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Abstract

The subject of this paper is the problem of optimal stopping of a sequence of i.i.d.
random variables with unknown distribution. We propose a stopping rule that is based on
relative ranks and study its performance as measured by the maximal relative regret over
suitable nonparametric classes of distributions. It is shown that the proposed rule is first
order asymptotically optimal and nearly rate–optimal in terms of the rate at which the
relative regret converges to zero. We also develop a general method for numerical solution
of sequential stopping problems with no distributional information, and use it in order to
implement the proposed stopping rule. Some numerical experiments are presented as well,
illustrating performance of the proposed stopping rule.
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1 Introduction

Background and problem formulation. Let X1, . . . , Xn be integrable, independent iden-
tically distributed random variables with common continuous distribution G. Denote Xt :=
σ(X1, . . . , Xt) the σ–field generated by X1, . . . , Xt, and X = (Xt, 1 ≤ t ≤ n) the corresponding
filtration. Let T (X ) be the class of all stopping times τ with respect to the filtration X , i.e.,
the class of all integer-valued random variables τ such that event {τ = t} belongs to Xt for
every 1 ≤ t ≤ n. The optimal stopping problem, hereafter referenced as (SP1) for short, is:

(SP1) find the stopping time τ∗ ∈ T (X ) such that EG(Xτ ) is maximized, i.e.,

vn(G) := EG(Xτ∗) = sup
τ∈T (X )

EG(Xτ ). (1)

Here and in all what follows EG is the expectation with respect to the probability measure PG
of the observations X1, X2, . . . , Xn when the underlying distribution is G.
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The optimal reward vn = vn(G) = EG(Xτ∗) is given by the well–known recursive represen-
tation

v1 = EGX, vt+1 = EG{X ∨ vt}, t = 1, 2, . . . , (2)

and the optimal stopping time is

τ∗ = min{1 ≤ t ≤ n− 1 : Xt > vn−t}, (3)

provided the set in the parentheses is non–empty, and τ∗ = n otherwise; see Chow et al. (1971).
When the distribution G is known, a case that will be referred to as full information,

the optimal stopping problem (SP1) is solved by backward induction (2)–(3), and asymptotic
behavior of the reward sequence vn = vn(G) for different distributions was studied in the
literature. Moser (1956) showed that if G is the uniform distribution on [0, 1] then limn→∞ n(1−
vn) = 2 [see also Gilbert and Mosteller (1966, Section 5a)]. Guttman (1960) considered the
problem for the normal distribution. The limiting behavior of n[1 − G(vn)] under general
assumptions on the upper tail of G was studied in Kennedy & Kertz (1991). In particular,
it is shown there that n[1 − G(vn)] converges to a constant whose value is determined by the
(extreme value) domain of attraction of the distribution G.

The problem of optimal stopping with partial information arises when the distribution G is
unknown. Here the optimal policy (2)–(3) is not directly applicable, and learning of G should
be incorporated in the policy construction. Stopping problems with partial information have
been studied to a much lesser extent than their full information counterparts. Stewart (1978)
considered problem (SP1) for random variables distributed uniformly on an unknown interval,
and proposed a Bayesian stopping procedure. Building on Stewart’s work, Samuels (1981)
constructed a minimax stopping rule and computed the asymptotic minimax risk in the class of
all uniform distributions. A minimax stopping rule for normally distributed random variables
with unknown mean and variance was derived in Petruccelli (1985). It was shown there that the
proposed rule is asymptotically as good as the optimal stopping rule based on full information in
the following sense: the ratio of the expectation of the selected observation to the expectation of
the largest order statistic converges to one. Boshuizen & Hill (1992) derived minimax stopping
rules for a sequence of independent uniformly bounded random variables when only the means
and/or variances are known. There are also works dealing with best–choice problems under
partial information; we refer the reader to Petruccelli (1980), Gnedin and Krengel (1996) and
references therein.

In this paper we study the optimal stopping problem with partial information within a
minimax framework. We adopt the relative regret as a measure of the quality of any stopping
rule τ̂ ∈ T (X )

Rn[τ̂ ;G] :=
EG[X(n) −Xτ̂ ]

EG[X(n)]
.

If Σ is a class of distribution functions G, then the maximal relative regret of τ̂ on the class Σ is

Rn[τ̂ ; Σ] := sup
G∈Σ
Rn[τ̂ ;G],

and the minimax regret is defined as

R∗n[Σ] := inf
τ̂∈T (X )

Rn[τ̂ ; Σ].

We say that the stopping time τ̂∗ ∈ T (X ) is rate–optimal on Σ if

Rn[τ̂∗; Σ] ≤ CnR∗n[Σ], sup
n
Cn <∞.
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Main contributions. The main contribution of this paper is two–fold.

1. We develop a nearly rate–optimal stopping rule for solution of problem (SP1) when the
underlying distribution G is unknown and belongs to sufficiently large nonparametric classes
Σ of distribution functions. The proposed stopping rule is based solely on the relative ranks
of the observations; in particular, it maximizes the probability of selecting one of the k largest
observations with k being a tuning parameter. The latter problem is known in the literature
as the Gusein–Zade stopping problem [see Gusein–Zade (1966)]. We characterize classes of
distributions for which there exist stopping rules with relative regret tending to zero. In other
words, this rule sequentially selects an observation that approaches, in a suitable sense, the
maximal observation in the sequence. Concurrently we show that there is a complementary
class of distributions for which there is no stopping rule that achieves this type of performance.
In particular, this dichotomy in first order asymptotic optimality is determined by the domain of
attraction of extreme-value distributions. When first order asymptotic optimality is achievable,
the more refined asymptotic behavior of the relative regret of the proposed stopping rule is
studied over suitably restricted nonparametric classes of distribution functions. It is shown
that for a proper choice of the tuning parameter k and depending on the domain of attraction,
the relative regret of the proposed rule converges to zero at the rate which is slower by only a
ln ln lnn or lnn–factor than the rate achievable in the full information case. In that sense, the
proposed stopping rule is nearly rate-optimal.

2. To address the computational challenges and implementation of the proposed stopping
rule, we develop a general method for exact numerical solution of stopping problems with no
distributional information. The structure of the original Gusein–Zade stopping rule, that seeks
to localize to the top k absolute ranks, is relatively straightforward to characterize, yet its
implementation for general k and n is hardy tractable. The existing literature suggests exact
computations for some specific cases and various approximate solutions [the reader is referred
to Section 4 for detailed discussion]. Our proposed numerical solution is based on the fact that
every stopping problem with no information can be represented as a stopping problem for a
suitably defined sequence of independent (though not identically distributed) random variables.
Then for these random variables the optimal rule is always of the single threshold type, and
once the distributions of the elements in this constructed sequence are determined, the exact
recursive algorithm for calculating the stopping rule is straightforward. Using this numerical
procedure we implement our rule and present some results illustrating its performance.

Organization of the paper. The paper is structured as follows. In Section 2 we introduce
the proposed stopping rule based on relative ranks; we motivate its construction and present
a result on its properties. Section 3 contains the main results of this paper. In Section 4 we
develop a general method for numerical solution of stopping problems with no information; this
method provides a basis for implementation of the proposed stopping rule. Some numerical
results on the stopping rule performance are presented in Section 5. Proofs of all statements
are given in the concluding Section 6.

Notation and conventions. In what follows we use the following notation and conventions.
As mentioned above, PG denotes the probability measure of observations X1, . . . , Xn when the
underlying distribution is G, and EG is the expectation with respect to PG. The probability
and expectation symbols will not be indexed by G when the distribution of involved random
variables does not depend on G.

