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Given a finite number of stochastic systems, the goal of our problem is to dynamically allocate a finite

sampling budget to maximize the probability of selecting the “best” system. Systems are encoded with the

probability distributions that govern sample observations, which are unkown and only assumed to belong to a

broad family of distributions that need not admit any parametric representation. The “best” system is defined

as the one with the highest quantile value. The objective of maximizing the probability of selecting this

“best” system is not analytically tractable. In lieu of that we use the rate function for the probability of error

relying on large deviations theory. Our point of departure is an algorithm that naively combines sequential

estimation and myopic optimization. This algorithm is shown to be aymptotitcally optimal, however, it

exhibits poor finite-time performance and does not lead itself to implemention in settings with a large

number of systems. To address this we propose practically implementable variants that retain the asymptotic

performance of the former, while dramatically improving its finite-time performance.
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1. Introduction

Given a finite number of alternative distributions, henceforth referred to as systems, we

are concerned with the problem of selecting the “best” one, where performance of the

systems is initially unknown but it is possible to sequentially sample from each of them.

A critical assumption made in most academic studies is that a decision maker is primarily

interested in the mean performances of the systems, i.e., the means of underlying distribu-
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tions. However, such mean-based approaches do not accommodate various risk preferences

of the decision maker. In this paper, we explore cases where downside or upside risk is

more crucial than the average performance. In particular, the systems are compared based

on pth quantiles of their distributions, with the value of p chosen according to the decision

maker’s risk preference.

In most cases, the underlying probability distributions rarely admit a parametric repre-

sentation. Therefore, we focus on nonparametric settings where the probability distribu-

tions belong to a broad family that cannot be characterized by one or more parameters.

While nonparametric approaches have an extensive range of applications, the main diffi-

culty is loss of tractability. Hence, we are motivated to develop nonparametric sampling

strategies that are implementable and perform well in practice.

The problem described above arises in a variety of applications. A widely used example

is value-at-risk (VaR) that measures the pth quantile of a portfolio’s value, with p typically

chosen to be 1% or 5%. For large portfolios of complex derivative securities,1 value-at-

risk can be evaluated through Monte Carlo methods, which typically entails substantial

computational burden. The quantile-based approach is quite relevant in the case where

a portfolio manager needs to identify the portfolio with largest value-at-risk out of many

alternatives; in particular, a portfolio manager needs to sequence the simulation trials in

an efficient manner given a certain amount of time to increase the likelihood of identifying

the portfolio with largest VaR.

Another example is selecting the best design of a telephone call center, where a typical

measure of interest is the quantile of waiting time. For instance, if a conservative decision

maker uses the quantiles for p = 0.95 to compare different designs, then the best design

will have the smallest value of the 95% quantile of waiting times. The waiting time is a

complex function of design parameters, such as staffing and routing policies, and is often

evaluated through simulation. The decision maker’s job is to configure a finite number of

designs and to spend a certain amount of time testing different designs before deciding

which is best.

The main objective of this paper is to design a dynamic sampling algorithm that mini-

mizes the probability of selecting suboptimal systems subject to a given sampling budget.

1 In practice, there can be some correlation in performance between portfolios if they consist of similar assets. However,
following most of papers in the area of ordinal optimization and ranking and selection, our model assumes independent
systems. (Our model serves as a good approximation when the degree of correlation is not significant.)
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Since the aforementioned objective is not analytically tractable, our departure point will

be an asymptotic benchmark characterized by a large sampling budget. In this regime,

the rate function (Dembo and Zeitouni 2009) of the probability of false selection, hereafter

simply referred to as the rate function, can be written in tractable form.

Exact evaluation of the rate function, however, is possible only when the decision maker

knows the underlying probability distributions in advance, and the absence of perfect

prior information introduces an important new component into the optimization problem.

Namely, one needs to allocate samples to maximize the rate function (exploitation) but at

the same time take sufficient samples from each system to learn the underlying distributions

(exploration).

As a benchmark for further analysis, we propose a naive algorithm that estimates

unknown values of the rate function from the history of sample observations, and then

allocates a sample in each subsequent stage as if the unknown values are equal to the

sample estimates; this is often referred to as a certainty-equivalence approach. As will be

explained later, this algorithm maximizes the objective asymptotically, however, its finite-

time performance is poor since it spends too much of the sampling budget on exploration,

which leaves less budget to exploit that knowledge and optimize the objective. Another

drawback of this approach is the heavy computational burden since it requires solving a

difficult nested optimization problem repeatedly, which makes the algorithm not practically

implementable in many applications with a large number of systems.

The main contribution of this paper is to introduce sampling strategies that are practical

to implement in applications with large number of systems, and improve their finite-time

performance relative to the aforementioned class of algorithms. In more detail, our contri-

butions are summarized as follows.

(i) We introduce an alternative performance metric and show that it is closely aligned

with the rate function when the gap between the quantiles of the best and second-best

systems is sufficiently small. The alternative performance metric is structured around

the quantiles and local density behavior, rather than global distribution functions,

which lends itself to some key structural insights about near-optimal allocations.

(ii) Building on the structural properties of the alternative performance metric, we pro-

pose a family of nonparametric dynamic sampling algorithms, hereafter referred to as

Quantile Divergence (QD), with the aim of improving the finite-time performance of
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the aforementioned naive algorithm. We rigorously show that this class of algorithms

is near-optimal in a precise mathematical sense.

(iii) We also propose variants of QD, hereafter referred to as Adaptive QD (AQD), that are

computationally efficient when the number of systems is large. We show via numerical

testing that these variants preserve the asymptotic performance of the QD algorithms

and improve the computation time dramatically.

Our proposed algorithms are nonparametric in the sense that they do not postulate

any parametric structure on underlying probability distributions. Despite having almost

no prior information, these algorithms allocate samples in a way that is close to the best

ex ante allocation under full information. When the underlying distributions are known to

belong to a parametric family, more efficient algorithms can be designed, albeit at the cost

of misspeciation; in particular, if the assumed parametric structure is not “close enough”

to that of the true underlying family of distributions, such parametric algorithms may fail

to identify the best system.

The remainder of this paper is organized as follows: In §2 we survey related literature

on ordinal optimization, and ranking and selection problems, and relevant studies from

the multi-armed bandit literature. In §3 we derive a tractable objective function using

large deviations theory and formulate a dynamic optimization problem. In §4 we suggest

dynamic algorithms and provide theoretical analyses on their performances. In §5 we pro-

pose adaptive variants of the algorithms that are practically implementable in large prob-

lem instances. In §6 we test the suggested policies numerically and compare with several

benchmark policies. This paper has an online supplement with three parts. Appendix A

states additional theoretical results; Appendix B contains the proofs of main theoretical

results and auxiliary lemmas; and Appendix C contains additional numerical results to

provide practical guideline on the implementation of proposed algorithms.2

2. Literature Review

Mean-based R&S Procedures. An area closely related to ordinal optimization is that of

ranking and selection (R&S). While the goal of this paper is to minimize the probability of

2 A very preliminary version of this paper appeared as Shin et al. (2016). In particular, §4 contains much stronger
theoretical results in §3 of the prior paper, and Appendix A provides further theoretical results. New algorithms to
improve those in the prior paper are given in §5. Lastly, §6 exhibits numerical experiments in more extensive settings
than those in §4 of the previous paper.
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false selection given a fixed sampling budget, the goal of the R&S problem is to take as few

samples as possible to satisfy a desired guarantee on the probability of correctly selecting

the best system; most of this literature considers “best” to be the largest mean. The

traditional R&S approach traces back to the work of Bechhofer (1954) who established the

Indifference Zone (IZ) formulation. (See the survey paper by Kim and Nelson (2006).) Most

IZ procedures rely on the assumption that sample observations are normally distributed,

and hence raise the risk of misspecification alluded to earlier.

Quantile-based R&S Procedures. Despite the wide usage of quantiles as a perfor-

mance metric, the topic of quantile-based R&S procedure has not received much attention

in the literature. Bekki et al. (2007) modify the traditional two-stage IZ procedure by

Rinott (1978) to suggest a heuristic technique that addresses the issue of non-normality

of quantile estimates, by averaging them over batches. (Thus the batch behavior would

be nearly normal by the central limit theorem.) Batur and Choobineh (2010) suggest a

two-stage procedure based on Rinott (1978), where a set of quantile values is compared

between two systems. Lastly, Lee and Nelson (2014) suggest an R&S procedure based on

bootstrapping, which can be applied to general performance measures including quantile,

albeit with a heavy computational load. In contrast to these papers, we show that the

(asymptotically) optimal allocation is unaffected by the use of batches, so that the alloca-

tion based on the normal approximation may give substantially suboptimal allocations.

Mean-based Ordinal Optimization Procedures. Several studies consider the prob-

ability of selecting the best system when a finite sampling budget is given. Notable recent

examples include the Optimal Computing Budget Allocation (OCBA) rule by Chen et al.

(2000), the Knowledge Gradient (KG) Bayesian framework of Frazier et al. (2008). These

formulations provide an attractive, stylized analysis but they rely heavily on normality

assumptions. In contrast, the “frequentist” approach of Glynn and Juneja (2004) based on

large deviations theory allows for much broader scope but is difficult to implement due to

(i) the challenges in estimating the moment generating function, as noted by Glynn and

Juneja (2015), and (ii) the computational burden in optimizing the large deviations rate

function, as noted by Pasupathy et al. (2015). Regarding (i), Glynn and Juneja show that

this issue can be mitigated in restricted settings where upper bounds on suitable moments

of underlying distributions are known (such information is rarely available in most prac-

tical applications). Regarding (ii), Pasupathy et al. show that the optimal allocation for
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the rate function becomes tractable in a certain asymptotic limit characterized by the

large number of systems. In the context of our work, the large deviations rate function

also entails issues (i) and (ii); see § 4.1. However, our work is significantly different from

previous papers in that we circumvent these issues by introducing an approximation to the

rate function in a certain asymptotic regime characterized by the quantiles of the systems.

The recent work of Shin et al. (2018) also addresses the issues with the large deviations

rate function approach of Glynn and Juneja (2004) by proposing a two moment approx-

imation and leveraging it to design a well-performing dynamic procedure called Welch

Divergence (WD). This paper shares an important common theme with Shin et al. (2018)

in that we too use the large deviations rate function to construct competitive sampling

procedures. On the other hand, the key conclusions from the two papers are fundamentally

different: the two-moment approximation of Shin et al. (2018) suggests that when systems

are compared based on means, the probability of false selection can be approximated by

the rate function corresponding to Gaussian distribution if the probability distributions

of the best and second-best systems are “close” to each other. In contrast, when systems

are compared based on quantiles, we show that the allocation based on the two-moment

approximation can be significantly sub-optimal, as the (asymptotically) near-optimal allo-

cation rule requires density information rather than just two moments. This calls into

further questions the Gaussian assumptions that are prevalent in the literature.

Quantile-based Ordinal Optimization Procedures. Pasupathy et al. (2010) char-

acterize the rate function associated with the probability of false selection using large

deviations theory. However to build on this one requires knowledge of the underlying dis-

tribution functions. This paper extends their work along three dimensions: we strengthen

their theoretical results on the rate function characterization by relaxing conditions on

the underlying distributions; we derive an approximation to the rate function using only

quantiles and local density estimates at particular points, which is simpler than having to

estimate an entire distribution function; and we propose sampling algorithms that judi-

ciously manage the issue of the lack of prior information on the underlying distributions.

Peng et al. (2019) propose Bayesian sampling algorithms for selecting the optimal quan-

tile based on the premise that underlying probability distributions are normal. They rigor-

ously show the (in)consistency properties of two algorithms and develop a switching strat-

egy between the two in order to provide balanced performance in small- and large-sample
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scenarios. They show via numerical testing the performance of the switching strategy in

cases with non-normal probability distributions, though the theoretical guarantee hinges

significantly on the normality assumption. Our focus is to design and analyze algorithms

that do not rely on any parametric distributional assumption, providing rigorous justifica-

tion for the efficacy of the proposed algorithms in the non-normal case.

Quantile-based Best-arm Identification. Our research is closely related to that of

pure exploration in the multi-armed bandit (MAB) problem, often referred to as best-arm

identification; see Bubeck and Cesa-Bianchi (2012) for a comprehensive overview. The best-

arm identification procedures seek the same goal of selecting the best arm (i.e., system,

in the language of our paper). In the context of quantile-based pure exploration, Yu and

Nikolova (2013) consider the problem where arms are compared based on value-at-risk.

Szorenyi et al. (2015) proposes quantile-based online learning algorithms when rewards

from the arms are not necessarily continuous real-valued. Our work differs significantly

from these papers in that we deal with the setting with a fixed sampling budget. Further,

from an analytical perspective, the two antecedent papers primarily use the concentration

property of quantile estimators to determine the number of samples taken to satisfy a

desired guarantee. In contrast, our main concern is to minimize the probability of false

selection given a (sufficiently large) number of samples, which gives rise to the question of

what is the behavior of the probability distributions of quantile estimators in the extreme

tails. This question is addressed in § 3.2.

3. Formulation
3.1. Model Primitives

Consider k stochastic systems, each of which is characterized by a distribution function

Fj(·), j = 1, . . . , k, with its support denoted as Hj. We define the system configuration as

F = {F1, . . . , Fk}; we denote F ∈ C if each distribution is continuous on its domain; and

F ∈D if each distribution is discrete and, without loss of generality, has a support in the

set of nonnegative integers. Fix p∈ (0,1) that represents the quantile of interest and define

the pth quantile of Fj(·) as

ξj = inf{x : Fj(x)≥ p}. (1)

Denote ξ = (ξ1, . . . , ξk) as the k-dimensional vector of the pth quantiles. Without loss of

generality, we take ξ1 > ξ2 ≥ · · · ≥ ξk. We make the following assumptions throughout the

paper.
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(F1) ξj is the unique solution x of Fj(x−)≤ p≤ Fj(x) for each system j

(F2) [ξk, ξ1]⊂∩kj=1Hj

Note that (F1) is a mild assumption that ensures Fj(·) is not flat around the pth quantile.

Assumption (F2) ensures that each quantile estimated from sample observations can take

any value in the interval [ξk, ξ1], in order to avoid trivial cases where the probability of false

selection is zero. In our model the decision maker does not know the system configuration F,

but is able to sequentially take T independent samples from the systems to infer quantiles

of the distributions, where T is exogenously given. The goal is to correctly identify the

system with the largest pth quantile, i.e., system 1.

Let π denote an algorithm, which is a sequence of random variables, π1, π2, . . ., taking

values in the set {1, . . . , k}; the event {πt = j} means a sample from system j is taken at

stage t. Define Xjt, t = 1, . . . , T , as a random sample from system j in stage t. The set

of non-anticipating policies is denoted as Π, in which the sampling decision in stage t is

determined by all the sampling decisions and samples observed in previous stages.

Let Nπ
jt be the cumulative number of samples up to stage t from system j induced by

algorithm π, and define απjt := Nπ
jt/t as the sampling rate for system j at stage t. The

sample distribution function for system j is defined as

F̂ π
jt(x) =

1

Nπ
jt

t∑
τ=1
πτ=j

I{Xjτ ≤ x}, (2)

where I{A} is one if A is true and zero otherwise. Denote ξ̂πjt as the quantile of the sample

distribution function, i.e.,

ξ̂πjt = inf{x : F̂ π
jt(x)≥ p}. (3)

It is useful to define a static algorithm denoted by π(α)∈Π, where α∈∆ with

∆ =

{
(α1, . . . , αk)∈Rk :

k∑
j=1

αj = 1 and αj ≥ 0 for all j

}
. (4)

The static algorithm is summarized in Algorithm 1. Note that for static policies, πt(α) is

fixed prior to stage 1, independent of sample observations, and hence, the order of sampling

does not affect the performance in the final stage. Also, under π(α) the number of total

samples from system j is αjT , ignoring non-integrality. We let ∆0 denote the interior of

∆.
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ALGORITHM 1: Static(α)

Set αj0 = 0 for j = 1, . . . , k and set t= 1.

repeat
Take a sample from system πt, where

πt = arg max
j=1,...,k

{αj −απjt}, (5)

with ties broken arbitrarily. Let t= t+ 1.
until t≤ T ;

Return: arg maxj{ξ̂jT}.

