OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

OPEN-SOURCE SOFTWARE
DEVELOPMENT AND DISTRIBUTED

INNOVATION

BRUCE KOGUT

Wharton School, University of Pennsylvania, and Centre de Recherche en Gestion, Ecole

Polytechnique
ANCA METIU

INSEAD and Wharton School, University of Pennsylvania!

Open-source software development is a production model that exploits the distributed intelligence of
participants in Internet communities. This model is efficient because of two related reasons: it avoids the
inefficiencies of a strong intellectual property regime and it implements concurrently design and testing of
software modules. The hazard of open source is that projects can ‘fork’ into competing versions. However,
open-source communities consist of governance structures that constitutionally minimize this danger.
Because open source works in a distributed environment, it presents an opportunity for developing coun-

tries to participate in frontier innovation.

I. INTRODUCTION

The central economic question posed by the
Internet is how commercial investments can ap-
propriate value from a public good called infor-
mation. Information can be transported and rep-
licated at essentially zero marginal cost and its

use by one party does not preclude use by an-
other. Since information is digitally encoded, its
provision is the service that is facilitated by the
Internet. Internet companies seek to collect fees
and payment on information services. The diffi-
culty in finding mechanisms to extract payments
on the provision of a public good explains, to a

! We would like to thank the Reginald H. Jones Center, the Wharton-SMU Research Center at the Singapore Management
University, and the Carnegie Bosch Institute for financing of the research. We would also like to thank Chuck Murcko, Paul David,
Andrew Glyn, an anonymous referee, and participants in the Oxford Review’s seminar on the Internet.

248

©2001 OXFORD UNIVERSITY PRESS AND THE OXFORD REVIEW OF ECONOMIC POLICY LIMITED

large extent, the high death rate among Internet
ventures.

Thereis, however, another side to the consequences
of the economics of information. The public-good
quality of information on the Internet favours the
voluntary provision by users. In some cases, this
provision is sustained on a long-term and ongoing
basis. We can describe the participating members
as forming a community to which they share alle-
giance and loyalty. These communities are eco-
nomically interesting when they constitute not only
social exchange, but also a work organization that
relies upon a distributed division of labour.

A simple example of a distributed division of labour
isan intranet that supports communication and work
among employees in a corporation. Work can be
sent back and forth, even across time zones. Teams
can be physically dispersed. There are still two
important background aspects to this exchange.
The first is that the corporation pays the workers.
The second is that the firm has the standard property
rights to the product of their cooperation.

From an economic perspective, the startling aspect
of open-source development of software is that
people cooperate in the absence of direct pay and
property right claims. Software is quintessentially
an information good insofar as it can be entirely
digitally encoded. In addition, its demand is influ-
enced by its dissemination. The utility to the con-
sumer of a given software program frequently
increases with the number of users. This network
externality offers, consequently, the potential for a
firm to earn sustainable rents by gaining a dominant
position in the market that could impede entry.
However, the critical institutional feature to main-
tain this model is the efficacy by which intellectual
property claims are upheld.

Open source means that the intellectual property
rights to software code are deposited in the public
domain, and hence the code can be used and
changed without requiring a user fee, such as the
purchase of a licence. There are thus two dimen-
sions to open-source development: public owner-
ship of the intellectual property and a production
model by which programming work is accomplished
in a distributed and dispersed community.

B. Kogut and A. Metiu

The recent literature on open source has focused on
the economic paradox of why people contribute to
apublic good. Of course, this paradox is not unique
to open source. Experimental economics routinely
finds that people contribute more to the provision of
public goods than can be predicted by self-interest
(Frey and Oberholzer-Gee, 1997). The natural reso-
lutions to this paradox are to tie provision to intrinsic
rewards or to supplementary extrinsic rewards. An
intrinsic reward is the satisfaction of ‘helping out’ as
a form of gift-giving. In this view, people are
altruistic because they share membership in com-
munities that sustainreciprocity and identity. Extrin-
sic rewards would be the positive effect of a
contribution on the reputation of a programmer, thus
signalling his or her merit in a competitive job
market.

These resolutions surely have a bearing upon ex-
plaining the motivations of participants, but the focus
on the paradox of the provision of public goods
distracts from a more far-reaching observation. The
rapid growth of open-source development suggests
that the traditional methods of software develop-
ment are often inefficient, and these inefficiencies
are permitted only due to the imposition of legal
institutions to enforce intellectual property right
claims. That is, firms enforce intellectual property
by achieving secrecy through the organization of
software production within their own organizational
boundaries. Open-source development exists be-
cause, once property rights are removed from con-
sideration, in-house production is often revealed as
less efficient.

There are, then, two related hypotheses that explain
open-source software.

Hypothesis one: secrecy and intellectual property
create incentives that lead to behaviours that render
economic activity less efficient.

These behaviours include excessive patent claims,
litigation as deterrence, and the lack of access to
ideas by those without ownership claims. This hy-
pothesis is the standard assumption in economics,
but is usually believed to offer the second-best
solution to market failure: innovators will not inno-
vate if they do not have patent protection. Open
source challenges this theory of the second best.

249

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

Hypothesis two: the production model of open
source is more efficient than in-house hierarchical
models.

The central observation that leads to hypothesis two
is that the concurrence in design and testing of
software modules utilizes more efficiently the dis-
tributed resources connected by the Internet.

Our claimis that concerns over intellectual property
create additional inefficiencies, plus prevent the
deployment of more efficient production models.
Once this is recognized, the interesting inquiry is to
compare different open-source development mod-
els regarding their productivity and their effects on
product design. We turn to this comparison after
considering first the sociological background to
open source.

Il. COMMUNITIES OF PRACTICE

The Internet is a technological system that relies
upon acommunication backbone consisting largely
of fibre optics and packet switching and a set of
software protocols that allow for inter-operability
between distributed machines and operating sys-
tems.

The other side to the Internet is its utility as a means
of communication and collaborative work that pre-
dates the commercial explosion. The Internet was
developed first by the US military, and then by
federal programmes to create a communication
network among research sites. From the start, then,
the Internet was conceived as a communication
mechanism for the dissemination of ideas and as a
means to support distributed collaboration. The
diffusion of the fundamental protocols (e.g. Trans-
mission Control Protocol/Internet Protocol (TCP/
IP), Hypertext Transfer Protocol (HTTP), Hypertext
Markup Language (HTML)) arose out of research
laboratories, such as CERN in Geneva. Tim Berners-
Lee, who contributed the basic hypertext protocols
that support the World Wide Web, noted that the
Internet arose through ‘webs of people’ tied to-
gether through participation in research consortia
(Berners-Lee and Fischetti, 1999). In other words,
the Internet is not only a technology, it is also a
community of developers.

