
Design of an aggregated marketplace under congestion effects:

Asymptotic analysis and equilibrium characterization

Ying-Ju Chen∗ Costis Maglaras† Gustavo Vulcano‡

July 28, 2008

Abstract

We study an aggregated marketplace where potential buyers arrive and submit requests-for-

quotes (RFQs). There are n independent suppliers modelled as M/GI/1 queues that compete

for these requests. Each supplier submits a bid that comprises of a fixed price and a dynamic

target leadtime, and the cheapest supplier wins the order as long as the quote meets the buyer’s

willingness to pay.

We characterize the asymptotic performance of this system, and subsequently extract insights

about the equilibrium behavior of the suppliers and the efficiency of this market. We show that

supplier competition results into a mixed-strategy equilibrium phenomenon and is significantly

different from the centralized solution. We propose a compensation-while-idling mechanism that

coordinates the system: each supplier gets monetary compensation from other suppliers during

his idle periods. This mechanism alters suppliers’ objectives and implements the centralized

solution at their own will.

Keywords: aggregated marketplace, service competition, asymptotic analysis

1 Introduction

Business-to-Business (B2B) online markets constitute an Internet-based solution that aggregates

business entities interested in buying and selling related goods or services from one another. They

provide automatic transactions, lower searching costs, and increased process effectiveness and effi-

ciency. Despite the turbulent dynamics of the developing B2B environment, several e-markets have
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survived and have exhibited a high degree of success (e.g., see Laseter and Bodily [2004]). The

worldwide spread of e-markets is confirmed by a recent release about B2B transactions in China

hitting US$ 168.9 billion during 2007, representing a 25.5% increase from 2006.1

B2B online market is well-suited for industrial procurement. Interested (sometimes, sub-

scribed) buyers arrive at the e-marketplace and submit request-for-quotes (RFQs) that include

product specification information, desired quality level and quantity, and target leadtime. Poten-

tial suppliers (maybe pre-qualified) bid for these orders, and the bids are ranked according to a

scoring function that depends on the quote attributes. The order is then awarded to the most “desir-

able” supplier. Each transaction is typically run as a reverse auction. This aggregated marketplace

raises several interesting practical and theoretical questions: How does the system dynamics evolve

as suppliers compete for each potential order? How should these suppliers determine their bidding

strategies? Is the market efficient under the competitive behavior? If not, is it possible to find a

coordination scheme that aligns the suppliers’ incentives? How can we implement it?

From a modeling viewpoint, an aggregated marketplace is a system that operates in a stochastic

environment and handles high volumes of orders that are routed in real-time to the winning supplier

in each case. As a starting point of addressing the aforementioned questions, we develop a stylized

stochastic model where potential buyers arrive according to a Poisson process and a number of

independent suppliers (modeled as M/GI/1 queues) compete for these requests. Each supplier

submits a bid that comprises a fixed price and a target leadtime that depends on his own queue

status. Each buyer uses her scoring function to compute the net utility associated with each

supplier’s bid, and awards the order to the lowest-quote supplier in order to maximize her own

surplus (provided that it is nonnegative). Delay quotations are state-dependent, and as a result

the input stream of orders that get awarded to one of the cheapest suppliers at any point in time is

itself state-dependent. At each supplier, orders are processed in a First-In-First-Out manner. The

suppliers’ capacities (i.e., service rates) are common knowledge; nevertheless, a supplier’s queue

length is privately observed by himself but unknown to other suppliers. Suppliers compete for

these orders by selecting prices in order to maximize their own long-run average revenues. Each

supplier faces an economic tradeoff: a high price will lead to high revenues per order, but will

reduce the total number of orders awarded, which will cause excessive idleness and implicit revenue

loss; a low price will result in many awarded orders and large backlogs, that, in turn, will cause the
1Reported by Xinhua News Agency on January 9th, 2008.
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long delay quotations thus increasing the full cost of the respective bid.

Despite the stylized nature of the above problem, the resulting dynamical system is still dif-

ficult to analyze due to the state dependent nature of the order input stream, the dynamic order

routing policy, and the supplier competitive behavior. The most direct tool for analyzing the system

behavior is simulation, but this offers little insight on how to study the supplier pricing game. Our

approach, therefore, is to adopt some form of approximate analysis that leads to tractable char-

acterizations of suppliers’ behavior. These approximations are motivated by an intuitive economic

argument, whose robustness is supported by the resulting supplier pricing game equilibrium.

