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We consider a problem of ordinal optimization where the objective is to select the best of several competing

alternatives (“systems”), when the probability distributions governing each system’s performance are not

known, but can be learned via sampling. The objective is to dynamically allocate samples within a finite

sampling budget to minimize the probability of selecting a system that is not the best. This objective does

not possess an analytically tractable solution. We introduce a family of practically implementable sampling

policies and show that the performance exhibits (asymptotically) near-optimal performance. Further, we

show via numerical testing that the proposed policies perform well compared to other benchmark policies.
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1. Introduction

Given a finite number of populations, henceforth referred to as systems, we are concerned with the

problem of dynamically learning the statistical characteristics of the systems to ultimately select

the one with the highest mean. This is an instance of ordinal optimization where the systems

cannot be evaluated analytically but it is possible to sequentially sample from each system subject

to a given sampling budget. A commonly used performance measure for sampling policies is the

probability of false selection, i.e., the likelihood of a policy mistakenly selecting a suboptimal
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system. Unfortunately, as is well documented in the literature, this objective is not analytically

tractable.

Glynn and Juneja (2004) focus on the large deviations rate function of the probability of false

selection, hereafter referred to simply as the rate function. An oracle that knows the underlying

probability distributions can determine the allocation that maximizes this rate function, and hence,

asymptotically minimize the probability of false selection. Glynn and Juneja (2004) were primar-

ily concerned with characterizing the static oracle allocation rule. Of course to implement this,

since the probability distributions are not known, one would need to estimate the rate function,

which requires estimation of the cumulant generating function associated with each system. This

introduces significant implementation challenges as noted by Glynn and Juneja (2015).

This situation is drastically simplified when one assumes that the underlying distributions fol-

low a particular parametric form and designs sampling policies based on that premise. Notably,

Chen et al. (2000) suggest a sampling policy, known as the Optimal Computing Budget Allocation

(OCBA), based on the premise of underlying normal distributions. Although this approach pro-

vides for an attractive and practically implementable allocation policy, any notion of optimality

associated with such a policy is with respect to the particular distributional assumption that may

not hold for the true underlying distributions.

The main contribution of this paper is to address some of these deficiencies by focusing on

sampling procedures that are practically implementable, that are not restricted by parametric

assumptions, and that simultaneously exhibit (asymptotic) performance guarantees. In more detail,

our contributions are summarized as follows:

(i) We show that, if the difference in means between the best and the second-best systems,

hereafter denoted by δ, is sufficiently small, the probability of false selection can be approximated

by the rate function corresponding to a Gaussian distribution, which is structured around the first

two moments of the underlying probability distributions (Theorem 2);

(ii) Based on the two-moment approximation, we propose a dynamic sampling policy, referred

to as the Welch Divergence (WD) policy, and analyze its asymptotic performance as the sampling

budget grows large (Theorem 1);
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(iii) Building on the structural properties of the WD policy, we provide an adaptive variant of

WD that performs more efficiently and exhibits attractive numerical performance when the number

of systems is large.

The first contribution can be viewed from two perspectives. From a theoretical perspective,

we characterize the class of problem instances where the misspecification due to the Gaussian

assumption is not a primary concern. From a practical perspective, we address the implementation

challenges regarding the rate function; it is approximated by estimating the first two moments

of the underlying probability distributions, alleviating the need to estimate cumulant generating

functions.

Figure 1 illustrates key qualitative findings of this paper. For a given sampling budget (T ),

sampling policies based on the first two moments (e.g., WD and OCBA) exhibit good performance

if the difference in means between the best and the second-best systems (δ) is sufficiently small

relative to T−1/2. Thus, the regime favorable to the two-moment approximation can be roughly

characterized with the aid of the curve along which T ∝ 1/δ2; see §5.2. (This curve is not a sharp

boundary between the two regions in the figure, rather, it provides a rough guideline for selecting

algorithms in practice.)

Sampling policies that are structured around the first two moments are prevalent; see, e.g., Chen

et al. (2000), Frazier et al. (2008), and the literature review in §2. It is one of the core distinctions of

this paper that our proposed policies are closely related to the Welch’s t-test statistic (Welch 1947),

widely used for testing a hypothesis that two populations have equal means. Both of our analytical

and numerical results show that this metric is indeed an appropriate measure of divergence between

two probability distributions in an ordinal optimization setting.

Similar to majority of related literature, our analysis takes place in a setting where samples are

taken independently within a system and across systems, and methodologies like common random

numbers are outside the scope of the analysis. However, we allow sampling policies to take multiple

samples in each stage, so our algorithms are applicable in parallel computing environments.
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Figure 1 Parameter region supporting the two-moment approximation. For a fixed value of the difference

in means (δ) between the best and the second-best systems, the efficacy of the two-moment approxi-

mation for the probability of false selection is determined by the relation of the gap and the sampling

budget (T ). As δ gets smaller, policies based on the two moments will perform well for a wider range

of sampling budgets, but as this gap increases, the performance deteriorates and the approximation is

less accurate.

The remainder of the paper is organized as follows. In §2 we survey related literature. In §3 we

introduce a tractable objective function based on the theory of large deviations and formulate a

dynamic optimization problem related to that objective. In §4 we propose the WD policy. In §5

we provide theoretical analyses of the proposed policy. In §6 we propose an adaptive version of the

WD policy. In §7 we test the proposed policies numerically and compare with several benchmark

policies. Appendices A and B contain the proofs for main theoretical results and auxiliary results,

respectively. Appendix C discusses the effect of initial samples on the performance of the proposed

policies.

2. Literature Review

The existing literature on (stochastic) ordinal optimization can be roughly categorized into fixed

budget and fixed confidence settings; the goal in the former setting is to minimize the probability of

false selection given a sampling budget, while in the latter setting the goal is to devise a sampling
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procedure that satisfies a desired guarantee on the probability of false selection by taking as few

samples as possible.

2.1. Fixed Budget Setting

In the case where the underlying probability distributions are assumed to be Gaussian with known

variance, a series of papers beginning with Chen (1995) and continuing with Chen et al. (1996,

1997, 2000, 2003) suggest a family of policies known as Optimal Computing Budget Allocation

(OCBA). They characterize the allocation that maximizes a lower bound on the probability of

correct selection and suggest a dynamic policy that sequentially estimates the lower bound from

past sample observations, and then makes sampling decisions accordingly.

The OCBA policy shares the same structure with our procedure in the sense that both myopi-

cally maximize certain objective functions. On the other hand, our work differs significantly from

the stream of OCBA literature surveyed above: while the application of OCBA in non-Gaussian

environments can be viewed as a heuristic, our work provides rigorous justification for the efficacy

of our proposed policy in the non-Gaussian case.

Further, Chen et al. (2000) provides a simple budget allocation rule for OCBA that circumvents

the computations involved in extracting the exact solution to their objective function. Pasupathy

et al. (2015) show that such a workaround is valid asymptotically as the number of systems tends to

infinity. The WD policy proposed in this paper requires the exact analysis of a convex optimization

problem, and hence computational demands increase when the number of systems is large. To

address that, we also provide a variant of WD whose computational burden is comparable to that

of OCBA.

In the case with Gaussian distributions with unknown variances, Chick and Inoue (2001) derive

a bound for the expected loss associated with potential incorrect selections and provide sampling

policies to minimize that bound asymptotically.

Another example of a Gaussian-based procedure is the Knowledge Gradient (KG) policy pro-

posed by Frazier et al. (2008). Like the OCBA policy, it assumes that each distribution is Gaussian
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with known variance. However, while the probability of correct selection in the OCBA policy is

classified as 0-1 loss, the KG policy aims to minimize expected linear loss: the difference in means

between the best and selected system. The 0-1 loss is more appropriate in situations where identi-

fication of the best system is critical, while the linear loss is more appropriate when the ultimate

value corresponds to the selected system’s mean. An unknown-variance version of the KG policy

is developed in Chick et al. (2007) under the name LL1.

In cases with general distributions, the main difficulty is loss of practicality. Glynn and Juneja

(2004) use large deviations theory with a certain family of light-tailed distributions to identify

the rate function associated with the probability of false selection. The (asymptotically) optimal

full information allocation is obtained by maximizing the rate function. Broadie et al. (2007) and

Blanchet et al. (2008) study a heavy-tailed analog of this problem. These studies focus almost

exclusively on structural insights for the rate function and static full information policies. This

paper is significantly different in that we deal with dynamic sampling policies that need to learn

and maximize the rate function simultaneously, which introduces challenges of dynamic sampling

along with important implementation issues, some of which are discussed in Glynn and Juneja

(2015).

Recently, Russo (2016) considers the problem where distributions are restricted to be members

of an exponential family with a single unknown parameter. Contrary to the frequentiest setting in

our paper, he formulates a posterior distribution for the unknown parameters according to Bayes

rule and characterizes the rate of convergence for the posterior probability of false selection. He

suggests sampling policies that can achieve a near-optimal rate asymptotically. However, from an

implementation viewpoint, these policies require multi-dimensional integrals repeatedly, which are

difficult to compute in general.

Our research is closely related to pure exploration in the multi-armed bandit (MAB) problem,

often referred to as best-arm identification; see Bubeck and Cesa-Bianchi (2012) for a compre-

hensive overview. (Additional best-arm identification papers in the fixed confidence setting are
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reviewed in §2.2.) The best-arm identification procedures seek the same goal as ordinal optimization

procedures—i.e., selecting the unique best arm, or the system with highest mean in the language

of this paper. Bubeck et al. (2009) derive bounds on the probability of false selection for two

algorithms: a uniform allocation rule with selecting the arm with the highest empirical mean and

the upper confidence bound (UCB) allocation rule in Auer et al. (2002) with selecting the most

played arm. The rate of decrease of the probability of false selection is exponential for the former

algorithm, but is only polynomial for the latter one, implying regret-minimizing allocation rules,

such as UCB, are not well-suited for the pure exploration problem.