250

The World Wide Web is an open-source software
program. The property rights to these protocols lie
in the public domain and anyone can access the
code, that is, the written program itself. An open-
source document is much like a physics experiment
to which hundreds of researchers contribute.

Open-source software appears as less puzzling
when its production is compared to the production of
research in an academic community. Science has
often been described as a conspiracy constructed to
provide incentives to researchers to invest their time
in the production and public dissemination of their
knowledge (Dasguptaand David, 1994). To support
these efforts, there are strong norms regarding the
public ownership of knowledge and the importance
of public validation of scientific results. Scientists
are rewarded by status and prestige that can only be
gained by the public dissemination of their research.
In effect, the norms regarding research and its
publication are aimed at rendering scientific results
into a public good that can be accessed by one party
without diminishing its consumption by another.

This model of scientific research conflicts strongly
with the commercial interests of private enterprise
to create innovations that are protected by strong
intellectual property rights or by secrecy. The argu-
ment for the protection of intellectual property relies
traditionally upon the theory of the second best.
Society would be better off with the dissemination of
innovations, but then inventors would lack the incen-
tives to innovate. This argument is clearly at odds
with the insistence in the scientific community on
public access and validation of research. There is,
then, a stark division between the norms that insist
upon the public quality of scientific research that
prevail in universities and research institutions and
the concern of private enterprise to secure property
rights to ideas and innovations.

Yet, many of the important contributors to the
Internet and to open source were located in private
enterprises. This blurring ofthe public and private is
not unique to the Internet, but is to be found in the
close networks of scientists working for biotechnol-
ogy and pharmaceutical companies and other indus-
trial research laboratories that depend upon the
production of basic research. It is also to be found
in the community of software developers, many of

whom were employed by industrial laboratories that
originally placed their software in the public domain.
This clash between the private and pubic spheres is
what makes the creation of the Internet such an
interesting blend of economic incentives against a
sociological landscape. However, there is a deeper
issue involved than simply understanding these two
dimensions to the historical development of the
Internet. Commercial firms’ insistence on private
property is not only at odds with the norms of the
scientific community which built the Internet, but is
also at odds with an emergent model of distributed
production that, for some tasks, appears far more
efficient than historical alternatives.

There is, then, an important sociological aspect to
understanding the origins of open-source develop-
ment. Private claims to intellectual property are
often seen as morally offensive owing to their
distributional consequences and the fact that ex-
cluded groups are deprived of the benefits. It is
fundamental in understanding the origins of open
source to acknowledge the deep hostility of pro-
grammers to the privatization of software. Early
software, because it was developed by monopolies
such as telecommunication companies, was created
in open-source environments and freely dissemi-
nated. The creators of these programs were well
known in the software community. They wrote
manuals, appeared at conferences, and offered
help.

Earlier, we noted that the open-source community
shares many of the properties of science. It is also
similar to the internal labour markets that now are
part of the standard economic textbook description.
In their seminal analysis of internal labour markets,
Doeringer and Piore (1971) noted that work was not
simply the conjunction of impersonal supply and
demand curves, but usually found through a match-
ing process conducted within an organization. Criti-
cal to this matching process was the notion of skill
or ‘practice’ by which workers gain experience
specific to the firm and specific to their task.
Apprenticeship often took the form of on-the-job
training. The specificity of these skills drove a
wedge between external and internal markets.

B. Kogut and A. Metiu

An operating system such as UNIX was developed
in a community that spanned the boundaries of
firms. To drive the wedge between the internal and
external markets, AT&T chose eventually to exer-
cise proprietary claims on its use and development.
However, unlike the experience dynamic that sup-
ports internal labour markets, the expertise to de-
velop many software programs exists in a commu-
nity of practice that is wider than the boundaries of
a given firm. In fact, apprenticeship in the software
community consists often of learning by ‘legitimate
peripheral participation’. In the case of open-source
software, this learning rides upon the efforts of
hackers to access software code for their own use
and development.” Itis not surprising that, given this
wide diversity of skills, UNIX subsequently ‘forked’
into a number of competing versions.

There is, then, a conflict between the external
production process of software within a community
and the legal governance structure that restricts
development to those owning the property rights.
Open source does not dissolve this distinction be-
tween the production process and the governance
structure. In all open-source communities there is
an explicit governance structure. The contribution
made by open source is to transfer this governance
structure from the firm to anon-profitbody that does
not own the software.

lil. DESCRIPTIONS OF TWO OPEN-
SOURCE MODELS

There are many software programs that are de-
signed in open-source communities. Table 1 lists a
sample of open-source projects other than Linux
and Apache that we will discuss in-depth. The world
of open-source software is making inroads into
areas beyond operating systems, Internet and desk-
top applications, graphical user interfaces, and script-
ing languages. Forexample, itis also making inroads
in Electronic Design Automation for Hardware
Description Languages (Linux Journal, February
2001, p. 162). Moreover, there are now many
projects designed to make open-source products
more user-friendly (see Table 2).

2 See Lave and Wenger (1991) for their discussion of ‘legitimate peripheral participation’.

251

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

Table 1
Open-source Projects

Name Definition/description
Zope Enables teams to collaborate in the creation and management of dynamic web-
based business applications such as intranets and portals
Sendmail The most important and widely used e-mail transport software on the Internet
Mozilla Netscape-based, open-source browser
MySQL Open-source database
Scripting languages
Perl The most popular web programming language
Python An interpreted, interactive, object-oriented programming language
PHP A server-side HTML embedded scripting language
Other
BIND Provides the domain-name service for the entire Internet

Table 2
Open-source Projects Designed to Make Open-source Products more User-friendly

Name Definition/description

KDE Graphical desk-top environment for UNIX work-stations

GIMP (the GNU Image Manipulation Program) Tasks such as photo retouching, image
composition, and image authoring

GNOME Desk-top environment

The commercial potential of open source rests not
in the ability to charge licence fees, but in demand
for consulting, support, and quality-verification serv-
ices. RedHat, which sells one version of Linux,
competes on the basis of customer service, and not
on the basis of ownership of the intellectual prop-
erty. Another example is Covalent, which is the
leader in products and services for Apache, and the
only source of full commercial support for the
Apache Web server.?

Linux and Apache are two of the most successful
open-source software communities (the World Wide
Web is obviously athird.) Tounderstand better how
open source works, and how the various communi-
ties differ, we provide a short description of both.

