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Abstract

We propose a tractable, data-driven demand estimation procedure based on the use maxi-
mum entropy (ME) distributions, and apply it to a stochastic capacity control problem moti-
vated from airline revenue management. Specifically, we study the two fare-class “Littlewood”
problem in a setting where the firm has access to only potentially censored sales observations;
this is also known as the repeated newsvendor problem. We propose a heuristic that iteratively
fits an ME distribution to all observed sales data, and in each iteration selects a protection
level based on the estimated distribution. When the underlying demand distribution is discrete,
we show that the sequence of protection levels converges to the optimal one almost surely, and
that the ME demand forecast converges to the true demand distribution for all values below
the optimal protection level. That is, the proposed heuristic avoids the “spiral down” effect,
making it attractive for problems of joint forecasting and revenue optimization problems in the
presence of censored observations.

Keywords: Revenue management, censored demand, uncensoring, maximum entropy distribu-
tions.

1. Introduction

One of the key challenges of revenue management systems is to accurately forecast demand when

one has only access to observed sales data that may be censored. It is well known in the area that

common uncensoring techniques and their interaction with the iterative application of forecasting

and revenue optimization routines may prevent these systems from making optimal decisions in a

dynamic setting; c.f., Boyd et al. (2001) and Cooper et al. (2006). This paper proposes a tractable

and intuitive approach for incorporating and uncensoring sales data into the demand forecast based

on maximum entropy (ME) distributions that leads to asymptotically optimal control decisions.
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A prototypical problem where the above effect has been observed is that of dynamic airline

capacity allocation decisions. In its simplest form this problem is described as follows: an airline

has a fixed capacity for a flight to sell to the market; there is a low-fare and a high-fare class, and

low-fare demand is realized before the high-fare demand; the key decision is to select how many

units of capacity to “reserve” for the high-fare demand (i.e., make them unavailable for the low-

fare demand that gets realized first) so as to maximize the total expected revenue per flight. The

manager does not have accurate demand information, and uses the sales observations in each flight

to update the respective demand forecasts for the two fare classes. Demand observations may be

censored, when the low-fare demand depletes the capacity that is made available to it, or when the

high-fare demand depletes the remaining capacity for the flight; in both cases the manager does

not know how much extra demand could have been realized in each of these two classes if there was

extra capacity to be allocated. As Boyd et al. (2001) highlighted and later on Cooper et al. (2006)

demonstrated analytically, many common forecasting and demand uncensoring methods generate a

sequence of forecasts and protection levels that “spirals down” to a suboptimal level. There are two

underlying issues: a) the interpretation of censored demand data, and b) the interaction between

control and forecasting, and specifically that the choice of a control at any given iteration (flight)

serves the joint purpose of revenue optimization and demand learning. A simple illustration of the

first issue is the following: suppose that at a particular flight, the manager has 50 units of capacity

available for the high-fare demand, and that all of this capacity ends up being sold. What was the

true high-fare demand for this flight? Was it 50? Was it more? By how much? A naive approach

is to treat the demand as being exactly 50, but this would lead to an underestimation of the true

demand, since the actual observation was the event {High-fare demand ≥ 50}. There are many

heuristics that try to reallocate this sales observation to some other demand level that is greater

or equal to 50, but, as Cooper et al. (2006) show, many of them do not achieve the desired result.

This paper describes a demand forecasting algorithm based on ideas from ME distributions that

can readily incorporate censored sales data, which correspond to fractile observations of the form

shown above. The proposed demand algorithm leads to control decisions (in the form of capacity

protection levels) that converge to the optimal ones for the actual underlying demand distribution.

Background on Maximum Entropy distributions: The entropy of a random variable X

with probability mass function pj for all j on some some support set J is defined by

H(X) := −
∑
j∈J

pj ln pj ;
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it is also common to use the base 2 logarithm in the above definition. Entropy is non-negative

and is a concave function of the probabilities pj . Entropy is a measure of average uncertainty or

disorder or randomness of the random variable. It is also a measure descriptive complexity of the

random variable, i.e., how much information one needs to describe it. As a concept, entropy is

of central focus in the area of information theory, and plays important roles in communications

theory, physics, computer science, probability theory, statistics, and economics. The book by Cover

and Thomas (1991) offers an excellent treatment of information theory, entropy, and explores its

connections and the abovementioned fields.

Entropy has also played a central role in estimation theory. In particular, maximum entropy

distributions are a useful and intuitive tool in fitting unknown distributions to partial informa-

tion about the underlying random variables. The most celebrated example comes from statistical

mechanics, where Maxwell and Boltzmann showed that the distribution of velocities in a gas at

a given temperature is the maximum entropy distribution that corresponds to the temperature

constraint that itself fixes the variance of the distribution. In this setting, the maximum entropy

solution arises naturally as the correct underlying distribution. In other settings, such as the one

that is motivating this study, one may have access to partial information about the underlying

distribution, for example specifications of the moments of the distribution, of its fractiles, etc. The

decision maker is faced with the question of fitting a model that satisfies these specifications, and

in such contexts the maximum entropy criterion provides an approach for how to do that. This

approach was advocated to be used in a broad context by Jaynes (1982)1.

Given a set of specifications of the form
∑

j ri(j)pj = bi for appropriate choices for the functions

ri(·), the canonical ME estimation problem is:

max
p

−∑
j∈J

pj ln pj :
∑
j∈J

ri(j)pj = bi for i = 1, . . . ,m,
∑
j∈J

pj = 1, p ≥ 0

 , (1)

and its solution is

p∗j = eλ0+
∑m
i=1 λi ri(j) j ∈ J , (2)

where λi is the Lagrange multiplier associated with the linear constraint
∑

j ri(j)pj = bi, and

1See Jaynes (1982) for a lengthy discussion of why ME distributions come up naturally in many estimation
problems and natural phenomena. In short, Jaynes argue that by maximizing entropy, one chooses the frequencies
that can produce the observed data in the greatest number of ways. In other words, the ME distribution is the most
“likely” (in the sense defined by Jaynes (1982)) one that is consistent with known data and constraints. Furthermore,
the Entropy Concentration Theorem stated by Jaynes yields a sharp constraint on the entropy of possible outcomes
for a random trial under linearly independent constraints.
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Constraint ME Distribution

Range = S = [a, b] U [a, b]
Mean = µ exp(1/µ)

Mean = µ, variance = σ2 N(µ, σ2)

Table 1: Common constraints and the associated ME distributions.

λ0 is the normalization constant such that
∑

j∈J p
∗
j = 1. Inequality constraints of the form∑

j ri(j)pj ≤ bi can also be added in the above formulation, which is a tractable concave maximiza-

tion problem that can be solved efficiently even in large problem instances. Fractile constraints

that are of particular interest to this paper can be added by setting ri(j) = 1(j ≥ k), where 1(·)

is the indicator function which is equal to 1 when the condition is true, and is 0, otherwise. For

continuous distributions the summations in the objective function and the constraints are replaced

by integration. Some commonly used distributions are the ME distributions that correspond to ap-

propriate constraints (see Table 1). ME distributions are of the parametric form given in (2). The

parametric degree of the ME distribution depends on the specifications that one starts with. This

modeling flexibility is in stark contrast with the common approach of fixing a priori the parametric

form of the distribution, e.g., uniform, exponential, gamma, etc., and then searching for the best

possible match from within that family; it is easy to see that the latter approach may not even

satisfy the problem specifications and introduce significant model selection bias, which is not the

case when fitting the ME distribution.