Definition 1 (Consistency). An algorithm π ∈Π is consistent if Nπ
jt→∞ in proba-

bility for each j as t→∞.3

In the optimization problem we consider, we further restrict attention to a set of consis-

tent policies, denoted as Π̄ ⊂ Π. Under such policies the sample quantiles are consistent

estimators of the population counterparts, as formalized in the following proposition.

Proposition 1 (Consistency of quantile estimators). Under (F1),

ξ̂πjt→ ξj as t→∞ (6)

in probability for any consistent algorithm π ∈ Π̄.

Note that consistent algorithms ensure that the probability of false selection eventually

converges to zero as the sampling budget grows to infinity. We remark that the property of

consistency is not straightforward to verify for a dynamic algorithm, although any static

algorithm πα with α ∈∆0 is consistent since Njt = αjt→∞ as t→∞. The following is a

simple example of a dynamic algorithm that is not consistent.4

Example 1 (A dynamic algorithm that is not consistent). Suppose F ∈ C

and each distribution has infinite support. Define a dynamic algorithm π in which n0

samples are initially taken from each system and πt = arg maxj{ξ̂jt} for t≥ kn0. Suppose

k = 2 and (ξ1, ξ2) = (1,0). At stage 2n0, it can be easily seen that the event A= {ξ̂1,2n0 ∈

3 In this paper, we consider the weak consistency but note that some of the results can be strengthened to strong
consistency, albeit with a stronger condition; the analysis of this case is available in Appendix A of the online
supplement.

4 See also the MAP algorithm in Peng et al. (2019), which is dynamic but not consistent if p < 1/2.
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(−∞,−1), ξ̂2,2n0 ∈ (1,∞)} occurs with positive probability. Conditional on this event, sys-

tem 1 would not be sampled in subsequent stages if ξ̂2t ≥ 0 for all t≥ 2n0. The latter event

occurs with positive probability because

P

(
sup
t≥2n0

|ξ̂2t− ξ2| ≤ 1

)
≥ 2

1− γ
γn0 , (7)

where γ = exp(−2 min(F2(ξ2 + 1)− p, p−F2(ξ2 − 1))) (see Section 2.3.2 of Serfling 2009).

Combined with the fact that P(A)> 0, system 1 is not sampled infinitely often with positive

probability, and hence, the algorithm is not consistent.

Notational conventions. Throughout the paper, we use x̂t to denote sample estimate of an

unknown value x in stage t. For brevity, the superscript π may be dropped when it is clear

from the context. We use boldface letters for k-dimensional vectors; e.g., α := (α1, . . . , αk)

and αt := (α1t, . . . , αkt).

3.2. Large Deviations Preliminaries

The probability of false selection, denoted P(FSπt ) with FSπt := {ξ̂π1t <maxj 6=1 ξ̂
π
jt}, is a widely

used criterion for the efficiency of a sampling algorithm (see, e.g., the survey paper by

Kim and Nelson (2006)). However, the exact evaluation of P(FSπt ) under dynamic sampling

policies is not analytically tractable. In this subsection, following Glynn and Juneja (2004)

we build a tractable objective associated with P(FSπt ) based on large deviations theory. In

particular, we fix a static algorithm π = π(α) for some α ∈∆ and characterize how fast

P(FS
π(α)
t ) converges to 0 as a function of α∈∆. We eliminate π(α) in the superscripts in

order to improve clarity.

To begin, observe that Njt is deterministic under the static algorithm π(α) and that

P(ξ̂jt >x) = P

Njt∑
s=1

I{Xjτj(s) <x}< bpNjtc

 , (8)

where τj(s) = inf{t : Njt ≥ s} denotes the first time that system j is sampled s times

and byc is the greatest integer less than y. Note that τj(s) is deterministic under the

static algorithm so that I{Xjτj(s) < x} are an independent Bernoulli random variables for

s= 1, . . . ,Njt. Applying Cramer’s theorem (Dembo and Zeitouni 2009), the large deviation

probability for ξ̂jt, j = 1, . . . , k, can be characterized as follows (see Lemma B.1 in the

online supplement):

lim
t→∞

1

t
logP(ξ̂jt ≥ x) =−αjIj(x) for x> ξj

lim
t→∞

1

t
logP(ξ̂jt ≤ x′) =−αjIj(x′) for x′ < ξj,

(9)
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where

Ij(x) = p log

(
p

Fj(x)

)
+ (1− p) log

(
1− p

1−Fj(x)

)
. (10)

Proposition 2 (Rate function). Suppose (F1) and (F2) hold. For a static algorithm

π(α) for some α∈∆0,

lim
t→∞

1

t
logP(FS

π(α)
t ) =−ρ(α), (11)

with ρ(α) = minj 6=1{Gj(α)}, where

Gj(α) = inf
x
{α1I1(x) +αjIj(x)} . (12)

We remark that the result of Proposition 2 generalizes the results in Pasupathy et al.

(2010). Specifically, the analogous results in Pasupathy et al. (2010) require that Fj(·) is

twice differentiable in the continuous case, since their proof relies on a Taylor expansion

of the logarithmic moment generating function up to second order terms.

An important implication of Proposition 2 is that P(FS
π(α)
t ) behaves roughly like

exp(−ρ(α)t) for large values of t. Hence, it follows that ρ(·) is an appropriate measure

of asymptotic efficiency that is closely associated with P(FSπt ). Note that for each x ∈R,

α1I1(x) +αjIj(x) is a continuous, linear (hence, concave) function of (α1, αj). Since Gj(α)

in (12) is a point-wise infimum thereof, it is also concave. Therefore, ρ(α), being a minimum

of Gj(α) for j = 2, . . . , k, is concave for α∈∆. We define ρ∗ = maxα∈∆{ρ(α)}.

3.3. Problem Formulation

Based on the relationship between ρ(α) and P(FS
π(α)
t ) provided in Proposition 2, we define

the relative efficiency Rπ
t for any given algorithm π ∈Π in stage t to be

Rπ
t =

ρ(απt )

ρ∗
. (13)

By definition, the value of Rπ
t lies in the interval [0,1].

We are interested in designing an algorithm that maximizes the expected relative effi-

ciency with the sampling budget T :

sup
π∈Π̄

E(Rπ
T ). (14)

Note that an algorithm π is near optimal if απT is close to α∗ ∈ arg maxα∈∆{ρ(α)} with

high probability. However, the underlying distribution functions are not known a priori,
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hence neither is the function ρ(·) nor its maximizer α∗. Therefore, it is not tractable to

obtain the optimal sampling algorithm for finite T using a rigorous dynamic programming

approach. Alternatively, we focus on the following asymptotic criteria.

Definition 2 (Asymptotic optimality). An algorithm π ∈ Π̄ is asymptotically

optimal if

E (Rπ
t )→ 1 as t→∞. (15)

It is not difficult to check that an asymptotically optimal algorithm is consistent; otherwise,

there exists some system j for which αjt→ 0 as t→∞ with positive probability, which in

turn implies that the limit of E(Rπ
t ) is less than one as t→∞.

4. Proposed Algorithms and Main Theoretical Results
4.1. A Naive Algorithm

We first suggest a naive algorithm that iteratively estimates the maximizer of the rate

function by utilizing the history of sample observations. Define ρ̂t(α) = minj 6=b{Ĝjt(α)}

with b= arg maxj{ξ̂jt},

Ĝjt(α) = inf
x

{
αbÎbt(x) +αj Îjt(x)

}
for j 6= b, (16)

and

Îjt(x) = p log

(
p

F̂jt(x)

)
+ (1− p) log

(
1− p

1− F̂jt(x)

)
for j = 1, . . . , k. (17)

Note that ρ̂t(α) is an estimator of ρ(α) in stage t with each Fj(·) replaced with its empirical

counterpart, F̂jt(·). Define α̂t ∈ arg maxα∈∆{ρ̂t(α)} as a maximizer of the function ρ̂t(α),

with ties broken arbitrarily. The naive algorithm is summarized in Algorithm 2, with n0,

m, and c being tuning parameters; n0 is the initial number of samples from each system, m

is the batch size, and c controls the minimum sampling frequency. For ease of exposition,

we assume T is a multiple of m.

The naive algorithm makes the current allocation (αt) close to the target allocation

(α̂t) in each stage; see equation (18). Essentially, it attempts to sample the system with

greatest need of information; see, e.g., Chen and Lee (2011) for similar procedures of this

kind. Note also that the naive algorithm (as well as those to be introduced in what follows)

makes no use of the value of T , the problem horizon. A more forward looking approach

typically requires dynamic programming, which may not be practically implementable and
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ALGORITHM 2: Naive(n0,m, c)

For each j, take n0 samples and let t= kn0.

repeat
If Njt ≤ c log t for some j, let πt+` = minj{Njt} for `= 1, . . . ,m, with ties broken arbitrarily.

Otherwise, solve for α̂t ∈ arg maxα∈∆{ρ̂t(α)}, with ties broken arbitrarily, and let

πt+` = arg max
j

{α̂jt−αjt} (18)

for `= 1, . . . ,m. Let t= t+m.
until t≤ T ;

Return: arg maxj{ξ̂jT}.

hence will not be discussed in this paper. Readers interested in dynamic programming

approaches are referred to Peng et al. (2018).

The following theorem shows that α̂t eventually approaches the optimal allocation α∗,

and therefore αt converges to α∗ as t→∞, implying the algorithm is asymptotically

optimal.

Theorem 1 (Asymptotic performance of the naive algorithm). Suppose F ∈

{C ,D}. Under (F1)-(F2), the naive algorithm is consistent and asymptotically optimal.

Remark 1 (Poor performance of the naive algorithm). From an implemen-

tion perspective, the naive algorithm requires a nested optimization in each stage. Specif-

ically, the inner optimization loop involves solving for the infimum in (16) to find Ĝjt(α)

for given α, and the outer optimization task is to maximize ρ̂t(α) = minj 6=b{Ĝjt(α)} over

α∈∆. As we will see in Table 1 in § 5.1, this becomes a significant computational burden

as the number of systems increases. From a performance standpoint, despite the theoreti-

cal guarantee on its asymptotic performance, the naive algorithm exhibits poor finite-time

performance in terms of the probability of false selection. In particular, in the naive algo-

rithm we need to estimate the distribution functions in order to evaluate the rate function,

which results in relatively poor performance; see numerical results in §6.

Remark 2 (Forced sampling in the naive algorithm). An issue that can arise

with the rate function estimator ρ̂t(·) based on the empirical distribution functions is a

long period of no sampling from a particular system. In this case, the maximizer α̂t ∈

arg maxα∈∆{ρ̂t(α)} may lie at the boundary of ∆; that is, we may have α̂jt = 0 for some

j. In this case, the naive algorithm does not sample system j in stage t. If this problem
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persists in subsequent stages, the empirical distribution may not converge to its theoretical

counterpart “fast enough”. In order to prevent this issue, the naive algorithm ensures that

each system is sampled at least c log t times in stage t. Note that the asymptotic result in

Theorem 1 holds when c log t is replaced with any sublinear function of t, although such a

change would affect the performance with finite t.

Remark 3 (Variants of the naive algorithm). In this paper we use the rate

function estimator ρ̂t(·) based on empirical distribution functions. In cases with F ∈ C ,

one can also estimate the rate function based on “smooth” estimators; for example, see

the kernel-type estimator in Reiss (1981). In cases with F ∈D , one can also use discrete

kernel estimators; for example, see Rajagopalan and Lall (1995). Smooth estimators can

be useful when the sample observations are sparse, although the efficiency of these estima-

tors depends on the choice of smoothing parameters whose optimal values are unknown

a priori. It is not our intention to compare different types of distribution estimators, but

we remark that the performance of the naive algorithm may vary with different choices of

these estimators.

4.2. Alternative Algorithm for Continuous Distributions

We discuss here the case in which the underlying distributions are continuous with the

following condition.

(F3) Fj(·) is twice continuously differentiable and possesses a positive continuous den-

sity fj(·) over the interval Hj.

It is trivial to check that the smoothness assumption (F3) implies (F1) and (F2). Note that

Fj(·) must be twice continuously differentiable in order to ensure that Ij(x) can be closely

approximated, using a Taylor expansion, by a quadratic function of x in a neighborhood

of ξj, which will be key to the theoretical results in this subsection.

Let δ := ξ1 − ξ2 be the gap between the best and the second best systems and define

ρδ(α) := minj 6=1{Gδ
j(α)} with

Gδ
j(α) =

(ξ1− ξj)2

2p(1− p)
(
1/(α1f 2

1 (ξ1)) + 1/(αjf 2
j (ξj))

) . (19)

We provide some intuition behind the definition of ρδ(α). Under (F3), the sample quantile

from αjT independent observations from system j is asymptotically normal with mean ξj

and variance p(1− p)/(αjTf 2
j (ξj)) (see, e.g., pp. 77-79 of Serfling 2009). Hence, one may
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consider Gδ
j(α) as a measure of divergence between two quantiles, measured in units of

standard errors. The greater the value of Gδ
j(α) the better we can distinguish whether

ξ1 > ξj or not with greater confidence. This in turn suggests that ρδ(α) is closely aligned

with ρ(α), the rate function of the probability of false selection. This intuitive observation

is formalized in the following proposition.

Proposition 3 (Characteristics of ρδ). Consider a set of system configurations in

C , where each configuration F satisfies (F1)-(F3) and fj(ξj) is in a compact set that does

not include zero. Then, ρδ(α) has a unique maximum αδ ∈∆0 and

ρ(αδ)

ρ∗
→ 1 as δ→ 0. (20)

Proposition 3 states that one can achieve near-optimal performance with respect to ρ(α) by

maximizing ρδ(α) when δ is sufficiently close to 0. Note that the maximization of ρδ(α) is

much simpler than that of ρ(α) because the former is strongly concave in α (Appendix A.1)

and does not involve a nested optimization structure. In the preceding proposition, the

condition that fj(ξj) lies in a compact set is a relatively mild restriction. We provide three

examples to illustrate the nature of this condition.

Example 2 (Exponential distributions). First, consider two exponential systems

with means (µ+ δ,µ) for µ> 0, for which (f1(ξ1), f2(ξ2))→ ((1− p)/µ, (1− p)/µ) as δ→ 0,

satisfying the condition in Proposition 3. Second, consider two exponential systems with

means (δ+ 1/δ,1/δ), for which (ξ1, ξ2) = (−(δ+ 1/δ) log(1− p),−(1/δ) log(1− p)). In this

case, (f1(ξ1), f2(ξ2))→ (0,0) as δ → 0, violating the condition in Proposition 3. Third,

consider two exponential systems with means (2δ, δ), for which (ξ1, ξ2) = (−2δ log(1 −

p),−δ log(1− p)). In this case, (f1(ξ1), f2(ξ2))→ (∞,∞) as δ→ 0, violating the condition

of Proposition 3.