The first problem addressed in this paper is that of performance analysis assuming that the

price vector is given. The solution of this problem allows suppliers to evaluate their revenues

given their prices as well as the prices of the competitors, which is an essential subroutine in the

equilibrium analysis of the supplier pricing game. So, given a specified price vector, the first set

of results of this paper characterize the behavior of the marketplace using an asymptotic analysis

that focuses on settings where the potential demand and the supplier processing capacities grow

large simultaneously. This asymptotic analysis is motivated by the following observation: If this

market were served by a unique supplier (modeled as an M/GI/1 queue as well), then it would

be economically optimal for this supplier to set the price that induces the so-called “heavy-traffic”

operating regime; i.e., rather than assuming that the system is operating in the heavy traffic

regime, as is often done, this result provides a primitive economic foundation that this regime

emerges naturally since it optimizes the system-wide revenues (Besbes [2006] and Maglaras and

Zeevi [2003]). Specifically, if Λ is the market size, then the above result says that the economically

optimal price is of the form p∗ = p̄+π/
√

Λ, where π is the price that induces full resource utilization

in the absence of any congestion; the result is proved in an asymptotic sense as the market size and

processing capacity of the server grow large.

Based on this observation, the starting point of our analysis is to write the supplier prices as

perturbations around the price p̄ of the form pi = p̄ + πi/
√

Λ. Treating Λ as a scaling parameter

that will grow large, we can view the system of original interest as an element of a sequence of

systems that we will approximate asymptotically. §3.1 motivates this modeling substitution, §3.2

describes the above sequence of systems, and §3.3 - 3.4 derive the asymptotic behavior of this

sequence of systems. Proposition 1 derives a transient behavior property of this system using

an appropriate deterministic fluid model. Proposition 2 establishes a state-space collapse result,
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whereby the suppliers’ behavior is asymptotically coupled and can be described as a function

of the aggregate (system-wide) workload process; we further characterize this workload process

by the state-dependent arrival process and a state-independent service time process. This state

space collapse result also implies that a supplier is able to know his competitors’ bids by simply

observing awaiting orders in his own buffer. Finally, Theorem 1 establishes the weak convergence for

the one-dimensional workload process to a reflected Ornstein-Uhlenbeck process, with a reflection

potentially away form zero depending on the suppliers’ prices. The latter implies the potentially

surprising property that the aggregate workload process can never drain even though some of the

suppliers may be idling.

The second problem is the characterization of the revenue streams of each supplier (Lemmas 1

and 2) and the analysis of the resulting pricing game. Lemma 3 derives the centralized solution, i.e.,

the pricing choice that would maximize the system-wide revenues. Lemma 4 shows that the pricing

game does not admit a pure strategy equilibrium, and the online appendix specifies the structure

of the supporting mixed strategy equilibria where suppliers randomize over their pricing decisions.

The online appendix also proves that the (second-order) efficiency loss of the decentralized solution

can be arbitrarily large.

The third problem we address is that of specifying an intuitive mechanism that would “co-

ordinate” the marketplace, in the sense that all suppliers will self-select to price according to the

centralized solution. Propositions 3 and 4 specify such a transfer pricing mechanism that com-

pensates suppliers during idleness periods, which aligns the incentives of the competing suppliers

and recovers the performance of the centralized solution. It is worth noting that our approximate

analysis of the supplier game is internally consistent in the sense that the lower order price pertur-

bations that essentially capture the supplier pricing game do not become unbounded, but rather

stay finite. In essence, all suppliers choose to operate in the asymptotic regime we propose, both

under the market mechanism and the coordinating mechanism.

To recapitulate, the main contributions of the paper are three: 1) the formulation and char-

acterization of the equilibrium solution of the supplier pricing game through the use of asymptotic

approximations that are amenable to a tractable analysis and lead to structural insights about the

behavior of the aggregated marketplace; 2) the derivation of the limit model, which is of sepa-

rate interest; and, 3) the proposal of a market mechanism that is intuitive, implementable, and it

coordinates the suppliers’ behavior.
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Literature review: Our paper touches on three related bodies of literature. The first focuses

on the economics of queues, the second on competition models in queueing contexts, and the third

develops machinery for approximating the behavior of complex queueing models such as the ones

we study in this paper.