Proposed solution: Returning to the motivating problem, the key issue faced by the firm

is that of building a good demand forecast using sales data that may be censored. As explained

earlier, censored observations correspond to fractile information. The policy proposed in this paper

is to form a demand forecast by fitting a ME distribution to the observed sales data, which can

incorporate the information from censored observations in the form of conditions of fractile proba-

bilities of the cumulative demand distribution – which is precisely what these observations tell us

about the demand. The resulting ME demand distribution provides a tractable and intuitive way

of “unconstraining” the sales observations. The firm then uses the resulting demand forecast as if it

is the “true” demand distribution, and accordingly computes its protection level for the next flight.

A new sales observation is recorded, and the process repeats. The proposed policy is “passive” or

“myopic” in that it does not actively selects its controls to both extract high revenues and learn

the unknown demand distribution, but the latter is nevertheless achieved through the fitting of the

ME forecast. This is motivated from practical considerations and also leads to a tractable analysis.
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The main analytical contribution of this paper is to establish that the sequence of protection

levels generated by the above approach converges to the optimal control that the firm would select

if it knew the true underlying demand distribution. The latter is defined by an appropriate critical

fractile of the demand distribution, which depends on the relative magnitude of the high and low

prices offered by the firm. The intuition behind the convergence result is fairly simple. Suppose

that after the first k observations, the firm is underestimating the critical fractile of the demand

distribution, e.g., it thinks it corresponds to the point where the demand is equal to 30 when

the correct fractile position is at the point where the demand is equal to 35. Then, the firm

will protect 30 units of capacity for the high-fare demand stream, and will sell-out with a higher

probability than it is optimal. In response, the ME demand forecast will reallocate some of the

censored sales observation to higher demand points, shifting the critical fractile point towards a

higher value. A similar argument applies for the case where the firm is overestimating the critical

fractile. In addition to providing a method for asymptotically computing the optimal protection

level, the ME forecast is also shown to converge to the correct demand distribution at all points

below the critical fractile. For ease of exposition, we assume the low-fare class demand, which

is known to be irrelevant for the optimal protection level, is ample. We briefly discuss in the

concluding section how the results extend to the case of a general low-fare demand distribution.

Finally, the approach of using maximum entropy distributions to uncensor sales observations, and

to incorporate other information on the underlying distribution that one may have is of broader

interest. In the concluding section we give a brief illustration how it could be used in the context

of fitting a willingness-to-pay distribution that can then be used for making pricing decisions.

Another phenomenon that can lead to the spiral down effect is model misspecification, where in

broad terms the mechanism that takes primitive demand as input and generates sales observations

is not captured or modeled accurately. A simple example is when low-fare demand could buy-up

and purchase high-fare tickets when the low fare capacity is depleted, but this effect is not captured

in the process of building demand forecasts. Similar to the effect of demand censoring, other aspects

of model misspecification should be incorporated into the forecasting process so as to be plausibly

captured in the forecasting procedure. While we will not address such issues in this paper, the

ME approach is sufficiently flexible to potentially incorporate and address such issues. Specifically,

the buy-up phenomenon mentioned above can be modeled and accurately accounted for in the ME

demand estimation procedure, albeit with an increase in complexity.

Literature survey: This paper is directly motivated by the observation of the spiral-down
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effect in Boyd et al. (2001) and its analysis in Cooper et al. (2006). Another paper by Weatherford

and S. (2002) has also showed that most heuristic uncensoring techniques do not avoid the “spiral-

down” effect. van Ryzin and McGill (2000) propose an adaptive, Robins-Monro, algorithm that

controls via appropriate feedback signals the protection levels depending on whether the allocated

capacity for some fare class (or set of nested fare classes) is sold out or not; it increases the

protection level when the capacity is sold out, and decreases it otherwise. They prove that the

proposed algorithm converges to the optimal protection levels, and as such avoids the spiral down

phenomenon. A closely related paper is by Kunnumkal and Topaloglu (2009).

There are a set of related papers that develop adaptive inventory ordering policies for the

newsvendor problem when the demand distribution is unknown; see, e.g., the papers by Burnetas

and Smith (2000), Godfrey and Powell (2001) and Huh and Rusmevichientong (2009). The above

sets of papers take the approach of directly adjusting the protection levels or the inventory ordering

decisions, bypassing the demand estimation step that is central in our approach. In contrast, our

paper provides an explicit algorithm for demand estimation based on censored observations, which

is then applied to the airline capacity control problem, but may be of more general interest.

The closest paper to our work is the one by Huh et al. (2011) that proposes to use the demand

estimation procedure based on the non-parametric Kaplan-Meier estimator, and then select the

control based on that estimated demand distribution. They analyze their approach in the context

of the newsvendor model, and prove that their inventory ordering decisions converge to the optimal

newsvendor quanitity defined by a critical fractile. They also show that their demand estimation

procedure asymptotically characterizes correctly the unknown demand distribution up to the critical

fractile position. The results in their paper mirror many of our findings, but the demand estimation

procedures based on the Kaplan-Meier estimator and Maximum Entropy distributions, respectively,

are quite different in the structure of information that can be incorporated, such as additional

information about the moments of the distribution, and their potential applications.

A more recent paper by Besbes and Muharremoglu (2013) study the worse case regret in the

repeated newsvendor problem (like ours) due to censored demand observations, and provide asymp-

totic lower bounds on the performance loss attributed to censoring. They emphasize the difference

between continuous and discrete demand distributions, showing that the latter is more sensitive

to the issue of censoring and to the tension between revenue maximization and demand learning.

The distinction between continuous and discrete demand distributions is one of overall scale and

granularity, e.g., is the demand measured in 100s and 1000s or in 10s – in the former case an error
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of 1 or 2 units is insignificant, whereas in the latter it may have an important impact on perfor-

mance. Our model is motivated by the high-fare class in an airline revenue management problem

and typically ranges in the 10s to 100, so it is best modeled with a discrete demand distribution.

One of the few papers that deal with “maximum entropy” in revenue management literature

belongs to Bilegan et al. (2004) who simply formulate a dual geometric program for the convex ME

problem for capacity allocation and demonstrate how to solve it in a short paper. To the best of

our knowledge the operations management and revenue management literatures have not explored

the use of ME techniques to approximate unknown demand or willingness-to-pay distributions.

Finally, we conclude this section by listing a few references that are partially related to our work.

