DID SOCIALISM FAIL TO INNOVATE?
A NATURAL EXPERIMENT OF THE TWO ZEISS COMPANIES

BRUCE KOGUT
University of Pennsylvania

UDO ZANDER
Stockholm School of Economics

Two Carl Zeiss companies provide a natural experiment for analyzing the effects of socialist versus market systems on innovation. By analyzing patent records from 1950 to 1990, we trace the technological contributions of Zeiss Jena in the German Democratic Republic and Zeiss Oberkochen in the Federal Republic of Germany. We show that Zeiss Jena gradually developed considerable technological competence, but a deficiency of innovative potential within the socialist system led to political pressures on key firms to innovate "by plan." These findings on Zeiss Jena imply that technologically viable firms can fail during the initial period of transition from socialism to capitalism. The diagnosis of a lack of innovation and faulty managerial incentives as the disease that is "cured" by market reforms should be balanced by an understanding of the actual capabilities of socialist firms and the difficulties of radical change mandated by brutal shocks to the macroeconomic system.

The indisputable hardship associated with the economic and social renewal of the former states of the German Democratic Republic (GDR) poses the question of why the richest country in the Soviet system, absorbed by one of the richest Western capitalist countries, suffered so painfully following the collapse of Communism. Since its beginnings as a science of transition, sociology has debated this global change from what Polanyi (1944) called "redistributive" systems to market systems. The current discussion of the transition from the Soviet economy to a market economy is marked by the debate over the policies required for successful transitions. The neoliberal position, which has prevailed in eastern Germany, argues for the resolute building of capitalism by design and through the rapid reform of "shock therapy"—a set of policies consisting of privatization, macroeconomic stabilization, and elimination of price controls. The creation of a market economy is seen as bringing the novelty of modern private corporate entrepreneurship to noninnovative socialism (Röma-Tas 1994). Influential statements of the benefits of "shock therapy" or "big bang" have been made by Sachs (1994) in reference to Poland, by Kornai (1990) in reference to Hungary, and by Åslund (1995) in reference to Russia. An alternative policy begins when a country is already rebuilding.

Direct all correspondence to Bruce Kogut, Department of Management, Wharton School, University of Pennsylvania, Philadelphia, PA 19104-6370, USA (kogut@wharton.upenn.edu); or Udo Zander, Institute of International Business, Stockholm School of Economics, Box 6501, S-113 83 Stockholm, Sweden (udo.zander@hhs.se). We thank Bruce McKern, Michael Trick, and the Carnegie Bosch Institute for their support; Frau Benke at the Deutsches Patentamt, Berlin, for help locating the GDR and FRG historical records; Frau Edith Hellmuth of the archives of Zeiss Jena for her assistance; Girts

Cimermans and Veronica Janson for their help in creating the database of Zeiss patents; the personnel at the Swedish Patent Office for help regarding the concordance lists used to translate patents from different systems; Jerker Denrell, Jeff Fear, Mauro Guillen, Peter Murmann, and the ASR reviewers for their comments. The Reginald H. Jones Center, the Institute of International Business at the Stockholm School of Economics, and the Sasakawa Fund provided additional funding.
etitive by local ex-
Kombinat Chem-
at Polygraph, and
Pumpe.) Second,
the common idio-
litng from industry.
Moreover, the
in event studies is
the two firms soon
this natural experi-
t of Zeiss Jena to a so-
course, the Federal
(FRG) was not a
omly. State-owned
important industrial
investments could
nt firms in the auto,
or, among others.
rovincial level, also
ies to research and
d occasionally pro-
. Nevertheless, by
ere were substantial
mic management of
example, the GDR
prices for all prod-
goods; its invest-
ed by a central plan,
jects were the ne-
en bureaucrats and
essively nationalized,
only a small
nd; and it did not
ms and promoted the
ge industrial com-
(1983). Because of
sonable to analyze
bject to radically
which we label so-

II Period
its existence, Zeiss
ena. The firm pro-
oposes and other opti-
developed in close
iversity of Jena. In
peted successfully
and engaged heavily
ent (Hagen 1996).
duction was sold in
any. During the late
1920s, Zeiss became a conglomerate by ac-
quiring German suppliers and competitors
(Schumann 1962). By 1945, the percentage
of Zeiss Jena turnover coming from military
production had risen to 75 to 80 percent, and
some 16 separate R&D laboratories were
operating in Jena (Dorneaifer 1994).

The West: Zeiss’ Operations in
Oberkochen
The Oberkochen operation of Carl Zeiss
commenced from scratch in 1946 when 85
Zeiss managers, engineers, and designers
were deported from Jena by the U.S. occu-
pation forces to Heidenheim in Baden-Wür-
temberg (Carl-Zeiss-Stiftung 1985). The
managers were promised that their archives,
technical documentation, patent records, as
well as their laboratory equipment would ac-
company them; none of these materials ever
reached them, and they later surfaced in the
United States. In setting up the new Carl
Zeiss enterprise, the managers and engi-
neers, including the whole Board of Direc-
tors (“Vorstand”), decided to settle in Ober-
kochen because of the availability of a suit-
able empty factory that had produced land-
ing gears for aircraft.1

The new location was unfortunate in that
the vital contacts with a first-rate university
like the University of Jena were impossible
to recreate in Oberkochen. However, access
to major railway lines and the ample supply
of knowledgeable workers (“Facharbeiter”) pro-
ved to be important for the development of
the new enterprise. The large representa-
tion of researchers and developers in the
“immigrating” group of Zeiss employees led
to rapid development of new products, al-
though these were heavily based on work
carried out in Jena before the move to Baden-
-Württemberg. The production of optical in-
struments in Oberkochen began in 1946.
Early products were stereomicroscopes, for
which a modular production technology was
developed and introduced at an affiliated fa-
cility in Göttingen in 1947.

Over time, microscopes for surgeons as
well as other medical equipment became im-
portant products, together with photographic

1 Interview with Dr. Pfeiffer, information man-
ger at Zeiss Oberkochen, March 12, 1993.
DID SOCIALISM FAIL TO INNOVATE?

DID SOCIALISM FAIL TO INNOVATE?

Different types of firm and production soon carried out in German units, led to considerable competition when R&D on machine tools was closely linked to production. Zeiss versus production workshops, sales of more than 75% with Swedes, Japanese companies in 1910 percent of A-Zeiss-Stiftung as were microsurgical products, brain, and opto-electronic modules, lenses, binoculars, and so forth. West German consulting and engineering, custom-construction, planetarium, thermal instruments (Carl-

OF THE GDR

viet Union over partition zones led to an increase in the FRG jet auspices, the from the Soviet Union under a one-party state with rapidly nationalized industries and collectivized agriculture.