Based on the approximation ρδ(·), we now propose an algorithm called Quantile Diver-

gence (QD) for continuous distributions that iteratively estimates αδ = arg maxα∈∆{ρδ(α)}

from the history of sample observations. Specifically, denote α̂δt the estimator of αδ in stage

t. Formally, α̂δt = arg maxα∈∆{ρ̂δt (α)}, where

ρ̂δt (α) = min
j 6=b

(ξ̂bt− ξ̂jt)2

2p(1− p)
(

1/(αbf̂ 2
bt(ξ̂bt)) + 1/(αj f̂ 2

jt(ξ̂jt))
) , (21)
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ALGORITHM 3: QD-C (n0,m,K(·), h(·))
For each j, take n0 samples and let t= kn0.

repeat

Let b= arg maxj{ξ̂jt}. If ξ̂bt = ξ̂jt for system j 6= b, then take a sample from system

πt+` = arg min
i=j,b

{αit} (23)

for `= 1, . . . ,m, with ties broken arbitrarily. Otherwise, estimate the density estimators in (22)

using the kernel K(·) and the bandwidth parameter h(·). Solve for α̂δt = arg maxα∈∆{ρ̂δt (α)} and

let

πt+` = arg max
j

{α̂δjt−αjt} (24)

for `= 1, . . . ,m. Let t= t+m.
until t≤ T ;

Return: arg maxj{ξ̂jT}.

with b= arg maxj{ξ̂jt} and

f̂jt(y) =
1

Njt

t∑
s=1
πs=j

Kh(Njt)(y−Xjs) (22)

is the kernel-based estimator with kernel K(·) and bandwidth h(t)≥ 0 for each t. A kernel

with subscript h is called a scaled kernel and defined as Kh(x) = h−1K(x/h). The optimal

choices of the kernel function and the bandwidth parameter depends on the true density

functions that are a priori unknown (see, e.g., Silverman (1986)), but we impose standard

regularity conditions on K(·) and h(t), which are satisfied by almost any conceivable kernel

such as normal, uniform, triangular, and others:

(K1)
∫
|K(x)|dx<∞ and

∫
K(x)dx= 1

(K2) |xK(x)| → 0 as |x| →∞

(K3) h(t)→ 0 and th(t)→∞ as t→∞.

We propose an algorithm that matches αt with α̂δt in each stage, simultaneously ensuring

that α̂δt approaches αδ as t→∞. The procedure is summarized in Algorithm 3, with n0

and m being tuning parameters.

Theorem 2 (Asymptotic performance of QD-C). Suppose F ∈ C . Under (F1)-

(F2), the QD-C algorithm is consistent, and if (F3) is further satisfied, then

E(Rπ
t )→ ρ(αδ)

ρ∗
as t→∞. (25)
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To rephrase (25), the QD algorithm eventually allocates the sampling budget so that

ρδ(α) is maximized, and the loss in asymptotic efficiency due to maximizing ρδ(·) instead

of ρ(·) decreases to 0 as δ→ 0. Combining the preceding theorem with Proposition 3, it

can be seen that ρ(αδ)/ρ∗→ 1 as δ→ 0, implying that the QD-C algorithm is near-optimal

in an asymptotic regime as t→∞ and δ→ 0.

Remark 4 (Relation to existing algorithms). The QD-C algorithm shares the

common theme with two sampling algorithms in the literature of mean-based ordinal opti-

mization. First, QD-C is analogous to the WD algorithm proposed by Shin et al. (2018)

in the sense that the former (respectively, the latter) repeatedly maximizes the divergence

between sample quantiles (respectively, sample means). Second, QD-C can be related to

a family of sampling algorithms called OCBA (Chen and Lee 2011). Specifically, from the

first order conditions it can be seen that α̂δt of the QD-C algorithm satisfies

(ξ̂bt− ξ̂it)2

(α̂δbtf̂
2
bt(ξ̂bt))

−1 + (α̂δitf̂
2
it(ξ̂it))

−1
=

(ξ̂bt− ξ̂jt)2

(α̂δbtf̂
2
bt(ξ̂bt))

−1 + (α̂δjtf̂
2
jt(ξ̂jt))

−1
for i, j = 2, . . . , k (26)

α̂δbt =

√√√√∑
j 6=b

(
α̂δjt
)2 f̂

2
jt(ξ̂jt)

f̂ 2
bt(ξ̂bt)

. (27)

If we further assume that α̂δbt� α̂δjt, then the above formulas are equivalent to the OCBA

formulas, except that the means and variances of sample means are replaced with those

of sample quantiles. Both WD and OCBA are derived based on the premise that sample

means are normal, and hence, QD-C can be considered as a comparable algorithm when

sample quantiles are approximately normally distributed.

Remark 5 (Bias-variance tradeoff). The major advantage of QD-C over the naive

algorithm is that the estimation of ρδ(·) is more “localized” and does not require the

estimation of the entire distribution functions; see Remark 1 for a discussion about the

optimization error under the naive algorithm. In other words, exploration of the function

ρδ(·) requires less of the sampling budget than that of ρ(·), which allows us to exploit more

of the budget to maximize ρδ(·), with a sacrifice due to the gap between ρδ(·) and ρ(·). We

now rigorously analyze the bias and variance in this tradeoff. For ease of exposition, let

k= 2 and, with a slight abuse of notation, denote ρ(α1t) = ρ(αt) for αt = (α1t, α2t). Using

a second-order Taylor expansion of ρ(·) at α∗1, observe that

ρ(α∗1)− ρ(α1t) =−ρ
′′(α∗1)

2
(α1t−α∗1)2 + o((α1t−α∗1)2), (28)
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Figure 1 Bias-variance tradeoff. For each naive (blue) and QD-C (red) algorithm, the solid line is the mean

squared error and the dotted (or dashed) line is its variance component. The gap between the solid

and dotted (or dashed) lines corresponds to the bias component. The system configurations are (a)

two normal systems with means (0,0) and standard deviations (1,3) and (b) two normal systems with

the same means (0,0) and standard deviations (1,2). The 10% quantiles are ξ = (0.13,0.38) for (a)

and ξ = (0.13,0.25) for (b). For both algorithms (n0,m) = (20,10). Also, c= 10 for the naive algorithm

and we use the normal kernel with the bandwidth parameter h(n) = 1.06σn−1/5 for QD-C, where σ is

replaced with sample standard deviation.

where ρ′′(α∗1) is the second derivative of ρ(·) at α∗1, and the term o(α1t − α∗1) is sublinear

in (α1t−α∗1) as this difference tends to zero. Hence, the loss in the asymptotic efficiency,

E(ρ(α∗1)−ρ(α1t)), can be largely explained by the mean squared error (MSE), E(α1t−α∗1)2,

which can be further decomposed as

E(α1t−α∗1)2 = E(α1t−E(α1t))
2 + (E(α1t)−α∗1)2. (29)

The first term represents the variance component (due to noisy sample estimates) and

the second represents the bias component (due to maximizing ρδ(·) instead of ρ(·)). As

illustrated in Figure 1, most of the MSE contribution is due to variance under the naive

algorithm. On the other hand, QD-C significantly reduces the variance, while introducing

a small bias that decreases to zero as δ→ 0. Overall, the QD-C algorithm has lower MSE’s

than the naive counterpart for small t, indicating it is more suitable in settings with small

sampling budgets. Obviously, QD-C is even more attractive than the naive algorithm when

δ is “small” because the loss due to the bias is “small” as well.
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Figure 2 Illustration of h12 and h21 defined in (30) for p= 0.55. The step functions in thin and thick solid lines rep-

resent the distributions F1(·) and F2(·), respectively, and the dashed lines are the linear approximations.

4.3. Alternative Algorithm for Discrete Distributions

We now develop an alternative algorithm for the case in which the underlying distributions

are discrete, i.e., F∈D . To this end, define

hj1 =
Fj(ξ1)−Fj(ξj)

ξ1− ξj

h1j =
F1(ξ1)−F1(ξj)

ξ1− ξj

(30)

for each j 6= 1 and let h= {(hj1, h1j) | j 6= 1}. Figure 2 illustrates the definitions of hj1 and

h1j for j = 2. Also define ε∈ (0,1) as a constant such that, for each j 6= 1 and x∈ [ξj, ξ1],

1− ε≤ Fj(x)

p+ (x− ξj)hj1
,

1−Fj(x)

1− p− (x− ξj)hj1
≤ 1 + ε

1− ε≤ F1(x)

p+ (x− ξ1)h1j

,
1−F1(x)

1− p− (x− ξ1)h1j

≤ 1 + ε.

(31)

The constant ε represents (multiplicative) errors when Fj(x) is approximated by a linear

function, p+ (x− ξj)hj1 or p+ (x− ξ1)h1j.

We consider a set of discrete distributions that satisfies the following condition, which

ensures that hj1 and h1j defined in (30) are strictly positive for each j 6= 1.

(F3’) The probability mass function, fj(x) = Fj(x)−Fj(x−1), is positive for all integer

x∈Hj

Define ρδ,ε(α) = minj 6=1{Gδ,ε
j (α)} with

Gδ,ε
j (α) =

(ξ1− ξj)2

2p(1− p)
(
1/(α1h2

1j) + 1/(αjh2
j1)
) , (32)
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which has a similar structure as (19) in the continuous case, except that fj(ξj) is replaced

with hj1 or h1j. To provide some intuition behind the definition of Gδ,ε
j (α), recall that

the asymptotic variance of ξ̂jt is inversely proportional to fj(ξj) in the continuous case.

In other words, when h1j or hj1 is high (low), samples from system j are denser (sparser)

around ξj so that the asymptotic variance of the sample quantile is low (high). Therefore,

Gδ,ε
j (α) can be seen as an appropriate measure of divergence between two quantiles. The

following proposition validates this intuition rigorously. We use the following notation:

h̄= maxj 6=1{max(hj1, h1j)}, r= maxj 6=1{ξ1− ξj}/minj 6=1{ξ1− ξj}, θ= rh̄δ, and u :R+→R

is a non-decreasing function of θ defined as

u(θ) =
2θp(1− p)(θ3 + 3θp(1− p) + p(1− p))

3(p− θ)3(1− p− θ)3
. (33)

Proposition 4 (Characteristic of ρδ,ε(·)). Suppose F ∈ D . Under (F1)-(F2) and

(F3’), for any α∈∆

ρ(αδ,ε)

ρ∗
≥ (1−u(θ))(1− ε)

(1 +u(θ))(1 + ε)
(34)

for θ= rh̄δ sufficiently small so that u(θ)< 1.

Proposition 4 validates the approximation of ρ(·) by ρδ,ε(·) for small δ (equivalently, small

θ) and ε. This in turn implies α∗ and αδ,ε, the maximizers of ρ(·) and ρδ,ε(·), respectively,

are close when δ and ε are sufficiently small.

Remark 6 (Tightness of the lower bound in Proposition 4). We note that

u(θ) is a continuous, increasing function of θ ≥ 0 with u(0) = 0. Hence, when θ and ε

are close to 0, the bound in (34) is tight. To see the tightness of the bound for different

values of θ, we provide a numerical example in Figure 3 for the case of discrete uniform

distributions. Note that the lower bound is tight for small values of θ, and while there is

a noticeable gap for large values of θ, the actual values of ρ(αδ,ε)/ρ∗ are still close to one.

We now present the QD-D algorithm, which iteratively maximizes ρδ,ε(·) from the history

of sample observations. Let α̂δ,εt = arg maxα∈∆{ρ̂
δ,ε
t } be the estimator of αδ,ε∗ in stage t,

where

ρ̂δ,εt = min
j 6=b

(ξ̂bt− ξ̂jt)2

2p(1− p)
(

1/(αbĥ2
bjt) + 1/(αjĥ2

jbt)
) , (35)
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ALGORITHM 4: QD-D (n0,m)

For each j, take n0 samples and let t= kn0

repeat

Let b= arg maxj{ξ̂jt}. If ξ̂bt = ξ̂jt for system j 6= b, then take a sample from system

πt+` = arg mini=j,b{αit} for `= 1, . . . ,m. If there are multiple such j’s, choose the one with the

smallest j. Otherwise, solve for α̂δ,εt = arg maxα∈∆{ρ̂
δ,ε
t (α)} and let

πt+1 = arg max
j

{α̂δ,εjt −αjt} (37)

for `= 1, . . . ,m. Let t= t+m
until t≤ T ;

Return: arg maxj{ξ̂jT}.

with b= arg maxj{ξ̂jt} and ĥjbt and ĥbjt defined as

ĥjbt =

(F̂jt(ξ̂bt)− F̂jt(ξ̂jt))/(ξ̂bt− ξ̂jt) if F̂jt(ξ̂bt)− F̂jt(ξ̂jt)> 0

(F̂jt(yjbt)− F̂jt(ξ̂jt))/(yjbt− ξ̂jt) otherwise

ĥbjt =

(F̂bt(ξ̂bt)− F̂bt(ξ̂jt))/(ξ̂bt− ξ̂jt) if F̂bt(ξ̂bt)− F̂bt(ξ̂jt)> 0

(F̂bt(ξ̂bt)− F̂bt(ybjt)/(ξ̂bt− ybjt) otherwise,

(36)

where yjbt := inf{y ≥ ξ̂bt | F̂jt(y)− F̂jt(ξ̂jt) > 0} is the smallest value of y ≥ ξ̂bt such that

the empirical distribution F̂jt(·) has positive probability mass between ξ̂jt and y. Similarly,

ybjt := sup{y ≤ ξ̂jt|F̂bt(ξ̂bt) − F̂bt(ybjt) > 0}. This ensures ĥjbt, ĥbjt > 0 for each j 6= b. The

QD-D algorithm for the discrete case is summarized in Algorithm 4, with n0 and m being

parameters of the algorithm.

We note that the event {ξ̂bt = ξ̂jt} for some j 6= b can occur with positive probability, in

which case α̂δ,εt = arg maxα∈∆{ρ̂
δ,ε
t } may not be well defined. When these cases occur, the

QD-D algorithm takes a sample from system j or b, whichever was sampled less. When

there are multiple systems satisfying such conditions, choose j arbitrarily.

Theorem 3 (Asymptotic performance of QD-D). Suppose F ∈ D . Under (F1)-

(F2), the QD-D algorithm is consistent, and if (F3’) is further satisfied, then

E(Rπ
t )→ ρ(αδ,ε)

ρ∗
as t→∞. (38)

Note that the preceding theorem, combined with Proposition 4 implies that the QD-D

algorithm is near-optimal in an asymptotic regime as t→∞ and θ→ 0.
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Figure 3 Asymptotic performance of the QD-D algorithm, ρ(αδ,ε)/ρ∗, and its lower bound defined in (38),

as a function of θ = rh̄δ. The system configuration consists of three systems with discrete uniform

distributions with 10% quantiles (0,−δ,−2δ), where the values of δ range from 10 to 100 and the

length of supports is 104 for all three systems. The parameters for the QD-D algorithm are m= 10 and

n0 = 20.

5. Adaptive Heuristics for Fast Implementation

From an implementation standpoint, the QD algorithms (QD-C and QD-D) significantly

improves the computation time of the naive algorithm by replacing the two-layer optimiza-

tion problem with a single-layer one. The latter is a convex optimization problem that is

easy to solve in small-scale problems (k≤ 20), however, there still exists a heavy computa-

tional burden for larger problems since the convex optimization problem should be solved

repeatedly in every stage. (See Table 1 later in this section for computation times of the

proposed algorithms as the number of systems increases.) Hence, we suggest variants of the

QD algorithms for continuous and discrete distribution that are practically implementable

with a large number of systems.

In the case with continuous distributions, the adaptive variant of the QD-C algorithm,

AQD-C, is summarized in Algorithm 5. To provide some intuition behind AQD-C, recall

the first order conditions for the maximizer of ρ̂δt (α) in (26)-(27). While QD-C solves for

(26)-(27) in every stage, AQD-C attempts to balance the left and right sides of (26)-(27) so

that they are satisfied asymptotically as t→∞. The adaptive variant of the QD algorithm

for discrete case (AQD-D) is similarly defined in Algorithm 6, with f̂jt(·) in AQD-C replaced

with ĥjbt or ĥbjt.
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ALGORITHM 5: AQD-C (n0,m,K(·), h(·))
For each j, take n0 samples and let t= kn0

repeat

Let b= arg maxj{ξ̂jt}. If ξ̂bt = ξ̂jt for system j 6= b, then take a sample from system

πt+` = arg min
i=j,b

{αit} (39)

for `= 1, . . . ,m, with ties broken arbitrarily. If

αbt <

√√√√∑
j 6=b

α2
jt

f̂2
jt(ξ̂jt)

f̂2
bt(ξ̂bt)

, (40)

set πt+` = b for `= 1, . . . ,m. Otherwise, estimate the density estimators in (22) using the kernel

K(·) and the bandwidth parameter h(·). Set

πt+` = arg min
j 6=b

{
(ξ̂bt− ξ̂jt)2

1/(αbtf̂2
bt(ξ̂bt)) + 1/(αjtf̂2

jt(ξ̂jt))

}
(41)

for `= 1, . . . ,m. Let t= t+m
until t≤ T ;

Return: arg maxj{ξ̂jT}.