First, there is a significant body of literature that studies capacity control or newsvendor problems

with uncertain demand distributions using some form of a worst case criterion. Examples in this

area include the papers by Gallego and Moon (1993), Bertsimas and Thiele (2004), Perakis and

Roels (2006), and Ball and Queyranne (2009). The above papers do not involve learning. Second,

there is a growing literature in joint learning and price optimization, which is somewhat related to

the motivating problem and the demand estimation procedure of this paper. Incorporation of partial

information is typically done in a Bayesian setting under some parametric assumptions for the

willingness to pay distribution and using conjugate pairs of distributions to maintain tractability;

see, e.g., Lobo and Boyd (2003), Aviv and Pazgal (2005), Araman and Caldentey (2009), Farias

and Van Roy (2010), and the references therein. Assuming a parametric family of distributions for

the unknown demand runs the risk of model mis-specification. A non-parametric approach that is

asymptotically optimal is due to Besbes and Zeevi (2009).

2. Single-resource capacity control with two fare-classes

We study a repeated version of Littlewood’s two-period capacity allocation problem, where the

distributions for the two classes of potential demand are unknown, but where the seller can try to

learn the demand distributions from (potentially censored) sales observations. We first describe the

static version of Littlewood’s problem under full demand information, and then proceed to pose

the repeated version of this problem with no prior demand information.
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2.1 Littlewood’s model: Full information, static benchmark

A firm has C identical units of a good to sell over two time periods to two demand classes indexed

by i = 1, 2. The class-2 demand, denoted by D2, arrives first and pays a price of p2, followed by

the class-1 demand, denoted by D1, which pays p1 > p2. The salvage value is assumed without

loss of generality to be 0. The two demands are discrete random variables that are independent of

each other, and independent of any capacity control decisions made by the system manager, drawn

from some distributions Fi for i = 1, 2. The firm controls whether to accept or reject each class-i

request for one unit of its capacity, and its objective is to allocate the available capacity to the

two demand streams described above so as to maximize its total expected revenue over the entire

selling horizon. It is well known that the structure of the firm’s optimal policy takes the form of

a threshold, or protection level, denoted by L, which sets the number of units of capacity to be

reserved for the high-fare class demand, D1. That is, class 2 demand requests are accepted as long

as it the remaining capacity left for period 1 for the high-fare demand stream is greater than L,

and are rejected otherwise. In summary, the firm’s problem is to choose the protection level L to

maximize its expected revenue

max
0≤L≤C

E
[
p1 min(D1, max(C −D2, L)) + p2 min(D2, C − L)

]
, (3)

where the expectation is taken with respect to the two demand distributions. The term min(D2, C−

L) is the sales for the low-fare class, which arrives first; and consequently, the high-fare class

sales is the minimum of demand D1 and the remaining number of seats C − min(D2, C − L) =

max(C −D2, L). If D1 and D2 were continuous random variables and partial sales were allowed,

then the optimal protection-level L∗ would be given by the following equality

p1 P(D1 ≥ L∗) = p2 if and only if F1(L∗) = γ := 1− p2/p1. (4)

This condition is commonly referred to as Littlewood’s rule. The left hand side of the above

expression equates the marginal expected revenues from an immediate sale at price $p2 versus a

potential sale in the next period at the higher price $p1. For discrete demand distributions, the

optimal protection level satisfies

p2 < p1 P(D1 ≥ L∗) and p2 ≥ p1 P(D1 ≥ L∗ + 1) ⇔ γ > F1(L∗ − 1) and γ ≤ F1(L∗) (5)
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The optimal protection level is given by

L∗ = inf{L : F1(L) ≥ γ}. (6)

We will make the simplifying assumption that the last inequality in (5) is strict – this is a mild

restriction given that F1 and γ are real-valued. Specifically,

Assumption 1 F1(L∗) > γ.

Equation (5) highlights an additional challenge for the discrete version of the problem: for

a given protection level L, the sales event D1 ≥ L provides a censored observation, and yields

information for the underlying high fare demand only up to L − 1. As a consequence, in order to

identify optimal level L∗, either one needs to sample sufficiently often at level L∗ + 1, or assume

that one can distinguish events D1 = L∗ and D1 > L∗ when high fare sales occur at L∗. Going

forward we will assume we cannot distinguish events D1 = L and D1 > L for any given protection

level L, and consequently that D1 ≥ L is a censored observation. Instead, when the γ-fractile is

estimated to be at position L, we will set the protection level to be L + 1. This will allow us to

draw uncensored observations at level L, which will allow us to verify the optimality of L∗ upon

convergence; while the estimated fractile position is below the optimal level L∗, the experimentation

will help accelerate learning. This is a natural assumption and the experimentation at L + 1 is

occasionally adapted by airlines that open up their protection levels to better sample the underlying

demand distribution.

2.2 Repeated Littlewood’s problem with unknown demand distributions

The model analyzed in this paper is a repeated version of Littlewood’s problem in settings where

a) the distribution of the high-fare demand, D1, F1(·) is unknown, and b) the seller can estimate

the unknown distribution based on sales observations; the distribution for the low-fare demand D2

may also be unknown, but as explained above is not needed for the characterization of the optimal

protection level L∗. In broad terms, the seller can estimate the high-fare demand distribution given

past sales observations. The goal is to describe an estimation procedure and an associated control

policy that will converge to the optimal protection level L∗. The core of the problem is that the

sequence of protection levels affects the sequence of observations, and thus the resulting estimation

output, which may lead to sub-optimal estimation and control outcomes.
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In more detail, we consider a sequence of instances of the two-period Littlewood problem defined

above, which we index by k = 1, 2, . . .. In each instance k, the seller applies the capacity control

Lk, the realized demands are Dk
i , and the realized sales are given by Sk2 = min(C − Lk, Dk

2) and

Sk1 = min(Lk + xk, Dk
1), for the low-fare and high-fare demand stream respectively, and where

xk = (C − Lk − Dk
2)+ is the unused capacity from the low-fare class. The realized revenue is

min(C − Lk, Dk
2) · p2 + min(Lk + xk, Dk

1) · p1.

We make the following assumptions on the demand distributions:

Assumption 2 Dk
2 ≥ C with probability 1 for all k.

Assumption 3 Let S denote the size of the support of F1, and πj = P (D1 = j) for j = 0, 1, . . . , S−

1. Then, πj > ε for some ε > 0 for j = 0, . . . , L∗ and S ≥ 1/ε+ 1.

It is well established that lower price demand does not affect the choice of optimal protection

level in Littlewood’s setup, so one would expect a similar result in this setting. Assumption 1

corresponds to the most aggressive censoring of high fare sales, and proving our result under this

conservative assumption simplifies notation and exposition. We briefly discuss how the proposed

approach can handle a setting where this assumption is relaxed in the concluding remarks. Under

assumption 1, xk = 0 and the realized revenue is (C−Lk)·p2+min(Lk, Dk
1)·p1, for all k. Assumption

2 is an optional mild technical condition that can always be satisfied by selecting S to be sufficiently

large.

The observation history is {(L1, S1
1 , S

1
2), (L2, S2

1 , S
2
2), . . . , (Lk, Sk1 , S

k
2 )}. Under assumption 1,

Sk2 = C − Lk for all k, and thus all information is captured in the sequence Ik := {(Li, Si1)}ki=1.

As discussed previously, we assume that the event Dk
1 = Lk, which results in Sk1 = Lk, provides a

censored observation.