(i) Linux

Linux is a UNIX operating system that was devel-
oped by Linus Torvalds and a loosely knit commu-
nity of programmers across the Internet. The name
Linux comes from Linus’s UNIX. In 1991, Linus
Torvalds, a Finnish computer science student, wrote
the first version of a UNIX kernel for his own use.
Instead of securing property rights to his invention,
he posted the code on the Internet with a request to
other programmers to helpupgrade itinto a working
system. The response was overwhelming. What
began as a student’s pet project rapidly developed
into a non-trivial, operating-system kernel. This
accomplishment was possible because, at the time,
there already existed a large community of UNIX

3 For a more comprehensive list of companies, see Krueger in Wired magazine, 7 May 1999, available at http://www.wired.com/

wired/archive/7.05/tour.html

252

B. Kogut and A. Metiu

Figure 1
Growth of Linux: Number of Users and Number of Lines of Code

18000 3500

16000 - | 3000
14000 - —_
- 2500 8
2 12000 g
2 3
Z 10000 | [0S
2 8
= 8000 7 - 1500 8
: 5
26000 A -
F 1000 2
4000 - —

2000 L 500

0 - 0

1991 1992 1993 1994 1995

1996 1997 1998 1999 2000

—e— Users —— Lines of code

Sources: RedHat Software, Inc. and Forbes, 10 August 1998.

developers who were disenchanted by the fact that
vendors had taken over UNIX development. They
also were unhappy with the growing reliance on
Microsoft’s proprietary server software.

The Linux development model is built around
Torvalds’s authority, described by some as ‘be-
nevolently’ exercised.* Legally, anyone can buildan
alternative community to develop other versions of
Linux. In practice, the development process is
centralized, being distributed but subject to hierar-
chical control. New code is submitted to Torvalds,
who decides whether or not to accept it, or request
modifications before adding it to the Linux ker-
nel. In this sense, Torvalds is the undisputed
leader of the project, but there is no official or-
ganization that institutionalizes this role. As Linux
grew in popularity and size, Torvalds became
overwhelmed with the amount of code submitted
to the kernel. As Linux members noticed, ‘Linus
doesn’t scale.” Therefore, Torvalds delegated large
components to several of his trusted ‘lieutenants’
who further delegated to a handful of ‘area’ own-
ers. Nowadays, several developers have more-or-
less control over their particular subsections. There
is a networking chief, a driver chief, and so forth.
While Torvalds has ultimate authority, he seldom

rejects a decision made by one of these sub-admin-
istrators.

Torvalds accumulates the patches received, and
then releases anew monolithic kernel incorporating
them. For software that does not go into the kernel,
Torvalds does not prevent others from adding spe-
cialized features. These patches allow even greater
customization without risking the integrity of the
operating system for the vast majority. Sometimes
optimizing for one kind of hardware damages the
efficiency for other hardware. Some users require
‘paranoid security’ that, by definition, cannot be
useful if disseminated; or, some incremental innova-
tions are too experimental to inflict on everyone.

The number of contributors also grew dramatically
over the years, from Linus Torvalds in 1991 to
10,000 developers in 1998 (Forbes, 10 August,
1998). Figure 1 portrays the remarkable growth in
the number of Linux users (16m in 2000) and in the
product’s lines of code (2.9m in 2000). In terms of
server operating systems shipped, Linux’s market
share was 24 per cent in 1999. According to Inter-
national Data Corporation, over the next 4 years,
Linux shipments will grow at a rate of 28 per cent,
from 1.3m in 1999 to 4.7m in 2004.°

* See an interview with Brian Behlendorf: http://www.linux-mag.com/2000-04/behlendorf 01.html. Even Torvalds views
himselfas governing by his acknowledged software expertise and skills as a project manager (see Appendix to DiBonaetal., 1999.)
3 See IDC report at http://www.idc.com/itforecaster/itf20000808.stm

253

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

(ii) Apache

The Apache HTTP server project is a web server
originally based on the open-source server from the
National Center for Supercomputing Applications
(NCSA). A web server is a program that serves the
files that form web pages to web users (whose
computers contain HTTP clients that forward their
requests). Web servers use the client/server model
and the World Wide Web’s Hypertext Transfer
Protocol. Every computer on the Internet that con-
tains a web site must have a web-server program.
The name reflects the practice of university-labora-
tory software being ‘patched’ with new features
and fixes (‘a patchy server’).

The project was started in 1995 to fix an NCSA
program. For most of its existence, there have been
fewer than two dozen people seriously working on
the software at any one time. The original group
included eight people who later became known as
webmasters, and many who went on to start open-
source projects at commercial enterprises. Several
ofthe original members came from the University of
[linois, which also spawned the web browser that
became Netscape. The original group constituted
the Apache core, and is responsible for the primary
development of the Apache HTTP server.

The development for the Apache model is federal,
based upon a meritocratic selection process. While
access to the source code and the history informa-
tion of changes is available to anyone, the ability to
make changes is reserved for the Apache board,
comprised of people that have been chosen because
of proven ability and past contributions. Other con-
tributors to Apache can join three different groups.
The developer e-mail list consists of technical dis-
cussions, proposed changes, and automatic notifica-
tion about code changes, and can consist of several
hundred messages a day. The Current Version
Control archive consists of modification requests
that resulted in a change to code or documentation.
There is also the problem-reporting database in the
form of a Usenet that is the most accessible list,
consisting of messages reporting problems and seek-
ing help.

The coordination of the development process is

achieved via two types of rules. The initial rule,
called ‘review-then-commit’ (RTC), was used dur-

254

ing 1996 and 1997. It states that in order forachange
to master sources to be made, a submitted patch
would first need to be tested by other developers
who would apply it to their systems. This rule leads
to atime-consuming process, and it does not encour-
age innovation. Therefore, in 1998 a new process
was introduced, the ‘commit-then-review’ (CTR).
CTR speeds up development while exercising qual-
ity control. However, it demands vigilance on the
partofthe development team. Controversial changes
need first to be discussed on the mailing list.

Mailing-list discussions typically achieve consensus
on changes that are submitted. However, particu-
larly controversial topics may call for a vote. Be-
cause Apache is a meritocracy, even though all
mailing-list subscribers can express an opinion by
voting, their actions may be ignored unless they are
recognized as serious contributors.

New versions of Apache are released when devel-
opers achieve consensus thatitis ‘ready’, and notby
set calendar dates. Someone volunteers to be the
release manager, who then receives ‘code owner-
ship’ (Mockus et al., 2000). The developer has the
responsibility for getting agreement on the release
schedule, ensuring that new commits are not too
controversial, contacting the testers’ mailing lists,
and building the release. Once a release is out,
people start hacking on it.