Recall that the order statistics of the sample X1, . . . , Xn are denoted X(1) ≤ X(2) ≤ · · · ≤
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X(n). The relative and absolute ranks of Xt are given by

Rt :=
t∑

j=1

1(Xt ≤ Xj), At :=
n∑
j=1

1(Xt ≤ Xj), t = 1, . . . , n (4)

respectively. With these definitions the largest observation has the smallest rank. We denote
Rt = σ(R1, . . . , Rt) the σ–field generated by R1, . . . , Rt, and R = (Rt, 1 ≤ t ≤ n) stands
for the corresponding filtration. The class of all stopping rules with respect to a filtration
Y = (Yt, 1 ≤ t ≤ n) is denoted T (Y ).

2 The Proposed Stopping Rule

In the absence of information on the distribution G that governs observations X1, . . . , Xn, we
propose to use stopping procedures based on relative ranks of said observations.

Consider the following auxiliary stopping problem, which will be referred to hereafter as
(SP2) for short.

(SP2) Let k ∈ {1, . . . , n} be a fixed integer and define τ∗k ∈ T (R) as the solution to:

wn(k) := P{Aτ∗k ≤ k} = sup
τ∈T (R)

P{Aτ ≤ k}. (5)

The problem (SP2) was first considered by Gusein–Zade (1966) who established the existence
of the stopping time τ∗k and characterized the solution to (5). In what follows we propose to use
τ∗k that solves (SP2), with k being a design parameter, to solve the original optimal stopping
problem (SP1) under incomplete information. In particular, we will study its performance in
said problem as viewed through the lens of the relative regret. Later, in Section 4, we present
a recursive procedure that solves (SP2) and computes τ∗k .

The next result provides a lower bound on the optimal value of the above auxiliary problem.

Proposition 1 For any α ∈ (0, 1) such that (1 − α) ln( 1
1−α) > 1

n and any k ∈ {1, . . . , n} one
has

P
{
Aτ∗k > k

}
≤ (1− α)k/2 + (1− α)(k−1)α/4 +

1− α
1− e−3α2/32

exp
{
− 3α2k

32

}
. (6)

In particular, if α = 2/3 and n > 7 then

P
{
Aτ∗k > k

}
≤ 11e−k/24. (7)

Remark 1

(i) The bound (6) shows that the risk of the optimal stopping rule τ∗k decreases exponentially in
k for all values of n and k. Frank & Samuels (1980) derived asymptotic approximations for
the value w∗k = limn→∞wn(k) as k tends to infinity. In particuluar, their results imply that for
large values of n and k

wn(k) = P
{
Aτ∗k ≤ k

}
≈ 1− (1− t∗)k,

where t∗ ≈ 0.2834. Although our bound in (7) is conservative, it holds for all n and k in contrast
to the above asymptotic result. This fact is of particular importance for our purposes because
we choose the tuning parameter k depending on n.

(ii) The proof of Proposition 1 is based on the construction of a suboptimal (yet analytically more
tractable) stopping rule for which the bound (6) is achieved.
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The following statement is key to bounding the relative regret of any stopping rule τ̂ ∈
T (R). It provides a decomposition of EG[X(n) − Xτ ] which will be used in conjunction with
Proposition 1 in the regret analysis.

Proposition 2 Let τ̂ ∈ T (R); then for any distribution G and any k ∈ {1, . . . , n}

EG
[
X(n) −Xτ̂

]
≤ EG[X(n) −X(n−k)] + EG

[
X(n−k) −X(1)

]
P{Aτ̂ > k}. (8)

This decomposition puts forward two terms that are present on the RHS of the above
inequality. The first, which captures the gap in order statistics is controlled by properties of the
functional class Σ, in particular tail behavior of distributions in the class Σ relative to which the
regret is measured. The second reflects the error of the stopping rule τ̂ in localizing to the top
k order statistics; this is controlled by Proposition 1. The design parameter k of the auxiliary
problem will be chosen so as to balance these two error terms.

3 Main Results

Without loss of generality, in all of what follows we assume that X1, . . . , Xn are non–negative
random variables. For the purpose of our main results we will recall some basic facts about
extreme-value distributions and introduce necessary notation; cf. Leadbetter, Lingren & Rootzen
(1986), Resnick (1987) and de Haan and Ferreira (2006).

Extreme value distributions. A distribution G is said to belong to the domain of attraction
of Gγ , D(Gγ), if there exist real-valued sequences an > 0 and bn such that

lim
n→∞

Gn(anx+ bn) = Gγ(x) := exp
{
− (1 + γx)−1/γ

}
(9)

for all x satisfying 1 + γx > 0 with γ ∈ R. Depending on the sign of γ we have three different
types of extreme–value distributions. If γ > 0 we get the Fréchet class of distributions, Φα(x) =
exp{−x−α}, x ≥ 0 (here α = 1/γ); for γ = 0 we have Gumbel’s distribution Λ(x) = exp{−e−x},
x ∈ R; and for γ < 0 we have the reverse–Weibull class of distributions,

Ψα(x) =

{
exp{−(−x)α}, x < 0
1, x ≥ 0.

Let the function U be the left-continuous inverse of 1/(1−G):

U(t) :=
(

1
1−G

)←
(t) = G←

(
1− 1

t

)
= inf{x : 1−G(x) ≤ 1

t }. (10)

Denote also x∗G := U(∞) = sup{x : G(x) < 1}.
We recall also the following facts about norming constants (an) and (bn) for distributions

from domains of attraction D(Λ) and D(Ψα).

(i) The distribution function G belongs to the domain of attraction D(Λ) if and only if there
exists a positive function ψ(t) such that

lim
t↑x∗G

1−G(t+ xψ(t))

1−G(t)
= e−x

for all x ∈ R. Here one can take

ψ(t) :=

∫ x∗G
t [1−G(x)]dx

1−G(t)
, t < x∗G, (11)

and (9) holds with an = a(n) := ψ(U(n)) and bn = U(n).

5



(ii) The distribution function G belongs to the domain of attraction D(Ψα) if and only if
x∗G <∞ and

lim
h↓0

1−G(x∗G − xh)

1−G(x∗G − h)
= xα

for α > 0 and any x > 0. Here (9) holds with an = x∗G − U(n), bn = U(n).

From now on {an} and {bn} stand for the sequences defined (i) and (ii) above.

First order asymptotics. With the above definitions in hand we have the following charac-
terization of the first order behavior of our proposed stopping rule for the classes of distributions
G that belong to D(Λ) and D(Ψα), and a negative result for any stopping rule for distributions
that belong to the domain of attraction of the Fréchet class D(Φα).

Theorem 1 (first order asymptotics) Let G ∈ D(Λ) or G ∈ D(Ψα). Then there exists
k := kn →∞ as n→∞ such that the stopping rule τ∗kn given in (5) is first order asymptotically
optimal:

lim
n→∞

Rn[τ∗kn ;G] = 0. (12)

In contrast, for every G ∈ D(Φα) and any stopping rule τ ∈ T (X )

lim inf
n→∞

Rn[τ ;G] ≥ c > 0.

Relative regret bounds for our proposed stopping rule. With this result as a departure
point, we next study regret asymptotics, i.e., second order behavior of the regret. Since the above
theorem rules out first order asymptotic optimality for distributions belonging to the domain of
attraction of the Fréchet class, our study will restrict attention to distributions in the other two
classes of domain of attraction. We further refine these classes below by considering subsets of
distributions with specific behavior of the expected gap in order statistics. To do so, we require
the following definitions.