Problem formulation: For all k ≥ 1, given the information set Ik, find a control Lk+1 : Ik →

[0, S − 1] for k ≥ 1, such that Lk → L∗ almost surely as k →∞, for L∗ identified in (6).

Once convergence of the protection levels Lk to L∗ has been established, one could switch to a

more refined criterion that studies some measure of revenue loss from that obtained under L∗, or

some full information benchmark where the firm would observe the demand realization as opposed

to the potentially censored sales observations. We will not pursue this in this paper.
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3. Proposed policy based on Maximum Entropy distributions

The structure of the proposed solution is motivated from what is typically observed in practice,

for example in the airline industry, where a two-step procedure is adopted: a) build some type of

a forecast for Dk
1 based on Ik, and b) compute a protection level Lk+1 given that forecast. Let

FIk denote the estimated high-fare class demand distribution after the first k observations. The

type of policies that we will consider are “passive” or “myopic” in the sense that at every point

in time they select the protection level Lk+1 as if FIk was the correct demand distribution. This

essentially reduces the joint estimation and control problem posed above to one of estimation of a

critical fractile of a demand distribution based on censored observations.

The demand forecasting procedure we propose makes use of a more aggregated form of the ob-

served information, which is independent of the sequence of the various sales observations. Specif-

ically, given Ik, the uncensored and censored information recorded thus far is summarized by the

vectors Kk ∈ RS and Jk ∈ RS , where

Kk
j = # of uncensored observations at position j, and,

Jkj = # of censored observations at position j;

clearly
∑

j(K
k
j + Jkj ) = k for all k. We will summarize this aggregated observation history by

θk ∈ RS×2 defined as follows

θk := (κk, ζk) := (Kk/k, Jk/k); (7)

κkj and ζkj are frequencies of uncensored and censored observations at position j, respectively.

The proposed policy fits a maximum entropy (ME) distribution to the observation history, which

in itself provides a systematic way in which to “re-allocate” the censored sales observations into

possible (higher) demand realizations. The intuition behind this policy is that censored observations

offer fractile information that can be readily incorporated in picking the ME distribution that best

fits the sales observations θk.

Let ηkj = κkj + ζkj be the frequency of observations at j if one does not distinguish between

censored and uncensored observations. Let p ∈ RS+, z ∈ RS×S+ , where pj is the probability assigned

to observing a demand realization in position j, and zij denotes the probability mass allocated to

position j due to censored observations in position i ≤ j. The ME distribution that corresponds to
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the observation vector θk is computed as follows:

max
p, z

−
∑
j

pj ln pj (8)

s.t. pj = κkj +
∑
i≤j

zij , ∀j (9)

∑
j≥i

zij = ζki , ∀i (10)

zij = 0, ∀j < i, zij ≥ 0, ∀i, j (11)∑
j

pj = 1. (12)

The last constrained is redundant since
∑

j(κj + ζj) = 1. The above formulation can be simplified

to the following problem (all proofs are given in the Appendix A):

Proposition 1 Define the auxiliary vector κ̃ ∈ RS+ as follows: κ̃kj = κkj for j = 0 . . . S − 2, and

κ̃kS−1 = ηkS−1. Formulation (8)-(12) can be reduced to:

min
p

∑
j

pj ln pj (13)

s.t. pj ≥ κ̃kj , ∀j (14)∑
i≥j

pi ≥
∑
i≥j

ηki if ζkj > 0 (15)

∑
j

pj = 1. (16)

The algorithm we propose can be summarized as follows:

Algorithm 1: Maximum entropy capacity allocation for two fare-classes

1. At each observation k, update the vector θk := (κk, ζk) according to (7)

2. Given θk, compute the ME probability mass function pθk through (13)-(16); denote the cor-

responding distribution function as Fθk(·).

3. Let Lθk = min{L | Fθk(L) ≥ γ}.

4. Implement Lk+1 = Lθk + 1.

5. Observe new sales in period k + 1 and go to step 1.
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The “passive” or “myopic” structure of the policy is reflected in steps 3 and 4 that treat the

high-fare distribution estimate Fθk(·) as if it is the correct demand distribution in every iteration.

4. Convergence analysis of the ME capacity allocation policy

This section proves that Algorithm 1 yields a sequence of γ-fractile estimates Lθk that converges to

the optimal level L∗. Notice that under our assumption that we cannot distinguish whether a sales

observations equal to the protection level is censored or not, the actual controls Lk+1 = Lθk + 1

will converge to L∗ + 1. That is, the impact of not being able to classify observations at the

protection level as censored or not, implies that the control overshoots the optimal level by 1 unit.

Once learning (and convergence) has been achieved, however, this could be corrected. In addition

to correctly identifying the γ-fractile of the high-fare distribution, the ME demand estimation

approach will correctly approximate the entire high-fare class demand distribution up to L∗. As a

byproduct of our approach one can also show that the estimates of the probabilities that the high-

fare demand will be equal to j, denoted by pkj = PF
θk

(D1 = j), converge to the correct probabilities

πj for all j ≤ L∗; i.e., the forecasting procedure based on ME distributions “learns” the demand

distribution correctly at or below L∗.

4.1 Preliminaries

Let π ∈ [0, 1]S represent the probability mass distribution of the actual high-fare class demand.

Through the ME algorithm, the vector (Kk, Jk) evolves recursively as

(Kk+1, Jk+1) = (Kk, Jk) + (W k+1, Qk+1) (17)

where W k+1, Qk+1 ∈ RS are Bernoulli random vectors satisfying

Pk(W k+1
j = 1) =

πj for j < Lk+1

0 otherwise,

(18)

and,

Pk(Qk+1
j = 1) =


∑

i≥Lk+1 πi for j = Lk+1

0 otherwise,

(19)
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for j = 0 . . . S−1, where Pk(·) denotes conditional probability given the information up to iteration-

k. In other words, vectors W k+1 and Qk+1 track the realization of uncensored and censored

observations at step k + 1. Conditional on the control Lk+1, these Bernoulli random vectors are

independent over k. Note that
∑

j(K
k
j +W k

j ) = k, i.e., the total number of censored and uncensored

observations is equal to k. Recall that θk = (Kk, Jk)/k and note that
∑

j(κ
k
j + ζkj ) = 1; i.e., θk

can be interpreted as probability mass, where we distinguish between uncensored (i.e., correctly

identified mass) in κk and censored mass in ζk, which we will re-allocate using the ME approach.

A result that we will use in the subsequent analysis is the following:

Lemma 1 For θ ∈ R2S
+ and ‖θ‖ = 1, let pθ denote the maximum entropy distribution computed

through (13)-(16). Then, pθ, is continuous in θ.

4.2 Convergence of the protection levels

The proof of our main result will study the sequence {θk, k = 1, . . .}, where θk = [κk, ζk] ∈ R2S
+ .

By construction, ‖θk‖1 = 1 for k = 1, . . ., and therefore since {θk, k = 1, . . .} is bounded and in R2S
+

it follows from the Bolzano-Weierstrass Theorem that it has a converging subsequence. Our main

result shows that all converging subsequences have the same limit with probability 1, and that the

corresponding limiting γ-fractile converges to L∗.