ALGORITHM 6: AQD-D (n0,m)

For each j, take n0 samples and let t= kn0

repeat

Let b= arg maxj{ξ̂jt}. If ξ̂bt = ξ̂jt for some j 6= b, then take a sample from system

πt+` = arg mini=j,b{αit} for `= 1, . . . ,m. Otherwise, set πt+` = b for `= 1, . . . ,m if

αbt <

√√√√∑
j 6=b

α2
jt

ĥ2
jbt

ĥ2
bjt

. (42)

Otherwise, set

πt+` = arg min
j 6=b

{
(ξ̂bt− ξ̂jt)2

1/(αbtĥ2
bjt) + 1/(αjtĥ2

jbt)

}
(43)

for `= 1, . . . ,m. Let t= t+m
until t≤ T ;

5.1. Discussion

Comparison to QD. In the case with k = 2 systems, the QD-C and AQD-C algorithms

are identical. To see this, note that, when (40) is satisfied for some stage t, AQD-C takes

a sample from system b. Further, (40) implies α̂δt = arg maxα∈∆{ρ̂δt} satisfies α̂δbt > αbt

and α̂δjt < αjt for j 6= b, and therefore, QD-C also samples system b. Since the preceding

argument is true for each t, one can conclude that QD-C and AQD-C are identical when
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Figure 4 The sampling frequencies (α1t) under the naive, QD-C, and AQD-C algorithms. The configuration is

characterized by k= 4 normally distributed systems with µ = (0, . . . ,0) and σ = (1, . . . ,1.2). In this case,

the 10% quantiles are ξ = (0.13,0.38,0.38,0.38) and α∗1 = 0.33. For all algorithms (n0,m) = (20,10).

Also, c = 10 for the naive algorithm and we use the normal kernel with the bandwidth parameter

h(n) = 1.06σn−1/5 for QD-C and AQD-C, where σ is replaced with sample standard deviation.

k = 2. The case with k > 2 is less obvious, but we show via numerical example that the

allocations under QD-C and AQD-C coincide eventually as t→∞ (Figure 4). Observe

that the distributions of α1t under the QD-C and AQD-C algorithms are almost identical.

Also, Figure 4 illustrates that α1t→ α∗1 = 0.33 as t→∞ for all three algorithms, but the

convergence rate under the naive algorithm is slower than those of the QD-C and AQD-C,

which is consistent with Remark 1. A similar argument applies between the QD-D and

AQD-D algorithms.

Scalability. Compared to the naive and two QD algorithms, the AQD algorithms exhibit

orders of magnitude decrease in CPU time for larger k. Table 1 summarizes the computa-

tion time of the algorithms as a function of the number of systems with normal distributions

with zero means and 10% percentiles ξ1− ξj = 0.13 for all j 6= 1. The relative CPU times

illustrate the dramatic difference between the AQD and the other algorithms, in particular

scalability of the AQD algorithms. Indeed, we observe such a dramatic improvement in

CPU time with different system configurations.

Generality. In our main theoretical results in §4, certain conditions on the underlying

distributions, (F1)-(F3) or (F3’), are imposed in order to characterize the performance in
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Table 1 CPU times (in seconds) per stage. CPU times are estimated by taking averages over 100 simulation

trials. (Operating system: Windows 7; processor: Intel core i7 2.7GHz; memory: 32GB RAM; language: MATLAB.)

Algorithms k= 4 k= 40 k= 400 k= 4000

Naive 0.057 0.064 9.287 2379
QD 0.012 0.043 4.567 206

AQD 0.003 0.003 0.010 0.135

terms of the relative efficiency defined in (13). However, it is important to note that the

naive, QD-C, and QD-D algorithms are consistent so that P(FSπt )→ 0 as t→∞ under the

mild conditions (F1)-(F2); see Theorems 1-3. We remark that the AQD-C and AQD-D

algorithms can be applied in general settings where (F3) or (F3’) is not necessarily satisfied.

6. Comparison with Benchmark Algorithms
6.1. Benchmark Sampling Algorithms

We compare the proposed algorithms with two benchmark algorithms: the equal allocation

(EA) and a heuristic algorithm based on Hoeffding’s inequality (HH). The HH algorithm

is introduced as a simple benchmark that uses confidence intervals of sample quantiles; see

Algorithm 7. It takes as input three tuning parameters: the number of initial samples n0,

the batch size m, and β ∈ (0,1).

To provide some intuition behind the HH algorithm, let us denote ξp as the pth quantile

and ξ̂p as the sample quantile from N independent samples. From Hoeffding’s inequality,

observe that

P(ξ̂p+ζ < ξp) = P

(
N∑
i=1

(I{Xi ≤ ξp}− p)≥ ζN

)
≤ e−2Nζ2

. (44)

Therefore, ξ̂p+ζ is greater than ξp with probability greater than or equal to 1−exp(−2Nζ2).

In other words, for a given value of ζ, the value of 1− exp(−2Nζ2), or equivalently, Nζ2,

can be considered as a proxy for the confidence level. The HH algorithm is designed to

take a sample from the system with the least value of such a measure, arg minj{Njtζ
2
jt},

in stage t. The value of ζjt for each j depends on the parameter β. The optimal value of

β may depend on underlying probability distributions, and hence, it may not be known

a priori. In the following numerical experiments, we test the HH algorithm for different

values of β = 0.25,0.5,0.75 but only show the results for β = 0.5 which gives a better overall

performance in terms of the probability of false selection.
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ALGORITHM 7: HH (n0,m,β)

For each j, take n0 samples and let t= kn0.

repeat

Let b= arg maxj{ξ̂jt} and b′ = arg maxj 6=b{ξ̂jt}.

Fix vt = βξ̂bt + (1−β)ξ̂b′t.

Define {ζjt}kj=1 as follows

ζjt =

{
p− F̂bt(vt) for j = b

F̂jt(vt)− p for j 6= b.
(45)

Set πt+` = arg minj{Njtζ
2
jt} for `= 1, . . . ,m and let t= t+m.

until t≤ T ;

Return: arg maxj{ξ̂jT}.

6.2. Numerical Experiments

We test our procedures for continuous (normal and Student’s t) and discrete (uniform and

Poisson) distributions. P(FSπt ) is estimated by counting the number of false selections out

of v simulation trials, which is chosen so that:√
Pt(1−Pt)

v
≤ Pt

10
, (46)

where Pt is the order of magnitude of P(FSπt ). This implies standard errors for the estimates

of P(FSπt ) are at least ten times smaller than the value of P(FSπt ) so that we have sufficiently

high confidence that the results are not driven by simulation error.

For the naive algorithm, we set c= 10 in all cases. For the QD-C and AQD-C algorithms

for continuous distributions, we use the normal kernel with the bandwidth parameter

h(n) = 1.06σn−1/5, where σ is replaced with the usual sample standard deviation. The

tuning parameters chosen in our numerical experiments are by no means optimal but we

provide numerical examples in Appendix C of the online supplement to show the sensitivity

of performance with respect to these parameters.

In the following experiments, we test the naive and QD algorithms for cases with small

number of systems (k= 4) since they are not practically implementable with larger problem

instances; see CPU times of these algorithms in Table 1.

Normal distributions. We consider configurations where the quantiles are monotoni-

cally decreasing; in particular, we set µj = 0 and σj = 1 + γ(j− 1) for j = 1, . . . , k for some

γ > 0. We vary γ = 0.1,1 which corresponds to δ= 0.128,1.28, the gap in quantile between

the best and second best systems. Also, to show the performance of our procedure for
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Figure 5 P(FSπt ) as a function of stage t on a log-linear scale in the normal cases. In all cases, means of systems

are equally set to zero and standard deviations are σj = 1 + γ(j − 1) for j = 1, . . . , k, where we vary

γ = 0.1,1 for the cases with small and large values of δ, respectively. We set k= 4 and p= 0.1 in panels

(a)-(b), k= 4 and p= 0.01 in panels (c)-(d), and k= 400 and p= 0.1 in panels (e)-(f). We take m= 10

samples per batch for all cases and set n0 = 20 for (a)-(b), n0 = 100 for (c)-(d), and n0 = 10 for (e)-(f).

For the HH algorithm, the parameter β is tuned to be 0.5 for both configurations.

the cases with extreme quantiles and large number of systems, we vary p= 0.1,0.01 and

k= 4,400.

In all cases of Figure 5, the QD-C and AQD-C algorithms outperform the others. In

light of Theorem 2, the QD-C and AQD-C policies are near-optimal asymptotically when

the gap δ in quantile between the best and second-best systems is sufficiently small. This

is consistent with the observations from panels (a),(c), and (e) of Figure 5, where δ is
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sufficiently small and the finite-time performance of the two algorithms is competitive

in terms of the probability of false selection. Somewhat surprisingly, the performance of

QD-C and AQD-C are also preferable in cases with relatively large values of δ; see panels

(b),(d), and (f) in Figure 5. These results indicate that the finite-time performance of the

two algorithms is competitive for both small and large values of δ, which complements the

asymptotic results of Theorem 2 as δ→ 0. Further, note that AQD-C slightly outperforms

QD-C in some cases in Figure 5.

Notice that the poor performance of the naive algorithm is anticipated by Remark 1.

The performance of the HH algorithm varies significantly for different configurations; it

performs competitively with the AQD-C algorithm in panel (f) of Figure 5, but it is even

worse than EA in panels (a)-(c). This shows that the performance of the HH algorithm

highly depends on the choice of parameter β, which is not known a priori. Lastly, note that

the EA algorithm performs very poorly in the case with k = 400 since too many samples

are allocated to systems that are far from the best one, while the AQD-C algorithm safely

discards seemingly non-best systems in early stages.

Heavy tailed distributions. In Figure 6, we consider two system configurations, each

with four Student t-distributed systems. In both cases, we set means (0,0,0,0) and standard

deviations (1,2,3,4) with p= 0.1 so that the pth quantile values monotonically decrease

with system index.

It is noteworthy that the performance of quantile-based algorithms is robust against the

presence of heavy tails in the sense that P(FSπt ) converges to zero at an exponential rate

(Proposition 2), as opposed to mean-based procedures under which the probability of false

selection decreases to zero only at a polynomial rate (Broadie et al. 2007). This can be seen

in Figure 6: On the left panel, the degrees of freedom is set to ν = 1 so that the distributions

are significantly heavy-tailed, while we set ν = 20 for the less heavy-tailed distributions on

the right panel of Figure 6. In both cases, the AQD-C and QD-C algorithms outperform

the others, with AQD-C performing slightly better than QD-C on the left panel. Also, note

that P(FSπt )≈ c1 exp(−c2t) implies that logP(FSπt ) is approximately linear in t. Hence, it

can be seen that P(FSπt ) converges to zero at an exponential rate under QD-C and AQD-

C, indicating these algorithms can be attractive alternatives to mean-based procedures in

many applications where heavy tails are prevalent.
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Figure 6 P(FSπt ) as a function of stage t on a log-linear scale in the t-distribution cases. For both cases, there

are four systems with means (0,0,0,0) and standard deviations (1,2,3,4), while the degrees of freedom

are ν = 1 on the left panel and ν = 20 on the right panel. We set p= 0.1, n0 = 10, and m= 10 for both

cases. For the HH algorithm, the parameter β is tuned to be 0.5.

Discrete cases: uniform and Poisson distributions. Recall from Theorem 3 that

the asymptotic performance of the QD-D algorithm is characterized by ρ(αδ,ε)/ρ∗, which

depends on the gap in means between the best and second-best systems (δ) and the error

due to linear approximation of distribution functions (ε). To illustrate the effect of ε, we

consider two families of discrete distributions: uniform distribution functions which can

be closely approximated by a linear function (i.e., small ε) and Poisson distributions for

which ε is relatively large. Also, to illustrate the effect of δ, we consider small and large

values of δ for each of the two distributions. We fix p= 0.1 and k= 4 in all of these cases.

In the top panels of Figure 7, two configurations with uniform distributions are consid-

ered. In each case, the support of the distribution function is {1, . . . , uj} for system j with

uj = 1000−δ(j−1); we let δ = 50 in (a) and δ= 200 in (b). The values of ε are small (in the

order of 10−3) in both cases, while θ = 0.0064,0.15 for (a) and (b), respectively. Further,

the asymptotic efficiencies characterized in Theorem 3, ρ(αδ,ε∗)/ρ∗, are 0.89 and 0.61 for

(a) and (b), respectively, because the gap in quantiles δ (or equivalently, θ) is smaller in

the first configuration. It is interesting to observe that the performance of the AQD-D

algorithm is still superior to the others in terms of the probability of false selection even

with the relatively low asymptotic efficiency in Figure 7(b).

In the bottom panels of Figure 7, each system j is characterized by a Poisson distribution

with parameter λj. In particular, we let λj = 1000− δ(j − 1) with δ = 5,20 in panels (c)

and (d), respectively. As opposed to the uniform case, the values of ε are relatively large

due to the non-linearity of Poisson distribution functions; in particular, ε = 0.101,1.814
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Figure 7 P(FSπt ) as a function of stage t on a log-linear scale in the discrete cases. In (a) and (b), the system

configuration is characterized by k = 4 discrete uniform distributions, each on the range [0, uj ] with

uj = 1000− δ(j − 1) for j = 1, . . . , k. We set δ = 50,200 for (a) and (b), respectively. In (c) and (d),

the system configuration is characterized by k = 4 Poisson distributions, each with parameter λj =

1000− δ(j− 1). We set δ= 5,20 for (c) and (d), respectively. For all cases p= 0.1. We set n0 = 20 and

m= 10 for (a)-(c) and n0 = 10 and m= 1 for (d). For the HH algorithm, the parameter β is tuned to

be 0.5.

for (c) and (d), respectively. The large values of ε deteriorates the asymptotic efficiencies

significantly; ρ(αδ,ε∗)/ρ∗ = 0.72,0.56 for (c) and (d). Nevertheless, observe that the finite-

time performance of AQD-D in terms of the probability of false selection is still superior

to the other algorithms, indicating its performance is robust against a wide spectrum of ε

and δ.

7. Concluding Remarks

We have shown how the problem of minimizing the probability of false selection can be

analyzed using large deviations theory and certain approximations thereof. By analyzing

the rate function of the probability of false selection in an asymptotic regime, we obtain a

tractable objective function and structural insights that guide algorithm design. Although

it is tractable, the rate function is computationally expensive to estimate from sample
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observations. A significant contribution of our work is that a nearly-optimal algorithm is

obtained using a simple alternative to the rate function, which can be estimated using a

surprisingly small number of sample observations with high accuracy.

In a wide range of applications, selecting multiple systems is likely to be a topic of

interest. The theoretical results in our work can serve as a base for the case with multiple

selections. On a methodological level, one can use different nonparametric estimators for

quantiles, other than the sample quantile used in this paper, which can be leveraged to

design even more efficient algorithms.
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Appendix A: Additional Theoretical Results

A.1. Properties of the Function ρδ(·)

Recall the definition of ρδ(α) = minj 6=1{Gδ
j(α)}, where

Gδ
j(α) =

(ξ1− ξj)2

2p(1− p)(1/(α1f2
1 (ξ1)) + 1/(αjf2

j (ξj)))
.

It is trivial to check that Gδ
j(α) is a smooth function of α ∈∆0. However, ρδ(α) is only piecewise smooth

because its derivative does not exist at α such that Gδ
i (α) =Gδ

j(α) for some i 6= j.