Further, Audibert and Bubeck (2010) suggest two algorithms: a variant of the UCB algorithm,

in which the optimal value of its parameter depends on some measure of the complexity of the

problem, and Successive Rejects algorithm, a parameter-free method based on progressively reject-

ing seemingly “bad” arms. Bubeck et al. (2013) generalize the preceding work to the problem of

identifying multiple arms. They derive upper and lower bounds on the probability of false selection

for a finite sampling budget. However, the asymptotic performance of these algorithms may not

be optimized in terms of the rate function. In contrast, we propose and analyze a sampling policy

that maximizes the rate function asymptotically.

2.2. Fixed Confidence Setting

In this setting the goal is to select the best system with a predetermined probability, by taking as

few samples as possible. One of the early contributions in this setting traces back to the work of

Bechhofer (1954) who established the indifference-zone (IZ) formulation. A large body of research

on the IZ procedure followed (see, e.g., Paulson 1964, Rinott 1978, Nelson et al. 2001, Kim and

Nelson 2001, Goldsman et al. 2002, Hong 2006). While most of procedures in the preceding papers

are based on the premise of underlying Gaussian distributions, a recent procedure developed by

Fan et al. (2016) allows for general, non-Gaussian distributions.

The stream of IZ literature surveyed above is closely related to best-arm identification problem

in the fixed confidence setting. They differ along two dimensions: the best-arm procedures employ
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different elimination mechanisms based on a confidence bound for the mean of each arm, while IZ

procedures eliminate “arms” based on a confidence bound for the difference in means between two

arms; and in the best-arm problem a standard assumption is that the underlying distribution for

each arm (system) is either Bernoulli (Even-Dar et al. 2002, Mannor and Tsitsiklis 2004, Even-Dar

et al. 2006, Kalyanakrishnan et al. 2012, Jamieson et al. 2014) or unbounded but explicit bounds

on moments are known (Glynn and Juneja 2015).

When the underlying distributions have unbounded support, Glynn and Juneja (2015) show that

one cannot use an empirical rate function to determine the number of samples that guarantees a

desired probability of false selection. However, this issue is not critical in the fixed-budget setting

of this paper, in which the number of samples is exogenously given; see §4.2-§4.3 for a further

discussion.

3. Problem Formulation

3.1. Policy Preliminaries

Consider k stochastic systems, whose performance is governed by a distribution Fj(·), j = 1, . . . , k.

These distributions are unknown to the decision maker. We assume that the second moment of

each distribution is finite, and let µj =
∫
xdFj(x) and σj = (

∫
x2dFj(x)− µ2

j)
1/2 be the mean and

standard deviation for performance of the jth system. Denote µ (respectively, σ) the k-dimensional

vector of means (respectively, standard deviations). We assume that µ1 >maxj 6=1 µj and that each

σj is strictly positive to avoid trivial cases.

A decision maker is given a fixed sampling budget T , which means T independent samples can

be drawn from the k systems. A sampling policy π is defined as a sequence of random variables,

π1, π2, . . ., taking values in the set {1,2, . . . , k}; the event {πt = j} means a sample from system

j is taken at stage t. Define Xjt, t = 1, . . . , T , as a random sample from system j in stage t

and let Ft be the σ-field generated by the samples and sampling decisions taken up to stage t,

i.e., {(πτ ,Xπτ ,τ )}tτ=1, with the convention that F0 is the nominal sigma algebra associated with

underlying probability space. The set of non-anticipating policies is denoted as Π, in which the
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sampling decision in stage t is determined based on all the sampling decisions and samples observed

in previous stages, i.e., {πt = j} ∈Ft−1 for j = 1, . . . , k and t= 1, . . . , T .

For each system j, we denote by Njt(π) the cumulative number of samples up to stage t and let

αjt(π) be the sampling rate at stage t. Formally,

Njt(π) =
t∑

τ=1

I{πτ = j} (1)

αjt(π) =
Njt(π)

t
, (2)

where I{A}= 1 if A is true, and 0 otherwise. Also, we denote by X̄jt(π) and S2
jt(π) the sample

mean and variance of system j in stage t:

X̄jt(π) =

∑t

τ=1XjτI{πτ = j}
Njt(π)

(3)

S2
jt(π) =

∑t

τ=1(Xjτ − X̄jt(π))2I{πτ = j}
Njt(π)

. (4)

Note that Xjτ is observed only when {πτ = j}. We use bold type for vectors: αt(π) =

(α1t(π), . . . , αkt(π)) and N t(π) = (N1t(π), . . . ,Nkt(π)) denote vectors of sampling rates and cumu-

lative numbers of samples in stage t, respectively. Likewise, we let X̄t(π) and S2
t (π) be the vectors

of sample means and variances in stage t, respectively. For brevity, the argument π may be dropped

when it is clear from the context. To ensure that X̄t and S2
jt are well defined, each system is

sampled once initially.

In the optimization problem we consider in §3.3, we further restrict attention to consistent

policies defined as follows.

Definition 1 (Consistency). A policy π ∈Π is consistent if Njt(π)→∞ almost surely for each

j as t→∞.

Under a consistent policy, no system has its sampling stopped prematurely. We denote by Π̄⊂Π

the set of all non-anticipating, consistent policies. The naming convention stems from the fact that

under such policies sample means and variances induced by the policy are consistent estimators of

the population counterparts, as formalized in the following proposition.
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Proposition 1 (Consistency of estimators). For any consistent policy π ∈ Π̄, X̄jt(π)→ µj

and S2
jt(π)→ σ2

j almost surely as t→∞.

The proof of the preceding proposition follows from straightforward application of the strong law

of large numbers, and will be omitted. The following example illustrates some care is needed to

ensure the consistency property holds.

Example 1 (Dynamic sampling which is not consistent). Suppose k = 2 and the popula-

tions are normal with (µ1, µ2) = (2,1) and unit variances. Let π1 = 1, π2 = 2, and πt = arg maxj{X̄jt}

for each stage t ≥ 3; that is, a sample is taken from the system with the greatest sample mean.

Assume all systems are sampled once initially. After taking a sample from each system, it can be

easily seen that the event, A= {X̄12 ∈ (−∞,0) and X̄22 ∈ (1,∞)}, occurs with positive probability.

Conditional on this event, system 1 would not be sampled at all if X̄2t ≥ 0 for all t≥ 3. The latter

event occurs with positive probability since {
∑t

s=2X2s : t≥ 3} is a random walk with positive drift

and the probability that it falls below zero is strictly less than one. Combined with the fact that

P(A)> 0, this policy is not consistent.

3.2. Large Deviations Preliminaries

The probability of false selection, denoted P(FST (π)) with FST (π) := {X̄1T (π)<maxj 6=1 X̄jT (π))},

is a widely used criterion for the efficiency of a sampling policy, but the exact evaluation of

P(FST (π)) is not analytically tractable (see, e.g., the survey paper by Kim and Nelson 2006).

However, in an asymptotic regime where the sampling budget goes to infinity, P(FST (π)) can be

expressed in a closed form.

In particular, for a fixed vector α= (α1, . . . , αk)∈∆k−1, where ∆k−1 a (k−1)-simplex defined as

∆k−1 =

{
(α1, . . . , αk)

∣∣∣ k∑
j=1

αj = 1 and αj ≥ 0

}
, (5)

we let πα ∈Π be a static allocation rule that targets the (asymptotic) fractional allocation vector

α∈∆k−1. This rule can be easily implemented in several ways. For simplicity consider drawing one
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sample from each system and thereafter setting παt+1 = arg maxj{αj −αjt(πα)} for t= k, k+ 1 . . .,

with ties broken arbitrarily. This policy is static in the sense that it is independent of sample obser-

vations. Define Mj(θ) := E[eθXj ] and let Λj(θ) := logMj(θ) be the cumulant generating function.

Let Ij(·) denote the Fenchel-Legendre transform of Λj(·), i.e.,

Ij(x) = sup
θ

{θx−Λj(θ)}, j = 1, . . . , k. (6)

Let Dj = {θ ∈R : Λj(θ)<∞} and Hj = {Λ′j(θ) : θ ∈ D0
j }, where D0 denotes the interior of a set

D and Λ′j(θ) denotes the derivative of Λj(·) at θ. In the current section we make the following

assumption, which will also be needed for our theoretical results in §5.

Assumption 1. The interval [minj 6=1 µj, µ1]⊂∩kj=1H
0
j .

To rephrase the preceding assumption, the maximizer of the sup in (6) can be denoted by θj(x)

such that Λ′j(θj(x)) = x, which is well defined for any x ∈ [minj 6=1 µj, µ1]. Under this assumption,

for fixed α= (α1, . . . , αk) we have that

1

T
logP(FST (πα))→−ρ(α) :=−min

j 6=1
Gj(α) as T →∞, (7)

where

Gj(α) = inf
x
{α1I1(x) +αjIj(x)}. (8)

The proof for the preceding equations, provided in Appendix A, essentially follows that of Glynn

and Juneja (2004). From (7) it follows that P(FST (πα)) behaves roughly like exp(−ρ(α)T ) for large

values of T . Hence, under Assumption 1, ρ(·) is an appropriate measure of asymptotic efficiency

closely associated with the probability of false selection, at least for static allocations.