Definition 1 Let A > 0, β > 0, and κi > 0, i = 1, 2 be fixed constants. We say that a
distribution function G ∈ D(Λ) belongs to the class Gβ(A) if the following conditions holds:
there exist t0 > 1 such that for all t ≥ t0

U(t)− U(t/2)

a(t/2)
≥ κ1,

a(t/2)

a(t)
≥ κ2, (13)

where a(t) = ψ(U(t)) and ψ is defined in (11), and for x0 > 1

U(tx)

U(t)
− 1 ≤ A lnx

(ln t)β
, ∀t ≥ t0, x ≥ x0. (14)

Several remarks on the above definition are in order. The conditions in (13) are rather weak.
Indeed, it is well known that for G ∈ D(Λ) and x > 0 one has

U(tx)− U(t)

a(t)
→ lnx as t→∞, (15)

and an = a(n) is the normalization in (9). In addition, for G ∈ D(Λ) the function a(t) = ψ(U(t))
is slowly varying, i.e., for any x > 0

a(tx)

a(t)
→ 1, t→∞, (16)
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and, in particular, a(t/2)/a(t) → 1 as t → ∞. Therefore (13) can be viewed as uniformity
conditions on standard asymptotic results that hold for all distributions from the domain of
attraction D(Λ).

If G ∈ D(Λ) then U is slowly varying, i.e., limt→∞ U(tx)/U(t) = 1 for any x > 0. The
condition (14) specifies the rate of convergence of U(tx)/U(t) to 1. The specific form of the
expression on the right hand side of (14) is rather natural. Indeed, if U(tx)/U(t)−1 ∼ h(x)g(t)
as t → ∞ for some slowly varying function g, then necessarily h(x) = c lnx; see, e.g., Goldie
and Smith (1987) where different asymptotic relations for convergence of U(tx)/U(t) to 1 are
discussed. Thus, our definition of the class Gβ(A) corresponds to the above asymptotic relation
with a particular choice of g(t) = [ln t]−β. Moreover, (14) is fulfilled for a wide family of
distributions, as demonstrated in the following examples.

Example 1 Let G(x) = 1− e−λx; then U(t) = 1
λ ln t and

U(tx)

U(t)
=

ln(tx)

ln t
= 1 +

lnx

ln t
.

Thus (14) holds with t0 = 1, x0 = 1, A = 1 and β = 1.

Example 2 Let G be the distribution function of the standard normal random variable; then
[see, e.g., Boucheron & Thomas (2012)]

[2 ln t− ln ln t− ln(4π)]1/2 ≤ U(t) ≤ [2 ln t− ln ln t− lnπ]1/2, t ≥ 6.

If t ≥ 4π then

U(tx)

U(t)
≤
[

2 ln(tx)− ln ln(tx)− lnπ

2 ln t− ln ln t− ln(4π)

]1/2

≤
[
1 +

2 lnx+ ln 4

2 ln t− ln ln t− ln(4π)

]1/2

≤
[
1 +

4 lnx+ 2 ln 4

ln t

]1/2

≤ 1 +
2 lnx+ ln 4

ln t
≤ 1 +

3 lnx

ln t
,

provided that x ≥ 4. Hence (14) holds with t0 = 4π, x0 = 4, A = 3 and β = 1.

Examples 1 and 2 provide distributions from Gβ(A) with β = 1. The next example presents
a distribution from Gβ(A) with β > 1.

Example 3 Let x∗ > δ > 0, β > 1, θ > 0 and G(x) = 1 − exp{−θ/(x∗ − x)1/(β−1)} on the
interval [x∗ − δ, x∗]; then U(t) = x∗ − (ln t/θ)−β+1. We have for large enough t ≥ t0(x∗, β, δ)
that

U(tx)

U(t)
=
x∗ − [ln(tx)/θ]−β+1

x∗ − (ln t/θ)−β+1
= 1 +

[ln(tx)]β−1 − [ln t]β−1

[ln(tx)]β−1[x∗(ln t/θ)β−1 − 1]
≤ 1 +

c(β − 1)θβ−1 lnx

x∗(ln t)β
,

where c is an absolute constant. Thus G ∈ Gβ(A) provided that A ≥ c(β − 1)θβ−1/x∗.

The following result establishes bounds on the relative regret with respect to our proposed
stopping rule relative to the above subclass of the Gumbel domain of attraction.

Theorem 2 (regret bounds for Gβ(A)) Let τ∗kn be the stopping rule specified in (5) with
kn = b24β ln lnnc; then

lim sup
n→∞

{
φ−1
n Rn[τ∗kn ;Gβ(A)]

}
≤ C1, φn :=

A ln ln lnn

(lnn)β
, (17)

where C1 is a constant depending on κ1 and κ2 only.
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We now proceed to study the behavior of our proposed stopping procedure for distributions
in a suitable subclass of the reverse Weibull domain of attraction D(Ψα).

Definition 2 We say that a distribution function G belongs to the class Wα(A) if G ∈ D(Ψα),
x∗G = U(∞) <∞, and there exist A > 0, α > 0 and δ > 0 such that

1− U(t)

U(∞)
≤ At−1/α, ∀ t : U(t) ≥ U(∞)− δ. (18)

Note that for all distributions G ∈ D(Ψα) it holds that [cf. de Haan and Ferreira (2006, p.23)]

U(∞)− U(tx)

U(∞)− U(t)
→ x−1/α as t→∞.

The above definition can be viewed as a non-asymptotic variant of this condition. In fact, (18)
characterizes the behavior of the distribution G in the vicinity of its right end point x∗G.

Example 4 Let
G(x) = 1− L(x∗G − x)α, x∗G − L−1/α ≤ x ≤ x∗G,

where L > 0 and x∗G < ∞. Then U(t) = x∗G − (Lt)−1/α = U(∞) − (Lt)−1/α. Hence the
condition of Definition 2 is satisfied with A = [L1/αU(∞)]−1 . This example includes the
uniform distribution among others.

The following result present an upper bound on the relative regret for our proposed stopping
rule with respect to the above defined class of distributions.

Theorem 3 (regret bounds for Wα(A)) Let τ∗kn be the stopping rule specified in (5) with
kn = b(24/α) lnnc; then

lim sup
n→∞

{
ϕ−1
n Rn[τ∗kn ;Wα(A)]

}
≤ C2, ϕn := A

( lnn

n

)1/α
,

where the constant C2 = C2(α) depends on α only.

Lower bounds on the minimax relative regret. The next theorem establishes limits
of achievable performance that hold for any stopping rule belonging to X . In particular, it
identifies a lower bound on the rate of convergence of the relative regret to zero given by scaling
sequences {φn,G} and {ϕn,G} that depend on whether the distribution G is in the domain of
attraction of D(Λ) or D(Ψα), respectively. The subsequent corollary will identify these rates
explicitly for the subclasses of distributions which are the subject of Theorems 2 and 3.

Theorem 4 (lower bounds on the relative regret) Let Σ be a family of distributions such
that Σ ⊆ D(Λ); then for any τ ∈ T (X )

lim inf
n→∞

[
sup
G∈Σ

{
φ−1
n,GRn[τ ;G]

}]
≥ c1 > 0, φn,G :=

ψ(U(n))

U(n)
,

where c1 is an absolute constant. Furthermore, if Σ is a family of distributions such that
Σ ⊆ D(Ψα) then for any τ ∈ T (X )

lim inf
n→∞

[
sup
G∈Σ

{
ϕ−1
n,GRn[τ ;G]

}]
≥ c2 > 0, ϕn,G :=

U(∞)− U(n)

U(∞)
,

where c2 is an absolute constant.
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A direct interpretation of Theorem 4 is that the ratio of the norming constants an/bn,
defined in (9), provides a lower bound on the relative regret for any admissible stopping rule.
The next result, an immediate consequence of Theorem 4, identifies these norming constants
explicitly and establishes lower bounds on the minimax relative regret with respect to the classes
of distributions Gβ(A) and Wα(A).

Corollary 1 (lower bounds on the minimax regret) One has

lim inf
n→∞

{
A−1(lnn)β R∗n[Gβ(A)]

}
≥ c3 > 0, (19)

lim inf
n→∞

{
A−1n1/α R∗n[Wα(A)]

}
≥ c4 > 0, (20)

where c3 = c3(κ1) and c4 = c4(α).