The literature that studies the pricing of queues dates back to Naor [1969]; see the monograph

by Hassin and Haviv [2002] for a review of this literature. The economic model that we use is

inspired by that introduced by Mendelson [1985]; there is one type of potential customers that arrive

according to a Poisson arrival process, each having a private valuation that is an independent draw

from a general distribution and a delay sensitivity parameter that is common across all customers.

Mendelson and Whang [1990] extended that model to multiple customer types, where each type is

characterized by its own valuation distribution and delay sensitivity parameter. The above papers

study congestion pricing schemes for a single server system that maximize the social welfare, and

where customers decide on whether to join the system based on the steady-state delay cost as

opposed to the real-time delay cost they will actually incur based on the backlog ahead of them at

the time of their arrival to the system.

The system analyzed in this paper looks at a customer population that as in Mendelson

[1985] differs in their valuations but have a common delay sensitivity, but in contrast to the above

set of papers it is served by multiple competing revenue maximizing suppliers (servers). Suppliers

compete by supplying bids that comprise of a static (state-independent) price and a state-dependent

delay. The revenue maximization pricing problem for a single server queue with state-dependent

information was studied in Mendelson [1985] (for an M/M/1 system). The use of real-time delay

information results into an arrival process with state-dependent rate, which complicates the solution

of the pricing problem. In addition, the presence of multiple suppliers that compete for the arriving

orders further complicates the analysis of the behavior of the marketplace under any given price

vector, and of the supplier pricing game.

Our use of asymptotic approximations and heavy traffic analysis to study the supplier pricing

game is motivated by the results of Maglaras and Zeevi [2003] and Besbes [2006], mentioned earlier,

that showed that in large scale systems the heavy traffic regime is the one induced by the revenue

maximizing price. Our paper implicitly assumes the validity of the heavy traffic regime (as opposed

to proving it as in the two papers above) in deriving its asymptotic approximation, but the equi-

librium pricing behavior of the competing suppliers seems to lend support to this assumption in
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the sense that no supplier wishes to price in a way that would deviate from that operating regime.

Our derivation of the limit model makes heavy use of the work by Mandelbaum and Pats

[1995] on queue with state dependent parameters, and of the framework developed by Bramson

[1998] for proving state space collapse results. We also use results from Williams [1998] and Ata

and Kumar [2005] in our analysis. A paper that studies a problem that is related to ours is Stolyar

[2005], however, the analysis therein does not cover the type of problem we are interested in, mainly

due to the presence of the suppliers’ pricing decisions that introduce a non-zero cost (potentially

negative) to the arriving customer even when the system is empty.

In the context of queueing models with pricing and service competition, starting from the early

papers by Luski [1976] and Levhari and Luski [1978], customers are commonly assumed to select

their service provider on the basis of a “full cost” that consists of a fixed price plus a waiting cost. In

both Luski [1976] and Levhari and Luski [1978], competition is modeled in a duopoly setting where

firms behave as M/M/1 queueing systems. More recent variants of Levhari and Luski [1978] within

the M/M/1 duopoly framework include Li and Lee [1994] and Armony and Haviv [2003], and an

extensive survey of this research stream in provided by Hassin and Haviv [2002]. There are also a

few papers that generalize the model characteristics to incorporate other scenarios. For example,

Loch [1991] study a variant of Luski’s model in which the providers are modeled as symmetric

M/GI/1 systems. Lederer and Li [1997] generalize Loch [1991] for arbitrary number of service

providers. Cachon and Harker [2002] and So [2000] analyze customer choice models more general

than always choosing the lowest cost supplier, although confined to the M/M/1 case. Allon and

Federgruen [2007] treat the price and waiting time cost as separate firm attributes that can be

traded off differently by each arriving customer. The restriction of confining to M/M/1 firms and

linear demand rates was relaxed in their follow-up paper Allon and Federgruen [2006].

More recently, Johari and Weintraub [2008] study two types of contractual agreements in

oligopolistic service industries with congestion effects: Service Level Guarantees (SLG), where

each firm is responsible for investing to guarantee a congestion level for the users consistent with

the standard, and Best Effort (BE), where firms provide the best possible service given their

infrastructure. Gurvich and Allon [2008] appeal to an asymptotic analysis to study a competitive

game of a queueing model, and propose a general recipe for relating the asymptotic outcome to

that of the original system. They show that the pricing decisions and service level guarantees result

in respectively first-order and second-order effects on the suppliers’ payoffs. Notably, the overall
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approach of Gurvich and Allon [2008] is similar to ours; however, our model falls outside their scope,

and our economic motivation for the asymptotic analysis is different. It is worth mentioning that

while all the aforementioned competitive models in queues assume a static measure of the waiting

time standard (usually the expected value or some percentile of the steady state distribution), we

characterize the equilibrium behavior based on the asymptotic performance of the system under

dynamic delay quotations.