3.3. Problem Formulation

For a fixed budget T , we define the relative efficiency RT (π) for a policy π ∈Π to be

RT (π) =
ρ(αT (π))

ρ∗
, (9)
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where ρ∗ = maxα∈∆k−1{ρ(α)}. By definition, the value of RT (π) lies in the interval [0,1]; an

allocation is considered efficient when RT (π) is close to 1. We are interested in the policy that

maximizes the expected relative efficiency with the fixed sampling budget T :

sup
π∈Π̄

E[RT (π)]. (10)

The following definition characterizes consistent policies that have “good” asymptotic properties.

Definition 2 (Asymptotic optimality). A policy π ∈ Π̄ is asymptotically optimal if

E[RT (π)]→ 1 as T →∞.

The asymptotic optimality implies the sampling budget is allocated in a way that the probability

of false selection converges to zero at an exponential rate and that the exponent governing the

rate of convergence is asymptotically the best possible. It is important to note that a sufficient

condition for asymptotic optimality is that αT (π)→α∗ ∈ arg maxα∈∆k−1{ρ(α)} in probability as

T →∞. Also note each element of α∗ is strictly positive; otherwise ρ(α∗) = 0 but we know that

ρ(α)> 0 for α= (1/k, . . . ,1/k). Therefore, asymptotic optimality implies consistency.

4. A Two-Moment Approximation and the Proposed Policy

4.1. Motivation

In a general setting with unknown underlying distributions, the functional form of the (asymptotic)

probability of false selection ρ(·) is not known, and therefore, it needs to be estimated from sample

observations non-parametrically. One such approach would proceed as follows. Let Λ̂jt(θ;π) be the

empirical estimate of the cumulant generating function for system j, i.e.,

Λ̂jt(θ;π) = log

∑t

τ=1 exp(θXjτ )I(πτ = j)

Njt

. (11)

Define Îjt(x;π) as the empirical counterpart of Ij(x) in (6), where Λj(θ) is replaced with Λ̂jt(θ;π).

Then, the rate function can be estimated by replacing Ij(x) with Îjt(x;π) in (8). However, as noted

by Glynn and Juneja (2015), this approach runs into problems at the very first step. Specifically, the

estimator of the cumulant generating function, Λ̂jt(θ;π), tends to be heavy-tailed in most settings,
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thereby increasing the possibility of large errors for the corresponding rate function estimate. To

see this, observe that if Xjτ has an exponential right tail, then exp(θXjτ ) is heavy-tailed for θ > 0

and therefore so is Λ̂jt(θ;π). This in turn could mean that a significant portion of the sampling

budget is “wasted” on estimating the rate function, leaving only a small budget to maximize it.

Further, maximization of the rate function (or its empirical estimate) involves a multi-level opti-

mization: the first inner layer to evaluate Ij(x) in (6) for each j; the second inner layer to evaluate

ρ(α) in (7); and the outer layer to maximize ρ(α) over α ∈∆k−1. This multi-level optimization

problem becomes increasingly difficult to solve numerically as the number of systems gets large. In

the rest of this section, we suggest a close approximation to the rate function, which allows one to

circumvent the difficulties mentioned above.

4.2. A Two-Moment Approximation

We suggest an approximation to ρ(α), which is structured around the first two moments of the

underlying probability distributions. For each α∈∆k−1, define ρG(α) as

ρG(α) = min
j 6=1

(µ1−µj)2

2(σ2
1/α1 +σ2

j/αj)
. (12)

Proposition 2 (Characteristics of ρG(·)). There exists a unique αG = arg maxα∈∆k−1{ρG(α)}

that satisfies the following system of equations:

(µ1−µi)2

σ2
1/α

G
1 +σ2

i /α
G
i

=
(µ1−µj)2

σ2
1/α

G
1 +σ2

j/α
G
j

, for all i, j = 2, . . . , k (13)

αG1
σ1

=

√√√√ k∑
j=2

(αGj )2

σ2
j

. (14)

The proof for (13)-(14) in the preceding proposition follows from Theorem 1 in Glynn and Juneja

(2004). The uniqueness of αG follows from the fact that ρG(α) is a strictly concave function of α.

An immediate corollary of Proposition 2 is that αG lies in the interior of ∆k−1; if αGj = 0 for some

j, then (13) and (14) would not hold.
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Remark 1 (Relation to Welch’s t-test statistic). With an appropriate scaling, each term

in the min operator of (12) can be viewed as a population counterpart of Welch’s t-test statistic

(Welch 1947) given by

X̄1t− X̄jt

S2
1t/N1t +S2

jt/Njt

, (15)

which is used to test the hypothesis that systems 1 and j have equal means when the underlying

distributions are Gaussian. Further, in the case with general, non-Gaussian distributions, Chernoff

(1952) shows that there is no significant loss in efficiency by using Welch’s t-test statistic as long

as the probability distributions of systems 1 and j are sufficiently close to each other.

It can be easily seen that ρG(·) is identical to ρ(·) when the underlying distributions are

Gaussian—hence the superscript G (see Example 1 of Glynn and Juneja 2004). This observation,

together with Remark 1, suggests that ρG(·) may be closely aligned with ρ(·). If this is the case,

then αT (π)≈αG implies

RT (π)≈ ρ(αG)

ρ∗

≈ 1,

(16)

where ‘≈’ signifies approximate equality (to be made precise in §5). The preceding observation will

be formally stated and proved in Theorem 2.

4.3. Welch Divergence Policy

Motivated by the two-moment approximation, we now propose a dynamic sampling policy, called

Welch Divergence (WD), which iteratively estimates αG = arg maxα∈∆k−1{ρG(α)} from the history

of sample observations. The name of the policy stems from its connection to Welch’s t-test statistic

(Welch 1947) in Remark 1. Denote α̂Gt the estimator of αG in stage t. Formally,

α̂Gt = arg max
α∈∆k−1

{
min
j 6=b

(X̄bt− X̄jt)
2

2(S2
bt/αb +S2

jt/αj)

}
, (17)

where b= arg maxj{X̄jt}. If X̄jt = X̄bt for some j 6= b, then the objective function of (17) is zero for

any α∈∆k−1 so that α̂Gt may not be well defined. This event can happen with positive probability
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Algorithm 1 WD(n0,m, ε)

(Initialization) For each j, take n0 samples or until S2
jt > 0

While t≤ T do

(Myopic optimization) Solve (17) to obtain α̂Gt ; if X̄jt = X̄bt for some j 6= b, replace (X̄bt−X̄jt)
2

in (17) with ε/Njt

(Sampling) Let πt+s = arg maxj=1,...,k{α̂Gjt−αjt} for s= 1, . . . ,m. Let t= t+m

End While

when the underlying distributions have jumps. To avoid technical difficulties due to ties, we replace

(X̄bt − X̄jt)
2 with ε/Njt for each j 6= b such that X̄jt = X̄bt, where ε > 0 is a sufficiently small

number.

The WD policy matches αt(π) with α̂Gt in each stage, simultaneously making α̂Gt approach αG

as t→∞. The policy is summarized in Algorithm 1, with n0, m, and ε being parameters of the

policy; n0 is the number of initial samples from each system, m is the batch size, and ε is the

constant for the perturbation in case of ties. For ease of exposition, we assume T is a multiple of

m.

Remark 2 (Generality of WD). Although we impose Assumption 1 to ensure that the rate

function in (7) is well defined, it is important to note that the WD policy does not involve the

rate function; it is structured around the first two moments of the underlying distributions. Hence,

the WD policy can be implemented in general problem instances whenever two moments exist; for

example, see §7.2.3 for the performance of WD with respect to the probability of false selection,

the objective of original interest, when the underlying distributions are heavy-tailed and the rate

function does not exist.

5. Main Theoretical Results and Qualitative Insights

5.1. Main Theoretical Results

This section contains our three main theoretical results. Theorem 1 provides the asymptotic per-

formance of the WD policy as T →∞. Theorem 2 validates the two-moment approximation in an
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asymptotic regime where δ = µ1−maxj 6=1{µj}→ 0. Finally, Theorem 3 strengthens the preceding

theorem in a stylized asymptotic setting where both T →∞ and δ→ 0.

Theorem 1 (Asymptotic performance of WD). The WD policy is consistent. Further, if

Assumption 1 is satisfied, then αT (π)→αG almost surely as T →∞ for π= WD, and therefore,

E[RT (π)]→ ρ(αG)

ρ∗
as T →∞. (18)

An important implication of Theorem 1 is that if αG ≈ α∗, then αT (π) for π = WD is close

to α∗ for sufficiently large T , and therefore, the WD policy exhibits near-optimal performance

asymptotically. The following theorem characterizes the class of problem instances where ρ(·) and

ρG(·) are closely aligned so that αG ≈α∗.

Theorem 2 (Validity of the two-moment approximation). Consider a class of system con-

figurations for which Assumption 1 is satisfied and let δ= µ1−maxj 6=1{µj}. If σj ∈ [σmin, σmax] for

0<σmin ≤ σmax <∞ for each j, then

ρ(αG)

ρ∗
→ 1 as δ→ 0, (19)

where αG = arg maxα∈∆k−1{ρG(α)}.

Note that ρ(α) tends to zero for each α ∈ ∆k−1 as δ → 0, and therefore, so does |ρ∗ − ρ(αG)|.

