationary
one will be further discussed in §5. We further note that Theorem 1 holds when VT is increasing
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with T . In particular, when the variation budget is linear in T , the regret grows linearly and long run
average optimality is not achievable. This also implies the observation of [27] about linear regret in
an instance in which expected rewards evolve according to a Brownian motion.

The driver of the change in the best achievable performance relative to the one established in a
stationary environment, is a second tradeoff (over the tension between exploring different arms and
capitalizing on the information already collected) introduced by the non-stationary environment,
between “remembering” and “forgetting”: estimating the expected rewards is done based on past
observations of rewards. While keeping track of more observations may decrease the variance of
mean rewards estimates, the non-stationary environment implies that “old” information is potentially
less relevant due to possible changes in the underlying rewards. The changing rewards give incentive
to dismiss old information, which in turn encourages enhanced exploration. The proof of Theorem 1
emphasizes the impact of these tradeoffs on the achievable performance.

Key ideas in the proof. At a high level the proof of Theorem 1 builds on ideas of identifying
a worst-case “strategy” of nature (e.g., [26], proof of Theorem 5.1) adapting them to our setting.
While the proof is deferred to the appendix, we next describe the key ideas. We define a subset of
vector sequences V ′ ⊂ V and show that when µ is drawn randomly from V ′, any admissible policy
must incur regret of order (KVT )

1/3
T 2/3. We define a partition of the decision horizon T into

batches T1, . . . , Tm of size ∆̃T each (except, possibly the last batch):

Tj =
{
t : (j − 1)∆̃T + 1 ≤ t ≤ min

{
j∆̃T , T

}}
, for all j = 1, . . . ,m, (2)

where m = dT/∆̃T e is the number of batches. In V ′, in every batch there is exactly one “good”
arm with expected reward 1/2 + ε for some 0 < ε ≤ 1/4, and all the other arms have expected
reward 1/2. The “good” arm is drawn independently in the beginning of each batch according to
a discrete uniform distribution over {1, . . . ,K}. Thus, the identity of the “good” arm can change
only between batches. See Figure 2 for a description and a numeric example of possible realizations
of a sequence µ that is randomly drawn from V ′. By selecting ε such that εT/∆̃T ≤ VT , any

Pulls 
t=16 

1/2 

4 1 2 3 

3/4 

t=48 t=32 t=64 

Batches 

ε 

Expected 
reward 

Figure 2: Drawing a sequence of changing rewards. A numerical example of possible realizations of
expected rewards. Here T = 64, and we have 4 decision batches, each contains 16 pulls. We have K4 possible
realizations of reward sequences. In every batch one arm is randomly and independently drawn to have an
expected reward of 1/2 + ε, where in this example ε = 1/4, and the variation budget is VT = ε∆̃T = 1.

µ ∈ V ′ is composed of expected reward sequences with a variation of at most VT , and therefore
V ′ ⊂ V . Given the draws under which expected reward sequences are generated, nature prevents
any accumulation of information from one batch to another, since at the beginning of each batch
a new “good” arm is drawn independently of the history. The proof of Theorem 1 establishes that
under the setting described above, if ε ≈ 1/

√
∆̃T no admissible policy can identify the “good”

arm with high probability within a batch.2 Since there are ∆̃T epochs in each batch, the regret that
any policy must incur along a batch is of order ∆̃T · ε ≈

√
∆̃T , which yields a regret of order√

∆̃T · T/∆̃T ≈ T/
√

∆̃T throughout the whole horizon. Selecting the smallest feasible ∆̃T such
that the variation budget constraint is satisfied leads to ∆̃T ≈ T 2/3, yielding a regret of order T 2/3

throughout the horizon.

2For the sake of simplicity, the discussion in this paragraph assumes a variation budget that is fixed and
independent of T ; the proof of the theorem details the more general treatment for a variation budget that
depends on T .
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4 A near-optimal policy

In this section we apply the ideas underlying the lower bound in Theorem 1 to develop a rate optimal
policy for the non-stationary MAB problem with a variation budget. Consider the following policy:

Rexp3. Inputs: a positive number γ, and a batch size ∆T .
1. Set batch index j = 1

2. Repeat while j ≤ dT/∆T e:
(a) Set τ = (j − 1) ∆T

(b) Initialization: for any k ∈ K set wkt = 1
(c) Repeat for t = τ + 1, . . . ,min {T, τ + ∆T }:

• For each k ∈ K, set

pkt = (1− γ)
wkt∑K

k′=1 w
k′
t

+
γ

K

• Draw an arm k′ from K according to the distribution
{
pkt
}K
k=1

• Receive a reward Xk′

t

• For k′ set X̂k′

t = Xk′

t /p
k′

t , and for any k 6= k′ set X̂k
t = 0. For all k ∈ K update:

wkt+1 = wkt exp

{
γX̂k

t

K

}
(d) Set j = j + 1, and return to the beginning of step 2

Clearly π ∈ P . The Rexp3 policy uses Exp3, a policy introduced by [29] for solving a worst-case
sequential allocation problem, as a subroutine, restarting it every ∆T epochs.