In terms of the characterization of market equilibrium, we follow Varian [1980] and Baye et al.

[1992] that provide a systematic approach to characterize the mixed-strategy equilibria when no

pure-strategy equilibrium can be found. This approach is typically used to study rent-seeking,

political contests, R&D competition, etc., in which every individual makes non-cooperative inputs

but typically the reward is fixed ex ante and is given to the individual with the highest input. Our

analysis extends this research stream to the case when the aggregate penalty/reward function also

depends on the individual decisions (suppliers’ pricing decisions in our context). Our derivation of

the coordination mechanisms follows the standard approach that aligns individuals’ incentives by

internalizing the externality an individual brings to the system (see, e.g., Mas-Colell et al. [1995]).

Our contribution is to identify the appropriate externality through our formulation of the suppliers

pricing game and to find a coordination mechanism that is easily implementable.

The remainder of the paper is organized as follows. In §2, we describe the model details.

§3 derives the asymptotic characterization of the marketplace behavior, and §4 characterizes the

equilibrium behavior of the supplier pricing game. §5 offers some concluding remarks. The proofs

of propositions and theorems are in the appendix, and the proofs of auxiliary results are relegated

to the online appendix.

Notation: The notation f(x) = o(g(x)) refers to the fact f(x)/g(x) → 0, and f(x) = g(x)

to the fact that f(x) = g(x) + o(
√

x) or f(x) = g(x) + o(1/
√

x). Similarly, f(x) = op(g(x)) if

f(x)/g(x) → 0 in probability. We say that f(x) = O(g(x)) if f(x)/g(x) → a, for a constant

a > 0 and define f(x) = Op(g(x)) as the counterpart of convergence in probability. For any integer

k > 0, and for any y ∈ Rk, we define |y| := max{|yj |, j = 1, ..., k} as its maximum norm. For any

function f : R+ → Rk and constant L > 0, we define ||f(·)||L := sup 0≤t≤L|f(t)|. For any sequence

{ar, r ∈ N}, ar → α if for any δ > 0, there exists rδ such that |α − ar| < δ, whenever r > rδ. The

function φ(·) denotes the standard normal density, and Φ(·) its corresponding c.d.f.
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2 Model

We consider an aggregated marketplace that functions as follows. The market is served by a set

of suppliers N = {1, . . . , n} that can produce one type of good. Potential buyers arrive according

to a homogeneous Poisson process with rate Λ, and submit requests-for-quotes (RFQs). Each

RFQ corresponds to the procurement of one unit of that good. Each supplier submits a bid that

comprises a price and a target leadtime component for each such RFQ, and the order is awarded

to the “cheapest” supplier in a way that will be made precise below. Each supplier selects his

initial investment in processing capacity, and subsequently competes for the business brought by

the arriving buyers.

Suppliers: There are n suppliers. Each supplier i is modeled as an M/GI/1 queue with an

infinite capacity buffer managed in a First-In-First-Out fashion. Service times at supplier i follow

a general distribution with processing rate µ
′
i (and mean equal to 1/µ

′
i) and standard deviation σi.

Let µ̂ :=
∑

i∈N µ
′
i/Λ be the (normalized) aggregated service rate of the market.

Order arrivals: Potential buyers arrive to the marketplace according to a Poisson arrival

process with intensity Λ. Each buyer has a private valuation v for her order that is an independent

draw from a general, and continuously differentiable distribution F (·). Buyers are delay sensitive

and incur a cost c per unit of delay. Thus, buyers are homogeneous with respect to delay preferences,

and heterogeneous with respect to valuations (though symmetric across the common c.d.f. F (·)).
A buyer that arrives at time t initiates an RFQ process to procure one unit of good. The service

time associated with an order depends on the selected supplier.