Theorem 2 strengthens the preceding argument; ρ(αG) and ρ∗ converge to zero at the same rate as

δ→ 0, and therefore, maximizers of ρ(·) and ρG(·) should coincide in the limit. This suggests that

the WD policy, which maximizes ρG(α), can achieve near-optimal performance with respect to ρ∗

when the gap between the best and second-best means is sufficiently close to 0. More precisely, after

taking T →∞, the probability of false selection on a logarithmic scale depends on the underlying

distributions only through the first two moments as the gap in the means shrinks to zero. Next we

present a simple example to verify the result in Theorem 2.
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Example 2 (Bernoulli systems). Consider two Bernoulli systems with parameters µ1, µ2 ∈

(0,1) with µ1 >µ2 so that P(Xj = 1) = µj = 1−P(Xj = 0) for j = 1,2. The rate functions are

Ij(x) = x log

(
x

µj

)
+ (1−x) log

(
1−x
1−µj

)
, j = 1,2. (20)

Using a second-order Taylor expansion of Ij(x) at x= µj and the fact that σ2
j = µj(1−µj), it can

be seen that

Ij(x) =
(x−µj)2

2σ2
j

+ o
(
(µ1−µ2)2

)
(21)

as µ2 ↑ µ1, where f(x) = o(x) if f(x)/x→ 0 as x→ 0. Since ρ(α) = infx{α1I1(x) + α2I2(x)}, it is

not difficult to show that

ρ(α) =
(µ1−µ2)2

2(σ2
1/α1 +σ2

2/α2)
+ o
(
(µ1−µ2)2

)
, (22)

where the right-hand side converges to (12) as µ2 ↑ µ1. Further, it can be easily checked that

|ρ(α∗)− ρ(αG)| ≤max
{
|ρ(α∗)− ρG(α∗)|, |ρ(αG)− ρG(αG)|

}
. (23)

Combined with the fact that (22) holds for any α∈∆k−1, the desired result (19) follows.

Figure 2 uses Example 2 to illustrate the proximity between ρ(·) and ρG(·) for the case with

Bernoulli systems, as a function of µ1−µ2. Observe that the maximizers of ρ(·) and ρG(·) approach

each other as the gap in means (µ1 − µ2) gets smaller, as predicted by the analysis above, in

particular, (22).

As noted by Glynn and Juneja (2004), when the true underlying distributions are incorrectly

specified as Gaussian, substantially sub-optimal allocations can result; further, the preceding argu-

ment is unaffected by taking batches of samples, one of the standard ways to justify the Gaussian

assumption. In contrast, Theorem 2 implies that one may approximate ρ(·) by assuming that the

underlying distributions are Gaussian, when the difference in means between the best and second-

best systems is small enough. This provides a rigorous justification for a two-moment approximation

in a specific class of problem instances, primarily affected by the distance between means. We
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Figure 2 Approximation error. Proximity between ρ(α) (solid) and ρG(α) (dashed) for the case with two

Bernoulli systems. The ratio ρ(αG)/ρ∗ is 0.9728 in the left panel and 0.9986 in the right panel. The

maximizers α∗ and αG tend to be close to each other as µ1−µ2→ 0.

should note that the case when the means are “close” implies the problem is “harder” insofar as

differentiating the best system from the rest; if the means are “far apart,” the problem is simpler.

Theorem 2 addresses the former case.

To strengthen our observations in Theorem 2, we consider a stylized sequence S of system con-

figurations defined as follows. Each system configuration is indexed by superscript t. The t-th

configuration is denoted by Ft = (F t
1 , . . . ,F

t
k), where F t

j (·) is the distribution function for system j;

that is, in the t-th configuration, sample observations from system j are independently and iden-

tically distributed as F t
j (·). Let µtj be the mean of the distribution F t

j (·). The initial configuration

is F1 = F. We let µ1
j = µj for each j and define ∆1j = µ1−µj for j 6= 1. Also, the configuration Ft,

t≥ 2, is defined by change of measure from the initial configuration: we fix F t
1(x) = F1(x) and the

distribution of system j 6= 1 is shifted so that F t
j (x) = Fj(x− δt∆1j), where {δt}∞t=1 is a sequence of

nonincreasing, positive numbers with δ1 = 0. This implies that (µt1−µtj) = δt(µ1−µj) for each t, so

that the differences in means shrink to zero at the rate governed by δt; as a slight abuse of notation,

we say that each configuration Ft is parametrized by δt. We write Et[·] and Pt(·) to denote the

expectation and probability under the product measure using Ft. For brevity, we write E[·] = E1[·]

and P(·) = P1(·).
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Theorem 3 (Asymptotic validity of the approximation). Consider a sequence S of system

configurations {Ft}∞t=1, each of which is parametrized by δt. Suppose Assumption 1 is satisfied for

the initial configuration F1. If tδ2
t →∞ and δt→ 0 as t→∞, then for any static policy πα with

α∈∆k−1

1

tδ2
t

logPt(FSt(π
α))→−ρG(α) as t→∞, (24)

where ρG(α) is the two-moment approximation (12) under the configuration F1.

Heuristically, the preceding proposition implies that the behavior of Pt(FSt(π)) for a large value

of t is related to δ2
t ; that is, Pt(FSt(π)) ≈ exp{−ρG(α)tδ2

t }. This asymptotic regime, where the

sampling budget is increasing and the distance between means is diminishing, the two-moment

approximation is rigorously justified relative to the probability of false selection objective.

5.2. Qualitative Insights

Let δ = µ1 −maxj 6=1{µj} and write the loss in relative asymptotic efficiency under policy π as

`(t; δ) = 1−ρ(αt(π))/ρ∗, which can be decomposed into two parts: (i) an approximation error due

to the loss of maximizing ρG(·) instead of ρ(·); and (ii) an estimation error due to the loss incurred

by noisy estimates of means and variances. Formally, for any t≥ k

`(t; δ) = 1− ρ(αt(π))

ρ∗
(25)

=

(
1− ρ(αG)

ρ∗

)
+

(
ρ(αG)− ρ(αt(π))

ρ∗

)
(26)

= `1(δ) + `2(t), (27)

where `1(δ) corresponds to the loss due to the approximation error which depends critically on the

difference in means δ and `2(t) corresponds to the loss due to sampling (noise). Note that `1(δ) is

independent of t and that `2(t) decreases to 0 almost surely as t→∞ under the WD policy since

αt→αG. (Technically, `2(t) also depends on δ but we suppress that dependence.)

For the regime with small t, the latter error dominates the former, i.e., `1(δ)� `2(t), and hence,

learning the mean of each system is more important than obtaining a precise approximation of
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Figure 3 Bias-variance decomposition of the efficiency loss. The graphs show results for the WD policy,

where each configuration consists of two Bernoulli systems. The graph (a) is for the configuration with

(µ1, µ2) = (0.9,0.85) and the graph (b) is for the configuration with (µ1, µ2) = (0.9,0.895). Each `2(t),

the stochastic error, is estimated by taking average of 106 generated values of (ρ(αG)− ρ(αt(π)))/ρ∗.

The standard error of each estimate for `2(t) is less than 10−7 in graph (a) and is less than 10−9 in

graph (b). The two graphs suggest that the crossing point tc is proportional to δ2, i.e., at that scale the

approximation and stochastic errors are balanced.

ρ(·). Therefore, in this regime ρG(·) is a reasonable proxy for ρ(·). When t is large, we have that

limt `2(t) = 0 from Theorem 1, and therefore, lim inft `(t) = `1(δ); that is, in the non-Gaussian case,

`1(δ) is strictly positive and the WD policy cannot recover the full asymptotic efficiency eventually.

However, it is important to note that the magnitude of `1 is not substantial as long as the gap in

means is small enough (Theorem 2).

Figure 3 illustrates the magnitudes of `1(δ) and `2(t) in two simple configurations, each with

two Bernoulli systems; one with δ = 0.05 and another one with δ = 0.005, where δ = µ1 − µ2. For

both configurations, there exists tc <∞ such that `1(δ) = `2(tc). For t� tc, maximizing ρG(·) does

not lead to a significant loss in efficiency because `1(δ)� `2(t). Since tc is roughly proportional

to 1/δ2, when δ becomes 10 times smaller, it requires approximately 100 times more samples to

reduce `2(t) to the level of `1(δ). This is consistent with the result of Theorem 3 that the behavior

of P(FSt) is closely related to δ2 for large t.
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Algorithm 2 AWD(n0,m)

(Initialization) For each j, take n0 samples or until S2
jt > 0

While t≤ T do

Let b= arg maxj{X̄jt}. If

αbt
Sbt

<

√√√√∑
j 6=b

α2
jt

S2
jt

, (28)

set πt+1 = b. Otherwise, set

πt+s = arg min
j 6=b

{
(X̄bt− X̄jt)

2

S2
bt/αbt +S2

jt/αjt

}
(29)

for s= 1, . . . ,m and let t= t+m

End While

6. An Adaptive Welch Divergence Policy

From an implementation standpoint, WD may entail a heavy computational burden as one needs

to solve the convex optimization (17) in every stage. In particular, the computation time for

solving (17) increases in proportion to the number of systems. Hence, it is desired to construct

an alternative policy that is implementable in large-scale problem instances, while retaining the

(asymptotic) performance of WD.

6.1. Derivation of the Heuristic

We propose the Adaptive WD (AWD) policy summarized in Algorithm 2. To provide some intuition

behind AWD, note that the objective function of (17) is equivalent to ρG(α) in (12) with the

exception that µj and σj are replaced with their sample estimates, X̄jt and Sjt, respectively.