Lemma A.1. Assume (F1)-(F3). Then, Gδ
j(α) is strongly concave in α.

From the previous lemma, it is straightforward to see that ρδ(α), being the minimum of Gδ
j(α) over j 6= 1,

is also strongly concave.

1
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A.2. Strong Consistency of the Proposed Algorithms

In the main text we have shown the (weak) consistency of the naive, QD-C, and QD-D algorithms, respectively

in Theorems 1, 2, and 3, respectively; that is, Nπ
jt →∞ in probability as t→∞. In this section, we are

interested in strengthening of these results to convergence with probability one. To this end, we need a

stronger notion of consistency:

Definition A.1 (Strong consistency). An algorithm π ∈Π is strongly consistent if Nπ
jt→∞ almost

surely for each j as t→∞.

Note that the naive and QD-D algorithms can be shown to be strongly consistent without additional condi-

tions. However, for the strong consistency of the QD-C algorithm, which is structured around the kernel-based

density estimators, we need the following additional conditions:

(F4) Fj(·) possesses a positive, uniformly continuous density fj(·) over the interval Hj .

(K4) K is of bounded variation.

(K5) K(x)→ 0 as |x| →∞.

(K6)
∑∞

n=1 exp(−γth(t)2)<∞ for every γ > 0.

Note that (F4) is different than (F3) because it does not require twice differentiable Fj(·), but instead

requires uniform continuity of the density function. Note also that (K5) does not follow from (K1); a sufficient

condition for (K5) is that the kernel K is uniformly continuous. The last condition (K6) is stronger than

(K3); for instance, the sequence of h(t) = log(t)/t satisfies (K3) but not (K6). The stronger consistency

results are summarized in the following proposition.

Proposition A.1 (Strong consistency of the proposed algorithms). The naive algorithm is

strongly consistent. For F ∈D , QD-D algorithm is strongly consistent under (F1)-(F2). For F ∈ C , QD-C

algorithm is strongly consistent if underlying distributions satisfy (F1),(F2), and (F4) and the kernel and

bandwidth parameters satisfy (K1)-(K6).

A.3. Strengthening of Proposition 3

An important implication of Proposition 3 is that, after taking T →∞, the probability of false selection

(on a logarithmic scale) depends on the underlying distributions only through the densities at quantiles,

{fj(ξj)}kj=1, as the quantiles get closer to each other. To formalize this property more precisely, consider a

stylized sequence of system distributions indexed by t, denoted as {F1,t(·), . . . , Fk,t(·)}∞t=1. Let ξj,t denote the

p-th quantile of the distribution function Fj,t(·) with ξ1,t ≥ · · · ≥ ξk,t and define δt = ξ1,t− ξ2,t. For t= 1, we

fix Fj,1(·) = Fj(·) so that ξj,1 = ξj for each j and δ1 = δ. For t≥ 2, we fix F1,t(·) = F1,1(·) for system 1 and

Fj,t(·) for system j 6= 1 is shifted from Fj(·) so that Fj,t(x− δ1 + δt) = Fj(x). Essentially, this makes each ξj,t

approaches ξ1,t as t→ 0, while maintaining the ranking, ξ1,t > ξ2,t ≥ · · · ≥ ξk,t, for each t. For brevity, we let

the system configuration, (F1,t(·), . . . , Fk,t(·)), be characterized by δt and define P(FSt; δt) as the probability

of false selection under the configuration, (F1,t(·), . . . , Fk,t(·)).

Proposition A.2 (Strengthening of Proposition 3). Under assumptions (F1)-(F3), if tδ2
t →∞ and

δt→ 0 as t→∞, then for any static algorithm π(α) that satisfies Njt/t→ αj as t→∞ for some α∈∆0,

1

tδ2
t

logP(FS
π(α)
t ; δt)→−ρδ(α) as t→∞. (A.1)
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The proof for the preceding proposition is provided in §B.1. Proposition A.2 suggests a relationship between

the sampling budget T and the difference in quantiles δ. In particular, the asymptotic behavior of P(FSπT )

is related to Tδ2 for sufficiently small δ and large T ; if the difference in quantiles halves, one may need

approximately four times more sampling budget to lower P(FSπT ) to a certain level.

Appendix B: Proofs

This section is organized as follows. In §B.1 we present proofs for main results and those for auxiliary lemmas

are collected in §B.2. We use the following notation for the purpose of asymptotic analysis: for real-valued

functions `1(x) and `2(x), we write `1(x) = o(`2(x)) if |`1(x)|/|`2(x)| → 0 as `2(x)→ 0.

B.1. Proofs for Main Results

Proof of Proposition 1. Let Ft be the σ-field generated by the samples and sampling decisions taken

up to stage t (i.e., {(πτ ,Xπτ ,τ )}tτ=1), with the convention that F0 is the nominal σ-algebra associated with

underlying probability space. Fix j and define a random variable Pn so that NjPn = n. (Note that Pn depends

on the index j.) We show that {XjPn}∞n=1 is a sequence of independent and identically distributed random

variables.

First, observe that the characteristic function of Xj,Pn is

E
(
eiθXjPn

)
=

∞∑
t=1

E
(
eiθXjt |Pn = t

)
P (Pn = t)

=

∞∑
t=1

E
(
eiθXjt

)
P (Pn = t)

= E
(
eiθXj

)
,

(B.1)

where the second equality follows from the fact that the event {Pn = t} is adapted to the filtration Ft−1,

and the last follows from the fact that the sequence {Xjt}∞t=1 is identically distributed.

Next, we show that XjPm and XjPn are independent for n>m. Observe that, for any measurable sets A1

and A2,
P (XjPm ∈A1,XjPn ∈A2)

=
∑
t1<t2

P (Xjt1 ∈A1,Xjt2 ∈A2)P (Pm = t1, Pn = t2)

=
∑
t1<t2

E (I{Xjt1 ∈A1}I{Xjt2 ∈A2})P (Pm = t1, Pn = t2)

=
∑
t1<t2

E (E (I{Xjt1 ∈A1}I{Xjt2 ∈A2}) |Ft2−1)P (Pm = t1, Pn = t2)

(a)
=
∑
t1<t2

E (I{Xjt1 ∈A1})E (I{Xjt2 ∈A2})P (Pm = t1, Pn = t2)

=
∑
t1<t2

P (Xjt1 ∈A1)P (Xjt2 ∈A2)P (Pm = t1, Pn = t2)

(b)
= P (Xj ∈A1)P (Xj ∈A2)

∑
t1<t2

P (Pm = t1, Pn = t2)

= P (Xj ∈A1)P (Xj ∈A2)

(c)
= P (XjPm ∈A1)P (XjPn ∈A2) ,

(B.2)



Shin, Broadie, and Zeevi: Practical Nonparametric Sampling Strategies for Quantile-based Ordinal Optimization
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

where (a) follows from the fact that Xjt1 ∈ Ft2−1 for t1 < t2 and (b) and (c) follow from (B.1). Therefore,

{XjPn}∞n=1 is independent and identically distributed. The sample pth quantile from an independent and

identically distributed sequence converges to the pth quantile of the distribution almost surely (see, e.g.,

p. 75 of Serfling 2009), and hence, also in probability. This completes the proof. �

The proof for Proposition 2 requires the following lemma. Proofs for all auxiliary lemmas are provided in

§B.2.

Lemma B.1 (Large deviations for sample quantiles). Under (F1)-(F2), Equation (9) holds for a

static algorithm π(α) for any α∈∆0.

Proof of Proposition 2. In this proof, we fix a static algorithm π = π(α) for some α ∈∆0 and suppress

π in the superscripts to improve clarity. Observe that

max
j=2,...,k

P(ξ̂1t ≤ ξ̂jt)≤ P(FSt)≤ (k− 1) max
j=2,...,k

P(ξ̂1t ≤ ξ̂jt). (B.3)

Hence, if, for each j = 2, . . . , k,

lim
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂jt

)
=−Gj(α), (B.4)

then

lim
t→∞

1

t
logP (FSt) =− min

j=2,...,k
{Gj(α)}. (B.5)

Therefore, the rate function of P(FSt) can be immediately obtained once we prove (B.4) for some j 6= 1.

First, observe that

P
(
ξ̂1t ≤ ξ̂2t

)
≥ P

(
ξ̂1t ≤ x

)
P
(
ξ̂2t ≥ x

)
(B.6)

for any x ∈R. Also, taking log on both sides and combining the result from Lemma B.1, it can be easily

seen that

lim inf
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t

)
≥− inf

x∈H1∩H2

{α1I1(x) +α2I2(x)} , (B.7)

where the inf follows from the fact that (B.6) holds for any x. Also, in the continuous case, observe that

Ij(x) is non-increasing for x < ξj and non-decreasing for x > ξj , and therefore, it suffices to search for the

infimum for ξ2 ≤ x≤ ξ1. Likewise, in the discrete case, observe that Ij(x) is non-increasing for x< ξj−1 and

non-decreasing for x> ξj , so that the infimum is achieved in [ξ2− 1, ξ1]. Therefore, (B.6) reduces to

lim inf
t→∞

1

t
logP(ξ̂1t ≤ ξ̂2t)≥

{
− infx∈[ξ2,ξ1]{α1I1(x) +α2I2(x)} for F∈C

− infx∈[ξ2−1,ξ1]{α1I1(x) +α2I2(x)} for F∈D .
(B.8)

It remains to show the upper bound:

lim sup
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t

)
≤

{
− infx∈[ξ2,ξ1] {α1I1(x) +α2I2(x)} for F∈C

− infx∈[ξ2−1,ξ1] {α1I1(x) +α2I2(x)} for F∈D .
(B.9)

(i) Continuous case. Let x = (x1, x2) ∈ R2 with x1 ≤ x2, fix η > 0, and consider a square centered at x,

Sηx = {x′ ∈R2 | |x′1−x1| ≤ rη, |x′2−x2| ≤ rη}, with rη > 0 chosen small enough so that

max
j=1,2

{
|Ij(x′j)− Ij(xj)|

}
≤ η for any x′ ∈ Sηx. (B.10)
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Note that rη always exists for each η > 0 because Ij(·) is a continuous function. Observe that

P
(

(ξ̂1t, ξ̂2t)∈ Sηx
)

= P
(
ξ̂1t ∈ [x1− rη, x1 + rη]

)
P
(
ξ̂2t ∈ [x2− rη, x2 + rη]

)
≤ P

(
ξ̂1t ≤ x1 + rη

)
P
(
ξ̂2t ≥ x2− rη

)
.

(B.11)

Applying Lemma B.1, it follows that

lim sup
t→∞

1

t
logP

(
(ξ̂1t, ξ̂2t)∈ Sηx

)
≤− (α1I1(x1 + rη) +α2I2(x2− rη))

≤ η− (α1I1(x1) +α2I2(x2)) ,

(B.12)

where the second inequality follows from (B.10).

Now, fix a > 0 and consider a compact set Γa = {x ∈ R2 | |x1 − ξ1| ≤ a, |x2 − ξ2| ≤ a}. Then the set,

Γa ∩ {x ∈R2 | x1 ≤ x2}, can be covered by M <∞ squares, each of which is centered at xi = (xi1, x
i
2) ∈ Γa

with xi1 ≤ xi2. Hence, it follows that

P
(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t)∈ Γa

)
≤

M∑
i=1

P
(

(ξ̂1t, ξ̂2t)∈ Sηxi
)

≤M max
i=1,...,M

{
P
(

(ξ̂1t, ξ̂2t)∈ Sηxi
)}

.

(B.13)

Therefore,

lim sup
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t)∈ Γa

)
≤ max
i=1,...,M

{
lim sup
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t)∈ Sηxi

)}
≤ max
i=1,...,M

{
η− (α1I1(xi1) +α2I2(xi2))

}
≤ η− inf

x1≤x2,x∈Γa
{α1I1(x1) +α2I2(x2)},

(B.14)

where the second inequality follows from (B.12). Since Ij(x) is non-increasing for x< ξj and non-decreasing for

x> ξj , it suffices to search for the infimum with (x1, x2) that satisfies ξ2 ≤ x1 = x2 ≤ ξ1. By the arbitrariness

of η > 0, we have that

lim sup
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t)∈ Γa

)
≤− inf

x∈[ξ2,ξ1]
{α1I1(x) +α2I2(x)}. (B.15)

Finally, observe that

P
(
ξ̂1t < ξ̂2t

)
≤ P

(
ξ̂1t < ξ̂2t and (ξ̂1t, ξ̂2t)∈ Γa

)
+P

(
(ξ̂1t, ξ̂2t)∈ Γca

)
, (B.16)

and hence,

lim sup
t→∞

1

t
logP

(
ξ̂1t < ξ̂2t

)
≤max

{
lim sup
t→∞

1

t
logP

(
ξ̂1t < ξ̂2t and (ξ̂1t, ξ̂2t)∈ Γa

)
, lim sup

t→∞

1

t
logP

(
(ξ̂1t, ξ̂2t)∈ Γca

)}
≤max

{
− inf
x∈[ξ2,ξ1]

{α1I1(x) +α2I2(x)}, lim sup
t→∞

1

t
logP

(
(ξ̂1t, ξ̂2t)∈ Γca

)}
,

(B.17)

where the last inequality follows from (B.15). One can show that the first term on the right-hand side of

(B.17) is bounded below since I1(x) and I2(x) are bounded for x in the compact set [ξ2, ξ1]. Also, since

P((ξ̂1t, ξ̂2t)∈ Γca)

≤ 4 max
{
P
(
ξ̂1t < ξ1− a

)
,P
(
ξ̂1t > ξ1 + a

)
,P
(
ξ̂2t < ξ2− a

)
,P
(
ξ̂2t < ξ2 + a

)}
,

(B.18)
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combined with Lemma B.1, it can be seen that

lim
a→∞

lim sup
t→∞

1

t
logP

(
(ξ̂1t, ξ̂2t)∈ Γca

)
≤− lim

a→∞
min{α1I1(ξ1 + a), α1I1(ξ1− a), α2I2(ξ2 + a), α2I2(ξ2− a)}

=−∞,

(B.19)

where the equality follows from the fact that Ij(x)→∞ as |x| →∞ for each j = 1,2. This implies that one

can choose sufficiently large a so that the second term on the right-hand side of (B.17) is smaller than the

first term. This completes the proof for the upper bound (B.9) in the continuous case.

(ii) Discrete case. Let n= (n1, n2) ∈N 2 with n1 ≤ n2, where N is the set of non-negative integers, and

observe that

P
(

(ξ̂1t, ξ̂2t) =n
)

= P
(
ξ̂1t = n1

)
P
(
ξ̂2t = n2

)
. (B.20)

Applying Lemma B.1, it follows that

lim sup
t→∞

logP
(

(ξ̂1t, ξ̂2t) =n
)

=−(α1I1(n1) +α2I2(n2)). (B.21)

Now, fix a > 0 and consider a compact set Γa = {n ∈N 2 | |n1 − ξ1| ≤ a, |n2 − ξ2| ≤ a}. Denote {ni}Mi=1 be

the M <∞ points such that ni ∈ Γa and ni1 ≤ ni2. Observe that

P
(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t)∈ Γa

)
≤

M∑
i=1

P
(

(ξ̂1t, ξ̂2t) =ni
)

≤M max
i=1,...,M

{P
(

(ξ̂1t, ξ̂2t) =ni
)
},

(B.22)

from which we establish that

lim sup
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t)∈ Γa

)
≤ max
i=1,...,M

{
lim sup
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t) =ni

)}
≤ max
i=1,...,M

{
−(α1I1(ni1) +α2I2(ni2)

}
≤− inf

n1≤n2,n∈Γa
{α1I1(n1) +α2I2(n2)},

(B.23)

where the second inequality follows from (B.22). It is not hard to verify that Ij(n) is non-increasing for

n< ξj−1 and non-decreasing for n> ξj . Hence, it suffices to search for (n1, n2) such that ξ2−1≤ n1 = n2 ≤ ξ1.