Apache has a 62 per cent share of the Internet
server market (see http://www.netcraft.co.uk/sur-
vey/). Figure 2 graphs Apache’s steadily increasing
market share, beating out proprietary products such
as Netscape’s and Microsoft’s server suites. Apache
is now an umbrella for a suite of projects such as
XML and Java projects.

IV. INTELLECTUAL PROPERTY AND
LICENCES

The various open-source licences share the funda-
mental trait that the property rights to their use are
placed inthe public domain. They differin the extent
to which they allow public-domain property to be
mixed with private property rights. The historical
trends have been to tolerate a hybrid of both. As
noted earlier, these issues are similar to the conflicts
surrounding public and private property claims to the

B. Kogut and A. Metiu

Figure 2

Growth of Apache’s Market Share

o =
Apache
iz
Microsoft
/_’_’_’ Other
- iPlanet

o J NCSA
ALg1995 0ct1996 Oec1947 Feh1393 Aprzong Mayzool

Source: Netcraft Survey.

results of basic research funded by public research
institutions.

The firstopen-source licence was Richard Stallman’s
General Public License (GPL) created for the
protection of the GNU operating system.® [t was the
decision of AT&T to issue proprietary control over
UNIX that led Stallman to start the GNU Project in
1984 to develop a complete UNIX-like operating
system as free software. Stallman started the Free
Software Foundation (FSF) to carry out this project,
and called his licence ‘copyleft’ because it pre-
serves the users’ right to copy the software.’

As commercial enterprises started to take note of
open-source software, some members of the com-
munity thought they needed to sustain this interest
by toning down the free software rhetoric. On the
basis of the licence for the Debian GNU/Linux
distribution developed by Bruce Perensin 1997, the
Open Source Definition (OSD) was born.® This
licence differs from the GPL. The GPL forces
every program that contains a free software com-
ponent to be released in its entirety as free software.
In this sense, it forces ‘viral’ compliance. The OSD
only requires that a free/open-source licence allow
distribution in source code as well as compiled form.

The licence may not require a royalty or other fee
for such a sale. Consistent with the requirements of
the OSD, the Berkeley System Distribution (BSD)
and Apache licences allow programmers to take
theirmodifications private, i.e. to sell versions ofthe
program without distributing the source code of the
modifications.

The boundaries between the public and private
segments of the software developed by the open-
source community are thus not distinct. Even under
the GPL, which allows double licensing, itis possible
to make money on the commercial version. An
author can release the source code of a project
under an open-source licence, while at the same
time selling the same product under a commercial
licence. It is also possible to make money by devel-
oping proprietary applications for open-source in-
frastructure. Applications that operate independ-
ently (e.g. leaf notes in the software tree) can be
proprietary, but the infrastructure should be open
source.

The open-source licences conflict with most, butnot
all, interpretations of the functioning of a patent
system. Mazzoleni and Nelson (1998) note recently
that patent law serves several competing functions.

¢ GNU is a recursive acronym for ‘GNU’s Not UNIX’s’, and it is pronounced ‘guh-NEW”.
7 For these efforts, Stallman was called ‘the last hacker’ in a book on the beginnings of the computer (Levy, 1984).
8 For more details, see http://www.debian.org/social_contract.html#guidelines

255

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

The first function is the resolution of market failure
to reward innovators. Since inventions can be cop-
ied, the inventor requires an enforceable property
claim in order to have a temporary monopoly to
extract an economic return. But patents also serve
other functions. They place in the public domain the
knowledge ofthe invention and they establish prop-
erty rights to important ‘gateway technologies’ that
permit the further development of derived inven-
tions in an orderly way. The critical feature of these
arguments is the observation that research is an
input and a product. By protecting the product, the
danger is to slow progress by restricting the use of
the innovation as an input into subsequent efforts.

The modern economics and law tradition in property
rights has argued that patents are a solution to the
‘tragedy of the commons’ problem. In a seminal
article, Hardin (1968) argued that public goods are
prone to be overused when too many owners have
the right to use them, and no owner has the right to
exclude another. Hardin’s explanation has also
fuelled the policy of privatizing commons property
either through private arrangements (Ostrom, 1990)
or the patenting of scientific discoveries.

More recent legal writings have, however, ques-
tioned this tradition. Heller and Eisenberg (1998)
have pointed out that public goods are prone to
under-use in a ‘tragedy of the anticommons’ when
too many individuals have rights of exclusion of a
scarce resource. An example of under-use of a
scarce source is the fragmentation of rights in
biomedical research in the USA. The need to
access multiple patented inputs may deter a user
from developing a useful product.

In recent years, there has been considerable atten-
tion paid to the cost of excessively strong property
regimes by which to reward innovation. In particu-
lar, the recent expansion of the legal protection of
software from copyright to patents has been decried
as a threat to innovation and to the sharing of
knowledge in fast-paced industries. David (2000)
has noted the dangers of this type of encroachment
in the commons of academic research. Similar
problems arise in other industries. Lerner (1995), for
example, found that patents by large firms in bio-
technology have effectively deterred smaller firms
from innovating in these areas. In other words, the

256

shortcomings of the patent-awarding process de-
feat the stated purpose of the patent system to
provide incentives to innovate. Because firms use
the legal system strategically, the second-best argu-
ment for patent protection becomes less clear. The
implication is that no protection might, in some
cases, dominate the policy of providing monopoly
rights to the exercise of a patent.

American law has permitted the violation of private
property if the loss of public access is considered to
be excessive. Merges (1999a) cites the case of
litigation over the right to built anew bridge over the
Charles Riverin Boston. In 1837, the courts ruled in
favour of the right of public access and against a
company that had secured an exclusive franchise to
operate bridges over the Charles River. Similarly,
courts have rarely upheld the claims of companies
to deter former employees from exploiting an idea.
Hyde’s (1998) study of the Silicon Valley shows
that the ‘law in action’ in the region encourages
rapid diffusion of information by protecting start-ups
and employee departures.

Various solutions to the fragmentation of rights have
been proposed in recognition of the fact that owner-
ship and control of the cornerstone pieces on which
the digital economy is built are crucial issues for
economic policy. To meet the need of inter-oper-
ability among standards, Merges proposed patent
pools as solutions that reduce the volume of licens-
ing and lead to greater technological integration
(Merges, 19995b). Recently approved pools, such as
the MPEG-2 pool that brings together complemen-
tary inputs in the form of 27 patents from nine firms,
could serve as a guide to for other industries. The
pool was an institutional expression of the creation
ofthe MPEG-2 video compressiontechnology stand-
ard. Patent-holders license their MPEG-2 patents to
a central administrative entity that administers the
pool on behalf of its members. The pool includes
only essential patents, i.e. those patents required to
implement a widely accepted technological stand-
ard. Patent pools suffer, however, from a number of
problems, the mostimportant one being the potential
for a hold-up by one of the parties.