A mass exodus of 3.5 million people between 1945 and 1961 severely damaged the East German economy. Konrad Adenauer, West Germany’s chancellor and foreign minister for 15 years starting in 1949, was committed to the reunification of Germany and refused to acknowledge the legal existence of the East German republic. In 1961, the Soviets authorized the building of the Berlin Wall, separating the eastern and western sectors of that city and cutting off the only remaining escape route to West Germany.

The building of the Berlin Wall marked the beginning of an economic revival for East Germany. In the early 1960s and again in 1968, new economic reforms loosened the control of central planning and encouraged investments in technology. Growth in gross domestic product in the 1960s was impressive, but heavy industry and energy production were a priority over the production of consumer goods. The drift toward market socialism was halted in 1970 following severe bottlenecks in production. As a consequence of policies introduced in 1971, the GDR had one of the highest worldwide levels of state ownership and industrial concentration of firms: About 95 percent of industry and agriculture were state-owned or cooperatively held. Increasingly, firms were organized into large holding structures (called Kombinate) with the intent of decentralizing some central planning to these intermediate units. Production in the nationalized firms (VEBs) was based on indicators in national economic plans. Short-term annual plans were complemented by medium-term five-year plans and 15-year long-term plans, as well as 30- to 40-year forecasts. Plan directives were given by the party congress (Schneider 1978).

In comparison to developments in the West, these policies did not work (see Maier 1997, chap. 2). Labor productivity declined to about 50 percent of that in West Germany; the high level of work force participation by less costly female workers (84 percent) partly compensated for low overall productivity. Yet, GDR citizens enjoyed the highest standard of living in the Eastern bloc in terms of car density (209 per 1,000 inhabitants), housing standards, and urbanization. In terms of
of GDP per capita, the GDR in the postwar years could be compared to Spain, Portugal, Greece, and Ireland. The official statistics, however, hid the vast problems in quality-of-life and strength of infrastructure. Despite falling productivity and investment, the government sought to maintain consumption levels through foreign borrowing. Consequently, in the 1980s disposable income grew faster than national output. Maier (1997:78) cites the chair of ministers, Willi Stoph, as noting ironically during this time that “in terms of distribution, we’re champs.” By 1990, the shortage of investment goods and the collapse of demand in East Germany seriously impaired the economy.

The Communist state withered away soon after its fortieth birthday. Although opposition forces had been suppressed by a well-developed system of state repression, protests erupted in 1989 (see Opp and Gern 1993). Less than a year later, a single political and economic entity was created from two economies with fundamentally different underlying principles of economic organization and substantially different levels of economic development. With reunification of the two Germanys in the fall of 1990, state-owned property was transferred to the Treuhand, a government agency entrusted with the privatization or liquidation of existing state firms. By 1995, the Treuhand had privatized 13,800 firms, completed its task, and was dissolved.

The East: Zeiss' Operation in Jena

At the end of the war, the Jena operations of Zeiss were for the most part destroyed by Allied air raids. Because of Zeiss' value for industrial and military production, its capital equipment was shipped to the Soviet Union. In the years after the war, most of the scientists (including some from the University of Jena) made their way to a new facility in West Germany. Zeiss Jena inherited no more than empty buildings, patent rights, and the local workforce.

The late 1940s and early 1950s were a period of reconstruction in Jena. Already in 1945, Zeiss delivered movie projectors and cameras to the Soviet Union as war indemnities. The reconstruction of the camera industry of Saxony gave a small boost to Zeiss

to supply small numbers of photographic lenses that were not exported to the U.S.S.R. Lenses for spectacles were the first products to be sold in the domestic market. Engineers and master craftsmen from smaller firms in the Thuringia area helped Zeiss rebuild factories and machine equipment. In the 10 years following the war, Jena employees reconstructed 53 types of machines for shaping glass and metal, substantially improved and reconstructed 84 other types of machines, and developed and built 74 new types of special machines (BACZ 1955).

Zeiss Jena regained a remarkable competence in optics. Unable to compete in Western markets, partly because of the lack of legal agreement with its Western counterpart, Zeiss Jena became a primary supplier of lens and optical equipment to the Soviet bloc. The technological efforts, under the management of Carl Müller and Rudolph Müller, came to focus on computing machines for the design of photographic lenses. Contacts were established with the Polytechnic University in Dresden, while close contacts with physicists at the University of Jena were maintained through a substantial annual grant. In 1950, the Zeiss works employed almost 13,000 people who were working on fulfilling the established five-year plans. Efforts were made to educate local youth and women for future work in the firm through an apprenticeship system (BACZ 1950).

During the 1950s, VEB Optik Carl Zeiss Jena was determined to remain a technological leader in the field. Zeiss Jena expanded from 10,242 employees to 18,554, of whom 2,300 could be characterized as involved in scientific pursuits (Carl Zeiss Jena 1960). In 1952, VEB Optik Carl Zeiss Jena showed its first electron microscope at the Leipzig Fair.

In the 1960s, GDR politicians under Walter Ulbricht vigorously pursued the idea of specialization in an era of economic reforms. They proposed that Zeiss develop into a pure engineering enterprise. Efforts were made to have other GDR firms (like Optik-Maschinenbau, Rathenow, and Sempuco, Greiz) build standard machines so that Zeiss could concentrate on special machines requiring leading-edge scientific knowledge. Production was to take place in other firms, and Zeiss Jena would increasingly focus on developing scientific instruments. But there
were emerging problems. In 1960, an internal report at VEB Carl Zeiss Jena acknowledged quality-control problems in production resulting from the urgent need to invest in important new machinery (BACZ 1960). The insufficient allocation of resources stemmed from supplier firms not fulfilling plan goals and from import restrictions. Problems also emerged in energy supplies and transportation. In 1968, VEB Carl Zeiss Jena was, for all practical purposes, bankrupt. The production facilities were empty, and the firm could not service its debts.

Zeiss Jena’s subsequent revival stemmed from the recognition of its potential contribution to the new economic policies of the 1970s. Throughout the 1970s and 1980s, East German officials emphasized the importance of R&D, the link between science and production, and the ongoing rationalization of production. To aid in the rationalization of research and production, the state-owned enterprises (VEB) were gradually integrated into larger production units (Kombinate). Zeiss was transformed into a so-called Stammm kombinat (core enterprise) and was given the status of a Kombinat with integrated control over other state-owned enterprises.