Market mechanism: Suppliers compete for this request by submitting bids that comprise

a price pi and a target leadtime di(t). We assume that the price component of the bid is state-

independent, i.e., supplier i always submits the same price bid pi for all orders. The leadtime

component of the bid submitted by each supplier i is state-dependent and equals the expected

time it would take to complete that order; cf. (2) later on. We are implicitly assuming that the

supplier always submits a truthful estimate of that expected delay di, which could be supported by

long-term reputation arguments, or by the existence of an auditor in the aggregated marketplace.

On their end, buyers are price and delay sensitive, and for each supplier i they associate a

“full cost” given by pi + cdi(t), where the delay sensitivity parameter c is assumed to be common

for all buyers. Upon reception of the bids, the buyer awards her order to the lowest cost supplier,
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provided that her net utility is positive, i.e., v ≥ arg mini∈N {pi + c di(t)}; otherwise, the buyer

leaves without submitting any order. Whenever a tie occurs, the order is awarded by randomizing

uniformly among the cheapest suppliers.2

Given vectors p = (p1, . . . , pn), and d(t) = (d1(t), . . . , dn(t)), the instantaneous rate at which

orders enter this aggregated market is given by

λ(p, d(t)) = ΛF̄ (min
i
{pi + c di(t)}).

Focusing on the right-hand-side of the above expression, we note that the buyers’ valuation distri-

bution F (·) determines the nature of the aggregate demand rate function.3 Let x = mini pi and,

with slight abuse of notation, write λ(x) in place of λ(p, 0), where 0 is the vector of zeros. We

further define ε(x) = −∂λ(x)
∂(x)

x
λ(x) . We will make the following economic assumption.

Assumption 1. λ(p, 0) is elastic in the sense that ε(x) > 1 for all price vectors p in the set

{p : 0 ≤ λ(p, 0) ≤ ∑n
i=1 µ

′
i} and x = mini pi.

The above assumption implies that in the absence of delays a decrease in price would result in

an increase in the market-wide aggregated revenue rate p · λ(p, 0).4 Of course, this would increase

the utilization levels of the suppliers, leading to increased congestion and delays, which, in turn,

would moderate the aggregate arrival rate λ(p, d(t)).

Let A(t) be the cumulative number of orders awarded to all the competing suppliers up to

time t,

A(t) = N

(
Λ

∫ t

0
F̄ (min

i∈N
{pi + c di(s)})ds

)
,

where N(t) is a unit rate Poisson process. To represent the cumulative number of orders for each

individual supplier, let

J (t) ≡ {i ∈ N : pi + cdi(t) ≤ pj + cdj(t), ∀j ∈ N}
2We could also allow other tie-breaking rules, and it can be verified that our results are not prone to the specific

choice of tie-breaking rules.
3For example, if v ∼ U [0, Λ/α], then the demand function is linear, of the form λ(x) = Λ − α x, where x =

mini pi + cdi(t); if v ∼ Exp(α), then the demand is exponential, with λ(x) = Λ e−αx.
4In the absence of congestion effects and assuming that there exists a central planner that could select a common

price p and an aggregate capacity µ̂ under a linear capacity cost hµ̂ and the arrival rate Λ, the solution to the problem

maxp,µ̂ {pλ(p, 0)− hΛµ̂ : 0 ≤ λ(p, 0) ≤ Λµ̂} results in a capacity decision that satisfies the above assumption.
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as the set of the cheapest suppliers at time t. Further, define ΞJ (t) as the random variable that

assigns the orders uniformly amongst the cheapest suppliers. That is, ΞJ (t) = i with probability
1

|J (t)| if i ∈ J (t), where |J (t)| > 0 is the cardinality of J (t), and ΞJ (t) = i with zero probability

otherwise. To facilitate exposition, it is easiest to assume that J (t) and ΞJ (t) are defined as

continuous processes for all t ≥ 0, even if no actual arrival occurs at that time. This allows us to

write the cumulative number of orders awarded to supplier i, denoted by Ai(t), as

Ai(t) =
∫ t

0
11{ ΞJ (s) = i}dA(s),

where 11{·} is the indicator function. Note also that A(t) =
∑

i∈N Ai(t).