Corollary 1 together with Theorems 2 and 3 shows that the proposed stopping rule τ∗kn is
nearly rate-optimal in the class of all stopping rules of X in the following sense: its relative
regret is within a ln ln lnn–factor of the best relative regret for the class Gβ(A), and within of a
lnn–factor of the best relative regret forWα(A). It is important to stress that the proposed rule
τ∗kn does not require any information on the underlying distribution G outside of the subclass
Gβ(A) or Wα(A) to which it belongs.

4 Numerical Solution for Stopping Problems with No Informa-
tion

In this section we present a general method for numerical solution of stopping problems with
no information, and then specialize it to the Gusein–Zade stopping problem (SP2).

It is shown in Gusein–Zade (1966) that the optimal stopping rule for solution of prob-
lem (SP2) with fixed k has the following structure. It is determined by k natural numbers 1 ≤
π1 ≤ · · · ≤ πk and proceeds as follows: pass the first π1−1 observations, {Xt, t = 1, . . . , π1−1},
and among observations {Xt, t = π1, π1 +1, . . . , π2−1} choose the first observation with relative
rank one; if it does not exist then among observations {Xt, t = π2, π2 + 1, . . . , π3 − 1} choose
the first observation with relative rank at most two, etc. Gusein–Zade (1966) studied limiting
behavior of the numbers π1, . . . , πk, and showed that limn→∞wn(2) ≈ 0.574 [cf. (5)].

In its original form the optimal stopping rule of Gusein–Zade (1966) requires determination
of thresholds π1, . . . , πk. Although the structure of the optimal policy is relatively straightfor-
ward, explicit determination of π1, . . . , πk for general n and k is hardly tractable, and does not
lend itself to implementation. Based on general results of Mucci (1973), Frank & Samuels (1980)
suggested asymptotic approximations and computed numerically limn→∞wn(k) for a range of
different values of k. Exact results for the case k = 3 are given in Quine & Law (1996), and the
recent paper Dietz et al. (2011) studies some approximate policies.

We propose a general method for exact calculation of optimal policies in stopping problems
with no information. It is based on the idea that any stopping problem with no information
can be represented as a problem of stopping a sequence of independent random variables whose
distributions (while not identical) can be easily calculated. Then the resulting optimal stopping
rule is always of the single threshold type and, as will be seen, can be easily implemented. To
the best of our knowledge this approach, while reasonably straightforward, was not studied in
antecedent literature. Moreover, the scope of application of this method is clearly broader than
just the optimal stopping problem discussed in this paper.
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4.1 General idea

Assume that we observe sequentially relative ranks R1, R2, . . . , Rn and we would like to find a
stopping rule τ∗ ∈ T (R) so that

Eq(Aτ∗) = sup
τ∈T (R)

Eq(Aτ ), (21)

where {At} are the absolute ranks [cf. (4)], and q is a fixed payoff function. The Gusein–Zade
stopping problem corresponds to q(a) = 1(a ≤ k), while the payoff q(a) = 1(a = 1) leads to the
classical secretary problem. It is well known that R1, . . . , Rn are independent random variables,
P(At = a|R1 = r1, . . . , Rt = rt) = P(At = a|Rt = rt), and

P(At = a|Rt = r) =

(
a−1
r−1

)(
n−a
t−r
)(

n
t

) , r ≤ a ≤ n− t+ r.

Therefore setting

ut(r) := E{q(At) |Rt = r} =
n−t+r∑
a=r

q(a)

(
a−1
r−1

)(
n−a
t−r
)(

n
t

) , r = 1, . . . , t, (22)

Yt := ut(Rt), 1 ≤ t ≤ n, (23)

we note that (21) can be represented as a stopping problem for a sequence of independent
(though not identically distributed) random variables Y1, . . . , Yn:

Eq(Aτ∗) = EYτ∗ = sup
τ∈T (Y )

EYτ .

Solution to the latter problem is given by the following procedure [see, e.g., Derman, Lieberman
& Ross (1972)]. If Ft is the distribution function of Yt then the optimal stopping rule is of the
threshold type, τ∗ = min{1 ≤ t ≤ n : Yt ≥ vn−t+1}, and

vt+1 =

∫ ∞
vt

zdFn−t+1(z) + vtFn−t+1(vt), v2 = EYn−1. (24)

EYτ∗ = sup
τ∈T (Y )

EYτ = vn+1. (25)

In order to apply the recursive procedure (24)-(25) to the sequence of random variables {Yt}
defined in (22)–(23) we need to determine distribution functions Ft of Yt, 1 ≤ t ≤ n. To this end,
let yt(1), . . . , yt(`t) denote distinct points of the set {ut(1), . . . , ut(t)}. Then the distribution of
Yt is supported on {yt(1), . . . , yt(`t)} and

ft(j) := P{Yt = yt(j)} =
1

t

t∑
r=1

1{ut(r) = yt(j)},

Ft(z) =

`t∑
j=1

ft(j)1{yt(j) ≤ z},

where we have used the fact that P{Rt = r} = 1/t, ∀r = 1, . . . , t. Armed with these formulas,
we can rewrite (24) in the following form

vt+1 =

`n−t+1∑
j=1

[
vt ∨ yn−t+1(j)

]
fn−t+1(j), v2 =

`n−1∑
j=1

yn−1(j)fn−1(j). (26)

10



It is convenient to define vectors ft = {ft(j), j = 1, . . . , `t}, yt = {yt(j), j = 1, . . . , `t}; then (26)
reduces to

vt+1 = (vt ∨ yn−t+1)T fn−t+1, v2 = yTn−1fn−1, (27)

where ∨ stands for the coordinate–wise maximum of the vector yn−t+1 and the real number vt.
We are going to implement the relationship (27) to obtain the solution of problem (SP2).

4.2 A method for solving the auxiliary problem (SP2)

Application of (27) to the Gusein–Zade problem, (SP2), requires determination of quantities
{`t, t = 1, . . . , n}, and corresponding vectors yt ∈ R`t , ft ∈ R`t in the case when

ut(r) =


0, k + 1 ≤ r ≤ t,

∑(n−t+r)∧k
a=r

(a−1
r−1)(

n−a
t−r)

(nt)
, 1 ≤ r ≤ k,

t = 1, . . . , n.

As shown in Mucci (1973, Proposition 2.1), for any payoff function q and for ut(r) defined in
(22) the following recursive formula holds

ut(r) =
r

t+ 1
ut+1(r + 1) +

(
1− r

t+ 1

)
ut+1(r), r = 1, . . . , t. (28)

For the Gusein–Zade problem, where q(a) = 1{a ≤ k}, we have

un(r) =

{
1, r = 1, . . . , k
0, r = k + 1, . . . , n.

(29)

This relationship in conjunction with (28) implies the following facts.

1. If 1 ≤ t ≤ k then all the values ut(1), . . . , ut(t) are positive and distinct. Thus

`t = t; yt(j) = ut(j), j = 1, . . . , t; ft(j) =
1

t
, j = 1, . . . , t. (30)

2. If k + 1 ≤ t ≤ n − k + 1 then the set {ut(1), . . . , ut(t)} contains k + 1 distinct values:
ut(1), . . . , ut(k) are positive distinct, and ut(k + 1) = · · · = ut(t) = 0. Therefore

`t = k + 1; yt(j) =

{
ut(j), j = 1, . . . , k
0, j = k + 1;

ft(j) =

{
1/t, j = 1, . . . , k,
1− k/t, j = k + 1.