A general patent licence avoids this potential by a
‘viral’ quality to enforce compliance. The GPL is
unique in its provision that does not allow program-

mers to take modifications private. This ‘viral’
clauseresults in all software that incorporates GPL-
ed programs becoming open source as well. As
noted above, patents serve two different functions:
to incite innovation and to encourage incremental
exploration. Public licences, such as the GPL, per-
mit this additional function to operate, while obviat-
ing the negative consequences of a second-best
policy. Since anyone has the right to use and modify
an open-source software program, these licences
provide maximum freedom for the exploitation of
incremental innovations.

It is, however, the more pragmatic licences that
support Apache that pose a danger to the incentives
to form open-source projects. The licences that
permit a blending of open and proprietary code put
at risk the ideals on which the community has
been built. For open-source contributors and
advocates, intellectual property is a commons
that needs to be protected from enclosure.’ As
such, open source provides an answer to the frag-
mentation of protected—patented or copyrighted—
knowledge. Moreover, the open-source licences
allow the community to protect the code it produces
and to induce compliance with the philosophy ex-
pressed in these licences. It is these licences that
keep the code in the commons, and they protect the
generalized reciprocity that characterizes the com-
munity culture.

(i) Governance Structure

However, the licences may not be enough by them-
selves. The question then is whether there are in
place governance structures that will prevent frag-
mentation of code into proprietary islands. Law-
rence Lessig (1999) made an important argument
that software code contains the constitutional rules
by which participants behave in virtual communities,
such as chat rooms. For open-source development,
the causality runs the other way. The different
governance structures influence the development
of the code in at least two important ways. The first
is that every open-source software program runs
the danger of “forking’, as seen in the case of UNIX
orinJava. The second is that organization by which
work is delegated influences the product design.

B. Kogut and A. Metiu

Neither Linux nor Apache has forked into compet-
ing versions. The Apache governance structure has
the advantage of being coalitional. The coalition
itself can change, as participating developers can
migrate to more important roles depending upon
their contribution. It is thus easier to organize a
response to potential efforts to ‘fork’ the code. The
Linux community is also hierarchical, as we saw, but
highly centralized on Torvalds. If Torvalds himself
should play a less central role and hence the role of
the charismatic leader (in Weber’s sense) fades,
then the methods by which disputes would be
resolved are not at all obvious.

There is the interesting issue of whether the design
of the product itself can force compliance. For
example, initially Torvalds wrote the kernel as an
integral unit, contrary to academic opinion. How-
ever, overtime, ittoo became more modular. Apache,
by virtue of its coalitional structure, from the start
was very modular. There is thus convergence in
product design, though the initial structure of the
products reflected the differences in the govern-
ance structures of the two communities. A question,
largely unexplored, is whether the vestiges of the
Linux design force agreement on the interfaces
between the modules and the kernel and core
modules. In this case, the choice of technological
design might force compliance to a standard. How-
ever, as this possibility is not compelling, it is
unsurprising that Linux should be protected under a
GPL that requires all code to be non-proprietary. In
this way, if the code should be balkanized, it will not
atleast be proprietary. The Apache licence does not
prevent proprietary code from being mixed with
open source, but it also has a stronger governance
structure to respond to defectors.

In conclusion, the open-source licences generally
have the advantage of forcing the code into the
public domain. They thereby favour a dynamic by
which incremental innovations can be rapidly con-
tributed to improve the code and to add functions.
The danger of open-source development is the
potential for fragmenting the design into competing
versions. Governance structures offer some poten-
tial for preventing ‘forking’, as well as technological
choices that might force compliance.

® See interview with Tim O’Reilly in the Linux Journal, February 2001.

257

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

V. THE SOFTWARE PRODUCTION
PROCESS

The second argument for open-source software is
that it offers a better model for development. There
is an active debate in the software literature regard-
ing how much software development is ‘craft’ and
how much is ‘routinized’. The craft nature of soft-
ware development was strained by the demand for
‘integral’ programs thatrequired thousands of engi-
neers. Brooks (1975) documented the difficulties
posed by the creation of the operating system for the
IBM 360 large-frame computer. A major problem
for the design of sophisticated software programs
has been reducing the complexity in the develop-
ment process.

In traditional software production processes, two
fundamental contributions have sought to reduce
this complexity. The first is the use of ‘hidden
knowledge’ incorporated in a module, with team
managers focusing on interfaces to optimize overall
functionality. The second contribution has been the
partitioning of software development into discrete
steps that can be conducted sequentially or concur-
rently. Both of these principles are used in open-
source development.

While similar principles of design are used, open
source benefits from two sources of efficiency gain.
The first is the efficiency of implementing produc-
tion in a distributed community of practice that
permits frontier users also to be contributors. This
gain is especially striking in light of von Hippel’s
finding that many innovations originate with users,
notproducers (von Hippel, 1988). The second source
is concurrent debugging and design. Whereas it is
standard practice for software houses to release
beta versions of their products, the release of open-
source code permits a ‘tweaking’ of the code on a
decentralized basis that can then be incorporated
into official releases. It would be helpful to look at
both of these sources of efficiency gains in more
detail.

(i) User Motivation

The critical question posed by an open-source li-
cence is whether there are sufficient incentives for
developers to contribute effort to innovation. One

258

claim is that developers contribute out of a sense of
‘altruism’. Indeed, there is considerable evidence in
economic behaviour that people ignore economic
calculations in their decisions. For example, the
experiments by Kahneman ez a/. (1986) and Bies et
al. (1993) pointed to the role of fairness, by which
people share a fixed reward. People also defect less
than the prediction on prisoner-dilemma games.
Defection falls dramatically with communication
and with very simple screening devices (Ostrom et
al.,1992; Frank, 1988). The importance of reciproc-
ity in the exchanges among members of the open-
source community has been recently documented
by Lakhani and von Hippel (2000). Their study of
the support groups for the Apache web server
shows that the most important reason for people
posting answers on Usenet groups is the desire to
help because they have been helped by others, or
because they expect to need others’ expertise in the
future.