Supplier dynamics: Let Qi(t) denote his number of jobs in the system (i.e., in queue or in

service) at time t, and Ti(t) denote the cumulative time that supplier i has devoted into producing

orders up to time t, with Ti(0) = 0. Let Yi(t) denote the idleness incurred by supplier i up to time

t. Note that Ti(t) + Yi(t) = t for each supplier i; moreover, Yi(t) can only increase at time t where

the queue Qi(t) is empty. Let Si(t) be the number of supplier i’s service completions when working

continuously during t time units, and Di(t) = Si(Ti(t)) be the cumulative number of departures up

to time t. The production dynamics at supplier i are summarized in the expression:

Qi(t) = Qi(0) + Ai(t)−Di(t). (1)

Given this notation and using the PASTA (Poisson arrivals see time averages) property,

di(t) =
Qi(t) + 1

µ
′
i

, (2)

gives the expected sojourn time of the new incoming order if it gets awarded to supplier i. Under

our modeling assumptions, supplier i will therefore bid (pi, di(t)), where di(t) is given by (2).

We assume that the capacity vector µ
′ ≡ {µ′i}’s is common knowledge. Each supplier knows

his own system queue length Qi(t), but is not informed about his competitors’ queue lengths. This

paper studies three problems for the market model described above:

1. Performance analysis for a given p: Given a fixed price vector p and a vector of processing

capacities µ
′
, the first task is to characterize the system performance, i.e., to characterize

the behavior of the queue length processes Qi(t) at each supplier, and calculate the resulting

revenue streams for each supplier. A supplier’s long-run revenue is

Φi(pi, p−i) ≡ pi · lim
t→∞

Si(T (t))
t

, (3)
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where p−i ≡ (p1, . . . , pi−1, pi+1, . . . , pn) denotes other suppliers’ price decisions. Our goal,

therefore, is to analyze the performance of relevant system dynamics that leads to a tractable

representation of these long-run average revenues.

2. Characterization of market equilibrium: The above problem serves as an input to studying the

competitive equilibrium that characterizes the supplier pricing game, which is a one-shot game

where each supplier selects its static price. The assumption that suppliers are uninformed

about the queue lengths of the competitors raises the issue of information incompleteness;

however, as we will show, the suppliers’ competitive behavior is insensitive to this assumption.

Consequently, we adopt the Nash equilibrium as our solution concept, which is appropriate

for games with complete information. Given the revenue specified in (3), a Nash equilibrium

{p∗i } requires that p∗i = arg maxpi Φi(pi, p
∗
−i), ∀i ∈ N .

3. Market efficiency and market coordination: Characterize the efficiency loss:

max
{pi}

{∑

i∈N
Φi(pi, p−i)

}
−

∑

i∈N
Φi(p∗i , p

∗
−i),

i.e., the difference between the performance of a system where a central planner would control

the pricing decision of each supplier (the first best solution) and of the market equilibrium.

If the market equilibrium is inefficient, we would like to specify a simple market mechanism

that coordinates the market and achieves the first best solution identified above. Such a

mechanism could specify, for example, the rules according to which orders are allocated and

payments are distributed among the suppliers.

3 Asymptotic analysis of marketplace dynamics

This section focuses on the first problem described in §2. Despite the relatively simple structure

of the suppliers’ systems and the customer/supplier interaction, it is still fairly hard to study their

dynamics due to the state-dependent delay quotations and the dynamic order routing rule. Our

approach is to develop an approximate model for the market dynamics that is rigorously validated in

settings where the market potential and processing capacities of the various suppliers are large. In

this regime, the market and supplier dynamics simplify significantly, and are essentially captured

through a tractable one-dimensional diffusion process. This limiting model offers many insights

about the structural properties of this market, and provides a vehicle within which we are able
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to analyze the supplier game and the emerging market equilibrium. This is pursued in the next

section.

3.1 Background: Revenue maximization for an M/M/1 monopolistic producer

As a motivation for our subsequent analysis, this section will summarize some known results re-

garding the behavior of a monopolistic supplier modeled as an M/M/1 queue that offers a product

to a market of price and delay sensitive customers. The supplier posts a static price and dynami-

cally announces the prevailing (state-dependent) expected sojourn time for orders arriving at time

t, which is given by d(t) = (Q(t) + 1)/µ. The assumptions on the customer purchase behavior are

those described in the previous section. Given p and d(t), the instantaneous demand rate into the

system at time t is given by λ(t) = ΛF̄ (p + cd(t)). The supplier wants to select p to maximize his

long-run expected revenue rate.