(31)

3. If n− k+ 2 ≤ t ≤ n then the set {ut(1), . . . , ut(t)} contains n− t+ 2 distinct values. Here
ut(j) = 1 for j = 1, . . . , k−n+ t, ut(j) = 0 for j = k+ 1, . . . , t and takes distinct values in (0, 1)
for j = k − n+ t+ 1, . . . , k. Therefore

`t = n− t+ 2; yt(j) =


1, j = 1,
ut(k − n+ t− 1 + j), j = 2, . . . , n− t+ 1,
0, j = n− t+ 2,

(32)

and

ft(j) =


1− (n− k)/t, j = 1,
1/t, j = 2, . . . , n− t+ 1,
1− k/t, j = n− t+ 2.

(33)

11



It remains to compute v2. In view of (28) and (29), un−1(r) = 1 for r = 1, . . . , k, un−1(r) = 0
for r = k + 1, . . . , n, and un−1(r) = 1− k/n. Thus, `n−1 = 3, and we have that

yn−1(1) = 1, yn−1(2) = 1− k

n
, yn−1(3) = 0,

fn−1(1) =
k − 1

n− 1
, fn−1(2) =

1

n− 1
, fn−1(3) =

n− k
n− 1

.

Substitution of these formulas in (26) yields v2 = k/n.
Formulas (30)–(33) provide complete description of the quantities {`t, t = 1, . . . , n} and

vectors (yt) and (ft); this leads to a simple implementation of (27). We note that computation
of vectors (ut), t = n, n − 1, . . . , 1 using (28) requires at most O(n2) flops while computation
of the sequence (vt) with vectors (yt) and (ft) defined in (30)–(33) requires O(nk + k2) flops.
Thus, the computational cost of the algorithm does not exceed O(n2 + nk + k2) flops.

5 Numerical Experiments and Discussion

In this section we provide some numerical examples that illustrate performance of the proposed
stopping rule. The focus is on three aspects. First we look at dependence of the performance
upon the choice of the tuning parameter k. Then we consider the effect of the sample size
n on the regret behavior (essentially providing a “picture proof” of the results in our main
theorems). Finally, we consider an example that explores the “value of information.” Here
we compare the performance of our rule to a benchmark that is designed (via dynamic pro-
gramming) under full information on the underlying distribution. The example elucidates the
loss in performance due to having only “partial information” on the underlying distributions,
and simultaneously illustrates the sensitivity (lack of robustness) of the full information rule to
model misspecification.

Choice of the tuning parameter k. The choice of the tuning parameter k prescribed by
Theorems 2 and 3 is based on the conservative bound in Proposition 1 and leads to values of k
that tend to be conservatively large. To illustrate dependence of the stopping rule performance
on the parameter k, we consider two reference distributions that are representative of the
nonparametric classes studied in the paper, uniform ([0, 1]) and exponential (with mean 1). In
all experiments the sample size is set to n = 100, and each experiment is simulated N = 1000
runs to generate the histograms in Figures 1 and 2.

As evident in Figures 1 and 2, the performance of our stopping rule exhibits some sensitivity
to the choice of k. This manifests most prominently in the spread of the distribution of outcomes,
both for the choice of selected rank as well as the relative regret performance. In particular,
smaller values of k result in higher probability of selecting observations with small rank, yet it
also tends to select more often observations with high rank. This is can be seen in the top row
in the figures, where it is also evident that the relative regret has a more significant left tail. On
the other hand, if k is large then practically all runs result in the selected rank not exceeding
k, but since k is large this increases the range of selected observations which results in less runs
having small relative regret (compared to the case of small k).

The presented numerical results indicate that there is a range of reasonably good values of
k that is typically much smaller than the prescriptions of Theorems 2 and 3. A practical, less
conservative, choice of k can follow from the asymptotic result of Frank & Samuels (1980) alluded
to in Remark 1(i). In particular, if we loosely assume that the probability in (7) is bounded
from above by (1− t∗)k ≈ e−0.3332k then the resulting choice of k would be k ≈ b3β ln lnnc for
the class Gβ(A) and k ≈ b(3/α) lnnc for the class Wα(A). The stopping rule associated with

12



RegK1.pdf

(a) k = 1

RegK5.pdf

(b) k = 5

RegK20.pdf

(c) k = 20

Figure 1: The histograms of the selected rank (left column) and the relative regret (right
column) over N = 1000 simulation runs with samples from the uniform distribution on [0, 1]
for different values of the tuning parameter k.
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RegexpK1.pdf

(a) k = 1

RegexpK5.pdf

(b) k = 5

RegexpK20.pdf

(c) k = 20

Figure 2: The histograms of the selected rank (left column) and the relative regret (right
column) over N = 1000 simulation runs with samples from the exponential distribution with
the parameter 1 for different values of the tuning parameter k.
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Regversusn.pdfLogRegn.pdf

(a) (b)

Figure 3: The graphs of: (a) the relative regret versus the sample size; and (b) the logarithm
of the relative regret versus the logarithm of the sample size computed over N = 1000 simula-
tion runs for the proposed stopping rule associated with k = b3 lnnc. The observations were
generated according to the uniform distribution on [0, 1].

these values of k demonstrate good performance in numerical experiments, and we recommend
this choice of k for practical use.

Effect of the sample size on relative regret. We consider the uniform distribution
on [0, 1] and report on the (estimated) expected regret as a function of sample size n ∈
{100, 250, 500, 1000, 2000}. The tuning parameter k is set to k = b3 lnnc and the experiment is
performed for N = 1000 runs. Figure 3(b) is consistent with the the result of Theorem 3 where
it is stated that the relative regret decays roughly as O(1/n) (up to logarithmic terms). Hence
the straight line in the log-log plot of regret versus sample size.

Full information stopping rule and model misspecification. In this experiment we
consider again the uniform distribution on [0, 1] and contrast the performance of our proposed
stopping rule (with tuning parameter k = b3 lnnc) with that of the full information optimal rule
due to Moser (1956). In particular, the latter solves the dynamic program to obtain a simple
recursion for the thresholds of the optimal policy. Specifically, the thresholds {vt : 1 ≤ t ≤ n}
are given by:

vt+1 = 1
2(1 + v2

t ) v1 = 1
2 .

As expected, in Figure 4(a), the well-specified case, the full information rule outperforms the
proposed rank-based rule. The gap in performance indicates the value of full information when
designing the stopping rule. In contrast consider the results in Figure 4(b) that show the
performance of the full information rule under misspecification. Here the full information rule
is constructed for the case of U [0, 1] distribution, but the observations are generated from
the distribution U [0, 1.5]. As evident, the rank-based rule, which is agnostic to this model
misspecification, outperforms the full information rule.
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(a) (b)

Figure 4: Comparison of the performance of the full information optimal rule that is tuned for
the uniform distribution on [0, 1] and the proposed rank-based rule for sample size n = 100
computed over N = 1000 simulation runs; the proposed rule uses k = b3 lnnc. The boxplot (a)
reports on the well-specified case where observations were generated according to the uniform
distribution on [0, 1], and boxplot (b) reports the misspecified case where observations were
generated according to the uniform distribution on [0, 1.5].

6 Auxiliary Results and Proofs

For ease of reference we start with some well known auxiliary results and facts that are exten-
sively used in the proofs.

6.1 Auxiliary results and facts

Absolute and relative ranks.

(i) The relative ranks R1, . . . , Rn are independent random variables, and

P(Rt = r) =
1

t
, 1 ≤ r ≤ t, 1 ≤ t ≤ n.

(ii) One has P(At = a|R1 = r1, . . . , Rt = rt) = P(At = a|Rt = rt), and

P(At = a|Rt = r) =

(
a−1
r−1

)(
n−a
t−r
)(

n
t

) , r ≤ a ≤ n− t+ r,

E(At|Rt) =
n+ 1

t+ 1
Rt, ∀1 ≤ t ≤ n.

(iii) The random vectors (X(1), . . . , X(n)) and (A1, . . . , An) are independent, and for any func-
tion h

E
[
h(X1, . . . , Xn)|A1 = a1, . . . , An = an

]
= E

[
h(X(a1), . . . , X(an))

]
.