Therefore, we have that

lim sup
t→∞

1

t
logP

(
ξ̂1t ≤ ξ̂2t, (ξ̂1t, ξ̂2t)∈ Γa

)
≤− inf

n∈[ξ2−1,ξ2]
{α1I1(n) +α2I2(n)}. (B.24)

Finally, by the same argument as in the continuous case, the event {(ξ̂1t, ξ̂2t)∈ Γa} is negligible with a chosen

sufficiently large. This gives us the desired result for the discrete case, which concludes the proof of the

theorem. �

Proof of Theorem 1. First, it is straightforward to see that the naive algorithm is consistent since Njt ≥
c log t for sufficiently large t. Hence, it follows that ρ̂t(α) → ρ(α) as t → ∞ for each α because Îjt(x)

converges to Ij(x) pointwise for each j and each quantile estimator ξ̂jt converges to ξj by Proposition 1. Let

α∗ ∈ arg maxα∈∆{ρ(α)} and observe that

|ρ̂t(α̂t)− ρ(α∗)| ≤max(|ρ̂t(α̂t)− ρ(α̂t)|, |ρ̂t(α∗)− ρ(α∗)|), (B.25)
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and therefore, ρ̂t(α̂t)→ ρ(α∗) as t→∞. Combined with the fact that αt− α̂t→ 0 as t→∞ almost surely

by construction of Algorithm 2, it can be easily seen that Rπ
t = ρ(αt)/ρ(α∗)→ 1 as t→∞ almost surely.

Since Rπ
t is a bounded random variable, we establish that

E(Rπ
t ) = E

(
ρ(αt)

ρ(α∗)

)
→ 1 as t→∞. � (B.26)

Proof of Proposition 3. As a slight abuse of notation, we consider a sequence of system configurations

where each configuration is uniquely parametrized by δ > 0. We assume without loss of generality that

ξ1 > ξ2 = maxj>2{ξj} for every system configuration. We prove the proposition in four steps.

Step 1. We first show that |Gj(α) −Gδ
j(α)| = o(δ2) if ξ1 − ξj → 0 as δ→ 0. Fix j = 2, . . . , k such that

ξ1− ξj→ 0 as δ→ 0 and observe that

Gj(α) = inf
x∈[ξj ,ξ1]

{α1I1(x) +αjIj(x)} (B.27)

and observe that

I ′j(x) = fj(x)

(
p

Fj(x)
− 1− p

1−Fj(x)

)
I ′′j (x) = F ′′j (x)

(
p

Fj(x)
− 1− p

1−Fj(x)

)
+ f2

j (x)

(
− p

F 2
j (x)

+
1− p

(1−Fj(x))2

)
,

(B.28)

where I ′j(x) and I ′′j (x) are the first and the second derivatives of Ij(·) at x, respectively. Hence, it can be

easily seen that Ij(ξj) = 0, I ′j(ξj) = 0, and

I ′′j (ξj) =
f2
j (ξj)

p(1− p)
. (B.29)

Therefore, applying a second-order Taylor expansion at x= ξj , we obtain that

Ij(x) =
(x− ξj)2

2
I ′′j (x̃) (B.30)

for some x̃ on the line segment between x and ξj . By (F3) we know that I ′′j (x) is continuous. Since f2
j (ξj)≤

fmax and (x− ξj)2 ≤ (ξ1− ξj)2, we obtain that

Ij(x) =
(x− ξj)2

2p(1− p)
f2
j (ξj) + o((ξ1− ξj)2) as ξ1− ξj→ 0. (B.31)

for x ∈ [ξj , ξ1]. Note that the observations from (B.28)-(B.31) also hold for j = 1. Define I1j(x) = α1I1(x) +

αjIj(x) and let
Iδ1j(x) = α1I

δ
1(x) +α2I

δ
2(x)

= α1

(x− ξ1)2

2p(1− p)
f2

1 (ξ1) +α2

(x− ξ2)2

2p(1− p)
f2

2 (ξ2).
(B.32)

Now, let x∗ and xδ∗ be the minimizers of I1j(x) and Iδ1j(x), respectively. Note that Iδ1j(x) is a quadratic

function of x. Using first order conditions, we establish that

xδ∗ =
α1ξ1f

2
1 (ξ1) +αjξjf

2
j (ξj)

α1f2
1 (ξ1) +αjf2

j (ξj)
,

Iδ1j(x
δ∗) =

(ξ1− ξj)2

2p(1− p)
(
1/(α1f2

1 (ξ1)) + 1/(αjf2
j (ξj))

) . (B.33)

From the definitions of I1j(x) and Iδ1j(x) and using (B.31), it can be seen that |I1j(x)−Iδ1j(x)|= o((ξ1−ξj)2)

for any x ∈ [ξj , ξ1]. Also, since Ij(x) is non-increasing for x < ξj and non-decreasing for x > ξj for any j, it
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can be easily seen that x∗ ∈ [ξj , ξ1]. Likewise, Iδj (x) is decreasing for x< ξj and increasing for x> ξj for any j,

and hence, xδ∗ ∈ [ξj , ξ1]. Now, observe that |I1j(x∗)−Iδ1j(xδ∗)| ≤max(|I(x∗)−Iδ(x∗)|, |Iδ(xδ∗)−I(xδ∗)|), and

each term of max is o((ξ1− ξj)2). Therefore, we obtain that I1j(x
∗) = Iδ1j(x

δ∗) + o ((ξ1− ξj)2), and therefore,

|Gj(α)−Gδ
j(α)|= o(δ2) as δ→ 0.

Step 2. Next, we show that if arg minj 6=1{Gj(α)}→ i as δ→ 0 for some i 6= 1, then ξ1 − ξi→ 0 as δ→ 0.

Observe that Gi(α)≤G2(α) for sufficiently small δ since ρ(α) =Gi(α) for δ ∈ (0, δ0). From the definition of

Gj(·) in (11) and the fact that Ij(x) is strictly concave with Ij(µj) = 0, it can be easily seen that G2(α)→ 0

as δ→ 0, and therefore, we establish that Gi(α)→ 0 as δ→ 0. Now, towards a contradiction, suppose that

lim infδ→0(ξ1 − ξi)≥ d for some constant d > 0. Recall that Gi(α) = infx{α1I1(x) + αiIi(x)} and let x∗i be

the minimizer which lies in [µi, µ1]. Note that Gi(α)→ 0 implies both I1(x∗i ) and Ii(x
∗
i ) converge to zero.

However, due to (10) and the assumption (F3), it can be seen that I1(x∗i ) and Ii(x
∗
i ) can converge to zero

only when x∗i − ξ1→ 0 and x∗i − ξi→ 0 as δ→ 0, respectively. This is a contradiction due to the assumption

that lim infδ→0(µ1−µi)≥ d. Therefore, we have that ξ1− ξi→ 0 as δ→ 0. Exactly the same arguments can

be applied to show that if arg minj 6=1{Gδ
j(α)}→ i as δ→ 0 for some i 6= 1, then it must be that ξ1− ξi→ 0

as δ→ 0, which will be omitted.

Step 3. Next, we show that |ρ(α)− ρδ(α)|= o(δ2) as δ→ 0. We consider three cases.

Case (a). Suppose that the limits of arg minj 6=1{Gj(α)} and arg minj 6=1{Gδ
j(α)} exist as δ→ 0

lim
δ→0

arg min
j 6=1

{Gj(α)}= lim
δ→0

arg min
j 6=1

{Gδ
j(α)}. (B.34)

In this case, we have that |ρ(α)− ρδ(α)|= |Gj(α)−Gδ
j(α)| for some j 6= 1 and sufficiently small δ. Hence

we immediately establish from Step 1 that |ρ(α)− ρδ(α)|= o(δ2) as δ→ 0.

Case (b). Suppose that the limits of arg minj 6=1{Gj(α)} and arg minj 6=1{Gδ
j(α)} exist as δ→ 0 and

lim
δ→0

arg min
j 6=1

{Gj(α)} 6= lim
δ→0

arg min
j 6=1

{Gδ
j(α)}. (B.35)

Without loss of generality, let arg minj 6=1{Gj(α)}→ 2 and arg minj 6=1{Gδ
j(α)}→ 3 as δ→ 0. By Step 2, we

know that |ξ1−ξ3| → 0 as δ→ 0. Now, consider a sufficiently small δ and observe that if G2(α)>Gδ
3(α), then

|G2(α)−Gδ
3(α)| ≤ |G3(α)−Gδ

3(α)| since G3(α)≥G2(α) for sufficiently small δ. Similarly, if G2(α)<Gδ
3(α),

then |G2(α)−Gδ
3(α)| ≤ |G2(α)−Gδ

2(α)| since Gδ
3(α)≤Gδ

2(α). Combining these observations, it can be seen

that
|ρ(α)− ρδ(α)|= |G2(α)−Gδ

3(α)|

≤max(|G2(α)−Gδ
2(α)|, |G3(α)−Gδ

3(α)|)

= o(δ2)

(B.36)

as δ→ 0, where the last equality follows from Step 1.

Case (c). Lastly, suppose that the limit of arg minj 6=1{Gj(α)} or arg minj 6=1{Gδ
j(α)} does not exist as

δ→ 0. In this case, fix i 6= 1 and i′ 6= 1 and consider two sets of intervals such that

Si = {δ≥ 0 | arg min
j 6=1

{Gj(α)}= i}

Si′ = {δ≥ 0 | arg min
j 6=1

{Gδ
j(α)}= i′}.

(B.37)
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Let Rii′ = Si ∪Si′ and observe that
lim
δ→0
δ∈Rii′

arg min
j 6=1

{Gj(α)}= i

lim
δ→0
δ∈Rii′

arg min
j 6=1

{Gδ
j(α)}= i′.

(B.38)

Hence, we can apply the analysis of Case (a) (respectively, Case (b)) if i = i′ (respectively, if i 6= i′) to

establish that |ρ(α)− ρδ(α)|= o(δ2) as δ→ 0. These arguments hold for arbitrary i and i′, which completes

the proof of this step.

Step 4. Finally, we show that, for each α ∈∆0, ρ(α)≥ cδ2 for some positive constant c. From the obser-

vation in Step 3, it can be easily seen that

|ρ(α∗)− ρ(αδ)| ≤max(|ρ(α∗)− ρδ(α∗)|, |ρδ(αδ)− ρ(αδ)|) = o(δ2) as δ→ 0. (B.39)

Further, from the assumption that fj(ξj)≥ fmin, we have that, for αeq = (1/k, . . . ,1/k),

ρδ(αeq)≥min
j 6=1

(ξ1− ξj)2

2p(1− p) (2k/fmin)

≥min
j 6=1

δ2

2p(1− p) (2k/fmin)

≥ cδ2

(B.40)

for some positive constant c. Hence, from ρδ(αδ)≥ ρδ(αeq) we establish that ρδ(αδ)≥ cδ2. By Proposition 3

and (B.39), ρδ(αδ)≥ cδ2 implies ρ∗ ≥ cδ2− o(δ2) as δ→ 0, and therefore, we establish that

ρ(αδ)

ρ∗
= 1 +

o(δ2)

ρ∗
→ 1 as δ→ 0, (B.41)

which completes the proof. �

To prove Theorem 2, we define additional notation. Let x= (x1, . . . , xk) ∈Rk and y = (y1, . . . , yk) ∈Rk
+.

Define B(x) := {i ∈ {1, . . . , k} | xi = maxj{xj}}. Note that we allow the case with |B(x)|> 1, where |B(x)|
represents the cardinality of the set B(x). Let Θ be the set of all (x,y)∈Rk×Rk

+ with |B(x)|<k. For each

(x,y)∈Θ and α∈∆, define

J(α;x,y) = min
i∈B(x),j /∈B(x)

(xi−xj)2(
1/(αiy2

i ) + 1/(αjy2
j )
) . (B.42)

Define α(x,y) to be the maximizer of J(α;x,y), i.e.,

α(x,y) = arg max
α∈∆

J(α;x,y). (B.43)

Note that J(α;x,y) is a strictly concave function of α since it is the minimum of the strictly concave

functions. Hence, α(x,y) in (B.43) is well defined. The following two lemmas are required for the proof of

Theorem 2.

Lemma B.2. Fix (x,y)∈Θ. Consider a sequence of parameters (xt,yt)∈Θ such that xtj→ xj and ytj→ yj

as t→∞ for each j. Then, α(xt,yt)→α(x,y) as t→∞ and the vector α(x,y) is strictly positive.

Lemma B.3. Suppose the kernel function and the bandwidth parameter satisfy (K1)-(K3). Then, if Njt→
∞ in probability as t→∞, f̂jt(ξ̂jt)→ fj(ξj) in probability as t→∞. Suppose the kernel function and the

bandwidth parameter further satisfy (K4)-(K7) and that fj(·) is uniformly continuous. Then, if Njt →∞
almost surely as t→∞, f̂jt(ξ̂jt)→ fj(ξj) almost surely as t→∞.
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Proof of Theorem 2. (i) Consistency. It can be easily seen that αδ = arg maxα∈∆{ρδ(α)} is in the interior

of ∆; otherwise, ρδ(αδ) = 0 which contradicts the definition of the maximizer αδ since ρδ(αeq)> 0 for αeq =

(1/k, . . . ,1/k). Using Proposition A.3 of Peng et al. (2016), we conclude that αt→αδ ∈∆0 in probability as

t→∞, and hence the algorithm is consistent.

(ii) Relative efficiency. Given the consistency of the algorithm, it follows that ξ̂jt→ ξj and f̂jt→ fj(ξj) as

t→∞ in probability for j = 1, . . . , k by Proposition 1 and Lemma B.3. Applying Lemma B.2 with (xt,yt)

replaced with (ξ̂t, f̂ t) and (x,y) replaced with (ξ,f), where f = (f1(ξ1), . . . , fk(ξk)), it follows that α̂t→αδ

as t→∞. Moreover, by construction of Algorithm 3 it is not difficult to see that the term αt − α̂δt → 0.

Consequently, we have that αt→ αδ as t→∞ and that ρ(αt)/ρ(αδ)→ 1 in probability as t→∞. Since

ρ(αT )/ρ(αδ) is bounded, we also have that

E

(
ρ(αt)

ρ(αδ)

)
→ 1 as t→∞, (B.44)

from which (25) follows. From Proposition 3 we have that ρ(αδ)/ρ(α∗)→ 1 as δ→ 0, which completes the

proof of this theorem. �

To show Proposition 4 we need the following lemma.

Lemma B.4. Consider x = (x1, . . . , xk) ∈ Rk and y = (y1, . . . , yk) ∈ Rk with k ≥ 1. Suppose that there

exists a constant c > 0 such that 1− c≤ xj/yj ≤ 1 + c for each j = 1, . . . , k, then

1− c≤ minj=1,...,k xj
minj=1,...,k yj

≤ 1 + c. (B.45)

Proof of Proposition 4. For ease of notation we define Gj(α;h) =Gδ,ε
j (α) for each j 6= 1 and let ρ(α;h) =

ρδ,ε(α). Further, we define

I1j(x;h) = p log

(
p

p+ (x− ξ1)h1j

)
+ (1− p) log

(
1− p

1− p− (x− ξ1)h1j

)
Ij1(x;h) = p log

(
p

p+ (x− ξj)hj1

)
+ (1− p) log

(
1− p

1− p− (x− ξj)hj1

)
.

(B.46)

It is useful to observe that
ρ(α)

ρδ,ε(α)
=
ρ(α;h)

ρδ,ε(α)

ρ(α)

ρ(α;h)
=
ρ(α;h)

ρδ(α;h)

ρ(α)

ρ(α;h)
. (B.47)

Further, it can be seen that if arg minj 6=1{Gj(α)} → i as δ→ 0 for some i 6= 1, then ξ1 − ξi→ 0 as δ→ 0.

The proof of the preceding statement follows exactly the same arguments given in Step 2 of the proof for

Proposition 3, and hence skipped.