Lerner and Tirole (2000) propose an explanation
that does not rely upon altruism, or identity. They
argue that contribution to an open-source project is
much like a tournament that signals merit. Contribu-
tors enjoy improved prospects in the labour market
by signalling their merit.

These two perspectives of gift-giving and labour-
market signalling reflect two different views of
motivation. Gift-givingreflects an ‘intrinsic’ motiva-
tion, whereby the individual finds reward in the
public validation ofhis or her value. Labour-market
signallingis an ‘extrinsic’ motivation thatties contri-
bution to pecuniary reward. Both motives may in
factbe operating, though it would seem that commu-
nities with mixed motivations often dissolve owing to
obvious free-rider problems. Indeed, many labour-
supply models have noted the problem of signalling
false quality. An efficient wage is one of many
devices suggested to attain effort and quality from
workers when defection is probabilistic.

The importance of distinguishing between these two
motivations is central to the classic study on gift-
givinginwhich Titmuss (1971) found that the extrin-
sic reward of paying for blood expands the supply
butalso makes voluntary contributions less intrinsi-
cally rewarding. The consequence is, ironically, the
potential destruction of the market for blood by

increasing uncertainty over quality.'® These much-
discussed results have two implications. The first is
that the donors themselves have the bestknowledge
of'the likely quality of their blood. Given the existing
technologies and this information asymmetry, it
makes sense to reduce potentially the blood supply
butgaina ‘free’ filter to be imposed by the donor that
leads to an overall higher-quality supply. The second
is that the donor is also a potential recipient. In other
words, a voluntary policy provides a highly moti-
vated donor.

There is little evidence that open-source partici-
pants are more motivated. Indeed, this conclusion
would appear to be hard to defend on the existing
evidence, especially if effort must be acquired for
less interesting projects. However, the more rel-
evantdeduction is that the open-source model relies
upon knowledgeable users to contribute as develop-
ers. Itis not the average motivation that may matter,
but rather the attraction of highly motivated and
capable talent to the project. In this sense, open
source more effectively exploits the intelligence in
the distributed system.

(ii) Concurrence of Debugging and Code-
writing

We claim that open source exploits the intelligence
in the distributed system. The development of com-
plex software products poses severe engineering
and managerial difficulties. To meet the challenge
of reducing the costs of producing complex soft-
ware, many companies adopted structured ap-
proaches to software development. Cusumano’s
study of the ‘software factory’ documents how
software design moved from art to routinized tasks
manipulating standardized modules (Cusumano,
1991). This approach culminated in an attempt to
rationalize the entire cycle of software production,
installation, and maintenance through the establish-
ment of factory-like procedures and processes.

The factory production process is not, however,
well suited to all software design processes. Glass
(1995) views software as a creative enterprise that
cannotbe fully routinized. Methodologies to convert
design into a disciplined activity are not suited to

B. Kogut and A. Metiu

addressing new problems to be solved (1995, p.41).
At the same time, writing of code involves solving
the detail-level problems left unsolved in an inevita-
bly incomplete design.

The factory approach to software development
applies the Babbage principle of the mental division
of labour. In this model, intelligent work is special-
ized to the design group, code writing is given to a
less skilled group, and debugging and maintenance
to an even less skilled group. 4 reasonable pro-
duction function for this kind of process is a
‘weak link’ chain, where the least productive
element in the process determines the output (see
Becker and Murphy, 1992, for an example).

The interactive approach suggests a production
function in which value is maximized, subject to the
constraints of threshold quality and time to market.
This process will be less structured than a ‘water-
fall’ sequence, where the design stage precedes
coding and testing, but will allow for concurrent
design and implementation. This model suggests
that the software production is as good as its
most productive member. It is in this sense that open
source exploits the intelligence in the communitys; it
provides a matching between competence and task.

Open-source development permits this resolution of
complexity by consistently applying the principles of
modular design. The modularization of software
evolves through a series of complex adaptations.
Open source has several traits in common with the
description by Baldwin and Clark (2000) of the
recombinative evolution of the assembly of compo-
nent modules of computers. By relying upon an
external market that proposes incremental module
improvements, computer assemblers benefit from
the distributed intelligence of competing suppliers. It
is not surprising that some have taken this to be the
key element to open-source development. For ex-
ample, Axelrod and Cohen (2000) explicitly treat
Linux as an example of a complex adaptive system.
The open-source licences permit distributed and
uncoordinated developers to propose variants to the
existing program. These variants are then submitted
to a selection process that chooses the better-
performing program.

!0 The findings that monetary rewards can have a negative effect on motivation are not new—see Lepper and Greene (1978) and,

more recently, Gneezy and Rustichini (2000).

259

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

Table 3
Contributions to Linux and Apache

Contributions/person Linux contributors Apache contributors
1 1,866 232
2 355 36
3 110 16
4 44 9
5 17 5
6 12 2
7 2 5
8 5

9 5 2
10-19 9 14
20-30 4 5
Total 2,429 326

Source: Our analyses of Apache, and Dempsey et al.’s (1999) study of a subset of the Linux community.

The complex-adaptive-system approach captures
the advantage of using system testing in a distributed
community. However, the community is far more
hierarchically organized for the actual development
of software code than suggested by the metaphor of
apopulation of interacting agents. For the contribu-
tion of large modules, Apache and Linux both assign
these tasks to developers who manage the project.

It is not surprising that, in spite of the large number
of participants in open-source communities, the
actual number of constant contributors is small. We
analysed the ‘Changes’ files to Apache between
March 1995 and February 2000. These files list the
new patches included in each new version of Apache,
as well as their author. The analysis reveals that a
small number of developers are responsible for the
majority of contributions. While there were 326
people who contributed patches during the analysed
period, most of these individuals—232 to be pre-
cise—only contributed one patch per person, and 36
only two patches per person. In contrast, the top five
contributors each made between 20 and 30 changes,
and another 14 individuals each made between ten
and 19 changes. Other researchers have obtained
similar results. Mockus et al. (2000) found that the
top 15 Apache developers contributed more than 83
per cent of the basic changes, and that the changes
done by core developers are substantially larger
than those done by the non-core group. The role of

260

system tester is the function reserved primarily for
the wide community of Apache users. The same
pattern of contributions also holds in the Linux
community. Table 3 shows the frequency count of
the changes from Apache and from a study on a
subset ofthe Linux community (see Dempsey et al.,
1999).

Hence, it is not modularity that gives open source a
distinctive source of advantage, because ittoorelies
on hierarchical development. Rather the source of
its advantage lies in concurrence of development
and debugging. In spite of its unglamorous nature,
maintenance alone can represent anywhere be-
tween 50 and 80 per cent of the average software
budget (Yourdon, 1996). The largest part of the
developer community are not involved with code
writing, but with code debugging.