The gist of the proof is the following: 1) for k large, θk will be close to its limit θ̄, which may

depend on the subsequence; 2) due to the continuity of the maximum entropy distribution with

respect to θ, this implies that the ME distribution Fθk gets close to Fθ̄ and as a result the estimated

γ-fractile settles down to its limiting value after some finite point in that subsequence; 3) using the

last observation, we can apply the strong law of large numbers to prove almost sure limits for the

uncensored and censored probability vectors that have a simple and intuitive structure (Lemma

2); 4) finally, we study the ME optimization problem under that limiting structure and derive its

solution in closed form (Lemma 3), from which we can deduce that the limiting γ-fractile has to be

equal to L∗. A small technical issue that could complicate 2) above is if the γ-fractile of the limiting

θ̄ (which we cannot characterize a priori, but ultimately we can establish its structure through a

contradiction argument) is such that Fθ̄(L̄) = γ, i.e., achieves the target fractile with equality. In

that case, the γ-fractile along the converging subsequence may oscillate between L̄ and L̄+ 1. This

is handled in Lemma 4.
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Corollary 1 follows from steps 1 and 3, and establishes that all converging subsequences achieve

the same limit θ̄, which was explicitly characterized in Lemma 2. In the sequel we let Πj
i =

∑j
l=i πl

for any 0 ≤ i < j ≤ S − 1.

Specifically, let {k1, k2, . . .} denote any converging subsequence for which θki → θ̄ for some

θ̄ ∈ R2S
+ and ‖θ̄‖1 = 1 that may depend on the specific subsequence. Denote by Fθki the maximum

entropy distribution associated with θki defined through (8)-(12), and denote by Lθki the associated

γ-fractile defined through (6). Let pkij denote the probability mass points for the maximum entropy

distribution for j = 0, . . . , S − 1.

Theorem 1 Under Assumptions 1, 2 and 3, limki→∞ Lθki = L∗ almost surely.

Given that the protection control is Lki+1 = Lθki +1, the controls will converge to L∗+1 almost

surely. The proof of the Theorem 1 yields the following corollary that states that the ME algorithm

ultimately learns the correct discrete demand distribution up to level L∗.

Corollary 1 Under Assumptions 1, 2 and 3, pkij → πj for all j ≤ L∗ almost surely.

0 100 200 300 400 500 600 700 800 900 1000
45

50

55

60

65

70

75

80

k

L(θ)

Emperical

Full Info

(a) Linear scale

10
0

10
1

10
2

10
3

10
4

10
5

50

55

60

65

70

75

80

log
10

(k)

L(θ)

Emperical

Full Info

(b) Logarithmic scale

Figure 1: Protection levels produced by the ME algorithm, the empirical distribution, and the
uncensored actual demand histogram at each iteration are compared. For the example, p2/p1 =
1− γ = 0.5, S = 200, D1 ∼ U [50, 80].

Figure 1 provides an example of the ME algorithm and the spiral-down effect. As illustrated,

the protection levels attained by the empirical distribution of observations spiral down as predicted
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by Cooper et al. (2006). The protection levels Lk provided by the ME algorithm converge to

the correct level. Also, observe that the controls obtained by accumulating the true (uncensored)

demand observations, which corresponds to the (first) best case for the firm, seem to converge

almost at the same rate as those provided by the ME algorithm. In the depicted sample path,

it appears that the sample path derived when the true demand (uncensored) is observed under-

protects for the high-fare class demand viz the protection levels {Lk} under the ME algorithm.

This is not true along the entire sample path, however, and indeed the structure of the sample

paths can differ depending on the demand realization and its relation to the optimal protection

level L∗ and the support S assumed by the uncensoring algorithm.

5. Concluding remarks

The two main contributions of the paper are the following: first, to demonstrate how Maximum

Entropy distributions can offer an intuitive way to unconstrain censored observations of a random

variable of interest -in our setting a demand distribution; second, show how ME distributions can

be used successfully in the context of forecasting-optimization loops in a way that converges to

optimal control decisions even when one starts with no information about the underlying demand

distribution. The key observation is that censored information corresponds to fractile information

on the demand distribution, which, in turn, that can be readily incorporated in the calculation of

the ME distribution.

One straightforward extension would allow for the low-fare demand to be drawn according to

probability mass function π2
j for j = 0, . . . , S2 − 1 for some support S2 > 0. In this case, given

a protection level Lk, the amount of unused capacity made available to the high-fare demand is

Lk+max(C−Lk−Dk
1 , 0); i.e., if Dk

1 < C−Lk, then the available capacity to the high-fare demand

is greater than Lk, allowed the firm to collect uncesnored demand observations even for positions

j > Lk when Dk
1 < C − j. Intuitively, this should be helpful in the demand forecasting procedure.

Algorithm 1 is still applicable in this setting, and the proof provided in the appendix carries through

with minor modifications. A somewhat more involved, yet possible, extension would allow low-fare

customers to “buy-up” and purchase the high-fare product, say with probability α.

Other types of information that could be incorporated in that forecasting step could be upper

and lower bounds on the mean of the unknown distribution, information about its second moment,

specific information about the probability of specific events, etc. In the context of capacity control
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of the type studied in this paper, these could be due to side information available to the forecaster

or “expert” assessments to be added in the forecast.

A similar approach based on the use ME distributions may be applicable in many other settings.

One example arises in the context of estimating a willingness-to-pay distribution to be used in pric-

ing and product design decisions, where the seller may have past sales observations at different price

points (fractile information), moment conditions (“expert” assessment), price sensitivity and price

elasticity conditions (extracted from limited price experimentation and marketing surveys), etc.2

Such disparate and partial information is hard to incorporate in many commonly used parametric

families of distributions, such as the uniform, exponential, logit, and the normal. In contrast, the

ME distribution provides a tractable and intuitive way to incorporate and exploit this information

in demand modeling and optimization of pricing and product design decisions. 3

A. Proofs

Proof of Proposition 1: Denote the feasible set for problem (8) defined by constraints (9), (10),

(11), and (12) as P1; and similarly, the feasible region for problem (13) defined by constraints (14),

(15), and (16) as P2. We need to show that i) ∀(p, z) ∈ P1, p ∈ P2; and ii)∀p ∈ P2, ∃z ∈ RS2

+ such

that (p, z) ∈ P1.

i) We first show for each (p, z) ∈ P1, we have p ∈ P2. Given any (p, z) ∈ P1, using (9), we get

that

pj = κkj +
∑
i≤j

zij ≥ κkj = κ̃kj , j = 0 . . . S − 2, and

pS−1 = κkS−1 + zS−1 S−1 = κkS−1 + ζkS−1 = ηkS−1 = κ̃kS−1,

hence, p satisfies the first set of constraints (14) in P2.