In 1981, the tenth Party Congress gave priority to the use and development of microelectronics, robotics, electronic control of machinery, and computing (Biermann 1988). The growing concern of the socialist bloc countries over the rapid advancement of microelectronic technology in the West led to severe pressures on Zeiss to aid in the development of a modern semiconductor industry. (Optics is a key component in the lithography equipment used in semiconductor production.) Zeiss was reluctant to enter into the production of semiconductor equipment. However, Wolfgang Biermann, the managing director of VEB Carl Zeiss Jena from 1976, yielded to political pressures after negotiating for the state to subsidize the project. In 1983, he described the Kombinat’s most important task as producing technological equipment for the microelectronics industry and introducing microelectronics into traditional optics. Products for the Soviet space program were also of higher priority than were consumer goods and components for GDR industry (Biermann 1985d).

Biermann played an active role in transforming a stagnating firm into a fast-paced East European technological leader. Small management teams that were knowledgeable of the business were formed, and the Kombinat itself was divided into independent profit centers to increase worker motivation (Biermann 1985a, 1985c). To address the lack of transparency and lack of control, the accounting system was expanded throughout all functions of the Kombinat. To increase coordination with foreign trade organizations, these organizations were partly integrated into Zeiss (Biermann 1985a, 1985d). Attempts were also made to improve the relevance of university education by increasing the focus on application and flexibility in the education of engineers and business students.

The GDR government portrayed Biermann’s leadership as a textbook example of progressive socialist management. In the still rigidly planned GDR economy, which had little room for flexibility and experimentation, Biermann enjoyed more latitude than most senior managers because of his closeness to the sources of political power. In Jena, production volume more than doubled from 1976 to 1984 using roughly the same labor force (around 50,000 employees). The export share of production was 60 percent (Biermann 1985e). In certain areas, such as planetariums, the Kombinat led the world in sales. In 1985, the Kombinat VEB Pentacon Dresden was incorporated in VEB Carl Zeiss Jena. The resulting Kombinat employed 58,000 people at 22 locations with a total turnaround of 4 billion East German marks.

3 BACZ (1960), and interview with Professor Mühlfried, Jena, September 15, 1994.

4 Interview with Professor Mühlfried, Jena. Maier (1997:96ff) provides a lengthy description of these disastrous policies.

5 Many apocryphal stories about Biermann circulated in East Germany. One story is that Biermann stood at the entrance to the Zeiss skyscraper office in central Jena with a stopwatch and then ordered the elevators closed after the starting time for the day. Late workers would have to use the stairs. Zeiss also gained prominence because of its sponsorship of one of the most successful soccer teams in Europe.
By the late 1980s, Zeiss Jena had married optics with electronics and had become a major supplier of lithography equipment to Robotron's memory semiconductor facility. Under the leadership of Biermann, the firm tried to catch up with Western and Japanese leaders in semiconductor technology. However, the introduction of electronics into the traditional product lines created major problems when R&D resources were shifted from traditional optics to electronics (Biermann 1985c). The trade embargo on exports of strategically important products imposed by the U.S. government also forced Zeiss to scurry for suppliers and to develop in-house competence in a wide range of technologies (Biermann 1985e).

Still, the technological resources of Zeiss were impressive. If East German R&D statistics are recalculated according to the Frascati Manual (OECD-proposed standard practice for surveys of research and experimental activities), an impressive 4,100 Zeiss Jena employees were engaged in research in 1987. Of these, 47 percent were scientists and engineers, and 28 percent were technicians (SV-Gemeinnütige 1990:53–55). The firm spent 7.7 percent of turnover on R&D, which was among the highest percentages in GDR industry. The importance of Zeiss in East German society is highlighted by the fact that the Kombinat in 1987 employed 4.7 percent of all R&D personnel in the industrial sector.

THE STUDY

Data collection involved both public and archival sources. Initial interviews at Carl Zeiss focused on the historical development of the enterprises in Oberkochen, Baden-Württemberg and Jena, Thuringia. The information was complemented with archival data. Archival research was carried out on-site in the corporate archives of VEB Carl Zeiss Jena. Access to the information on the Zeiss Jena works presented an extraordinary opportunity by which to understand the evolution of organizational and technological capabilities during the period of state socialism.

In addition to interviews and archival records, we collected patent data for the two Zeiss firms. Patents serve as quantitative indicators of the output of research efforts. They also signal the direction of technological efforts. Through frequent contacts with patent authorities, we created a database of patents granted to the West German and East German parts of Zeiss. There are no computerized international patent data for the pre-1973 period. Because we want to study the patenting efforts of both Zeiss firms from the time they resumed production after the war, we manually compiled data on Zeiss Jena’s and Zeiss Oberkochen’s patenting in their respective home countries. Interviews at Zeiss Oberkochen confirmed that national patent records captured the important technological efforts of the two firms during this early time period. For the period 1950 to 1972, the GDR and FRG historical records of patents were housed and collected at the German Patent Office in Berlin. The change in patent recording practice in the GDR of the 1960s, when patents were no longer assigned to firms but to individual inventors, made it impossible to assign patents to VEB Carl Zeiss Jena for this period. Thus, we could not record Zeiss Jena's patenting for 1960 through 1969 and this period is lost to our study.

For the period 1973 to 1990, computerized data on the international patenting efforts of the two Zeiss firms were available through the European Patent Office in Vienna, Austria. We used the INPADOC database, which is the most comprehensive patent database for the countries covered. It includes the international patent documents of 66 national and regional patent offices. The distribution by country of the first granted patent publication for the two Zeiss firms is shown in Table 1. As expected, both firms first filed the majority of their patents in their respective home countries. Jena's share was 73 percent, while the more internationally active Oberkochen firm's share amounted to 40 percent. Zeiss Jena also patented frequently in France, Great Britain, Japan, and Switzerland, while Zeiss Oberkochen preferred Europe-wide patents,