Hypergeometric distribution. Recall some properties of the hypergeometric distribution
that will be used in the proof of Proposition 1. A discrete random variable ξ has the hyperge-
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ometric distribution with parameters M , N and n if

P(ξ = k) =

(
M
k

)(
N−M
n−k

)(
N
n

) , k = 0, . . . ,min{n,M}.

Here N ∈ {1, 2, . . .}, M ∈ {0, 1, . . . , N}, n ∈ {1, 2, . . . , N}, and, by convention,
(
a
b

)
= 0 for

a < b. The expectation and the variance of ξ are given by the formulas

Eξ =
M

N
n, var(ξ) =

M(N −M)(N − n)

N2(N − 1)
n.

We also state a version of the Bernstein inequality for the hypergeometric random variable
which is an immediate consequence of the results by Hoeffding (1963).

Lemma 1 Let ξ be a random variable having hypergeometric distribution with parameters M ,
N and n. Then for any λ > 0

P
{
|ξ − Eξ| ≥ λ

}
≤ 2 exp

{
− λ2

2nσ2 + 2
3λ

}
,

where σ2 = M(N −M)/N2.

6.2 Proofs

Proof of Proposition 1. The proof proceeds in steps.
00. Consider the following stopping rule

τ̂k = min
{
t : Rt ≤ rt

}
,

where (rt) is a sequence of integer numbers such that

r1 = · · · = rs = 0, 1 ≤ rt ≤ k, ∀t = s+ 1, . . . , n− 1, rn = n.

Note that choice rn = n guarantees that τ̂k ≤ n. The stopping rule τ̂k is completely determined
by number s and sequence rt, t = s+ 1, . . . , n− 1; they will be specified in the sequel. Because
P{Aτ∗k > k} ≤ P{Aτ̂k > k}, it will be sufficient to establish the upper bound on P{Aτ̂k > k}.

10. Let B be the event that the k largest order statistics X(n), X(n−1), . . . , X(n−k+1) appear
among the first s observations X1, . . . , Xs. We can write

P
{
Aτ̂k > k

}
= P

{
Aτ̂k > k,B

}
+ P

{
Aτ̂k > k,Bc

}
, (34)

and the first term is evidently bounded from above by

P{B} =

(
n−k
s

)(
n
s

) =
s−1∏
j=0

(n− k − j
n− j

)
≤ exp

{
− k

s−1∑
j=0

1

n− j

}
= exp

{
− k

n∑
j=n−s+1

1

j

}
.

Using the well known fact that C+ lnn ≤
∑n

j=1(1/j) ≤ C+ lnn+ 1
2n , ∀n, where C is the Euler

constant, [see, e.g., Gradshtein and Ryzhik (1965, formula 0.131)] we conclude

P{B} ≤ exp
{
− k ln

( n

n− s

)
+

k

2(n− s)

}
. (35)
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Turning to the second term on the right hand side of (34) we have

P{Aτ̂k > k,Bc} = P{Aτ̂k > k, τ̂k = n,Bc}+
n−1∑
t=s+1

P{Aτ̂k > k, τ̂k = t, Bc} =: I1 + I2.

Using statement (i) of Section 6.1 we have

I1 ≤ P{Rs+1 > rs+1, . . . , Rn−1 > rn−1} =

n−1∏
t=s+1

P{Rt > rt} =

n−1∏
t=s+1

(
1− rt

t

)
≤ exp

{
−

n−1∑
t=s+1

rt
t

}
.

Furthermore, for t = s+ 1, . . . , n− 1

P{Aτ̂k > k, τ̂k = t, Bc} ≤ P{At > k,Rs+1 > rs+1, . . . , Rt−1 > rt−1, Rt ≤ rt}

=

rt∑
j=1

P{At > k,Rs+1 > rs+1, . . . , Rt−1 > rt−1, Rt = j}

=

rt∑
j=1

P{At > k|Rt = j}P{Rt = j}
t−1∏

m=s+1

P{Rm > rm}

≤ 1

t

rt∑
j=1

P(At > k|Rt = j} exp
{
−

t−1∑
m=s+1

rm
m

}

=
1

t

rt∑
j=1

n∑
a=k+1

(
a−1
j−1

)(
n−a
t−j
)(

n−1
t−1

) t

n
exp

{
−

t−1∑
m=s+1

rm
m

}
,

where in the third and last lines we used (ii) of Section 6.1. Thus,

I2 ≤ 1

n

n−1∑
t=s+1

exp
{
−

t−1∑
m=s+1

rm
m

} rt∑
j=1

n∑
a=k+1

(
a−1
j−1

)(
n−a
t−j
)(

n−1
t−1

)
=

1

n

n−1∑
t=s+1

exp
{
−

t−1∑
m=s+1

rm
m

} n∑
a=k+1

P{ξt,a ≤ rt − 1},

where ξt,a stands for the hypergeometric random variable with parameters a−1, n−1 and t−1.
Combining the obtained inequalities for I1, I2 with (35) and (34) we obtain

P
{
Aτ̂ > k

}
≤ exp

{
− k ln

( n

n− s

)
+

k

2(n− s)

}
+ exp

{
−

n−1∑
t=s+1

rt
t

}
+

1

n

n−1∑
t=s+1

exp
{
−

t−1∑
m=s+1

rm
m

} n∑
a=k+1

P{ξt,a ≤ rt − 1}

=: J1 + J2 + J3.

Now we bound from above J1, J2 and J3 using specific choice of s and (rt).

20. Let s = αn for some α ∈ (0, 1), and without loss of generality assume that s is integer.
With this choice we obtain that

J1 ≤ exp
{
− k ln

( 1

1− α

)
+

k

2n(1− α)

}
≤ (1− α)k/2, (36)
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provided that α satisfies

(1− α) ln
( 1

1− α

)
>

1

n
.

Now we proceed with bounding J3. Note that Eξt,a = (t− 1)(a− 1)/(n− 1); then

P{ξt,a ≤ rt − 1} = P

{
ξt,a ≤ Eξt,a − (t− 1)

(a− 1

n− 1
− rt − 1

t− 1

)}
.

Choose

rt = 1 +
k − 1

2

( αn

n− 1

)
, ∀t = αn+ 1, . . . , n− 1. (37)

Note that with this choice for a = k + 1, . . . , n− 1, and t = αn+ 1, . . . , n− 1

rt − 1

t− 1
=

(k − 1)(αn/(n− 1))

2(t− 1)
≤ k − 1

2(n− 1)
≤ a− 1

2(n− 1)
. (38)

Therefore, applying Lemma 1 we obtain

P{ξt,a ≤ rt − 1} ≤ exp

{
−

(t− 1)2
[
a−1
n−1 −

rt−1
t−1

]2
2n (a−1)(n−a)

(n−1)2
+ 2

3(t− 1)
[
a−1
n−1 −

rt−1
t−1

]}

≤ exp

{
−

1
4(t− 1)2

[
a−1
n−1

]2
2n (a−1)(n−a)

(n−1)2
+ 2

3(t− 1)
[
a−1
n−1

]}

≤ exp
{
− (αn)2(a− 1)

8n(n− a) + 8
3(n− 1)2

}
≤ exp

{
− 3α2(a− 1)

32

}
,

where in the second line we have used (38), and the third line follows from n ≥ t ≥ αn + 1.
This bounds yield

J3 ≤
1

n

n−1∑
t=αn+1

n∑
a=k+1

exp
{
− 3α2(a− 1)

32

}
≤ 1− α

1− e−3α2/32
exp

{
− 3α2k

32

}
. (39)

Furthermore, with rt defined in (37)

J2 ≤ exp
{
− 1

2
(k − 1)α

n−1∑
t=αn+1

1

t

}
≤ exp

{
− 1

2
(k − 1)α

[
ln
( 1

1− α

)
− 1

2n(1− α)

]}
≤ exp

{
− α

4
(k − 1) ln

( 1

1− α

)}
= (1− α)α(k−1)/4. (40)

Combining (36), (40) and (39) we complete the proof.