2For example, price sensitivity information at a point j would specify the probability pj that the willingness-
to-pay of a typical customer is equal to j. An elasticity measurement ε at j is equivalent to the linear constraint
ε(
∑
k≥j pk) = pj × j. Inequality constraints on the price sensitivity and/or the elasticity measurements are also easy

to incorporate as linear inequality constraints on the probabilities pj .
3It is also possible to formulate ME distribution estimates even when the measurements that the decision maker

is considering are noisy, by allowing the constraints in (1) to be violated but striving to keep the degree of violation
small.
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Also, using constraints (9) and (10) in P1, we have that

∑
i≥j

pi =
∑
i≥j

κki +
∑
i≥j

∑
m≤i

zmi =
∑
i≥j

κki +

∑
m<j

∑
i≥j

zmi +
∑
m≥j

∑
i≥m

zmi


=
∑
i≥j

κki +

∑
m<j

∑
i≥j

zmi +
∑
m≥j

ζkm

 ≥∑
i≥j

ηki , (20)

which shows that p satisfies (15) in P2. As
∑

j pj = 1, the last constraint (16) also obviously holds,

and therefore, we have p ∈ P2.

ii) Next, we show that for all p ∈ P2, there exists a z such that (p, z) ∈ P1. Given any p ∈ P2,

define dj = pj − κkj for all j. Observe
∑

j dj =
∑

j pj −
∑

j κ
k
j = 1 −

∑
j κ

k
j =

∑
j ζ

k
j . Also,

note that constraints (14) and (15) imply
∑

i≥j pi ≥
∑

i≥j η
k
i for all j. Therefore, we have that∑

i<j pi ≤
∑

i<j η
k
i , and hence,

∑
i<j di ≤

∑
i<j ζ

k
i . Now, let us define a transportation network

flow problem as follows: there are S origin nodes each of which has supply ζkj for j = 0 . . . S − 1,

and S destination nodes each of which has demand dj for j = 0 . . . S − 1. The variables, zij denote

the flow from origin node i to destination node j for all i, j. We impose an upper bound of zero on

flows whenever i < j. We minimize the cost c z where c is any vector in RS×2
+ . That is we solve

the problem

min
z

c z | ∑
i≤j

zij = dj ∀j,
∑
j≥i

zij = ζki ∀i, zij = 0 ∀i < j, zij ≥ 0

 . (21)

As
∑

i<j di ≤
∑

i<j ζ
k
i , i.e., the cumulative demand is less than the supply and therefore can

be met, and as
∑

j dj =
∑

j ζ
k
j , i.e., the transportation problem is balanced, the above problem

is feasible and bounded for all c ∈ RS×2
+ . For any feasible solution z to the above transportation

problem, the corresponding vector (p, z) ∈ P1 by construction. 2

Denote the domain of problem (13) as D(θ) ∈ RS for any given θ = [κ, ζ]. Let pθ ∈ D(θ) be

the optimal solution of problem (13) for a given θ, and let [κθ, ζθ] denote the corresponding vectors

of reallocated uncensored and censored observation frequencies at this solution such that κθ = κ

and pθ,j = κθ,j + ζθ,j for all j. Hence, pθ is the probability mass function of the ME distribution

implied by any given θ through problem (13), and Fθ(·) is the corresponding cumulative distribution

function. Hence, the γ-fractile produced by the ME algorithm is Lθ := min{L | Fθ(L) ≥ γ}.

Proof of Lemma 1: We first show D(θ) is upper semi-continuous. Denote the universal space
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of all possible parameters as ΘU . Consider a generic open set V of the form V = {p | pj >

κj − εj , ∀j,
∑

i≥j pi >
∑

i≥j κi + ζi − δj if ζj > 0 ,
∑

j pj = 1}, so that D(θ) ⊆ V for any

εj , δj ≥ 0. Now, for any εj , δj ≥ 0 and V , define the open set U = {p | pj > κj− εj
K1
, ∀j,

∑
i≥j pi >∑

i≥j κi + ζi − δj
K2

if ζj > 0 ,
∑

j pj = 1}, where K1, K2 > 1 are sufficiently large numbers.

Then, if θ′ = [κ′, ζ ′] ∈ U ∩ ΘU , we have that κ′j > κj − εj and κ′i + ζ ′i > κi + ζi − δj , which yields

D(θ′) ⊆ V . Therefore, D(θ) is upper semi-continuous at ∀θ ∈ ΘU .

Next we show that D(θ) is also lower semi-continuous. Fix some θ = [κ, ζ] ∈ ΘU , and let V be

an open set satisfying V ∩ D(θ) 6= ∅, and let p ∈ V ∩ D(θ). As V is open, there exists some δ > 0,

satisfying p̄ = [δ, 0, . . . , 0,−δ] + p ∈ V as well.

Define the “ε-neighborhood” of θ as Nε(θ) = {x | ||x−θ|| < ε}, where || · || is the L2 norm. Now

by contradiction suppose that there is no neighborhood of θ such that V ∩ D(θ′) 6= ∅ for all θ′ in

the neighborhood. Let {εn} → 0 be a sequence of positive reals, and pick some θn ∈ Nεn(θ) such

that V ∩ D(θn) = ∅. Note that we can find such θn by the contradictory assumption. Then, using

definitions of V , p̄ and Nεn(θ), we have that p̄j − κnj → pj − κj > 0 and
∑

i≥j p̄i −
∑

i≥j κ
n
i + ζni →∑

i≥j p̄i−
∑

i≥j κi + ζi > 0. Consequently, we have that p̄ ∈ D(θn) for some large n, which yields a

contradiction as p̄ ∈ V and V ∩ D(θn) = ∅. This shows that D(θ) is a continuous correspondence.

Now, the optimal solution in problem (13) is pθ ∈ D(θ) for any given θ . Note that the objective

function
∑

j pj ln pj is strictly convex in p. D(θ) is a continuous correspondence, which is also easily

seen to be convex and compact valued. Then, the result follows from the “The Maximum Theorem

under Convexity” (see, e.g., Sundaram (1996), Theorem 9.17.3), which states that under these

conditions pθ is a continuous function in θ. 2

The proof of the main theorem will study the sequence {θk, k = 1, . . .}, where θk = [κk, ζk] ∈

R2S
+ . By construction, ‖θk‖1 = 1 for k = 1, . . ., and therefore since {θk, k = 1, . . .} is bounded

and in R2S
+ it follows from the Bolzano-Weierstrass Theorem that it has a converging subsequence.

Consider any such converging subsequence {k1, k2, . . .} for which θki → θ̄ for some θ̄ ∈ R2S
+ and

‖θ̄‖1 = 1 that may depend on the specific subsequence. The proof will first show that along any such

converging subsequence and almost all sample paths, the limiting vector θ̄ has a very simple and

intuitive structure (Lemma 2). Second, we will exploit that structural result to write in closed form

the maximum entropy distribution, p̄ associated with the limiting vector θ̄ (Lemma 3). Finally,

we will argue by contradiction and show that the protection level L̄ associated with p̄ is equal to

L∗ along any such converging subsequence, establishing the desired convergence result. Corollary
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1 follows from steps 1 and 3, and establishes that all converging subsequences achieve the same

limit θ̄, which was explicitly characterized in Lemma 2. In the sequel we let Πj
i =

∑j
l=i πl for any

0 ≤ i < j ≤ S − 1.