Therefore, from Proposition 2 it can be easily seen that the first-order condition for (17) can be

written as

(X̄bt− X̄it)
2

S2
bt/α̂

G
bt +S2

it/α̂
G
it

=
(X̄bt− X̄jt)

2

S2
bt/α̂

G
bt +S2

jt/α̂
G
jt

, for all i, j 6= b (30)

α̂Gbt
Sbt

=

√√√√∑
j 6=b

(α̂Gjt)
2

S2
jt

. (31)
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While WD seeks an exact solution for (30)− (31) in every stage, AWD balances the left and right

sides of (30)− (31) so that they are satisfied asymptotically as t→∞.

Remark 3 (WD and AWD in the two-system case). In the case with k = 2 systems, it is

straightforward to see that WD and AWD are identical. Specifically, note that, when (28) is satisfied

for some stage t, AWD takes a sample from system b. Further, for the WD policy, it can be seen

that (28) implies α̂Gbt > αbt and α̂Gjt < αjt for j 6= b, and therefore, WD also samples system b. A

similar argument holds for the case where (28) is violated.

6.2. Comparison Between WD and AWD

Figure 4 compares the performances of WD and AWD in the case with k= 10 normally distributed

systems with µ= (1,0.9, . . . ,0.9) and σ = (1,1, . . . ,1). The parameters for the two policies are set

as n0 = 200 and m= 10. The two right panels show the frequencies of α1t for t= 1.6 · 104,1.6 · 105,

from which it is clear to see that α1t → αG1 = 0.25 as t→∞. The left panel shows that AWD

performs slightly better than WD in terms of the probability of false selection; indeed, this is what

we observed in most numerical experiments. We note that for a finite sampling budget, an optimal

policy should judiciously balance exploring unknown characteristics of the probability distributions

and minimizing the probability of false selection. Neither WD nor AWD is optimized for finite-

budget performance, but numerical experiments on many different examples suggest that AWD

tends to be more efficient in achieving the balance than WD.

From the perspective of implementation, AWD is far more efficient and scalable than WD. In

Table 1 we estimate CPU times per stage under the two policies. For the implementation of WD,

we use CVX, a package for specifying and solving convex problems (Grant and Boyd 2008, 2014)

on a Windows 7 operating system with 32GB RAM and Intel core i7 2.7GHz CPU. Although

the implementation of each algorithm was not optimized for CPU time, the relative CPU times

illustrate the dramatic difference between the policies, in particular scalability of the AWD policy.
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Figure 4 Performance of the Adaptive WD policy. Probability of false selection (left) and sampling fre-

quencies, α1t, (right) under the WD and AWD policies. The configuration is characterized by k = 10

normally distributed systems with µ = (1,0.9, . . . ,0.9) and σ = (1,1, . . . ,1). The estimates in the two

panels are generated from 1000 simulation trials. The two panels on the right show that α1t→ αG1 = 0.25

as t→∞ under both policies, while the left panel shows the performance of AWD is slightly better than

WD in terms of the probability of false selection.

7. Numerical Testing and Comparison with Other Policies

7.1. Different Sampling Policies

We compare the AWD policy against three other policies: the Optimal Computing Budget Allo-

cation (OCBA) dynamic algorithm (Chen et al. 2000); the Knowledge Gradient (KG) algorithm

(Frazier et al. 2008); and the Equal Allocation (EA) policy; see details below.

• Optimal Computing Budget Allocation (OCBA). Chen et al. (2000) assumed that the under-

lying distributions are normal and formulated the problem as follows:

min
α∈∆k−1

∑
j 6=b

Φ̄

− X̄bt− X̄jt√
S2
bt/(αbt) +S2

jt/(αjt)

 , (32)

where b= arg maxj{X̄jt}, Φ(·) is the cumulative standard normal distribution function, and Φ̄(·) =

1−Φ(·). They suggested a dynamic policy based on the first-order conditions for (32): n0 initial
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samples are taken from each system, which are then used to allocate m incremental samples.

Specifically, compute (α̂1, . . . , α̂k) by solving

α̂j
α̂i

=

(
Sjt/(X̄bt− X̄jt)

Sit/(X̄bt− X̄it)

)2

for i, j 6= b (33)

α̂b
Sbt

=

√√√√∑
j 6=b

α̂2
j

S2
jt

, (34)

which are derived from the first-order conditions of (32). Then allocate mα̂j samples to system j,

ignoring non-integrality of mα̂j. This procedure is repeated until the sampling budget is exhausted.

• Knowledge Gradient (KG). We briefly describe the KG policy; further details can be found

in Frazier et al. (2008). Let µ̃tj and σ̃tj denote the mean and variance of the posterior distribution

for the unknown performance of system j in stage t. Then KG policy maximizes the single-period

expected increase in value, Et[maxj µ̃
t+1
j −maxj µ̃

t
j], where Et[·] indicates the conditional expectation

with respect to the filtration up to stage t. Although Frazier et al. (2008) mainly discuss the KG

policy for the known variance case, we use its version with unknown variance (equivalent to the

LL1 policy in Chick et al. (2007)) in order to be consistent with the other benchmark policies that

we test. This policy requires users to set parameters for prior distributions and we use n0 initial

sample estimates to set those. Also, for the purpose of comparison with our policy, we allow the

KG policy to take m samples in each stage.

• Equal Allocation (EA). This is a simple static benchmark policy, where all systems are equally

sampled, implemented as πt = arg minjNjt, breaking ties by selecting the system with the smallest

index.

Note that the benchmark policies, except for EA, take two parameters; the initial number of

samples n0 and the batch size m in each stage. For comparison with our procedure, we use the

same parameters across the policies in each experiment in the following subsection. These are by

no means optimal choices, but we have found that the key qualitative conclusions hold for other

choices of n0 and m.
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Table 1 CPU times per 100 stages under different policies. The values are estimated by taking an

average of 100 simulation trials. The configurations consist of normal distributions with means

µ1 = 1, µj = 1.05− 0.05j for j = 2, . . . , k, and standard deviations all set to one.

CPU times (sec) k= 10 k= 50 k= 100 k= 500

WD 2.19 17.40 53.21 426.28

AWD 0.12 0.52 1.64 11.70

KG 0.60 1.15 1.62 16.71

OCBA 0.12 0.53 0.98 13.02

EA 0.03 0.22 0.41 9.52

7.2. Numerical Experiments

The numerical experiments include a series of tests using normal, exponential, and Student-t dis-

tributions. P(FST ) is estimated by counting the number of false selections out of M simulation

trials, which is chosen so that:

√
PT (1−PT )

M
≤ PT

10
, (35)

where PT is the order of magnitude of P(FST ) for a given budget T . This implies the standard error

for each estimate of P(FST ) is at least ten times smaller than the value of P(FST ). For example,

in Figure 5, the minimum value of P(FST ) is 10−2, so we choose M to be at least 104 by this

argument. Consequently, we have sufficiently high confidence that the results are not attributed to

simulation error.

In Table 1, we compare the computation times of different algorithms discussed in this section.

The algorithms are implemented in MATLAB on a Windows 7 operating system with 32GB RAM

and Intel core i7 2.7GHz CPU. Although the implementation of each algorithm is not optimized for

performance, the relative CPU times illustrate complexity between the algorithms as the number

of systems increases. Note that the computation time of AWD is comparable to that of OCBA

which is one of the most widely cited policies in literature due to its simple allocation rule.
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7.2.1. Normal distribution. First we consider configurations with normally distributed sys-

tems with monotonically decreasing means where µj = 1.05− 0.05j. Three sets of standard devi-

ations are considered: constant variance σ = (1, . . . ,1); increasing variance σ = (0.4, . . . ,1.6); and

decreasing variance σ= (1.6, . . . ,0.4). We examine performance for both small (k= 10) and large-

scale (k = 500) configurations. For all cases, we set m = 10 and the number of initial samples is

n0 = 0.1T/k; that is, 10% of the total budget is allocated to the initilization of sampling.

In Figure 5, the estimated P(FSt) is shown as a function of stage t. Poor performance of the KG

policy, especially in the case with large number of systems, is anticipated as it is not designed to

minimize the probability of false selection. In the case with k = 10 systems, both the AWD and

OCBA policies perform comparably. However, in the case with k= 500 systems, the OCBA policy

exhibits relatively poor performance compared to AWD. We find that when the sample average

of the true best system (i.e., system 1) is far smaller than those of the others, OCBA myopically

allocates too few additional samples to system 1, making it appear to be “non-best” for the rest

of the sampling horizon. Further, despite the drastic difference in performance between the AWD

and OCBA policies, the computational costs of these are comparable as can be seen from Table 1.

7.2.2. Exponential distribution. As an example of a non-Gaussian distribution, we consider

configurations where system performances are exponentially distributed. In this experiment, in

addition to the benchmark policies above, we consider another variant of the WD policy, with ρG(·)

in Algorithm 1 replaced with:

ρ(α) = min
j 6=1

{
−α1 log

(
(α1 +αj)/µ1

α1/µ1 +αj/µj

)
−αj log

(
(α1 +αj)/µj
α1/µ1 +αj/µj

)}
, (36)

which is the rate function when the underlying probability distributions are exponential. We call

this policy modified GJ, since it is adapted from the sequential procedure in Glynn and Juneja

(2004) but takes as primitive knowledge of the rate function ρ(·). Of course, the knowledge of ρ(·)

is an unrealistic assumption in practice, but this serves as an aggressive benchmark.

We consider two configurations, each with ten exponentially distributed systems. In the first

configuration, the gap between the best and non-best systems is large: µ= (1,0.9,0.8, . . . ,0.5,0.5).