We are grateful to Frau Hellmuth for her help during the chaotic time when the archives suddenly unexpectedly moved to another location in Jena.
-year period were also reclassified according to the sixth edi-
tional Patent Classifica-
tional Intellectual Property Organiza-
table 2 presents an overview of
sources.
exception of the 1960s policy
German patents followed in-
ent standards. The GDR au-
cise to the GDR, those in West Germany,
ents on the basis of novelty, ap-
ree industry, and technological
cessful patent applications had
ventive step—it should not be
rive the innovation from the
of the art. In addition to "nor-
ive patents, the GDR system
exclusive Wirtschaft,
which the right to use the pa-
tion was shared among the
ist enterprises, and state or-
GDR), as well as secret pa-
table difference from Western
as the rule that an invention
itable if it offended the social-
As in the West, patent appli-
examined by a Patent Office
entability, novelty, and sub-
sequently were published if
mparability with the West was
ents in East Germany were
ternational trade. Patents had
ternational courts, which be-
subsequently during the legal battles be-
ena and Zeiss Oberkochen in
the quality of East German data
in the GDR's qualification as
countries in the European
database for which both
ents and legal status data were
is important to note that we
on the relative patenting in a
otechnological areas, not the ab-
der of patents.
the overlap or correlation of
folios of the two Zeiss firms,

length account of the patent laws of
Manual of Industrial Property
Helena Fernholm of the Sweden-
Jens Breiding of the German
merce in Stockholm, and Arthur
etter Rindforth of Enderborg and
ir assistance.
Table 2. Data Sources for Patents Filed

<table>
<thead>
<tr>
<th></th>
<th>1950s</th>
<th>1960s</th>
<th>1970s</th>
<th>1980s</th>
</tr>
</thead>
</table>

we apply a simple statistic developed by Jaffee (1986). This statistic is defined as:

\[P_{ij} = \frac{F_i F_j}{\sqrt{F_i^2 + F_j^2}} \]

where \(F \) is a vector consisting of the proportion of patent counts in a given classification. The elements of this vector sum to 1.0. The numerator is the dot product of the Zeiss Oberkochen and Zeiss Jena patent portfolios. The denominator normalizes this statistic by squaring each vector, multiplying the scalar products, and then taking the square root. This statistic varies between 0 and 1, and hence is not the standard correlation. This measure is less sensitive to differences in the length of the vector than is Euclidean distance used for standard correlations.

The patent classifications are similar to three-digit Standard Industrial Classification (SIC) categories. The eight International Patent Classification (IPC) sections can also be further broken down into 150 IPC subsections and 624 IPC classes. (A description of IPC sections is available from the authors on request.) The Jaffee statistic is calculated at the IPC-class level and allows us to determine to what extent the technological efforts of Zeiss Jena coincide with those of Zeiss Oberkochen. Because the correlations do not reveal the extent of differences in the degree of technological diversification, we also calculate Gini coefficients and use more aggregated classifications to weight more heavily the differences in broad technological efforts.

RESULTS

DEVELOPMENT 1950 TO 1990

Patenting in the two Zeiss firms from 1950 to 1990 reveals several remarkable similarities. For the 40-year period, we record 2,355 patents by Carl Zeiss in Oberkochen and 2,393 by VEB Carl Zeiss Jena. The distribution of patents by IPC section is shown graphically in Figures 1 and 2. Both Zeiss firms patented primarily in the IPC section "physics." Both firms also actively patented in electricity, chemistry, and mechanical engineering, while Zeiss Oberkochen was more active in human necessities and Zeiss Jena was more active in performing operations. At a higher level of disaggregation, Zeiss Oberkochen patented in 126 of the theoretically possible 624 classes, while Zeiss Jena displayed a broader technological profile by filing patents in 150 classes. (More details on diversification and a more refined description of technological efforts is available from the authors on request.)

CORRELATION ANALYSIS. The correlation between the overall number of patents of Zeiss Oberkochen and Zeiss Jena in the 207 different IPC classes is .943. As a benchmark by which to evaluate this correlation, it is interesting to note Helfat's (1994:179–180) finding that substantial differences exist among firms' R&D applications in the American petrochemical industry over an eight-year period. The correlation for the two Zeiss firms is thus surprisingly high given that the two firms operated in very different political and economic systems for the entire 40-year period.
because the two Zeiss firms served very
cent domestic and export markets, the
relation in their patent registrations
ates that technological "push" is impor-
It is also possible that the two firms did
sight of each other's progress. It is,
ever, important to remember that even if
Jena benefited by observing its West-
counterpart, it had to retain an important
ility to create, absorb, and exploit tech-
gical knowledge. Also, the political
ers that Zeiss Jena experienced over
-year period were extremely erratic.
equently, it was by no means consist-
 focused on keeping up with its West-
ist firm. Finally, because we use pat-
to compare the technological efforts of
firms, the technologies we compare
all passed severe tests for their novelty.
and uniqueness, which rules out blind imitation. We analyze the possibility of technological spillover more thoroughly by analyzing patenting in different time periods and examining simple lags in the correlations.

Trajectories of the Two Zeiss Firms

Table 3 shows the distribution of patents by IPC section for both firms from the 1950s to the 1980s. Zeiss Jena’s patenting was dominated by efforts in the IPC physics section from 1950 to 1990. From 70 percent of the patents in the 1950s, the share in physics dropped to around 65 percent in the 1970s and 1980s. The share of patents in chemistry and metallurgy grew slowly but steadily over the period, while patents in electricity peaked at 26 percent of total patenting in the 1970s. In the 1980s, electricity patenting as a share was back to 1950s’ levels of around 15 percent.

Patenting by Zeiss Oberkochen was also dominated by patents in physics over the four decades, with its share of the total peaking at 83 percent in the 1960s, but then returning to figures around 60 to 65 percent. The share of patents in chemistry and metallurgy increased considerably in the 1970s and remained about 10 percent in the 1980s. Unlike Zeiss Jena’s profile, the share of patents in electricity fell from almost 20 percent in the 1950s to 8 percent in the 1980s.

The analysis of patenting by broad IPC sections again reveals surprising similarities between the profiles of the two Zeiss companies operating in different economic systems. Yet, there are two main differences between the companies. First, Oberkochen expanded its patenting in the chemistry and metallurgy sections earlier and faster than did Jena. In the 1970s, Oberkochen’s share was five times higher than that for Jena, and it remained at twice Jena’s share in the 1980s. Second, Jena increased its share of patents in electricity to 2.6 times times that of Oberkochen in the 1970s, and it remained twice the share of Oberkochen in the 1980s.

8 Interestingly, a study by Almendinger and Hackman (1996) reveals that East German orchestras exhibited remarkable stability and continuity with their traditions despite two radical changes in the country’s political-economic system—when the socialist regime took power after World War II and in 1990 when the regime fell.
Several interesting differences emerge through a finer analysis of the data. In absolute terms, both firms diversified their technology—they patented in more IPC classes. The change in technologies and products over time in both Zeiss firms is striking.