Raymond (1998) has eloquently summarized the
efficiency of the open-source model in debugging
code: ‘given enough eyeballs, all bugs are shallow’.
Such claims have been substantiated by research-
ers who compared the performance of commercial
and open projects in terms of the speed of debug-
ging. Kuan (2000) found that open-source projects
ranked higher on the debugging dimension than
closed-source projects. Also, Mockus et al. (2000,
p. 6) found that the productivity of Apache develop-
ment s very high compared to commercial projects,

with lean code and lower defect density even before
system test.

The efficiency of the open-source development
model is indirectly established by software firms’
efforts to emulate it, without even realizing it.
Cusumano and Selby (1995) explain that in order to
encourage exchange of'ideas, Microsoft builds soft-
ware teams and cultivates developer networks within
the company. In this sense, Microsoft creates an
internal community to appraise and debug the inno-
vations of software teams. Yourdon (1996) also
notes the company’s practice of instituting the ‘push
back method’ whereby people challenge each oth-
er’s ideas.

Yet, this simulated ‘open-source’ environment dif-
fersnotonly in size, but also by separating final users
from the process. One of the most important contri-
butions by open source is, by releasing the code, to
let users themselves fix the bugs. As often noted, no
one knows the number of bugs in a Microsoft
product, because the software is proprietary. By
placing the code in the public domain, open-source
development corrects bugs concurrently with de-
sign and implementation. Users participate usually
by posting questions and complaints through
‘usenets’. This activity is separate from the design
activity that, as explained above, remains hierarchi-
cally organized.

(iii) When Will We Not See Open Source

Of course, not all software projects are amenable to
open-source development. An operating system,
because it is long-lasting and widespread, can ben-
efit from a system that provides rapid improvement
and has a low catastrophic risk; but for example, a
software system that is tailored to supporting trading
activity on a specific stock market is an unlikely
candidate for open sourcing; the code is too specific
and hence not reusable and the catastrophic risk is
too high.

A product that is not modular would also not be
appropriate for open-source development. A mol-
ecule, for example, is not modular; changing atoms
drastically alters its pharmaceutical properties.
Modularity can be achieved by breaking up the
discovery and trial sequence into many steps. But

B. Kogut and A. Metiu

such steps cannot be done concurrently, so there is
no gain to open-source debugging.

Thus the range of modular to integral will greatly
influence the application of open-source develop-
ment, as well as the speed of the development cycle.
For products that are modular and for which devel-
opment times are short, community development by
open source offers clear advantages. The important
issue is whether the weak appropriability of open-
source development swings the choice towards less
efficient proprietary models of development that
have strong intellectual property mechanisms by
which to appropriate rents to innovation.

VI. CONCLUSIONS ON ITS
ECONOMIC POTENTIAL

As a back of the envelope exercise, it is interesting
to ask whether open source might make any mate-
rial impact on developing countries. Developing
countries present two central features. They have,
in aggregate, the bulk of the world population and,
hence, of the world’s brain power. Yet, they have a
minuscule share of world technological innovation.
This disequilibrium has surely been a potent force in
explaining the migration of educated individuals
from poor to rich countries.

Can open source provide an alternative model
whereby innovation can occur on a more distributed
basis? Over the past 10 years, the Indian software
industry has grown at annual rates of over 50 per
cent. The industry’s revenue in the fiscal year 1999/
2000 was $5.7 billion. The most prominent centre of
software development in India is Bangalore, which
accounted for over a quarter of India’s total soft-
ware exports in 1999/2000.In 1991, the government
lowered tariffs on foreign goods and loosened in-
vestmentrestrictions. The Indian success in capital-
izing on this liberalization is aided by the large and
highly educated work-force of engineers. India
produces about 70,000—85,000 software engineers
annually, along with about 45,000 other IT gradu-
ates. The government plans to double the intake of
IT graduates for the 2001-2 academic year.

The Indian industry is not large relative to total GNP
orto total employment. As low value-added links in

261

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

the global software production chain, it would take
rather improbable multipliers on the domestic
economy to lead to the expectation that they could
be engines for growth. Yet, if the value added in
their software contribution should increase, then a
more dynamic scenario is feasible. The critical
question is whether Indian companies can move
from ‘body-shop’ services to high value-added in-
novations. Can adeveloping country join the frontier
of innovation or is it trapped in the seesaw of low
value-added exports of products and high value-
added exports of human capital to developed coun-
tries?

In this regard, open source poses a body of policy
questions that are familiar to economists and policy-
makers regarding competition regulation and intel-
lectual property rights. The traditional dilemma for
anti-trust regulation and law is the balance between
providing incentives for innovation by allowing for
monopoly profits and yet avoiding the foreclosure of
access to intellectual property that serves as a
complement to other innovative endeavours. The
doctrine of essential facility has sought to address
this dilemma.'' Software operating systems, such
as Microsoft’s Windows, are examples of such
essential facilities. The regulatory and legal solution
to treating essential facilities has been to respect the
monopoly profits associated with the primary mar-
ket, but to seek to require access for the purpose of
entry into new markets. However, this solution is
cumbersome and expensive; it addresses the issue
ofintellectual property rights without acknowledg-
ing that it would not permit the operation of the
production model of open source.

The primary policy implication of open source is to
emphasize that excessive intellectual property re-
gimes prevent the implementation of production
models that the Internet makes far more feasible
today than previously. As we noted earlier, the

open-source community shares many properties
with the conduct of research by scientists. Itis ironic
that the trend in intellectual property of research
content has been towards privatization of the com-
mons, such as in the commercialization of data
services and interference with ‘fair use’ under
copyrightlaw through digital signatures (see David,
2000). However, the loss to the academic commu-
nity is not simply the exclusion due to limited finan-
cial resources to purchase these data. The loss is
also the erosion of communal values that undergird
an open production model for research that is
impressively efficient in creating incentives for
individuals to invest in research and its dissemi-
nation.

The Internet is itself the outcome of a combination
ofpublic and private incentives. Sinceits utility isthe
provision of information goods that are both outputs
and inputs for further innovation and research, the
dissemination of information is desirable. Conse-
quently, the Internet is bound to be marked by deep
conflicts over the intellectual property as a right
granted by legal discretion versus entitlement. The
experience of open source poses a fundamental
challenge to the traditional concerns over the ef-
fects of weak intellectual property ‘rights’ on inno-
vation by representing an endogenous mechanism
of global innovation that offers an efficient produc-
tion model. In a time of deepening disparities in
world incomes and massive migration flows of
educated people from poor to rich countries, this
alternative model deserves close attention in chang-
ing the tone of the debate. Open source represents
the emergence of a production model ideally suited
for the properties of information that can be digitally
coded and distributed. The test of a contest of
intellectual property over information goods must
consider the economic loss of impeding the distrib-
uted organization and production ofknowledge ona
global basis.