In the second configuration, the gap is smaller than the previous one: µ= (1,0.95,0.9, . . . ,0.5,0.5).
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Figure 5 Probability of false selection in normal distribution case. P(FSt) is plotted as a function of stage

t in log-linear scale. The four sampling policies are: equal allocation (EA); Knowledge Gradient (KG);

Optimal Computing Budget Allocation (OCBA); and the AWD policy. For all cases, µj = 1.05−0.05j for

j = 1, . . . , k. Three sets of standard deviations are considered: constant variance σ = (1, . . . ,1); increasing

variance σ = (0.4, . . . ,1.6); and decreasing variance σ = (1.6, . . . ,0.4).

In the first configuration, the modified GJ policy outperforms the others due to the prior infor-

mation on the rate function, which is “baked into” their algorithm. In the second configuration,

however, the modified GJ and AWD policies perform similarly. This observation is consistent with

Theorem 2; specifically, when the gap between the best and “second-best” systems is small enough,
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Figure 6 Probability of false selection in exponential distribution case. P(FSt) is plotted as a function

of t in log-linear scale. The five sampling policies are: equal allocation (EA); Knowledge Gradient (KG);

Optimal Computing Budget Allocation (OCBA); the AWD policy; and the modified GJ policy. The two

configurations are characterized by (a) µ = (1,0.9,0.8, . . . ,0.5,0.5) and (b) µ = (1,0.95,0.9, . . . ,0.5,0.5),

each with k= 10 systems.

it is safe to maximize ρG(·) instead of ρ(·). In other words, one does not lose much by the lack of

information that the underlying distribution is exponential. Also, observe that the OCBA policy

performs competitively with the modified GJ and AWD policies. Although the OCBA policy is

developed based on the premise of underlying normal distributions, its application in the exponen-

tial case is well-justified when the gap in means is sufficiently small.

7.2.3. t distribution. As another example of non-Gaussian distributions, we consider configu-

rations where systems follow the heavy-tailed Student-t distribution. Each system is parameterized

by the location parameter µj and the degrees of freedom νj; the variance for system j is given

by νj/(νj − 2). We take two configurations, each with k = 10 systems: The first configuration is

characterized by νj = 2.13 with means µj = 1.2− 0.2j for j = 1, . . . , k. The second configuration is

characterized by νj = 4 with means µj = 1.07− 0.07j for j = 1, . . . , k. The values of νj are chosen

so that the gap in means between systems j and j+ 1, in terms of the number of standard devia-

tions, is identical in the two configurations, but the distributions in the first configuration are more

heavy-tailed than those in the second.
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Figure 7 Probability of false selection in t distribution case. P(FSt) is plotted as a function of stage t in

log-log scale. The four sampling policies are: equal allocation (EA); Knowledge Gradient (KG); Optimal

Computing Budget Allocation (OCBA); and the AWD policy. The two configurations are characterized

by (a) νj = 2.13 and µj = 1.2− 0.2j and (b) νj = 4 and µj = 1.07− 0.7j, respectively, for j = 1, . . . ,10.

Since the theoretical results in this paper do not hold in the heavy-tailed case, the application of

AWD can be viewed as a heuristic. Further, unlike the exponential convergence of the probability

of false selection in light-tailed environments, Broadie et al. (2007) show that, under a static policy

characterized by an allocation vector α∈∆k−1, the probability of false selection converges to zero

at a polynomial rate that does not depend on α. This implies the policies discussed in this section

may exhibit identical performance in terms of the convergence rate of the probability of false

selection. However, the results in Figure 7 indicate that, despite the presence of heavy tails, it is

still important to judiciously allocate samples based on means and variances in order to minimize

the probability of false selection. In particular, one can observe that the AWD and OCBA policies

outperform the others in both cases of Figure 7.

8. Concluding Remarks

By analyzing the asymptotics of the probability of false selection, we were able to obtain a close

approximation to the large deviations rate function, and leverage it to design well-performing

dynamic sampling policies. An important conclusion from our results is that the rate function
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for general distributions can be closely approximated by using only the first two moments, which

allowed us to construct the WD and AWD policies that are tractable for implementation purposes.

Although numerical analyses in §6 provide evidence that AWD possesses the asymptotic prop-

erties of WD as in Theorem 1, the performance of AWD is not analyzed in a precise mathematical

manner except for the case with k = 2 systems (Remark 3); the case with k > 2 remains an open

question.

While we primarily focused on the probability of false selection for a single best system, the

methodology developed in this paper can be extended to other criteria. For example, it can be

applied to the problem of selecting n (> 1) best systems out of k. If P(FSt) is defined as the

probability of false selection of the (k−n) inferior systems, one can track the behavior of P(FSt)

for large t using the relationship (7), from which it is possible to develop a tractable policy using

the mechanics used in this paper.
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Chen HC, Dai L, Chen CH, Yücesan E (1997) New development of optimal computing budget allocation for
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Appendices

A. Proofs for Main Results

In order to prove Equation (7), we need the following lemma. Proofs for all auxiliary lemmas are

provided in Appendix B.

Lemma A.1. Fix a static allocation rule πα for some α ∈∆k−1. Let Zt = (X̄1t(π
α), X̄jt(π

α)) for

some j = 2, . . . , k, and denote the logarithmic moment generating function of Zt by Λt(λ1, λj) =

logE[eλ1X̄1t(π
α)+λjX̄jt(π

α)] for t ≥ k. Then, the rate function of Zt, I1j(x1, xj), equals α1I1(x1) +

αjIj(xj).

Proof for Equation (7). In this proof we fix π=πα, where for clarity we suppress the function

arguments. Observe that

max
j=2,...,k

P(X̄1T < X̄jT )≤ P(FST )≤ (k− 1) max
j=2,...,k

P(X̄1T < X̄jT ). (A.1)

Further, if, for each j = 2, . . . , k,

lim
t→∞

1

t
logP(X̄1T < X̄jT ) =−Hj(α1, αj) (A.2)

for some rate function Hj(·, ·), then

lim
t→∞

1

t
logP(FST ) =− min

j=2,...,k
{Hj(α1, αj)}. (A.3)
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From Lemma A.1, it can be easily seen that

Hj(α1, αj) = inf
xj≥x1

{α1I1(x1) +αjIj(xj)}. (A.4)

Since both I1(x) and Ij(x) are decreasing in x for x< µj and increaseing in x for x> µ1, it suffices

to search for the minimum for µj ≤ x1 ≤ xj ≤ µ1. In this region, I1(x) is decreasing and Ij(x) is

increasing with x, so we establish that

Hj(α1, αj) = inf
x
{α1I1(x) +αjIj(x)}, (A.5)

which is identical to Gj(α) defined in (8). This completes the proof of Equation (7). �

Additional notation is introduced for the proof of Theorem 1. Fix x = (x1, . . . , xk) ∈ Rk and

y= (y1, . . . , yk)∈Rk+. Define B(x) as

B(x) := {i∈ {1, . . . , k} | xi = max
j
{xj}} (A.6)

Note that we allow the case with |B(x)| > 1, where |B(x)| represents the cardinality of the set

B(x). Let Θ be the set of all (x,y)∈Rk×Rk+ with |B(x)|<k. For each (x,y)∈Θ and α∈∆k−1,

define

H(α;x,y) = min
i∈B(x),j /∈B(x)

(xi−xj)2

(y2
i /αi + y2

j/αj)
. (A.7)

Note that ρ(α) =H(α;µ,σ). Define α(x,y) to be the maximizer of H(α;x,y), i.e.,

α(x,y) = arg max
α∈∆k−1

H(α;x,y). (A.8)

Note that H(α;x,y) is a strictly concave function of α since it is the minimum of the strictly

concave functions. Hence, α(x,y) in (A.8) is well defined. The proof of Theorem 1 requires the

following lemma.

Lemma A.2. Fix (x,y)∈Θ. Consider a sequence of parameters (xt,yt)∈Θ such that xtj→ xj and

ytj→ yj as t→∞ for each j. Then, α(xt,yt)→α(x,y) as t→∞ and the vector α(x,y) is strictly

positive.
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Proof of Theorem 1. In this proof, we first show that the WD policy is consistent and then

show that it is asymptotically optimal. We fix π= WD, where for clarity we suppress the function

arguments.

Consistency. Fix a sequence of samples, {(Xj1,Xj2, . . .)}kj=1, and let F ⊂ {1,2, . . . , k} be the set

of systems that are sampled only finitely many times and let I := {1,2, . . . , k}\F . Suppose, towards

a contradiction, that F is non-empty and let τ <∞ be the last time that the systems in F are

sampled. It can be seen from Proposition 1 that, for each system j ∈ I, X̄jt and S2
jt converges to µj

and σ2
j almost surely as t→∞, respectively. Also, for any system j ∈ F , X̄jt is constant subsequent

to the stage τ . Formally, define µ̂= (µ̂1, . . . , µ̂k) and σ̂= (σ̂1, . . . , σ̂k) with

(µ̂j, σ̂
2
j ) =



(maxi{X̄iτ}− (ε/Njτ )
0.5, S2

jτ ) for j ∈ F with X̄jτ = maxi{X̄iτ}

(X̄jτ , S
2
jτ ) for j ∈ F with X̄jτ <maxi{X̄iτ}

(µj, σ
2
j ) for j ∈ I,

(A.9)

so that X̄jt→ µ̂j and S2
jt→ σ̂2

j for each j = 1, . . . , k.