Correlation analysis. Table 4 shows the correlations between patenting activities in Zeiss Jena and Zeiss Oberkochen for the 1950s, 1960s, 1970s, and 1980s. There is striking similarity in the technological profiles of the two firms in different socioeconomic environments. After 40 years of socialism and a centrally planned economy, the areas of invention for Zeiss Jena and Zeiss Oberkochen still showed a correlation of .93.

The correlation analysis provides a qualification to the "natural" experiment. For the 1970s, the correlation between Oberkochen and Jena is only .72. Given the much higher correlation for the 1980s, why did the two firms deviate for the 1970s? Lagged correlations suggest an answer. The correlation for Oberkochen for the 1970s and 1980s is .89. The correlation between Oberkochen 1980s and Jena 1970s is .92, suggesting that the patenting record of Oberkochen in 1980 is almost as highly correlated with Jena’s patenting in the 1970s as it is with its own patent distribution in the 1970s. However, the correlation between Oberkochen in the 1970s and Jena in the 1980s is .88. In other words, to predict Jena’s patenting distribution in the 1980s, it would be just as helpful to look at Oberkochen’s patents in the 1970s as it would be to look at Jena’s own patenting pattern for the same decade.

This statistical result stems directly from the move by Jena away from patenting in electricity in the 1980s. But this result suggests two other possibilities. One is that Jena consciously followed the technological efforts of its West German rival. Of course, even if there are imitative influences, the successful ability to build on the observation of another company’s strategy and to generate new patentable knowledge indicates considerable technological capability in Zeiss Jena. The other possibility is that Zeiss Jena in the 1980s enjoyed more freedom in its research efforts, even while the GDR government insisted that the firm deliver optical components for the attempt to build a microelectronic industry.

Diversification analysis. From 1950 to 1990, Zeiss Oberkochen patented in 126 of the theoretically possible 624 IPC classes, while Zeiss Jena displayed a broader technological profile by filing patents in 150 IPC classes. Jena went from patenting in 20 classes in the 1950s to patenting in 142 in the 1980s; Oberkochen went from 29 classes to 90 classes. To analyze further the patenting profiles of the two Zeiss firms, we calculated Gini coefficients to measure the extent to which the two firms focused their technological efforts. A value of 1 indicates that a firm is patenting in only one class; a value of 0 indicates that the firm distributes its patents equally across all classes. Table 5 shows that the Gini coefficients are consis-

9 The formula used to measure "inequality" is $G = 1 + \frac{1}{n} - \frac{(2n^2)}{n(n-1)}$ $Y_1 + 2Y_2 + 3Y_3 + \ldots + nY_n$, where Y_1, \ldots, Y_n represent patenting in IPC classes in decreasing order of numbers, Y is the mean number of patents in an IPC class, and n is the number of IPC classes.

Table 4. Correlation Analysis of Patenting in the Two Zeiss Firms by Decade

<table>
<thead>
<tr>
<th>Decade</th>
<th>Firm</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>(1) Jena</td>
<td>.94</td>
<td>NA</td>
<td>.85</td>
<td>.77</td>
<td>.81</td>
<td>.88</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>(2) Oberkochen</td>
<td>—</td>
<td>NA</td>
<td>.86</td>
<td>.68</td>
<td>.84</td>
<td>.83</td>
<td>.80</td>
</tr>
<tr>
<td>1960s</td>
<td>(3) Jena</td>
<td>—</td>
<td>—</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(4) Oberkochen</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.70</td>
<td>.92</td>
<td>.91</td>
<td>.90</td>
</tr>
<tr>
<td>1970s</td>
<td>(5) Jena</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.72</td>
<td>.89</td>
<td>.92</td>
</tr>
<tr>
<td></td>
<td>(6) Oberkochen</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.88</td>
<td>.93</td>
</tr>
<tr>
<td>1980s</td>
<td>(7) Jena</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.93</td>
</tr>
<tr>
<td></td>
<td>(8) Oberkochen</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 5. Gini Coefficients for Patenting: Zeiss Jena and Zeiss Oberkochen, 1950s to 1980s

<table>
<thead>
<tr>
<th>Decade</th>
<th>Jena</th>
<th>Oberkochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>.555</td>
<td>.717</td>
</tr>
<tr>
<td>1960s</td>
<td>—</td>
<td>.672</td>
</tr>
<tr>
<td>1970s</td>
<td>.598</td>
<td>.749</td>
</tr>
<tr>
<td>1980s</td>
<td>.754</td>
<td>.782</td>
</tr>
</tbody>
</table>

However, the comparison of the two Zeiss companies clarifies an error in Schumpeter’s argument that rationalized planning could successfully replicate the industrial research laboratory of the large capitalist enterprise. He assumed too readily that the market socialism of independent firms interacting with a central planner would be free of political interference.

The historical evidence from the archival investigation illuminates the negative effects of political decisions on Jena’s research policies, the constraints of having to innovate by plan, and the pressures to supply a wide range of “customers.” Zeiss Jena during the 1950s and 1970s displayed a much more diversified patent portfolio than did West German Zeiss. “Forced” diversification was also felt in other sectors of the GDR economy. For example, the Robotron Kombinat produced all electronic components for its products (Axell and Uppenberg 1991). As commonly experienced in all socialist countries, supply shortages were common owing to unplanned shortfalls in already “taut” planned targets (Kornai 1990). In this regard, Schumpeter underestimated the important property of the markets in providing variety and hence a division of labor that allows firms to specialize. In this latter sense, Hayek proved the more important point, namely, that the socialist economic system collectively could not generate the emergent order that spontaneously filters ideas and permits radical innovations.\(^\text{10}\)

During the 1980s, the East German government increasingly came under pressure to deliver improvements in living standards while keeping up with the West in production of high technology, often for military use. As a result, pressures on the most dynamic firms increased, and demands were often unrealistic and inconsistent. In Zeiss Jena’s case, the outcome is seen in its increased alignment with Oberkochen’s patenting profile, its increased specialization as

\(^\text{10}\) While we cannot evaluate the innovative record of the GDR, we note that the GDR was popularly known for very few innovations. One of them was a synthetic fiber (Dederon) whose name was a play on the name of the country (see Berliner 1976 for an evaluation of the Soviet system).
reasured by its patenting, and its efforts in
the semiconductor area. In speeches to the
Friedrich-Schiller-Universität during the
mid-1980s (Biermann 1985a, 1985b, 1985c,
1985d, 1985e), Zeiss Jena Director Bier-
mann spoke critically of party officials who
interfered in a heavy-handed manner in the
firm’s activities and still had to be convinced
that international competitiveness should be
the aim of the Zeiss Kombinat. In 1984,
Biermann (1985c) discussed openly the
problems of R&D research in comparison
with Western firms:

This does not mean . . . that a scientist is
only permitted to imagine what is presented
already in the Plan, that he is permitted only
to find what he searches. As always, the re-
search process unfolds principally by cre-
ative processes, by its own particular laws
that largely evade the clutches of planning.
(P. 9)

In his speeches, Biermann pointed to moti-
vational problems in research, problems of
managing complex projects, lack of contacts
with final producers and external buyers,
and inflexible export contracts (Biermann
1985b, 1985c).