Lemma 2 Consider the bounded sequence {θk} in R2S
+ , and pick any converging subsequence

{k1, k2, . . .} for which θki → θ̄ for some θ̄ ∈ R2S
+ and ‖θ̄‖1 = 1 that may depend on the spe-

cific subsequence. Let p̄ denote the maximum entropy distribution associated with θ̄ defined in

(8)-(12), Fθ̄ denote the corresponding cumulative distribution, and define L̄ through (6). Assume

that Fθ̄(L̄) > γ. Then, with probability 1, θ̄ = [κ̄, ζ̄] is of the following form:

κ̄l = πl for l ≤ L̄, κ̄j = 0 for l > L̄; (22)

ζ̄L̄+1 = ΠS−1
L̄+1

, ζ̄l = 0 for l ≤ L̄ or l > L̄+ 1. (23)

Proof: Let ν = max(γ − F (L̄ − 1), F (L̄) − γ) > 0. By Lemma 1 it follows that there exists a

ν ′ > 0 such that ‖θki − θ̄‖1 < ν ′ implies that |Fθki (j)− Fθ̄(j)| < ν for j = 0, . . . , S − 1. Given that

θki → θ̄ it follows that there exists an M > 0 such that for ki > M , ‖θki − θ̄‖1 < ν ′ along that

subsequence; M may itself depend on the subsequence. Let Fθki denote the cumulative maximum

entropy distribution associated with θki defined through (8)-(12) and Lki denote the corresponding

γ-fractile defined through (6). By the continuity of the maximum entropy distribution on θ and

the definition of M , it follows that for all ki > M , Lki = L̄, and, therefore, for all such ki the

protection level was equal to L̄+ 1.

Consider the subsequence for ki > M . Intuitively, the protection level is constant from there

onwards, and censored and uncensored observations in each position j = 0, . . . , S − 1 become inde-

pendent Bernoulli random variables with success probabilities as specified in (18)-(19). Applying

the strong law of large numbers (SLLN) will give desired almost sure convergence result. In more

detail, for j = 0, . . . , L̄, we have that

κ̄j = lim
i→∞

1

i

(
WM
j +

ki∑
l>M

χl(πj)

)
,

where χl(πj) are Bernoulli random variables with success probability πj , independent across l (and,

in fact, independent of Bernoulli random variables modeling the observations at different values of

j). The SLLN for the i.i.d random variables χl implies that κ̄j = πj almost surely. For j > L̄, the

success probabilities for uncensored observations are zero. A similar argument applies to the vector
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of censored observations that occur only at position j = L̄+ 1, and establishes the limit ζ̄. 2

Lemma 3 Consider any θ̄ = [κ̄, ζ̄] that satisfies (22)-(23). Let p̄ denote the maximum entropy

distribution associated with θ̄ defined in (8)-(12) and L̄ the corresponding γ-fractile defined in (6).

Assume that Fθ̄(L̄) > γ. Then,

p̄j = πj for j = 0, . . . , L̄ and πj =
ζ̄L̄+1

S − L̄− 1
=

ΠS−1
L̄+1

S − L̄− 1
for j = L̄+ 1, . . . , S − 1. (24)

Proof: Since ζ̄j = 0 for all j ≤ L̄ it follows that p̄j = κ̄j = πj for j ≤ L̄; that is, these entries of

the distribution are fixed and cannot be changed via the maximum entropy optimization problem

that can only select the probability masses at j = L̄+1, . . . , S−1. The resulting problem becomes:

choose xj ≥ 0 for j = L̄+ 1, . . . , S − 1 to

max
x

−∑
j>L̄

xj lnxj : x ≥ 0,
∑
j>L̄

xj = ΠS−1
L̄+1

 .

As mentioned in the introduction, a standard argument based on the Lagrangian of the above

problem, gives that the maximum entropy distribution from L̄ + 1 onwards is uniform, which

proves the Lemma. 2

The above two Lemmas studied the structure of the limiting vector θ̄ under the assumption

that Fθ̄(L̄) > γ. Given the continuity of the maximum entropy distribution with respect to θ, for

large enough ki such that θki is close to θ̄, the above condition implies that Lki = L̄. If θ̄ is such

that Fθ̄(L̄) = γ, then as ki grows large, θki gets close to θ̄ but Lki may oscillate between L̄ (when

Fθki (L̄) ≥ γ) and L̄ + 1 (when Fθki (L̄) < γ, but, necessarily, Fθki (L̄ + 1) > Fθki (L̄) + ε > γ; the

last inequalities follow from Assumption 3). While it seems mild to assume that F (L∗) > γ, one

does not have control over the converging subsequences to enforce an assumption that Fθ̄(L̄) > γ.

As such the case Fθ̄(L̄) = γ needs to be addressed, which is done in the next Lemma that mirrors

the results of Lemmas 2 and 3.

Lemma 4 Consider the bounded sequence {θk} in R2S
+ , and pick any converging subsequence

{k1, k2, . . .} for which θki → θ̄ for some θ̄ ∈ R2S
+ and ‖θ̄‖1 = 1 that may depend on the spe-

cific subsequence. Let p̄ denote the maximum entropy distribution associated with θ̄ defined in

(8)-(12), Fθ̄ denote the corresponding cumulative distribution, and define L̄ through (6). Assume
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that Fθ̄(L̄) = γ. Then, for some η ∈ [0, 1], with probability 1, θ̄ = [κ̄, ζ̄] is of the following form:

κ̄l = πl for l ≤ L̄, κ̄L̄+1 = ηπL̄+1, κ̄l = 0 for l > L̄+ 1; (25)

ζ̄L̄+1 = (1− η)ΠS−1
L̄+1

, ζ̄L̄+2 = ηΠS−1
¯L+2

ζ̄l = 0 for l ≤ L̄ or l > L̄+ 2. (26)

Let β =
ΠS−1
L̄+1

S−L̄−1
. Then, the maximum entropy distribution is given by: p̄j = πj for j ≤ L̄, and:

i. if β < ηπL̄+1, then p̄L̄+1 = ηπL̄+1 and p̄j =
ΠS−1
L̄+1
−pL̄+1

S−L̄−2
for j = L̄+ 2, . . . , S − 1.

ii. If ηπL̄+1 < β ≤ ηπL̄+1 + ζ̄L̄+1, then p̄j = β for j = L̄+ 1, . . . , S − 1.

iii. if β > ηπL̄+1 + ζ̄L̄+1, then p̄L̄+1 = ηπL̄+1 + ζ̄L̄+1 and p̄j =
ΠS−1
L̄+1
−pL̄+1

S−L̄−2
.