Proof of Proposition 2. For any τ̂ ∈ T (R) and k ∈ {1, . . . , n} we have

EG(Xτ̂ ) = EG
[
Xτ̂1(Aτ̂ ≤ k)

]
+ EG

[
Xτ̂1(Aτ̂ > k)

]
≥ EGX(n−k) + EG

[
(X(1) −X(n−k))1{Aτ̂ > k}

]
= EGX(n) − EG[X(n) −X(n−k)]− EG

[
(X(n−k) −X(1))1{Aτ̂ > k}

]
.
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Now, let A n
t = σ(At, At+1, . . . , An) be the σ–field generated by the absolute ranks At, . . . , An.

It is evident that Rt is A n
t –measurable, and {τ̂ = t} ∈ A n

1 . This implies

EG
[
(X(n−k) −X(1))1{Aτ̂ > k}1{τ̂ = t}

]
= EG

{
1{Aτ̂ > k}1{τ̂ = t}EG

[
X(n−k) −X(1)|A n

1

]}
= EG

[
X(n−k) −X(1)

]
P
{
Aτ̂ > k, τ̂ = t

}
,

where the third line follows from independence of the order statistics and A n
1 [see statement (iii)

of Section 6.1]. Then the result follows by summation over t.

Proof of Theorem 1. Here we will prove the second statement only; the proof of the first
statement is contained in the proofs of Theorems 2 and 3.

For arbitrary stopping time τ ∈ T (X ) and real number δ > 0

EG
[
X(n) −Xτ

]
≥ δPG{X(n) −Xτ ≥ δ} = δ

[
1− PG{X(n) −Xτ ≤ δ}

]
Moreover,

PG{X(n) −Xτ ≤ δ} = PG{X(n) −Xτ ≤ δ, Aτ = 1}+ PG{X(n) −Xτ ≤ δ, Aτ > 1}
≤ PG{Aτ = 1}+ PG{X(n) −X(n−1) ≤ δ}.

Since for any rule τ ∈ T (X ) and any distribution G, PG(Aτ = 1) < 3
5 for large enough n [see

Gilbert and Mosteller (1966)], we obtain that

EG
[
X(n) −Xτ

]
≥ sup

δ>0
δ
[

2
5 − PG{X(n) −X(n−1) ≤ δ}

]
. (41)

First, for any G ∈ D(Φα) and large enough n we have EG[X(n)] ≤ c1U(n) with c1 = c1(α).
Second, by the joint convergence of the largest maxima [cf. Theorem 2.3.2 in Leadbetter,
Lingren & Rootzen (1986)] the vector (U−1(n)X(n), U

−1(n)X(n−1)) converges in distribution to
a non–degenerate random variable. Therefore, if we put δ = c2U(n) then for a small enough
constant c2 we can ensure that limn→∞ PG{X(n) −X(n−1) ≤ c2U(n)} < 1/5. With this choice
of δ, using (41) we have limn→∞Rn[τ ;G] ≥ c2

5c1
, as claimed.

Proof of Theorem 2. The proof is divided in three steps. First, we derive a non-asymptotic
bound on the relative regret Rn[τ∗k ;G] of the stopping rule τ∗k for any G ∈ D(Λ). Second, this
bound is used in order to show that the tuning parameter k = kn can be chosen in such a way
that Rn[τ∗kn ;G] → 0 as n → ∞. This proves the first statement of Theorem 1 for G ∈ D(Λ).
At the third step we complete the proof of Theorem 2.

10. We have

EG
[
X(n) −X(n−k)

]
=

∫ ∞
0

[
PG{X(n) > t} − PG{X(n−k) > t}

]
dt

=

∫ ∞
0

PG{1 ≤ Zn(t) ≤ k}dt,

where Zn(t) :=
∑n

i=1 1{Xi > t} is the binomial random variable with parameters n and 1−G(t).
Let U be the left–continuous inverse of 1/(1 − G); see (10). In general, U(t) is defined

for t > 1. With slight abuse of the definition of U we denote the left end point of G as
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U(1) := inf{x : G(x) > 0}. Note that U(1) is non-negative since X1, . . . , Xn are assumed to be
non–negative random variables.

By definition, if t < U(n/2k) then 1 − G(t) > 2k/n, and EGZn(t) = n[1 − G(t)] > 2k.
Therefore for t < U(n/2k) by the Bernstein inequality

PG{1 ≤ Zn(t) ≤ k} ≤ PG

{
Zn(t)− EGZn(t) ≤ −

[
n(1−G(t))− k

]}
≤ exp

{
− [n(1−G(t))− k]2

2n(1−G(t))G(t) + 2
3 [n(1−G(t))− k]

}
≤ exp

{
− 3

32n[1−G(t)]
}
≤ e−3k/16.

Thus,

EG
[
X(n) −X(n−k)

]
≤ U

(
n/2k

)
e−3k/16 +

∫ ∞
U( n

2k
)
P{X(n) > t}dt

≤ U(n/2k)e−3k/16 +
[
U(n)− U(n/2k)

]
+

∫ ∞
U(n)

[1−Gn(t)]dt. (42)

Since G ∈ D(Λ), we have∫ ∞
U(n)

[1−Gn(t)]dt ≤ n

∫ x∗G

U(n)
[1−G(t)]dt = nψ(U(n))[1−G(U(n))] ≤ ψ(U(n)) = an, (43)

where function ψ is given in (11), and we have used that n[1−G(U(n))] ≤ 1. We also note that
EG[X(n)] ≤ U(n) + ψ(U(n)) = U(n) + an for any G ∈ D(Λ).

Furthermore, letting ∆j :=
(
U(n/j), U(n/(j − 1)], j = 1, 2, . . . , n, where, by convention,

U(1) = inf{x : G(x) > 0} and U(∞) = x∗G we have

EG[X(n)] =

∫ ∞
0

PG{X(n) > t}dt = U(1) +

∫ ∞
U(1)

PG{Zn(t) ≥ 1}dt

≥ U(1) +
n−1∑
j=2

∫
∆j

PG{Z(n)(t) ≥ 1}dt+

∫ U(n/(n−1))

U(1)
PG{Z(n)(t) ≥ 1}dt

=: U(1) +

n−1∑
j=2

Ij + In, (44)

and our current goal is to bound the terms on the right hand side. We have

n−1∑
j=2

Ij =

n−1∑
j=2

∫
∆j

PG{Zn(t) ≥ 1}dt =

n−1∑
j=2

∫
∆j

n∑
m=1

(
n
m

)
[1−G(t)]m[G(t)]n−mdt

≥
n−1∑
j=2

n∑
m=1

(
n
m

) ∫
∆j

( j−1
n

)m(
1− j

n

)n−m
dt

=

n−1∑
j=2

[
U
(
n/(j − 1)

)
− U

(
n/j
)](

1− j
n

)n n∑
m=1

(
n
m

)( j−1
n−j
)m

=

n−1∑
j=2

[
U
(
n/(j − 1)

)
− U

(
n/j
)][(

1− 1
n

)n − (1− j
n

)n]
≥

[(
1− 1

n

)n − (1− 2
n

)n][
U(n)− U(n/(n− 1))

]
≥ c1[U(n)− U(n/(n− 1))], (45)
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where c1 = (2e)−1 − e−2 ≈ 0.0486. The third line follows from the binomial formula and the
penultimate inequality is a consequence of

(
1 − 1

n

)n ≥ e−1(1 − 1
2(n−1)) ≥ (2e)−1 for n ≥ 2 [see

e.g., Leadbetter, Lingren & Rootzen (1986, Lemma 2.1.1)], and (1− 2
n)n ≤ e−2. Moreover,

In =

∫ U(n/(n−1))

U(1)
[1−Gn(t)]dt ≥

∫ U(n/(n−1))

U(1)
[1−G(t)]dt ≥ n−1

n [U(n/(n− 1))− U(1)].