It can be easily seen that |B(µ̂)|< k by the definition of µ̂, where B(·) is defined in (A.6) and

|B(·)| represents the cardinality of the set B(·). Note that α̂Gt =α(X̄t,St) for each t≥ k and define

α̂ := α(µ̂, σ̂), where α̂Gt is defined in (17) and the function α(·, ·) is defined in (A.8). Applying

Lemma A.2 with (xt,yt) replaced with (X̄t,St) and (x,y) replaced with (µ̂, σ̂), it follows that

α̂Gt → α̂ as t→∞ with α̃> 0. Further, by construction of our policy, αt(π)− α̂Gt → 0 as t→∞,

and therefore, αt(π)→ α̂> 0 as t→∞. However, this contradicts our assumption because each

system j ∈ F is sampled only finitely many times so that αjt(π)→ 0. Consequently, F is empty

with probability 1 and the proposed policy is consistent.

Asymptotic performance. Since the proposed policy is consistent, X̄jt→ µj and S2
jt→ σ2

j almost

surely for each j = 1, . . . , k. Therefore, applying Lemma A.2 with (xt,yt) replaced with (X̄t,St)

and (x,y) replaced with (µ,σ), it follows that α̂Gt →αG= arg maxα∈∆k−1{ρG(α)}. Moreover, by

construction of the policy it is not difficult to see that the term αt(π) − α̂Gt → 0 as t → ∞.

Consequently, it follows that αt(π)→αG as t→∞, which completes the proof of the theorem. �
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Proof of Theorem 2. In this proof, we consider a sequence of system configurations and, as a

slight abuse of notation, each configuration is uniquely parametrized by δ > 0. We assume without

loss of generality that µ1 >µ2 = maxj>2{µj} for every system configuration.

Case 1. Consider a sequence of system configurations where ρ(α) =G2(α) for each configuration.

Recalling the definition of ρ(α) in (7), the preceding condition implies that the probability of falsely

selecting system j = 3, . . . , k is dominated by the probability of falsely selecting system 2. In this

case, we can write, for sufficiently small δ > 0,

ρ(α) = inf
x
{α1I1(x) +α2I2(x)}. (A.10)

Since both I1(x) and I2(x) are decreasing in x for x< µ2 and increasing in x for x> µ1, it suffices

to search for the infimum for x∈ [µ2, µ1]. In this region, I1(x) is decreasing and I2(x) is increasing.

Define θj(x), j = 1,2, as the value of θ that satisfies Λ′j(θ) = x, which exist for all x∈ [µ2, µ1] due

to Assumption 1. Observe that Ij(x) = xθj(x)−Λj(θj(x)) and

I ′j(x) = θj(x) +xθ′j(x)−Λ′j(θj(x))θ′j(x) = θj(x), (A.11)

where the second equality follows from the definition of θj(x). From the above equation we also

obtain I ′′j (x) = θ′j(x). Both I ′j(x) and I ′′j (x) are well defined because Ij(·) is continuously differ-

entiable for x ∈ [µ2, µ1] ∈H 0
j (e.g., see Lemma 2.2.5 in Dembo and Zeitouni 2009). Applying a

second-order Taylor expansion at x = µj with Ij(µj) = 0, I ′j(µj) = 0, and I ′′j (x) = θ′j(x), we have

that

Ij(x) =
(x−µj)2

2
θ′j(x̃), (A.12)

where x̃ is in the interval between x and µj. It can be easily seen that E[X2
j ]<∞ by Assumption 1,

which in turn implies that θ′j(µj) = 1/σ2
j by Lemma 7 of Chernoff (1952). Also, note that Ij(·)∈C∞,

and hence, so is θj(·). Combining these observations with the fact that σj ≥ σmin, (A.12) can be

written as

Ij(x) =
(x−µj)2

2σ2
j

+ o
(
(x−µj)2

)
(A.13)
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for each j = 1,2, where f(x) = o(g(x)) implies |f(x)|/|g(x)| → 0 as x→ 0.

Fix α ∈∆k−1 and recall that ρ(α) = infx{α1I1(x) + α2I2(x)}. Define I(x) := α1I1(x) + α2I2(x)

and

Ī(x) := α1Ī1(x) +α2Ī2(x)

= α1

(x−µ1)2

2σ2
1

+α2

(x−µ2)2

2σ2
2

. (A.14)

From (A.13) and the fact that (x−µj)2 ≤ (µ1−µ2)2 for any x∈ [µ2, µ1], it can be easily seen that

I(x) = Ī(x) + o
(
(µ1−µ2)2

)
as µ2→ µ1 (A.15)

Let x∗ be the minimizer of I(x) and x̄ be the minimizer of Ī(x). Using first-order conditions, we

obtain that

x̄=

(
α1/σ

2
1

α1/σ2
1 +α2/σ2

2

)
µ1 +

(
α2/σ

2
2

α1/σ2
1 +α2/σ2

2

)
µ2 (A.16)

and

Ī(x̄) =
(µ1−µ2)2

2(σ2
1/α1 +σ2

2/α2)
. (A.17)

Observe that |I(x∗)− Ī(x̄)| ≤ |I(x∗)− Ī(x∗)|+ |Ī(x∗)− Ī(x̄)| and by (A.15),

|I(x∗)− Ī(x∗)|= o
(
(µ1−µ2)2

)
. (A.18)

Further,

|Ī(x∗)− Ī(x̄)|=
∣∣∣∣(α1

x̃−µ1

σ2
1

+α2

x̃−µ2

σ2
2

)
(x∗− x̄)

∣∣∣∣
= o

(
(µ1−µ2)2

)
as µ2→ µ1 (A.19)

where the first equality follows from the first-order Taylor expansion of Ī(x∗) at x̄ for some x̃

between x∗ and x̄; the second equality follows since σj ≥ σmin and |(x̃− µj)(x∗ − x̄)| ≤ (µ1 − µ2)2

for each j = 1,2. Therefore, we establish that

ρ(α) = I(x∗) =
(µ1−µ2)2

2(σ2
1/α1 +σ2

2/α2)
+ o
(
(µ1−µ2)2

)
, (A.20)
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where the right-hand side of the preceding equality converges to ρG(α) as µ1 − µ2→ 0. To show

that ρ(αG)/ρ(α∗)→ 1 as µ1−µ2→ 0, one can check that

|ρ(αG)− ρ(α∗)| ≤max
(
|ρ(αG)− ρG(αG)|, |ρG(α∗)− ρ(α∗)|

)
= o((µ1−µ2)2), (A.21)

where the equality follows from (A.20). Further, due to the assumption that σj ≤ σmax for each

j = 1,2, we have that

ρG(αG)≥ ρG(αeq)≥ c′(µ1−µ2)2 (A.22)

for some constant c′ > 0 after some straightforward algebra. Combined with (A.20), this in turn

implies ρ(α∗)≥ c′′(µ1−µ2)2 for sufficient small (µ1−µ2). Hence, we establish the desired result by

dividing both sides of (A.21) by ρ(α∗).

Case 2. Consider a sequence of system configurations such that ρ(α) 6=G2(α) for some δ > 0. In

this case, it suffices to consider the case where ρ(α) =Gi(α) for some i 6= 1,2 and sufficiently small

δ ∈ (0, δ0), or equivalently, arg minj 6=1{Gj(α)} → i as δ→ 0. (In cases where arg minj 6=1{Gj(α)}

does not converge as δ→ 0, one can consider subintervals of (0, δ0) along which arg minj 6=1{Gj(α)}

converges to i′ 6= 1,2 and then follow the same logical steps as below, which will be omitted in this

proof.)

We first show that µ1−µi→ 0 as δ→ 0. Observe that Gi(α)≤G2(α) for sufficiently small δ since

ρ(α) =Gi(α) for δ ∈ (0, δ0). From the definition of Gj(·) in (8) and the fact that Ij(x) is strictly

concave with Ij(µj) = 0, it can be easily seen that G2(α)→ 0 as δ→ 0, and therefore, we establish

that Gi(α)→ 0 as δ→ 0. Now, towards a contradiction, suppose that lim infδ→0(µ1 − µi)≥ d for

some constant d> 0. Recall that Gi(α) = infx{α1I1(x)+αiIi(x)} and let x∗i be the minimizer which

lies in [µi, µ1]. Note that Gi(α)→ 0 implies both I1(x∗i ) and Ii(x
∗
i ) converges to zero. However, due

to (A.13) and the assumption that σj ≤ σmax for each j, it can be seen that I1(x∗i ) and Ii(x
∗
i ) can

converge to zero only when x∗i −µ1→ 0 and x∗i −µi→ 0 as δ→ 0, respectively. This is a contradiction

due to the assumption that lim infδ→0(µ1−µi)≥ d. Therefore, we have that µ1−µi→ 0 as δ→ 0.

Now, the rest of the proof can be done by following the same logical steps as the proof for Case

1, with variables for system 2 being replaced with those for system i; the remaining part will be

omitted. �
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Proof of Theorem 3. In this proof we fix π = πα, where for clarity we suppress the function

arguments. Note that the inequalities in (A.1) imply, on a logarithmic scale, the rate function of

Pt(FSt) can be immediately obtained once we find the rate function of Pt(X̄1t < X̄jt) for each j.

From this point and on, we consider k = 2 for simplicity and without loss of generality the proof

easily extends to k≥ 3.