Now, we prove the proposition in three steps. In Step 1, we find the lower and upper bounds of the second

term on the right-hand side of (B.47). In Step 2, we find the lower and upper bounds of the first term on

the right-hand side of (B.47). In Step 3, we combine these observations to conclude the proof.

Step 1. We first show that 1 − ε ≤ ρ(α)/ρ(α;h) ≤ 1 + ε. To this end, it suffices to show that 1 − ε ≤

Gj(α)/Gj(α;h)≤ 1 + ε for each j, since the desired result follows immediately from Lemma B.4. Using the

relationship log(1± z)≤±z for 0< z < 1 and assumption (F3), it can be seen that

1− ε≤ I1j(x)

I1j(x;h)
,
Ij1(x)

Ij1(x;h)
≤ 1 + ε (B.48)
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for each j 6= 1 and x ∈ [ξj , ξ1]. Now, let x∗ and xh be the minimizers of α1I1(x) +αjIj(x) and α1I1j(x;h) +

αjIj1(x;h), respectively, so that Gj(α) = α1I1(x∗)+αjIj(x
∗) and Gj(α;h) = α1I1j(x

h;h)+αjIj1(xh;h). We

establish that
Gj(α)

Gj(α;h)
≤ α1I1(xh) +αjIj(x

h)

α1I1j(xh;h) +αjIj1(xh;h)
≤ (1 + ε), (B.49)

where the first inequality follows by the definition of xh and the second follows from (B.48). Likewise, we

can establish the lower bound as

Gj(α)

Gj(α;h)
≥ α1I1(x∗) +αjIj(x

∗)

α1I1j(x∗;h) +αjIj1(x∗;h)
≥ (1− ε). (B.50)

This completes the proof of Step 1.

Step 2. It remains to bound the first term of (B.47); in particular, 1−u(θ)≤ ρ(α;h)/ρδ(α;h)≤ 1 +u(θ).

Using Lemma B.4 it suffices to show that 1− u(θ)≤Gj(α;h)/Gδ
j(α;h)≤ 1 + u(θ) for each j. To this end,

recall the definitions of ρ(α;h) = minj 6=1{Gj(α;h)} and ρδ(α;h) = minj 6=1{Gδ
j(α;h)}, where

Gj(α;h) = inf
x
{α1I1j(x;h) +αjIj1(x;h)}

Gδ
j(α;h) = inf

x
{α1I

δ
1j(x;h) +αjIj1(x;h)},

(B.51)

and

Iδ1j(x;h) =
(x− ξj)2

2p(1− p)/h2
1j

Iδj1(x;h) =
(x− ξj)2

2p(1− p)/h2
j1

.

(B.52)

Applying a second-order Taylor expansion for Ij1(x;h) at x= ξj , we obtain that

Ij1(x;h) = Ij1(ξj ;h) + (x− ξj)I ′j1(ξj ;h) +
(x− ξj)2

2
I ′′j1(ξj ;h) +

(x− ξj)3

6
I ′′′j1(x̃;h)

=
(x− ξj)2

2p(1− p)
h2
j1 +

(x− ξj)3

6
I ′′′j1(x̃;h)

= Iδj1(x;h) +
(x− ξj)3

6
I ′′′j1(x̃;h)

(B.53)

for x∈ [ξj , ξ1], where x̃ lies between x and ξj and

I ′′′j1(x;h) = 2h3
j1

(
−p

(p+ (x− ξj)hj1)3
+

1− p
(1− p− (x− ξj)hj1)3

)
. (B.54)

Note that the first equality of (B.53) follows from the fact that Ij1(ξj ;h) = 0 and I ′j1(ξj ;h) = 0, and the last

equality follows from the definition of Iδj1(·) in (B.52). From (B.53), we have that

Ij1(x;h)

Iδj1(x;h)
≤ 1 +

∣∣∣∣ (x− ξj)3I ′′′j1(x̃;h)/6

(x− ξj)2h2
j1/(2p(1− p))

∣∣∣∣≤ 1 +u(θ), (B.55)

which follows from the definition of u(θ) and straightforward algebra. Likewise, we can establish the lower

bound as
Ij1(x;h)

Iδj1(x;h)
≥ 1−u(θ). (B.56)

To summarize our observations in Step 4 so far, we have that

1−u(θ)≤ Ij1(x;h)

Iδj1(x;h)
≤ 1 +u(θ). (B.57)
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Further, exactly the same steps from (B.52) to (B.56) can be applied to show that

1−u(θ)≤ I1j(x;h)

Iδ1j(x;h)
≤ 1 +u(θ) (B.58)

(the detailed derivation is omitted).

Next, define xh and xhδ as the minimizers of α1I1j(x;h)+αjIj1(x;h) and α1I
δ
1j(x;h)+αjI

δ
j1(x;h), respec-

tively. Then we can write

Gj(α;h)

Gδ
j(α;h)

≤ α1I1j(x
hδ;h) +αjIj1(xhδ;h)

α1Iδ1j(x
hδ;h) +αjIδj1(xhδ;h)

≤ 1 +u(θ), (B.59)

where the first inequality follows by the definition of xhδ and the second follows from (B.57)-(B.58). Likewise,

we can write
Gj(α;h)

Gδ
j(α;h)

≥ α1I1j(x
h;h) +αjIj1(xh;h)

α1Iδ1j(x
h;h) +αjIδj1(xh;h)

≤ 1−u(θ). (B.60)

The proof of this step is complete from the last two inequalities.

Step 3. Finally, observe that

ρ(αδ,ε∗)

ρ(α∗)
=
ρ(αδ,ε∗)

ρ(α∗;h)

ρ(α∗;h)

ρ(α∗)

≥ ρ(αδ,ε∗;h)

ρ(α∗;h)

1− ε
1 + ε

=
ρδ(αδ,ε∗;h)

ρ(α∗;h)

ρ(αδ,ε∗;h)

ρδ(αδ,ε∗;h)

1− ε
1 + ε

≥ ρδ(α∗;h)

ρ(α∗;h)

ρ(αδ,ε∗;h)

ρδ(αδ,ε∗;h)

1− ε
1 + ε

,

(B.61)

where the first inequality follows from the fact that 1− ε ≤ ρ(α)/ρ(α;h) ≤ 1 + ε for any α ∈∆0 and the

second inequality follows from the fact that αδ,ε∗ is the maximizer of ρδ(·;h) = ρδ,ε(·). Using the observations

from Step 2, it can be seen that
ρδ(α∗;h)

ρ(α∗;h)
≥ 1

1 +u(θ)

ρ(αδ,ε∗;h)

ρδ(αδ,ε∗;h)
≥ 1−u(θ),

(B.62)

which establishes the desired result of the proposition. �

The proof of Theorem 3 requires the following lemma.

Lemma B.5. If Njt→∞ almost surely (respectively, in probability) as t→∞ for each j, then ĥjbt→ hj1

and ĥbjt→ h1j almost surely (respectively, in probability) as t→∞.

Proof of Theorem 3. We omit the proof for consistency because it follows from the identical steps as

those in the proof of Theorem 2, with f̂jt being replaced by ĥjbt or ĥbjt and fj(ξj) by hj1 or h1j , along with

Lemma B.5.

Given the consistency of the algorithm, it follows that ξ̂jt→ ξj and ĥjt→ hj(u) as t→∞ in probability for

all j by Proposition 1 and Lemma B.5. Applying Lemma B.2 with (xt,yt) replaced with (ξ̂t, ĥt) and (x,y)

replaced with (ξ,h), where ĥt = (ĥ1t(u), . . . , ĥkt(u)) and h= (h1(u), . . . , hk(u)), it follows that α̂δ,εt →αδ,ε∗

as t→∞. Moreover, by construction of Algorithm 4 it is not difficult to see that the term αt − α̂δ,εt → 0.
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Consequently, we have that αt→αδ,ε∗ as t→∞ and that ρ(αt)/ρ(αδ,ε∗)→ 1 in probability as t→∞. Since

ρ(αt)/ρ(αδ,ε∗) is bounded, we establish that

E

(
ρ(αt)

ρ(αδ,ε∗)

)
→ 1 as t→∞. � (B.63)

Proof of Lemma A.1. In the definition of Gδ
j(α), p, ξj , and fj(ξj) are constants that are independent of

α. Hence, without loss of generality, we can show that the function `j(α), defined as

`j(α) =
1

1/α1 + 1/αj
(B.64)

is strongly concave. Observe that the Hessian matrix for `j(α) with respect to α1 and αj is

O2`j(α) =
1

(1/α1 + 1/αj)2

 2
α3
1

(
1/α1

1/α1+1/αj
− 1
)

2/α2
1α

2
j

1/α1+1/αj
2/α2

1α
2
j

1/α1+1/αj

2
α3
j

(
1/αj

1/α1+1/αj
− 1
) . (B.65)

After some straightforward algebra, the determinant of the Hessian can be written as

|O2`j(α)|=
4((α1 +αj)− (α4

1 +α4
j ))

α1αj(α1 +αj)3
. (B.66)

In the remainder of the proof, we show that there exists a positive constant d such that

min
α∈∆

|O2`j(α)| ≥ 4d. (B.67)

First, it is trivial to check that |O2`j(α)| →∞ as α1→ 0 and/or αj→ 0. Hence, there exists a small d∈ (0,1)

such that

min
α∈∆

|O2`j(α)|= min
α∈∆d

|O2`j(α)|, (B.68)

where ∆d = {α : d≤
∑k

j=1αj ≤ 1− kd}. Further, since (x+ y)/2≥√xy, observe that for α∈∆d,

|O2`j(α)| ≥
(α1 +αj)− (α4

1 +α4
j )

(α1 +αj)5

≥ (α1 +αj)− (α1 +αj)
4

(α1 +αj)5

≥ (α1 +αj)− (α1 +αj)
4

≥ d,

(B.69)

which completes the proof of the lemma. �

Proof for Proposition A.1. First, the strong consistency of the naive algorithm immediately follows,

because Nπ
jt ≥ c log t→∞ as t→∞ almost surely.

Next, we show that QD-C is strongly consistent under the additional assumptions in the statement of

Proposition A.1. Fix a sequence of samples, {(Xj1,Xj2, . . .)}kj=1 and let A⊂ {1,2, . . . , k} be the set of systems

that are sampled only finitely many times and let I := {1,2, . . . , k} \A. Suppose, towards a contradiction,

that F is non-empty and let τ <∞ be the last time that the systems in A are sampled. It is straightforward

to see, using the proof of Proposition 1, that if QD-C is strongly consistent, then ξ̂jt→ ξj almost surely as

t→∞. Further, from Lemma B.3 we observe that f̂jt converges to fj(ξj) almost surely as t→∞ for each

system j ∈ I. Also, for any system j ∈A, ξ̂jt and f̂jt are constant subsequent to the stage τ . Therefore, as

t→∞,

ξ̂jt→ ξ̂j∞ =

{
ξj for j ∈ I
ξ̂jτ for j ∈A,

(B.70)
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and

f̃jt(ξ̂jt)→ f̃j∞ =

{
fj(ξj) for j ∈ I
f̃jt(ξ̂jt) for j ∈A.

(B.71)

Let ξ̂t = (ξ̂1t, . . . , ξ̂kt) and f̂ t = (f̂1t(ξ̂jt), . . . , fkt(ξ̂jt)). We may assume that |B(ξ̂∞)|<k, i.e., maxj{ξ̂j∞}>
minj{ξ̂j∞}, since the event, ξ̂1∞ = · · ·= ξ̂k∞, occurs with zero probability under the assumption (F3). Define

α̂t =α(ξ̂t, f̂ t) for each t≥ k and α̂∞ =α(ξ̂∞, f̂∞). Applying Lemma B.2 with (xt,yt) replaced with (ξ̂t, f̂ t)

and (x,y) replaced with (ξ̂∞, f̂∞), it follows that α̂t→ α̂∞ as t→∞ with α̂∞ > 0. Further, by construction

of the algorithm, αt− α̂t→ 0, and therefore, αt→ α̂∞ as t→∞. However, this contradicts our assumption

because αjt→ 0 for each j ∈A since such a system is sampled only finitely many times. Consequently, F is

empty with probability 1 and QD-C is strongly consistent.

The proof for the strong consistency of QD-D follows using exactly the same logical steps as that for

QD-C, with f̂jt being replaced by ĥjbt or ĥbjt, fj(ξj) by hj1 or h1j , and Lemma B.3 by Lemma B.5. Hence,

this will be omitted. �

The proof for Proposition A.2 requires the following lemma.

Lemma B.6 (Moderate deviations for sample quantiles). Under assumptions (F1)-(F3), for any

positive sequence {δt} such that tδ2
t →∞ and δt→ 0 as t→∞, a static algorithm π(α) for some α ∈∆0

satisfies
1

tδ2
t

logP(|ξ̂jt− ξj |> δt)→−
αjf

2
j (ξj)

2p(1− p)
as t→∞ for j = 1, . . . , k (B.72)

Proof of Proposition A.2. In this proof, we fix a static algorithm π= π(α) for some α∈∆0 and suppress

π in the superscripts for clarity. Observe that

max
j=2,...,k

P(ξ̂1t ≤ ξ̂jt; δt)≤ P(FSt; δt)≤ (k− 1) max
j=2,...,k

P(ξ̂1t ≤ ξ̂jt; δt). (B.73)

Hence, if, for each j = 2, . . . , k,

lim
t→∞

1

tδ2
t

logP
(
ξ̂1t ≤ ξ̂jt; δt

)
=−Gj(α), (B.74)

then

lim
t→∞

1

tδ2
t

logP (FSt; δt) =− min
j=2,...,k

{Gj(α)}. (B.75)

Therefore, the rate function of P(FSt; δt) can be immediately obtained once we prove (B.74) for some j 6= 1.

For simplicity, we consider a two-system case, but the proof can be extended in a straightforward manner

to k≥ 3. Without loss of generality, assume that δ1 = ξ1− ξ2 = 1. Observe that

P(FSt; δt) = P(ξ̂1t < ξ̂2t; δt)

= P(ξ̂1t− ξ1t < ξ̂2t− ξ2t− δt; δt)

= P(ξ̂1t− ξ1 < ξ̂2t− ξ2− δt)

= P(ξ̂1t− ξ1 + δt/2< ξ̂2t− ξ2− δt/2).

(B.76)

Define η1t = (ξ̂1t− ξ1)/δt + 1/2 and η2t = (ξ̂2t− ξ2)/δt− 1/2. Then, P(FSt; δt) can be written as

P(FSt; δt) = P(η1t < η2t). (B.77)
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Note that for x≤ 1/2, P(η1t <x) = P(ξ̂1t < δt(x− 1/2) + ξ1) and therefore,

lim
t→∞

1

tδ2
t

logP(η1t <x) =−
(
x− 1

2

)2
α1f

2
1 (ξ1)

2p(1− p)
. (B.78)

Likewise, we have that, for x≥−1/2,

lim
t→∞

1

tδ2
t

logP(η2t >x) =−
(
x+

1

2

)2
α2f

2
2 (ξ2)

2p(1− p)
. (B.79)

Using the same steps in the proof of Proposition 2, it can be easily seen that

lim
t→∞

1

tδ2
t

logP(η1t < η2t) =− inf
x∈[−1/2,1/2]

{α1I1(x) +α2I2(x)}, (B.80)

where

F1(x) :=

(
x− 1

2

)
f2

1 (ξ1)

2p(1− p)

F2(x) :=

(
x+

1

2

)
f2

2 (ξ2)

2p(1− p)
.