During the 1980s, patent specialization in-
creased in Zeiss Jena, but management com-
plained about the dual burden of supplying
the domestic market while trying to address
particular export markets. Politicians put
Zeiss Jena under pressure to develop and
produce large volumes of goods to satisfy
the policy of catching up with Western liv-
ing standards. In the Western export mar-
kets, the complex needs of large buyers re-
quired the most advanced technological fea-
tures, but it was felt in Zeiss Jena that sales
of these “spearhead” products were possible
only if a full product line was offered in a
few focused markets. Thus, Biermann tried
to create an understanding that Zeiss should
be allowed to focus on providing a full prod-
uct line in core areas and not be forced to
diversify.

Zeiss Jena’s situation also differed consid-
erably from Zeiss Oberkochen’s because of
its mandated role in cooperative programs
among socialist countries. In addition to pro-
viding the great mass of consumers with cer-
tain scarce products, Zeiss Jena was asked
to invest in research for military purposes.
The military orders, of course, affected tech-
nological development, but these orders,
when realistic, were directed to Zeiss based
on its known capability—Zeiss did not cre-
ate the market.11 Partly isolated from West-
ern suppliers and constrained by foreign cur-
rency, Zeiss suffered from the failure of the
GDR to maintain the pace of the world mar-
et. An internal government document noted
that when advanced technology is available,
the GDR “can hold their own against the
very best international achievements
On the other hand, these results are unattain-
able when this computer technology is only
partially available” (Maier 1997:74). Maier
(1997:75) indicates that the unit cost of pro-
ducing a 256-kilobyte memory semiconductor
at Zeiss Jena was over 100 times the
world price.

Zeiss Jena was indeed the Schumpeterian
socialist firm, invested with substantial
technological capabilities. But it was ham-
ered by a system of central planning that
dissipated innovative resources in accor-
dance with planned targets. By 1987, the
head of planning conceded that the state
should give autonomy to the most dynamic
Kombinate. Biermann’s conclusions were
more radical. He asked the powerful Eco-

11 In losing Eastern Europe, Russia lost its best
captive defense contractors, among them Carl
Zeiss Jena, which supplied the Soviet Union with
laser rangefinders, infrared and night-vision
equipment, missile-guidance systems, and optics
for satellite reconnaissance and space weaponry.
Shortly after the unification of Germany, the
U.S.S.R. announced its intention to unilaterally
halt all new production of mobile SS-24 intercon-
tinental missiles. According to East Germans for-
merly involved with weapons procurement, the
Red Army was no longer able to get the SS-24’s
key guidance system from Zeiss Jena (Fuhrman
Plan and there was no redundancy except the constrained and limited access to world markets.

These results resemble Saxenian’s (1994) comparison of high technology firms in the regions around Boston and Silicon Valley. She contends that the innovative success of any one firm is contingent on local dynamism in the region. The comparison of patent records of the two Zeiss firms shows a remarkable similarity in the direction of effort, but Zeiss Jena’s economic and social environment appears to have been clearly deficient in providing the technological diversity to support its innovative efforts.

ZEISS AND THE TRANSITION PROCESS

The description and comparison of the innovative activities of the two Zeiss firms throw light on the preconditions for the transition from a socialist planned system to a capitalist market economy. Zeiss Jena had been a technological success in the socialist system. Competence was built up technologically, and the firm possessed valuable knowledge related to Eastern markets. Yet, these valuable assets could not be easily adapted to new conditions. Zeiss Jena did not have the systemic resources to compete in the new system. Yet, the reform policies were largely indifferent to the tapering of systemic change to these historical conditions. Rather, massive systemic change was followed by frustration over the slow process of the transformation of individual firms.

The economic conditions of the German reunification agreement created a macroeconomic shock owing to the sudden increase in the real wages of East German workers, despite their lower productivity compared to West Germans. The creation of a currency union and the elimination of all trade barriers between the two former German countries had devastating consequences on East German producers. If ever a country underwent a shock therapy by radical price decontrol, it has been the Eastern states of the reunited Germany.

It must be emphasized that the conditions surrounding reunification dictated the outcome and may not have left politicians with many policy choices. The outcome was a
DID SOCIALISM FAIL TO INNOVATE? 185

pure case of what “shock” means (with the exception of certain subsidies). The economic consequences of these policies—no matter the necessity of their political motivations—have been devastating. According to Owen (1991), two striking features of the monetary union were the surge in exports from West to East Germany and the virtual collapse of East German industrial output. By September 1990, industrial output had fallen to a level 51 percent below its level in the same month of the previous year. The loss of most East European markets began early in 1991 and brought industrial production down to one-third of the pre-currency-unit level where it has stabilized (Roesler 1994). The social impact in East Germany was felt through a reduction in employment from 9.75 million to 6.4 million between 1989 and 1992 (Vogt 1992). Labor productivity, estimated to be half that of West Germany, also decreased between 1989 and 1992. Despite the sell-off and liquidation of East German enterprises, the West German state had to provide massive subsidies. By any account, the costs of reunification have been nothing short of catastrophic.

Even if the fate of Zeiss Jena has been better than that of many other firms of the former GDR, the events following the reunification of Germany display what may happen to capable firms given very little time to adjust to a radically different socioeconomic environment. In October 1991, following long negotiations with the Treuhand, two new companies emerged from the former Kombinat VEB Carl Zeiss Jena: Carl Zeiss Jena GmbH and Jenoptik GmbH. The agreement also sealed the merger between Carl Zeiss Jena GmbH and Carl Zeiss Oberkochen, in which the traditional business of optical instruments was to be made competitive. Jenoptik GmbH, containing the remaining business divisions, was named the legal successor to the old Kombinat.