Fix α= (α1, α2)∈∆1 and observe that

Pt(FSt) = Pt(X̄1t < X̄2t)

= Pt(X̄1t−µt1 < X̄2t−µt2− (µt1−µt2))

(a)
= P(X̄1t−µ1 < X̄2t−µ2− (µt1−µt2))

(b)
= P(X̄1t−µ1 + δt(µ1−µ2)/2< X̄2t−µ2− δt(µ1−µ2)/2), (A.23)

where (a) follows from the change of measure from Ft to F; specifically, the distribution of X̄jt−µtj

under the the probability measure Pt(·) is identical to that of X̄jt−µj under the probability measure

P(·). Also, (b) follows from the fact that (µt1−µtj) = δt(µ1−µj). Define W1t = (X̄1t−µ1)/δt+(µ1−

µ2)/2 and W2t = (X̄2t−µ2)/δt− (µ1−µ2)/2. Then, Pt(FSt) can be written as

Pt(FSt) = P(W1t <W2t). (A.24)

Set Wt = (W1t,W2t). Denote the logarithmic moment generating function of Wt by Λt(λ1, λ2) =

logE[eλ1W1t+λ2W2t ] for (λ1, λ2)∈R2. By the Gartner-Ellis Theorem (cf. See Theorem 2.3.6 in Dembo

and Zeitouni 2009), if the limit

Λ(λ1, λ2) := lim
t→∞

1

tδ2
t

Λt(tδ
2
tλ1, tδ

2
tλ2) (A.25)

exists, then

1

tδ2
t

logPt(FSt)→− inf
x1≤x2

{I(x1, x2)} as t→∞, (A.26)

where

I(x1, x2) = sup
λ1,λ2

{λ1x1 +λ2x2−Λ(λ1, λ2)}. (A.27)
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We first verify that (A.25) holds. Observe that Λt(tδ
2
tλ1, tδ

2
tλ2) = logE[etδ

2
t λ1W1t ] + logE[etδ

2
t λ2W2t ]

by the independence of W1t and W2t. Then, one can check that

1

tδ2
t

logE[etδ
2
t λ1W1t ] =

1

tδ2
t

αjt logE[eλ1δt(X1−µ1)/α1 ] +
λ1(µ1−µ2)

2

→ λ2
1σ

2
1

2α1

+
λ1(µ1−µ2)

2
as t→∞, (A.28)

where the equality follows because the sequence, X11,X12, . . ., is independent and identically dis-

tributed and the limit follows from the second-order Taylor expansion of the log-moment generating

function. For simplicity of exposition we ignore non-integrality of αjt. By the same procedure one

can also obtain that

1

tδ2
t

logE[etδ
2
t λ2W2t ]→ λ2

2σ
2
2

2α2

− λ2(µ1−µ2)

2
as t→∞ (A.29)

Therefore, the limit in (A.25) exists and (A.26) holds by the Gartner-Ellis Theorem. To evaluate

I(x1, x2), observe that

I(x1, x2) = sup
λ1,λ2

(
λ1x1 +λ2x2−

λ2
1σ

2
1

2α1

− λ
2
2σ

2
2

2α2

− λ1(µ1−µ2)

2
+
λ2(µ1−µ2)

2

)
= sup

λ1

(
λ1x1−

λ2
1σ

2
1

2α1

− λ1(µ1−µ2)

2

)
+ sup

λ2

(
λ2x2−

λ2
2σ

2
2

2α2

+
λ2(µ1−µ2)

2

)
= α1

(x1− (µ1−µ2)/2)2

2σ2
1

+α2

(x2 + (µ1−µ2)/2)2

2σ2
2

. (A.30)

It can be easily seen that the infimum of I(x1, x2) is achieved in the range, −(µ1 − µ2)/2≤ x1 ≤

x2 ≤ (µ1−µ2)/2. Further, in this region, the first and second terms on the right-hand side of (A.30)

are decreasing and increasing, respectively. Hence, using first-order conditions, one can show that

the infimum of I(x1, x2) is achieved at x1 = x2 = x with

x=
α1(µ1−µ2)/2σ2

1 −α2(µ1−µ2)/2σ2
2

α1/σ2
1 +α2/σ2

2

. (A.31)

Hence, from (A.26),

1

tδ2
t

logPt(FSt)→−
(µ1−µ2)2

2(σ2
1/α1 +σ2

2/α2)
as t→∞. (A.32)

This completes the proof. �
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B. Proofs for Auxiliary Lemmas

Proof of Lemma A.1. In the proof we fix π = πα, where for clarity we suppress πα in the

function arguments. First, it is easily checked that Njt/t→ αj as t→∞ for each j = 1, . . . , k by

the definition of the static allocation rule. Observe that

1

t
Λt(tλ1, tλj) =

N1t

t
Λ1

(
λ1

N1t/t

)
+
Njt

t
Λj

(
λj

Njt/t

)
(B.1)

for t≥ k and j = 2, . . . , k. Since Njt/t→ αj, we have that

1

t
Λt(tλ1, tλj)→ α1Λ1(λ1/α1) +αjΛj(λj/αj) as t→∞ (B.2)

for j = 2, . . . , k. Therefore, by Gartner-Ellis Theorem (cf. See Theorem 2.3.6 in Dembo and Zeitouni

2009), I1j(x1, xj) equals

sup
λ1,λj

{λ1x1 +λjxj −α1Λ1(λ1/α1)−αjΛj(λj/αj)} (B.3)

= sup
λ1

{λ1x1−α1Λ1(λ1/α1)}+ sup
λj

{λjxj −αjΛj(λj/αj)} (B.4)

= α1 sup
λ1/α1

{(λ1/α1)x1−Λ1(λ1/α1)}+αj sup
λj/αj

{(λj/αj)xj −Λj(λj/αj)}. (B.5)

Recalling the definition of Ij(·) in (6), the proof for this lemma is complete. �

Proof of Lemma A.2. First, we show that α(x,y) is strictly positive. Note that the objective

function of the optimization problem (A.8) is strictly positive at its optimal solution; to see this,

notice that αe = (1/k, . . . ,1/k) is a feasible solution and the objective function is positive at αe.

Suppose that αj(x,y) = 0 for some j. Then the objective function of the optimization problem

(A.8) is 0, which contradicts the optimality of α(x,y).

Without loss of generality, assume that x1 ≥ · · · ≥ xk and let b= |B(x)|< k. Define ε ∈ (0, (x1−

xb+1)/2) and let t0 <∞ such that maxj{|xtj−xj|} ≤ ε and maxj{|ytj−yj|} ≤ ε for all t≥ t0. That is,

for each t≥ t0, (xt,yt) is in a ball with radius ε, centered at (x,y). Also, note that B(xt) =B(x)

for t≥ t0. In the rest of the proof, it suffices to consider t≥ t0.
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Suppose, towards a contradiction, that α(xt,yt) does not converge to α(x,y). Since α(xt,yt) is

a bounded sequence in ∆k−1, by the Bolzano-Weierstrass theorem it has a convergent subsequence,

{t1, t2, . . .}, such that

α(xtn ,ytn)→ α̃ 6=α(x,y) as n→∞. (B.6)

Since α(x,y) is the unique maximizer of H(α;x,y) and α̃ 6=α(x,y), it can be seen that

H(α̃;x,y)<H(α(x,y);x,y). (B.7)

On the other hand, since α(xtn ,ytn) is the unique maximizer of H(α;xtn ,ytn),

H(α(xtn ,ytn);xtn ,ytn)≥H(α(x,y);xtn ,ytn). (B.8)

Note that H(α;x,y) is continuous in α and (x,y). Since α(xtn ,ytn)→ α̃, xtn→x, and ytn→ y,

taking n→∞ on both sides of (B.8), we obtain that

H(α̃;x,y)≥H(α(x,y);x,y), (B.9)

which contradicts (B.7). Therefore,α(xt,yt)→α(x,y) almost surely and the proof is complete. �

C. Effect of the Number of Initial Samples

While the qualitative conclusions in §7 seem reasonably robust relative to the choice of n0, the

number of initial samples, it still leaves open the question of how to determine n0. In this section

we show via numerical examples the sensitivity of performance in terms of the probability of false

selection for different values of n0. In light of this, we consider two configurations with k = 50

normally distributed systems: The monotone decreasing means (MDM) in which µj = 1.05− 0.05j

for j = 1, . . . , k and the SC configuration in which µ1 = 1 and µj = 0.8 for j = 2, . . . , k. For both

cases, we let T = 2 · 104 and standard deviations are equally set to one.

Figure 8 illustrates the probability of false selection for different values of n0 = 50,100,200. When

the majority of systems are significantly inferior to the best system, it is desirable to set n0 to a low
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Figure 8 Probability of false selection under the AWD policy for different values of n0. P(FSt) is

plotted as a function of stage t in log-linear scale. The example considers the normal distribution case.

On the left panel, µj = 1.05− 0.05j for j = 1, . . . , k, while on the right panel, µ1 = 1 and µj = 0.8 for all

j 6= 1. For both cases, k= 50 and standard deviations are equally set to one.

number. In the MDM configuration, only the first 20 systems have means that are within a unit

distance from system 1, in terms of the number of standard deviation (σ1 = 1). In this case, most

systems may turn out to be inferior in a very early stage of the sampling horizon. So, there can

be significant inefficiencies when n0 is set too high because a significant portion of the sampling

budget is wasted in estimating means of seemingly inferior systems. Observe from the left panels

of Figure 8 that the probability of false selection is higher for larger values of n0 in a range from

50 to 200.

Conversely, if non-best systems are “equally worse” than the best system, it may be desirable

to set n0 to a high number. As seen in the case of the SC configuration (right panels of Figure 8),

the probability of false selection is higher for smaller values of n0 in a range from 50 to 200. Of

course, an optimal value of n0 cannot be determined exactly because the configuration of means,

as well as variances, are unknown a priori. Nevertheless, the preceding arguments can provide a

qualitative insight for a “good choice” of n0.