Combining this inequality with (45) and (44) we obtain

EG[X(n)] ≥ c1U(n). (46)

We note in passing that the derivation of (46) does not use any assumption on the domain
of attraction to which G belongs. Thus, (46) is valid for distributions from D(Λ), D(Ψα),
and D(Φα).

Taking into account (46), (43) and (42) we obtain

EG[X(n) −X(n−k)]

EG[X(n)]
≤ 1

c1

[
e−3k/16 +

U(n)− U(n/2k)

U(n)
+

an
U(n)

]
. (47)

In view of (8), (7) and (47)

EG[X(n) −Xτ∗k
]

EG[X(n)]
≤

EG[X(n) −X(n−k)]

EG[X(n)]
+ 11e−k/24

=
1

c1

{
e−3k/16 +

U(n/2k)

U(n)

[
U(n)

U(n/2k)
− 1

]
+

an
U(n)

}
+ 11e−k/24. (48)

20. Now we show that for any G ∈ D(Λ) there exists k = kn → ∞, n → ∞ such that the
right hand side of (48) converges to zero as n → ∞. This will imply that the corresponding
stopping rule τ∗kn is first order asymptotically optimal. The fact that G ∈ D(Λ) implies that
limn→∞ an/U(n) = 0; see, e.g., de Haan and Ferreira (2006, Lemma 1.2.9). Therefore it is
sufficient to show existence of k = kn →∞ such that U(n)/U(n/2kn)→ 1 as n→∞.

For G ∈ D(Λ) the function U is slowly varying; by definition, it is also non-decreasing.
Therefore U is a normalized slowly varying function [cf. Bingham et al. (1987, Theorem 1.5.5)],
i.e., it admits representation

U(t) = c2 exp

{∫ t

c3

ε(x)

x
dx

}
,

for positive constants c2, c3 and a function ε(x)→ 0, x→∞. The function ε(x) can be chosen
non-negative; it is almost everywhere equal to xU ′(x)/U(x). Let

η(t) :=

∫ 2t

t

ε(x)

x
dx = ln

[
U(2t)

U(t)

]
.

The function η(t) is positive, slowly varying, and η(t) → 0 as t → ∞. Therefore we have
[U(2t)/U(t)] − 1 = eη(t) − 1 = O(η(t)), t → ∞. This fact implies that if ρ(t) := exp{[η(t)]−α}
with any α ∈ (0, 1) then[

U(2t)

U(t)
− 1

]
ln ρ(t) = O([η(t)]1−α)→ 0, t→∞.
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Note that ρ(t) varies slowly, and ρ(t)→∞ as t→∞; therefore the function tγρ(t) is eventually
increasing for any γ ∈ (0, 1). Then it follows from Theorem 2 of Bojanic & Seneta (1971) that

lim
t→∞

U(tρδ(t))

U(t)
= 1, ∀δ > 0.

Therefore if we choose, say, k = kn = 1
2ρ(n) then

lim
n→∞

U(n)

U(n/2kn)
= lim

m→∞

U(mρ(m))

U(m)
= 1.

This proves the first statement of Theorem 1 for domain of attraction D(Λ).

30. Now assume that G ∈ Gβ(A). Then by (13) and by monotonicity of U(·) we have for
n ≥ t0 and n/2k ≥ t0

U(n)− U(n/2k)

U(n)
≥ U(n)− U(n/2)

a[n/2]
·
a[n/2]

an
· an
U(n)

≥ κ1κ2
an
U(n)

.

Therefore

EG[X(n) −X(n−k)]

EG[X(n)]
≤ c4

[
e−3k/16 +

U(n)− U(n/2k)

U(n)

]
,

where c2 depends on κi, i = 1, 2 only. Applying (14) we obtain

U(n)

U(n/2kn)
− 1 ≤ A ln(2kn)

[ln(n/2kn)]β
≤ c5A

ln ln lnn

(lnn)β

which together with (48) yields (17).

Proof of Theorem 3. The proof goes along the same lines as the proof of Theorem 2. In
particular, instead of (42) we have

EG
[
X(n) −X(n−k)

]
≤ U(n/2k)e−3k/16 +

[
U(∞)− U(n/2k)

]
which together with (46) leads to

EG[X(n) −Xτ∗k
]

EG[X(n)]
≤

EG[X(n) −X(n−k)]

EG[X(n)]
+ 11e−k/24

= c2

{
U(n/2k)

U(n)
e−3k/16 +

U(∞)− U(n/2k)

U(n)

}
+ 11e−k/24. (49)

If k = kn →∞ and n/kn →∞ as n→∞ then U(n/2k)/U(n)→ 1 and

U(∞)− U(n/2k)

U(n)
→ 0.

This yields the first statement of Theorem 1 for G ∈ D(Ψα).
If G ∈ Wα(A) then for large enough n

U(∞)− U(n/2k)

U(n)
≤ U(∞)− U(n/2k)

U(∞)(1−An−1/α)
≤ 2A

(
2k

n

)1/α

.

Then substitution of k = kn = (24/α) lnn in (49) leads to the announced result.
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Proofs of Theorem 4 and Corollary 1. The proof of Theorem 4 proceeds along the same
lines as the proof of the second statement of Theorem 1. In particular, with (41) established,
we note that if G ∈ D(Λ) then putting δ = c1an = c1ψ(U(n)), by choice c1 we can ensure that
for all n large enough PG{X(n) − X(n−1) ≤ δ} ≤ 1/5. Note that c1 is completely determined
by the limiting distribution of X(n) − X(n−1) (which is dictated by the domain of attraction
of G). Moreover, as mentioned in the proof of Theorem 2, for G ∈ D(Λ) one has EG[X(n)] ≤
U(n) + ψ(U(n)). Therefore for any G ∈ D(Λ), any τ ∈ T (X ) and all large enough n

Rn[τ ;G] =
EG[X(n) −Xτ ]

EG[X(n)]
≥ c1ψ(U(n))

5[U(n) + ψ(U(n))]
.

This inequality, together with the fact that ψ(U(n))/U(n)→ 0 as n→∞ for G ∈ D(Λ), implies
that the RHS above is lower bounded by, say, (c1/10)φn,G, and hence the lower bound in the
theorem follows since c1 is uniform over any Σ ⊆ D(Λ).

The case of Σ ⊆ D(Ψα) is treated similarly. Here we choose δ = c2[U(∞)−U(n)] and since
EG[X(n)] ≤ U(∞) we obtain that for any τ ∈ T (X ) and for large enough n

Rn[τ ;G] =
EG[X(n) −Xτ ]

EG[X(n)]
≥ c2[U(∞)− U(n)]

5U(∞)
.

This implies the lower bound in the theorem since the RHS above can be identified as (c2/5)ϕn,G,
and c2 is uniform over Σ ⊆ D(Ψα).

The proof of Corollary 1 follows immediately from Theorem 4 and the definitions of the
classes Gβ(A) and Wα(A). Indeed, if G ∈ Gβ(A) then in view of (13) and (14)

φn,G =
ψ(U(n))

U(n)
=
a(n)

U(n)
≤ 1

κ1
· U(2n)− U(n)

U(n)
≤ A ln 2

κ1(lnn)β
.

Similarly, if G ∈ Wα(A) then by (18)

ϕn,G = 1− U(n)

U(∞)
≤ An−1/α.

These inequalities together with the statement of Theorem 4 complete the proof of Corollary 1.
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