(B.81)

Since α1I1(x) + α2I2(x) is a quadratic function of x, using first order conditions, one can show that the

infimum is
1

2p(1− p)(1/α1f2
1 (ξ1) + 1/α2f2

2 (ξ2))
, (B.82)

which is attained at

x=
α1f

2
1 (ξ1)−α2f

2
2 (ξ2)

2(α1f2
1 (ξ2) +α2f2

2 (ξ2))
. (B.83)

This completes the proof. �

B.2. Proofs for Auxiliary Lemmas

Proof of Lemma B.1. First, fix x< ξj and observe that

P
(
ξ̂pjt ≤ x

)
= P

(
t∑

τ=1

I{Xjτ ≤ x}I{πτ = j}> [pNjt]

)
. (B.84)

Note that I{Xj ≤ x} is a Bernoulli random variable with success probability Fj(x). Hence, applying Cramer’s

theorem, it can be seen that

1

t
logP

(
t∑

τ=1

I{Xjτ ≤ x}I{πτ = j}> [pNjt]

)
→−αj sup

λ

{λx−Λj(λ)} (B.85)

as t→∞, where Λj(λ) = logE[exp(λI{Xj ≤ x})]. After some straightforward algebra one can show that

sup
λ

{λx−Λj(λ)}= p log

(
p

Fj(x)

)
+ (1− p) log

(
1− p

1−Fj(x)

)
. (B.86)

From identical arguments, one can prove the case with x′ > ξpj and this concludes the proof of the lemma.

�

Proof of Lemma B.2. First, we show that α(x,y) is strictly positive. Note that the objective function

of the optimization problem (B.43) is strictly positive at its optimal solution; to see this, notice that αe =

(1/k, . . . ,1/k) is a feasible solution and the objective function is positive at αe. Suppose that αj(x,y) = 0 for

some j. Then the objective function of the optimization problem (B.43) is 0, which contradicts the optimality

of α(x,y).
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Without loss of generality, assume that x1 ≥ · · · ≥ xk and let b= |B(x)|< k. Define ε ∈ (0, (x1− xb+1)/2)

and let t0 <∞ such that maxj{|xtj − xj |} ≤ ε and maxj{|ytj − yj |} ≤ ε for all t≥ t0. That is, for each t≥ t0,

(xt,yt) is in a compact set defined by (x,y) and ε. Also, xtj is sufficiently close to xj for each j = 1, . . . , k so

that B(xt) =B(x) for t≥ t0. In the rest of the proof, it suffices to consider t≥ t0.

Suppose, towards a contradiction, that α(xt,yt) does not converge to α(x,y). Then there exists a con-

vergent subsequence, {t1, t2, . . .}, such that

α(xtn ,ytn)→ α̃ 6=α(x,y), (B.87)

as n→∞. Since α(x,y) is the unique maximizer of H(α;x,y) and α̃ 6=α(x,y), it can be seen that

H(α̃;x,y)<H(α(x,y);x,y). (B.88)

On the other hand, since α(xtn ,ytn) is the unique maximizer of H(α;xtn ,ytn),

H(α(xtn ,ytn);xtn ,ytn)≥H(α(x,y);xtn ,ytn). (B.89)

Note that H(α;x,y) is continuous in α and (x,y) because it is minimum of the continuous functions,

d̂ij(α;µ,σ). Since α(xtn ,ytn)→ α̃, xtn→x, and ytn→ y, taking n→∞ on both sides of (B.89), we obtain

that

H(α̃;x,y)≥H(α(x,y);x,y), (B.90)

which contradicts (B.88). Therefore, α(xt,yt)→α(x,y) as t→∞ and the proof is complete. �

Proof of Lemma B.3. We first show weak convergence. From Proposition 1 we have that ξ̂jt → ξj in

probability as t→∞. Further, observe that {XjPn} is a sequence of independent random variables, where

a random variable Pn is define as NjPn = n; see (B.1) in the proof of Proposition 1. Since f̂jt is the density

estimator of the independent sequence of random variables {XjPn}, we may apply Parzen (1962) and obtain

that f̂jt(x)→ f(x) almost surely as t→∞ for any x ∈Hj . Using the continuous mapping theorem, we

establish the weak convergence of f̂jt(ξ̂jt) to fj(ξj).

To show strong convergence, it is easy to extend Proposition 1 to see that ξ̂jt→ ξj almost surely if Njt→∞

almost surely as t→∞, which follows from the independence argument above and p. 75 of Silverman (1986).

Further, from Theorem 1 of Nadaraya (1965) we have that f̂jt(x)→ fj(x) almost surely as t→∞ under the

additional conditions on the bandwidth parameter and the kernel. Combined with the continuous mapping

theorem, the proof of the lemma is complete. �

Proof of Lemma B.4. Without loss of generality, let 1 = arg minj{xj} and 2 = arg minj{yj}. Then,

minj{xj}
minj{yj}

=
x1

y2

. (B.91)

By definition, observe that
x1

y2

≤ x1

y1

≤ 1 + e and
x1

y2

≥ x2

y2

≥ 1− e, (B.92)

which completes the proof of the lemma. �
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Proof of Lemma B.5. First, suppose Njt→∞ in probability as t→∞. Then, we have that ξ̂jt→ ξj in

probability from Proposition 1. Also, from the same argument as in the proof for Proposition 1, it can be

seen that F̂jt(x) is an average of indicator random variables that are independent and identically distributed.

Therefore, by Glivenko-Cantelli theorem, it follows that supx∈Hj
|F̂jt(x)−Fj(x)| → 0 in probability as t→∞.

Consequently, from continuous mapping theorem, we have that F̂jt(ξ̂jt)→ Fj(ξj) in probability as t→∞ for

each j, from which the desired conclusion follows. The other case where Njt→∞ almost surely as t→∞

follows immediately from the same steps as above, which will be omitted. �

Proof of Lemma B.6. Note that Njt under the static policy π(α) is a deterministic value for each j and

t, satisfying Njt/t→ αj as t→∞. We first show the upper bound:

lim sup
t→∞

1

tδ2
t

logP(|ξ̂jt− ξj |> δt)≤−
−αjf2

j (ξj)

2p(1− p)
. (B.93)

Observe that, for θ < 0,

P(ξ̂jt > ξj + δt) = P

(
t∑

τ=1

I{Xjτ ≤ ξj + δt}I{πτ = j}< pNjt

)

≤ exp (−θpNjt)E

(
exp(θ

t∑
τ=1

I{Xjτ ≤ ξj + δt}I{πτ = j})

)
= (E (exp(θ(I{Xj ≤ ξj + δt}− p))))Njt ,

(B.94)

where the inequality follows from Chernoff’s inequality. Further observe that

1

tδ2
t

logP(ξ̂jt > ξj + δt)≤−
αj
δ2
t

sup
θ<0
{θp− logE(exp(θI{Xj ≤ ξj + δt}))}

=−αj
δ2
t

(
p log

(
p

Fj(ξj + δt)

)
+ (1− p) log

(
1− p

1−Fj(ξj + δt)

))
,

(B.95)

where the inequality follows from (B.94) and the fact that the inequality holds for every θ < 0; the equality

follows from the fact that that I{Xj ≤ ξj + δt} is a Bernoulli random variable with success probability

Fj(ξj + δt). Now, from the second order Taylor expansion, we have that

log(Fj(ξj + δt)) = log(p)− δt
fj(ξj)

p
+
δ2
t

2

(
f2
j (ξj)

p2
−
f ′j(ξj)

p

)
+ o(δ2

t )

log(1−Fj(ξj + δt)) = log(1− p) + δt
fj(ξj)

1− p
+
δ2
t

2

(
f2
j (ξj)

(1− p)2
−
f ′j(ξj)

(1− p)

)
+ o(δ2

t ).

(B.96)

Substituting (B.96) into (B.95) and taking lim sup on both sides of the inequality, we establish that

lim sup
t→∞

1

tδ2
t

logP(ξ̂jt > ξj + δt)≤−
αjf

2
j (ξj)

2p(1− p)
. (B.97)

Similarly, one can easily show that

lim sup
t→∞

1

tδ2
t

logP(ξ̂jt < ξj − δt)≤−
αjf

2
j (ξj)

2p(1− p)
, (B.98)

and we complete the proof for the upper bound, (B.93).

Next, we show the lower bound:

lim inf
t→∞

1

tδ2
t

logP(|ξ̂jt− ξj |> δt)≥−
αjf

2
j (ξj)

2p(1− p)
. (B.99)
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To this end, define Y t
jτ = I{Xjτ ≤ ξj +δt} for τ ≤ t and let Y t

j = I{Xj ≤ ξj +δt} be identically distributed with

Y t
jτ , τ ≤ t. Also define Mjt(θ) = E(exp(θY t

j )), qjt = Fj(ξj + δt), and qjt(θ) = Fj(ξj + δt) exp(θ)/Mjt(θ). If we

let θt = arg maxθ∈R{θp− logMjt(θ)}, then it can be easily seen that θt > 0 is well defined and qjt(θt) = p. For

any function g :Rt→R with E|g(Y t
j1, . . . , Y

t
jt)|<∞, Eθ(g(Y t

j1, . . . , Y
t
jt)) denotes the expectation with respect

to the measure qjt(θ) for which Y t
jt = 1 with probability qjt(θ) and 0 with probability 1−qjt(θ). Observe that

P(ξ̂jt > ξj + δt) = P

(
t∑

τ=1

YjτI{πτ = j}> pNjt

)

= E

(
I

{
t∑

τ=1

YjτI{πτ = j}> pNjt

})

= Eθt

(
I

{
t∑

τ=1

YjτI{πτ = j}> pNjt

}
t∏

τ=1

(
qjt
p

)Y tjτ I{πτ=j}(
1− qjt
1− p

)(1−Y tjτ )I{πτ=j}
) (B.100)

by the change of measure and the fact that qjt(θt) = p by definition of θt. After some straightforward algebra,

we have that
t∏

τ=1

(
qjt
p

)Y tjτ I{πτ=j}(
1− qjt
1− p

)(1−Y tjτ )I{πτ=j}

= exp

(
− log

(
p

qjt

t∑
τ=1

Y t
jτI{πτ = j}

)
− log

(
1− p

1− qjt

t∑
τ=1

(1−Y t
jτ )I{πτ = j}

))

= exp

(
−Njt

(
p log

(
p

qjt

)
+ (1− p) log

(
1− p

1− qjt

)))
exp

(
−β1

t∑
τ=1

(Y t
jτ − p)I{πτ = j}

)
,

(B.101)

where β1 = log(p/qjt) + log((1− p)/(1− qjt)). Therefore, rewriting (B.100),

P(ξ̂jt > ξj + δt)

= exp

(
−Njt

(
p log

(
p

qjt

)
+ (1− p) log

(
1− p

1− qjt

)))
×

Eθt

(
I

{
t∑

τ=1

YjτI{πτ = j}> pNjt

}
exp

(
−β1

t∑
τ=1

(Y t
jτ − p)I{πτ = j}

))
,

(B.102)

Further, for some β2 > 0, the expectation on the right-hand side of (B.102) can be bounded as

Eθt

(
I

{
t∑

τ=1

YjτI{πτ = j}> pNjt

}
exp

(
−β1

t∑
τ=1

(Y t
jτ − p)I{πτ = j}

))

≥ Eθt

(
I

{
pNjt <

t∑
τ=1

YjτI{πτ = j}< pNjt +β2N
0.5
jt

}
exp

(
−β1β2N

0.5
jt

))

= exp
(
−β1β2N

0.5
jt

)
Pθt

(
pNjt <

t∑
τ=1

YjτI{πτ = j}< pNjt +β1β2N
0.5
jt

)
,

(B.103)

where the inequality follows from bounding the summation,
∑t

τ=1 YjτI{πτ = j}, in the indicator function.

Note that

Pθt

(
pNjt <

t∑
τ=1

YjτI{πτ = j}< pNjt +β1β2N
0.5
jt

)

= Pθt

(
0<

1

N0.5
jt

t∑
τ=1

(Yjτ − p)I{πτ = j}<β1β2

)
→ c∈ (0,1),

(B.104)
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since Yjτ , τ ≤ t, is a Bernoulli random variable with success probability p under Pθt(·). Combining (B.102),

(B.103), (B.104), and (B.96), we establish that

lim inf
t→∞

1

tδ2
t

logP(ξ̂jt > ξj + δt)≥−
αjf

2
j (ξj)

2p(1− p)
. (B.105)

Likewise, one can easily obtain that

lim inf
t→∞

1

tδ2
t

logP(ξ̂jt < ξj − δt)≥−
αjf

2
j (ξj)

2p(1− p)
, (B.106)

which completes the proof for the lower bound (B.99). Combining (B.93) and (B.99), the proof for the lemma

is complete. �

Appendix C: Parameter Sensitivity of the Algorithms

The algorithms proposed in this paper commonly take the number of initial samples n and the batch size

m as parameters. These slightly affect the performance of the proposed algorithms, but we remark that the

qualitative conclusions from §6.2 are robust relative to the choice of these parameters. In this section, we

examine the sensitivity of performance with respect to parameters that are specific to each algorithm.

First, the naive algorithm takes c as an additional parameter, which ensures that each system is sampled

at least at a logarithmic rate. To see how the performance of the naive algorithm is affected by the choice

of c, we consider a two-system configuration with binomial distributions; the number of trials is 10 for both

systems and the success probabilities are µ= (0.62,0.55), respectively. We set p= 0.1. In this case, the vector

α∗ = (0.76,0.24) maximizes the rate function. We vary c= 0,20.

Figure 1(a) shows a sample path of α1t under the naive algorithm with c= 0, in which system 1 is not

sampled after n0 = 10 initial samples. The relative frequency of α1t for t= 4000 over many paths is illustrated

in Figure 1(b) using 104 simulation replications. As noted in Remark 2, the naive algorithm may not sample a

particular system for a long period without forced sampling, potentially increasing the likelihood of selecting

a non-best system. Figure 1(c) presents a typical sample path α1t under the naive algorithm with forced

sampling and Figure 1(d) gives the relative frequency chart of α1t for t= 4000.

Next, the QD-C and AQD-C algorithms take the kernel K(·) and h(·) as parameters. The optimal choice

of the bandwidth parameter is h(n) = dn−1/5, where n is the number of observations and the constant

d depends on the true density function that is a priori unknown (Silverman 1986). In order to show the

sensitivity of these algorithms with respect to the kernel and the bandwidth parameter, we use normal

and triangular kernels and four bandwidth functions; h(n) = 1.06σn−1/5, where σ is replaced with sample

standard deviation, and h(n) = h = 0.1,1,10. We use the configuration with k = 4 normally distributed

systems with µ= (0,0,0,0) and σ= (1,1.1,1.2,1.3). We let p= 0.1.

Figures 2(a)-(b) illustrate the performance of the QD-C and AQD-C algorithms in terms of the probability

of false selection when we use the normal kernel. It can be seen that the performance of the two algorithms is

degraded when the bandwidth parameter is h= 0.1 (too little smoothing) or h= 10 (too much smoothing).

The performance is robust when we use the adaptive bandwidth h(n) = 1.06σn−1/5. Figures 2(c)-(d) show

the same experiments with the triangular kernel, in which similar conclusions hold.
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Figure 1 The frequencies of α1t under the naive algorithms for different values of parameter c. In all cases, we

consider two systems with binomial distributions parameterized by the number of trials n= (10,10) and

the success probability µ= (0.62,0.55). We set p= 0.1, in which case α∗1 = 0.76. We use n0 = 10 and

m= 10. Panel (a) shows a sample path of the naive algorithm with c= 0, where the system 1 is not

sampled over the long horizon. Panel (c) shows a sample path of the naive algorithm with c= 20 using

the same sequence of random samples. Panels (b) and (d) give the relative frequence of α1t at t= 4000

using 104 trials of the naive algorithm.
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(a) QD-C with normal kernel
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(c) QD-C with triangular kernel
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Figure 2 P(FSπt ) as a function of stage t on a log-linear scale for different kernels and bandwidth parameters. We

test the QD-C and AQD-C algorithms in the case with four normally distributed systems; µ= (0,0,0,0)

and σ= (1,1.1,1.2,1.3). We let p= 0.1 and (n0,m) = (20,10) for both algorithms. The performance of

the two algorithms is not sensitive with respect to the choice of the kernel, but it degrades when the

bandwidth parameter h(·) is too small or too large.