' We thank a referee for this discussion.

262

B. Kogut and A. Metiu

REFERENCES

Axelrod, R.,and Cohen, M. (2000), Harnessing Complexity: Organizational Implications of a Scientific Frontier, New
York, Free Press.

Baldwin, C., and Clark, K. (2000), Design Rules. Vol. 1: The Power of Modularity, Cambridge, MA, MIT Press.

Becker, G.S.,and Murphy, K. M. (1992), ‘The Division of Labor, Coordination Costs, and Knowledge’, The Quarterly
Journal of Economics, 107, 1137-60.

Berners-Lee, T., and Fischetti, M. (1999), Weaving the Web: The Original Design and Ultimate Destiny of the World
Wide Web by its Inventor, San Francisco, CA, Harper.

Bies,R., Tripp, T.,and Neale, M. (1993), ‘Procedural Fairness and Profit Seeking: The Perceived Legitimacy of Market
Exploitation’, Journal of Behavioral Decision Making, 6, 243-56.

Brooks, F. P., Jr (1975), The Mythical Man-Month, Reading, MA, Addison-Wesley.

Cusumano, M. A. (1991), Japan s Software Factories, New Y ork, Oxford University Press.

— Selby, R. W.(1995), Microsoft Secrets, New Y ork, Free Press/Simon & Schuster.

Dasgupta, P., and David, P. (1994), ‘Towards a New Economics of Science’, Research Policy,23,487-521.

David, P. (2000), ‘A Tragedy of the Public Knowledge “Commons”? Global Science, Intellectual Property, and the
Digital Technology Boomerang’, All Souls College, Oxford, mimeo.

Dempsey, B.J., Weiss, D., Jones, P.,and Greenberg, J. (1999), ‘A Quantitative Profile ofa Community of Open Source
Linux Developers’, School of Information and Library Science at the University of North Carolina at Chapel
Hill. http://metalab.unc.edu/osrt/develpro.html

DiBona, C., Ockman, S., and Stone, M. (eds) (1999), Open Sources: Voices from the Open Source Revolution,
Sebastopol, CA, O’Reilly.

Doeringer, P. B, and Piore, M. J. (1971), Internal Labor Markets and Manpower Analysis, Lexington, MA, Heath.

Frank, R. (1988), Passions Within Reason: The Strategic Role of the Emotions, New York, W. W. Norton & Co.

Frey,B.S.,and Oberholzer-Gee, F. (1997), ‘The Costof Price Incentives: An Empirical Analysis of Motivation Crowding-
out’, American Economic Review, 87(4), 746-55.

Glass, R.L.(1995), Software Creativity, Englewood Cliffs, NJ, Prentice Hall.

Gneezy, U.,and Rustichini, A. (2000), ‘Pay Enough or Don’t Pay At All’, Quarterly Journal of Economics,115(3),791—
810.

Hardin, G. (1968), ‘The Tragedy of the Commons’, Science, 162, 1243-8.

Heller,M. A.,and Eisenberg, R. S. (1998), ‘Can Patents Deter Innovation? The Anticommons in Biomedical Research’,
Science,2480,698-701.

Hyde, A. (1998), ‘Silicon Valley’s Efficient Abolition of Trade Secrets’, in Corporate Governance Today, Columbia
Law School.

Kahneman, D., Knetsch, J. L., and Thaler, R. H. (1986), ‘Fairness as a Constraint on Profit Seeking: Entitlement in the
Market’, American Economic Review,76,728-41.

Kuan, J. (2000), ‘Open Source Software as Consumer Integration into Production’, Working Paper, Berkeley.

Lakhani, K.,and von Hippel, E. (2000), ‘How Open Source Software Works: “Free” User-to-user Assistance’, Working
Paper No. 4117, Cambridge, MA, MIT Sloan School of Management.

Lave, J., and Wenger, E. (1991), Situated Learning: Legitimate Peripheral Participation, Cambridge, Cambridge
University Press.

Lepper, M.R.,and Greene, D. (eds) (1978), The Hidden Costs of Reward: New Perspectives of the Psychology of Human
Motivation, Hillsdale, NJ, L. Erlbaum Associates.

Lerner, J. (1995), ‘Patenting in the Shadow of Competitors’, Journal of Law and Economics, 38(2), 463-95.

— Tirole,J.(2000), ‘The Simple Economics of Open Source’, NBER Working Paper 7600.

Lessig, L. (1999), Code and Other Laws of Cyberspace, New Y ork, Basic Books.

Levy, S. (1984), Hackers: Heroes of the Computer Revolution, New Y ork, Dell.

Mazzoleni, R., and Nelson, R. R. (1998), ‘Economic Theories about the Benefits and Costs of Patents’, Journal of
Economic Issues,32(4),1031-52.

Merges, R. P.(1999a), “Who Owns the Charles Bridge? Intellectual Property and Competition in the Software Industry’,
Working Paper, Berkeley.

— (1999b), ‘Institutions for Intellectual Property Transactions: The Case of Patent Pools’, Working Paper,
Berkeley.

Mockus, A., Fielding, R. T.,and Herbsleb, J. (2000), ‘ A Case Study of Open Source Software Development: The Apache
Server’, Proceedings of the 22nd International Conference on Sofiware Engineering, 263—72.

263

OXFORD REVIEW OF ECONOMIC POLICY, VOL. 17,NO. 2

Ostrom, E. (1990), Governing the Commons: The Evolution of Institutions for Collective Action, Cambridge,
Cambridge University Press.

— Walker,J., Gardner, R. (1992), ‘Covenants With and Without a Sword: Self-governance Is Possible’, American
Political Science Review, 86(2),404—17.

Raymond, E. S. (1998), ‘The Cathedral and the Bazaar’, http://www.tuxedo.org/~est/writings/cathedral-bazaar/

Titmuss, R. M. (1971), The Gift Relationship: From Human Blood to Social Policy, New York, Pantheon.

Von Hippel, E. (1988), The Sources of Innovation, New Y ork, Oxford University Press.

Yourdon, E. (1996), Rise and Resurrection of the American Programmer, Upper Saddle River, NJ, Prentice Hall.

264