In May 1995, Carl Zeiss Jena GmbH, containing the traditional parts of Zeiss’ activities, became a wholly owned subsidiary of Carl Zeiss Oberkochen (Scherzinger 1996). The production of small microscopes (the C-class) was moved from Göttingen in the West to Jena. The production of medical apparatus was also moved from Calmbach in the West to Jena. These transfers of production were in accordance with the obligation by Zeiss Oberkochen to the Treuhand to keep around 3,000 workers out of the original 27,000 employed in Jena. Zeiss Jena was on the verge of being wiped out by a neoliberal transition policy.

The non-acquired part of the old VEB Carl Zeiss Jena, Jenoptik, was technologically capable but lacked a brand name, competitive products, and international distribution channels. The markets in the East, once the main sales area of the Kombinat, as well as the profitable military production had ceased to exist. The company, however, had inherited many highly qualified employees with excellent knowledge of laser, outer-space, and semiconductor technology, and the core areas of opto-electronics, systems technology, and precision manufacturing from the former Kombinat (Jenoptik 1998:4). Despite this, the firm in the early 1990s was struggling. Only after massive protests by Jena workers threatened by the loss of their jobs did the local state act. The Treuhand in 1992 took over 80 percent of the assets of the bigger part of the 12 former Zeiss plants, at the time administered by the state of Thuringia under the name “Jenoptik Carl Zeiss Jena.” Thuringia financed the repurchase of the remaining 20 percent of the assets in order to save some 6,800 jobs in the new firm, Jenoptik GmbH (Roesler 1994).

The decision to subsidize Jenoptik because of popular pressure proved to be a successful policy. Jenoptik was privatized by a stock market introduction in 1998 in which enthusiastic investors oversubscribed the stock by 26 times. Based on the capabilities of the old Kombinat, the holding integrates more than 100 small firms active in semiconductors, laser optics, impulse physics, industrial measurement technology, automation, and information technology. Jenoptik reached a turnover of over 2 billion DM in 1997, and its two high technology divisions were very profitable. Main technologies include clean-room facilities for chip and pharmaceutical production, robots and software for automation of semiconductor fabrication plants, laser instruments, special optical components, and industrial measuring systems. These areas of technology correspond well to the activities of the old Kombinat Carl Zeiss Jena and were not of
Table 6. Percentage Distribution of Patents Filed, by IPC Section and Subsection: Comparison of Jenoptik, 1991 to 1998 with Zeiss Jena, 1950 to 1990

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring, testing</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>Optics</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Photography, cinematography, electrography, holography</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Computing, calculating, counting</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Controlling, regulating</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Instrument details</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic electric elements</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Communication</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Performing Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conveying, packing, storing, handling thin or filamentary material</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Machine Tools, metal working not otherwise provided for</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Working of plastics, working of substances in a plastic state in general, working of substances not otherwise provided for</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Human Necessities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical and veterinary science, hygiene</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating, ranges, ventilating</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Engineering elements or units, general measures for producing and maintaining effective functioning of machines or installations, thermal insulation in general</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total percent</td>
<td>98</td>
<td>84</td>
</tr>
</tbody>
</table>

Note: Table reports most frequent IPC subsections (out of 150 possible).

interest to Zeiss Oberkochen when they invested at the time of transition.

Today's technologically capable and successful Jenoptik firm would probably have become a victim of neoliberal shock therapy if the therapy had been strictly enforced. A comparison of the patents filed by Jenoptik since its creation with those filed by the old Kombinat between 1950 and 1990 shows an impressive continuity in technological effort. The Jaffe correlation is .7 for patents issued to Jenoptik between 1991 to 1998 and those of its GDR predecessor's for the period 1950 to 1990.

Table 6 provides a breakdown of the patents by main technology areas. The 167 patent applications filed by Jenoptik after the transition fall in 15 IPC subsections (out of 150 possible). Note that 83 percent of Zeiss Jena’s patents during 1950–1990 fell in the same 15 classes and that the ranking of patent classes is similar. The remaining 17 percent of Zeiss Jena’s patents were dominated by machine tools, measuring instruments for distances, computers and information storage, batteries, electric motors, and pulse technique. Jenoptik dropped these areas of technology in the face of competitive
conditions after reunification. The Jaffee correlation of .7 reflects this policy of continuity in technological effort, though in a narrower spectrum of activities. Ironically, Jenoptik has focused many of its patents in the semiconductor and laser areas, capitalizing on the diversification into electronics mandated by GDR central planning in the 1980s. Able to specialize in areas of competence and to source components from a world market, Jenoptik has progressed rapidly in the area that most severely challenged Biermann and his company in the last decade of the GDR.

CONCLUSION

The attitude toward the socialist enterprise in the economics literature of transition is inherently ambivalent, if not contradictory. To a great extent, the presumption is that the socialist enterprise operated far from an efficient frontier of best practice and its vestiges during the period of transition were riddled by political resistance to economic reforms (Åslund 1995; Shleifer and Vishny 1994). Yet, at the same time there is a belief that market reforms are sufficient to weed out inefficient firms and to provide the proper incentives for better enterprises to move to efficient practices. The socialist enterprise is thus the bane of neoliberals, and yet it is the critical institution on which the success of radical reform rests.

The results of the natural experiment we evaluate here provide an institutional view of the causes of the German policy debacle in their efforts to revive the East by understanding institutional conditions in the GDR and their effect on one of the top firms in the system. The initial assessment in 1990 by the Treuhand of the state of East German companies estimated that only 30 percent of the firms were clearly salvageable. Another 50 percent of the firms were thought to be able to stand up to competition, but only after a long phase of thorough restructuring; and 20 percent were thought to face inevitable bankruptcy (Fischer and Schröter 1996). In 1991, 85 percent of the firms in Thuringia were in crisis (Zanger 1991). This situation may yield the misleading implication that East German industry had been under inefficient incentives to develop, in absolute terms, economically viable enterprises. One might as well ask how much of American industry would initially survive a such macro shock—one that not only radically reversed relative prices but also was accompanied by the loss of export markets and the collapse of internal demand.

A more appropriate inquiry for an analysis of the transformation is whether East German industry had the potential for self-renewal under the newly prevailing conditions. The analysis of the two Zeiss firms indicates that firms under socialism exploited technological opportunities but within their institutional context. In this regard, they accumulated capabilities to innovate and produce in response to their environmental signals. The pressures of the institutional environment were important in determining the development of technological capabilities of the East German firm.