Theorem 2 Let π be the Rexp3 policy with a batch size ∆T =
⌈
(K logK)

1/3
(T/VT )

2/3
⌉

and

with γ = min
{

1 ,
√

K logK
(e−1)∆T

}
. Then, there is some absolute constant C̄ such that for every T ≥ 1,

K ≥ 2, and VT ∈
[
K−1,K−1T

]
:

Rπ(V, T ) ≤ C̄ (K logK · VT )
1/3

T 2/3.

Theorem 2 is obtained by establishing a connection between the regret relative to the single best
action in the adversarial setting, and the regret with respect to the dynamic oracle in non-stationary
stochastic setting with variation budget. Several classes of policies, such as exponential-weight
(including Exp3) and polynomial-weight policies, have been shown to achieve regret of order

√
T

with respect to the single best action in the adversarial setting (see [26] and chapter 6 of [12] for a
review). While in general these policies tend to perform well numerically, there is no guarantee for
their performance relative to the dynamic oracle studied in this paper (see also [30] for a study of the
empirical performance of one class of algorithms), since the single best action itself may incur linear
regret relative to the dynamic oracle. The proof of Theorem 2 shows that any policy that achieves
regret of order

√
T with respect to the single best action in the adversarial setting, can be used as a

subroutine to obtain near-optimal performance with respect to the dynamic oracle in our setting.

Rexp3 emphasizes the two tradeoffs discussed in the previous section. The first tradeoff, information
acquisition versus capitalizing on existing information, is captured by the subroutine policy Exp3. In
fact, any policy that achieves a good performance compared to a single best action benchmark in the
adversarial setting must balance exploration and exploitation. The second tradeoff, “remembering”
versus “forgetting,” is captured by restarting Exp3 and forgetting any acquired information every
∆T pulls. Thus, old information that may slow down the adaptation to the changing environment
is being discarded. Theorem 1 Theorem 2 together we characterize the minimax regret (up to a
multiplicative factor, logarithmic in the number of arms) in a full spectrum of variations VT :

R∗(V, T ) � (KVT )
1/3

T 2/3.

Hence, we have quantified the impact of the extent of change in the environment on the best achiev-
able performance in this broad class of problems. For example, for the case in which VT = C · T β ,
for some absolute constant C and 0 ≤ β < 1 the best achievable regret is of order T (2+β)/3.
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5 Discussion

Contrasting with traditional (stationary) MAB problems. The characterized minimax regret in
the stationary stochastic setting is of order

√
T when expected rewards can be arbitrarily close to

each other, and of order log T when rewards are “well separated” (see [13] and [28]). Contrast-
ing the minimax regret (of order V 1/3

T T 2/3) we have established in the stochastic non-stationary
MAB problem with those established in stationary settings allows one to quantify the “price of non-
stationarity,” which mathematically captures the added complexity embedded in changing rewards
versus stationary ones (as a function of the allowed variation). Clearly, additional complexity is
introduced even when the allowed variation is fixed and independent of the horizon length.

Contrasting with other non-stationary MAB instances. The class of MAB problems with non-
stationary rewards that is formulated in the current chapter extends other MAB formulations that
allow rewards to change in a more structured manner. We already discussed in §3 the consistency of
our results (when VT is linear in T ) with the setting treated in [27] where reward evolve according
to a Brownian motion and regret is linear in T . Two other representative studies are those of [25],
that study a stochastic MAB problems in which expected rewards may change a finite number of
times, and [26] that formulate an adversarial MAB problem in which the identity of the best arm may
change a finite number of times. Both studies suggest policies that, utilizing the prior knowledge
that the number of changes must be finite, achieve regret of order

√
T relative to the best sequence

of actions. However, the performance of these policies can deteriorate to regret that is linear in T
when the number of changes is allowed to depend on T . When there is a finite variation (VT is fixed
and independent of T ) but not necessarily a finite number of changes, we establish that the best
achievable performance deteriorate to regret of order T 2/3. In that respect, it is not surprising that
the “hard case” used to establish the lower bound in Theorem 1 describes a nature’s strategy that
allocates variation over a large (as a function of T ) number of changes in the expected rewards.

A Proof of Theorem 2

The structure of the proof is as follows. First, breaking the decision horizon to a sequence of batches
of size ∆T each, we analyze the difference in performance between the the single best action and
the performance of the dynamic oracle in a single batch. Then, we plug in a known performance
guarantee for Exp3 relative to the single best action in the adversarial setting, and sum over batches
to establish the regret of Rexp3 with respect to the dynamic oracle.