Proof: For any ν > 0, by Lemma 1 there exists a ν ′ > 0 such that ‖θki − θ̄‖1 < ν ′ implies that

|Fθki (j)− Fθ̄(j)| < ν for j = 0, . . . , S − 1. Given that θki → θ̄, there exists an M > 0 such that for

ki > M , ‖θki − θ̄‖1 < ν ′ along that subsequence. Let

η = lim
i→∞

∑ki
l>M 1

(
Ll = L̄+ 1

)
i

,

where 1(·) is the indicator function that is equal to 1 if its argument is true, and is equal to 0

otherwise. From the definition of η it follows that for ki > M , the protection level is L̄ + 1 with

probability 1−η and equal to L̄+2 with probability η. The argument of Lemma 2 applies unchanged

for κ̄j for j 6= L̄+ 1. For j = L̄+ 1,

κ̄L̄+1 = lim
i→∞

1

i

(
WM
L̄+1 +

ki∑
l>M

χl(πL̄+1)1
(
Ll = L̄+ 1

))
= ηπL̄+1 w.p. 1,

where the indicator variables on the critical fractile Ll acts as a thinning process over the summation

of the i.i.d. Bernoulli random variables, and the almost sure convergence follows from the SLLN;

see (Huh et al., 2011, Lemma 1). A similar argument gives the desired result for ζ̄L̄+1 and ζ̄L̄+1

that counts censored observations at the respective positions when the protection level was equal

to L̄+ 1 and L̄+ 2, respectively.

Similarly to Lemma 3, since ζ̄j = 0 for all j ≤ L̄ it follows that p̄j = κ̄j = πj for j ≤ L̄;.

The optimization problem for fitting the maximum entropy distribution reduces to choosing the
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probability mass points xj at j = L̄+ 1, . . . , S − 1 as follows:

max
x

−∑
j>L̄

xj lnxj : x ≥ 0,
∑
j>L̄

xj = ΠS−1
L̄+1

, ηπL̄+1 ≤ xL̄+1 ≤ ηπL̄+1 + ζ̄L̄+1

 .

The only difference with the problem considered in Lemma 3 is the constraint regarding xL̄+1. Let

β =
ΠS−1
L̄+1

S−L̄−1
. In case ii., the value of β is such that the solution obtained in Lemma 3 satisfies the

additional constrain on xL̄+1 and as such it is optimal. Cases i. and iii. follow by considering the

Lagrangian and the effect of the Lagrange multipliers for the lower and upper bound on xL̄+1. 2

Proof of Theorem 1: The proof will proceed by contradiction. Consider any converging subse-

quence and the limiting vector θ̄ and the associated protection level L̄.

We start by analyzing the setting where the converging subsequence is such that Fθ̄(L̄) > γ.

a) L̄ > L∗: If Fθ̄(L̄) > γ, from Lemmas 2 and 3 it follows that p̄j = πj for all j ≤ L̄. Since

L̄ > L∗, it follows that p̄j = πj for all j ≤ L∗, which by the definition of L∗ it follows that

Fθ̄(L
∗ − 1) < γ and Fθ̄(L

∗) > γ, which contradicts the definition of L̄ and the assumption of a). If

Fθ̄(L̄) = γ, Lemma 4 gives that p̄j = πj for all j ≤ L̄, and the same contradiction argument applies.

b) L̄ < L∗: Using the structure of p̄, and the fact that L̄ < L∗, we know that Fθ̄(L̄−1) = ΠL̄−1
0 <

γ and Fθ̄(L̄) = ΠL̄
0 ≤ ΠL∗−1

0 < γ, which contradicts the definition of L̄. The same argument applies

to both Fθ̄(L̄) > γ or Fθ̄(L̄) = γ.

Together, these imply that L̄ = L∗ with probability one along any converging subsequence. 2

Proof of Corollary 1: It is easy to verify given the structure of p̄ that if L̄ = L∗, Fθ̄(L̄ − 1) =

ΠL∗−1
0 < γ and Fθ̄(L̄) = ΠL∗

0 > γ. This implies that all converging subsequences have limits θ̄ such

that Fθ̄(L̄) > γ. 2

References

V. F. Araman and R. A. Caldentey. Dynamic pricing for non-perishable products with demand

learning. Operations Research, 57(5):1169–1188, 2009.

Y. Aviv and A. Pazgal. Pricing of short life-cycle products through active learning. Working Paper,

Washington University, St. Louis, MO 63130, 2005.

23



M. O. Ball and M. Queyranne. Toward robust revenue management: Competitive analysis of online

booking. Operations Research, 57(4):950–963, 2009.

D. Bertsimas and A. Thiele. A robust optimization approach to supply chain management. Pro-

ceedings of 14th IPCO, pages 86–100, 2004.

O. Besbes and A. Muharremoglu. On the price of demand censoring in the newsvendor problem.

Management Science, 59(6):1407–1424, 2013.

O. Besbes and A. Zeevi. Dynamic pricing without knowing the demand function: Risk bounds and

near-optimal algorithms. Operations Research, 57:1407–1420, 2009.

I. C. Bilegan, C. A. N. Cosenza, S. Gonzlez-Rojo, and F. Mora-Camino. A maximum entropy

approach to update airlines demand distributions. Inverse Problems, Design and Optimization

Symposium. Rio de Janerio, Brazil., 2004.

E. A. Boyd, E. Kambour, and J. Tama. The impact of buy down on sell up, unconstraining, and

spiral down. Presented at 1st Annual INFORMS Revenue Management Section Conference, New

York., 2001.

A. N. Burnetas and C. E. Smith. Adaptive ordering and pricing for perishable products. Operations

Research, 48(3):436–443, 2000.

W. L. Cooper, T. Homem-de Mello, and A. J. Kleywegt. Models of the spiral-down effect in revenue

management. Operations Research, 54(5):968–987, 2006.

T. Cover and J. Thomas. Elements of Information Theory. John Wiley and Sons, 1991.

V. F. Farias and B. Van Roy. Dynamic pricing with a prior on market response. Operations

Research, 58(1):16–29, 2010.

G. Gallego and I. Moon. A min-max distribution newsboy problem: Review and extensions. Journal

of Operational Research Society, 44:825–834, 1993.

G. A. Godfrey and W. B. Powell. An adaptive, distribution-free algorithm for the newsvendor

problem with censored demands, with applications to invntory and distributions. Management

Science, 47:1101–1112, 2001.

T. Huh and P. Rusmevichientong. A non-parametric asymptotic analysis of inventory planning

with censored demand. Math. Oper. Res., 34:103–123, 2009.

24



T. Huh, R. Levi, P. Rusmevichientong, and J. B. Orlin. Adaptive data-driven inventory control

policies based on Kaplan-Meier estimator. Operations Research, 59:646–664, 2011.

E. T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9):

939–952, 1982.

S. Kunnumkal and H. Topaloglu. A stochastic approximation method for the single-leg revenue

management problem with discrete demand distributions. Math. Oper. Res., pages 477–504,

2009.

M. S. Lobo and S. Boyd. Pricing and learning with uncertain demand. Working Paper, Duke

University, Durham, NC 27708, 2003.

G. Perakis and G. Roels. Regret in the newsvendor model with partial information. Operations

Research, 56(1):188–203, 2006.

Rangarajan K. Sundaram. A First Course in Optimization Theory. Cambridge University Press,

1996.

G. van Ryzin and J. McGill. Revenue management without forecasting or optimization: An adaptive

algorithm for determining airline seat protection levels. Management Science, 46(6):760–775,

2000.

L.R. Weatherford and Polt S. Better unconstraining of airline demand data in revenue management

systems for improved forecast accuracy and greater revenues. Journal of Revenue and Pricing

Management, 1:234–254(21), 2002.

25