It is an error to evaluate the competence of the socialist firm entering transition without recognizing that its accumulated capability had considerable value in a system deprived of spontaneous innovation and contacts with important buyers and suppliers. The focus in the transition literature on the inefficiency of socialist firms poses a biased frame by suggesting that poor management and weak managerial incentives impeded technological advancement. The critical starting point for an unbiased assessment of their potential to adapt to capitalist markets is to ask whether these firms developed the requisite innovative capabilities appropriate to the conditions under socialism. Without this assessment, it is easy to fall back on the belief that firms should be forced to "improve" through radical systemic change because they lacked incentives under socialism. In the German case, radical systemic change had liquidated 3,500 of the original 14,000 industrial units (the result of splitting Kombinate among the initial 8,000 units) by 1994. Only about one-third of 333,000 jobs could be saved (Fischer 1996). Firms, including socialist firms, consist of knowledge and organizing routines that encode learned patterns of behavior. Systemic change should bootstrap from an acknowledgment of the value of this knowledge and its relation to the prevailing institutional context.
nary weakness of the socialist econ-
as the poverty of the institutions that
the coordination of economic and
ical efforts by firms. Competition
ialization, price and contract, and
ation and innovation form ‘the
The imposition of radical macro-
c change revealed capable firms that
iciently specialized in the context
versity that constitutes ‘the market.’
chaos of transition a new extended
ary arises built on entrepreneurial
ose evolution, in turn, develops the
order. It is this missing link be-
e accumulated capabilities of social-
and the market that transition poli-
der to restore.

gut is the Dr. Felix Zandman Professor
ional Management at the Whartan
the University of Pennsylvania, and
or of the Reginald H. Jones Center for
ent Policy, Strategy, and Organization,
 visiting scholar at the Humboldt-
y in Berlin, Stockholm School of Eco-
Science Center Berlin, and the Ecole
ique in Paris. He has published on such
labor markets for ideas and the effects
ations, the international expansion of
ese firms, alliances and networks, com-
iteness of countries.
der is Associate Professor at the Insti-
ntional Business (IB), Stockholm
f Economics, and has been a visiting
Scancor, Stanford University, and the
. He has published on the knowl-
el capabilities of firms, and the inter-
agement of research and development.
ent research interests include interna-
trepreneurship and management, glo-
, and the impact of ideas.

REFERENCES
inger, Jutta and J. Richard Hackman.
“Organizations in Changing Environ-
: The Case of East German Symphony
stras.” Administrative Science Quarterly
. 69.
anders, 1995. How Russia Became a
t Economy, Washington, DC: Brookings
ion.
Iva and Kristian Uppenberg. 1991. “Eco-
Transition and Unemployment in East
y.” Working Paper No. 19, Stockholm
fe of Soviet and East European Econom-
ockholm, Sweden.

BACZ (Betriebsarchiv Carl Zeiss Jena, GDR).
50. “Auferstanden aus Ruinen und der Zu-
unft zugewandt . . . !” (Arisen from ruins and
acing the future . . . !). Speech by Hauptdirek-
tor Hugo Schrade. Carl Zeiss Jena, GDR.
——. 1955. “Description of Technical Work
Zeiss Jena 1945–1955.” Record # 18 322. Carl
Zeiss Jena, GDR.
Zeiss Jena.” Carl Zeiss Jena. GDR.
Berliner, Joseph. 1976. The Innovation Decision
in Soviet Industry. Cambridge, MA: MIT
Press.
Biermann, Wolfgang. 1985a. “Der Leitungs-
prozess—objektive Bedingungen und subjek-
tiver Faktor. Das Zusammenwirken der Struk-
turelemente im Kombinat” (The management
process—objective conditions and subjective
factor. The co-operation of the structural
elements in the Combine). Speech delivered Feb-
Carl Zeiss Jena in den 80er Jahren. Jena, East
Germany: Friedrich-Schiller-Universitat.
——. 1985b. “Der wissenschaftliche Geräte-
au als Katalysator des wissenschaftlich-tech-
nischen Fortschritts” (The scientific building
of instruments as a catalyst for scientific
Pp. 13–20 in Das Kombinat Carl Zeiss Jena in
den 80er Jahren. Jena, East Germany:
Friedrich-Schiller-Universität.
——. 1985c. “Die Wissenschaft als Produktiv-
kraft—die Verbindung von Forschung, Ent-
wicklung und Produktion unter den Beding-
ungen der achtziger Jahre” (Science as produc-
tive force—the link between research, develop-
ment, and production under the conditions of
the 1980s). Speech delivered September 20,
1984. Pp. 3–12 in Das Kombinat Carl Zeiss
Jena in den 80er Jahren. Jena, East Germany:
Friedrich-Schiller-Universität.
——. 1985d. “Ergebnisse und Aufgaben des
Kombinates VEB Carl Zeiss Jena im Kampf
um die Durchsetzung der ökonomischen
Strategie der 80er Jahre” (Results and tasks of
the Combine VEB Carl Zeiss Jena in the
struggle for implementation of the economic
strategy in the 1980s). Speech at the Friedrich-
8–22 in Wissenschaft und Produktion. Jena,
East Germany: Friedrich-Schiller-Universität.
——. 1985e. “Probleme der Außenwirtschaft
unter den gegenwärtigen Bedingungen. Aufga-
ben und Möglichkeiten der Zusammenarbeit
zwischen Kombinat und Universität” (Foreign
trade problems under the current conditions.
Tasks and possibilities for cooperation be-
tween combines and universities). Speech de-
ivered February 21, 1985. Pp. 31–39 in Das
Kombinat Carl Zeiss Jena in den 80er Jahren.
tion, Employment, and Income in Russia," "American Journal of Sociology" 95. W. J. 1996. "Export versus Direct In-
Jenik. 1988. The Fatal Conject: The Socialism. Chicago, IL: University of

e-Joachim. 1988. "Umfassende Erzeugung und Ökonomie durch Erfin-
(Extensive intensification and econo-
Made by Jenoptik. Jena, Germany.
re. 1987. Honeckers DDR (Hon-
(DR), Stockholm, Sweden: Utrikesinstitutet.
ce. 1983. "Foreign Commerce and Organizational Behavior in the German Dem-
ence and Udo Zander. 1992. "Knowl-
Firm, Combinative Capabilities, and Technological Change." "Organis-
. 1990. The Road to the Free Econ-
ing from a Socialist System, the Ex-
economies." Pp. 35–53 in The Emer-
Market Economies in Eastern Europe, C. Clague and G. Rauss. Cam-
A: Blackwell.
hard and Sidney Winter. 1982. An-
tary Theory of Economic Change, MA: Harvard University Press.
. W., Barry M. Staw, and Thomas 1971. "Attitude toward Troop With-
In Indochina as a Function of Draft