Step 1 (Preliminaries). Fix T ≥ 1, K ≥ 2, and VT ∈
[
K−1,K−1T

]
. Let π be the Rexp3 policy

described in §4, tuned by γ = min
{

1 ,
√

K logK
(e−1)∆T

}
and a batch size ∆T ∈ {1, . . . , T} (to be

specified later on). We break the horizon T into a sequence of batches T1, . . . , Tm of size ∆T each
(except, possibly Tm) according to (2). Let µ ∈ V , and fix j ∈ {1, . . . ,m}. We decompose the
regret in batch j:

Eπ
∑
t∈Tj

(µ∗t − µπt )

 =
∑
t∈Tj

µ∗t − E

max
k∈K

∑
t∈Tj

Xk
t




︸ ︷︷ ︸
J1,j

+E

max
k∈K

∑
t∈Tj

Xk
t


− Eπ

∑
t∈Tj

µπt


︸ ︷︷ ︸

J2,j

.

(3)
The first component, J1,j , corresponds to the expected loss associated with using a single action
over the batch. The second component, J2,j , corresponds to the expected regret with respect to the
best static action in batch j.

Step 2 (Analysis of J1,j and J2,j). Defining µkT+1 = µkT for all k ∈ K, we denote by Vj =∑
t∈Tj maxk∈K

∣∣µkt+1 − µkt
∣∣ the variation in expected rewards along batch j. We note that

m∑
j=1

Vj =

m∑
j=1

∑
t∈Tj

max
k∈K

∣∣µkt+1 − µkt
∣∣ ≤ VT . (4)
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Let k0 by an arm with the best expected performance (the best static strategy) over batch Tj , i.e.,

k0 ∈ arg maxk∈K

{∑
t∈Tj µ

k
t

}
. Then,

max
k∈K

∑
t∈Tj

µkt

 =
∑
t∈Tj

µk0t = E

∑
t∈Tj

Xk0
t

 ≤ E

max
k∈K

∑
t∈Tj

Xk
t


 , (5)

and therefore, one has:

J1,j =
∑
t∈Tj

µ∗t − E

max
k∈K

∑
t∈Tj

Xk
t


 (a)

≤
∑
t∈Tj

(
µ∗t − µ

k0
t

)
≤ ∆T max

t∈Tj

{
µ∗t − µ

k0
t

} (b)

≤ 2Vj∆T , (6)

for any µ ∈ V and j ∈ {1, . . . ,m}, where (a) holds by (5) and (b) holds by the following argument:
otherwise there is an epoch t0 ∈ Tj for which µ∗t0 − µ

k0
t0 > 2Vj . Indeed, let k1 = arg maxk∈K µ

k
t0 .

In such case, for all t ∈ Tj one has µk1t ≥ µk1t0 − Vj > µk0t0 + Vj ≥ µk0t , since Vj is the maximal
variation in batch Tj . This however, implies that the expected reward of k0 is dominated by an
expected reward of another arm throughout the whole period, and contradicts the optimality of k0 .

In addition, Corollary 3.2 in [26] points out that the regret with respect to the single best action of the

batch, that is incurred by Exp3 with the tuning parameter γ = min
{

1 ,
√

K logK
(e−1)∆T

}
, is bounded

by 2
√
e− 1

√
∆TK logK. Therefore, for each j ∈ {1, . . . ,m} one has

J2,j = E

max
k∈K

∑
t∈Tj

Xk
t

− Eπ
∑
t∈Tj

µπt

 (a)

≤ 2
√
e− 1

√
∆TK logK, (7)

for any µ ∈ V , where (a) holds since within each batch arms are pulled according to Exp3(γ).

Step 3 (Regret throughout the horizon). Summing over m = dT/∆T e batches we have:

Rπ(V, T ) = sup
µ∈V

{
T∑
t=1

µ∗t − Eπ
[
T∑
t=1

µπt

]}
(a)

≤
m∑
j=1

(
2
√
e− 1

√
∆TK logK + 2Vj∆T

)
(b)

≤
(
T

∆T
+ 1

)
· 2
√
e− 1

√
∆TK logK + 2∆TVT .

=
2
√
e− 1

√
K logK · T√
∆T

+ 2
√
e− 1

√
∆TK logK + 2∆TVT .

where: (a) holds by (3), (6), and (7); and (b) follows from (4). Finally, selecting
∆T =

⌈
(K logK)

1/3
(T/VT )

2/3
⌉

, we establish:

Rπ(V, T ) ≤ 2
√
e− 1 (K logK · VT )

1/3
T 2/3 + 2

√
e− 1

√(
(K logK)

1/3
(T/VT )

2/3
+ 1
)
K logK

+2
(

(K logK)
1/3

(T/VT )
2/3

+ 1
)
VT

(a)

≤
(
6
√
e− 1 + 4

)
(K logK · VT )

1/3
T 2/3,

where (a) follows from K ≥ 2 and VT ∈
[
K−1,K−1T

]
. This concludes the proof.
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