It is easy to characterize the structure of the revenue maximizing solution in settings where

the potential market size Λ and the processing capacity µ grow large. Specifically, we will consider

a sequence of problem instances indexed by r, where Λr = r, µr = rµ; that is, r denotes the

size of the market. The characteristics of the potential customers, namely their price sensitivity

c and valuation distribution F (·), remain unchanged along this sequence. Let p̂ = arg max pF̄ (p)

and p̄ be the price such that relation ΛrF̄ (p̄) = µr holds; i.e., neglecting congestion effects, p̂ is

the price that maximizes the revenue rate and p̄ is the price that induces full resource utilization;

both of these quantities are independent of r. Assumption 1 implies that p̂ < p̄ (or equivalently

that ΛrF̄ (p̂) > µr) thus accentuating the potential tradeoff between revenue maximization and the

resulting congestion effects. Besbes [2006] showed that the revenue maximizing price, denoted by

p∗,r, is of the form

p∗,r = p̄ + π∗/
√

r + o(1/
√

r), (4)

where π∗ is a constant independent of r. Moreover, the resulting queue lengths are of order
√

r,

or in a bit more detail the normalized queue length process Q̃r(t) = Qr(t)/
√

r has a well defined

stochastic process limit as r → ∞. Since the processing time is itself of order 1/r, the resulting

delays are of order 1/
√

r. Therefore, the delays are moderate in absolute terms (of order 1/
√

r)

but significant when compared to the actual service time (of order 1/r).5 If the supplier can select

the price and capacity µ, the latter assuming a linear capacity cost, then the optimal capacity
5This is an extension of the result in Maglaras and Zeevi [2003] to a system with state-dependent delay information.
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choice is indeed such that p̂ < p̄ (where p̄ is determined by µ), i.e., making the above regime the

“interesting” one to consider. Finally, we note that the above results also hold for the case of

generally distributed service times (Besbes [2006]).

3.2 Setup for asymptotic analysis

Given a set of suppliers characterized by their prices and capacities pi, µ
′
i, we propose the following

approximation:

1. Define the normalized parameters µi = µ′i/Λ for all suppliers i.

2. Define p̄ to be the price such that ΛF̄ (p̄) =
∑

i∈N µ′i. Define πi =
√

Λ(pi − p̄) so that the

prices pi can be represented as pi = p̄ + πi/
√

Λ.

3. Embed the system under consideration in the sequence of systems indexed by r and defined

through the sequence of parameters:

Λr = r, µr
i = rµi, ∀i ∈ N , cr = c, and v ∼ F (·), (5)

and prices given by pr
i = p̄ + πi/

√
r for all i.

Given the preceding discussion, one would expect that the market may operate in a manner

that induces almost full resource utilization, and where the underlying set of prices take the form

assumed in item 3) above; this would be true if the market was managed by a central planner that

could coordinate the supplier pricing and capacity decisions. The approach we propose to follow

is to embed the system we wish to study in the sequence of systems indexed by r and described

in (5), and subsequently approximate the performance of the original system with that of a limit

system that is obtained as r → ∞, which is more tractable. Note that for r = Λ in (5), where Λ

denotes the market size of the potential order flow as described in the previous section, we recover

the exact system we wish to study. If Λ is sufficiently large, then the proposed approximation is

expected to be fairly accurate.

The remainder of this section derives an asymptotic characterization of the performance of a

market that operates under a set of parameters (p, µ′) that are embedded in the sequence (5).
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3.3 Transient dynamics via a fluid model analysis

The derivation of the asymptotic limit model (specifically, Proposition 2) will show that the fol-

lowing set of equations

Q̄i(t) = Q̄i(0) + Āi(t)− D̄i(t),∀i ∈ N , (6)

Āi(t) =
∫ t

0
11

{
ΞJ (s) = i

}
d N

(
F̄ (p̄)s

)
, ∀i ∈ N , (7)

D̄i(t) = µiT̄i(t), ∀i ∈ N , (8)∫ t

0
Q̄i(s)dȲi(s) = 0,∀i ∈ N , (9)

T̄i(t) + Ȳi(t) = t, ∀i ∈ N , (10)

W̄ (t) =
∑

i∈N

Q̄i(t)
µi

. (11)

captures the market’s transient dynamics over short periods of length 1/
√

r. This subsection studies

the transient evolution of (6)-(11) starting from arbitrary initial conditions.

In (6)-(11), the processes Q̄, Ā, D̄, T̄ , Ȳ are the fluid analogues of Q,A,D, T, Y defined in

Section 2, and W̄ are the fluid analog of the system workload W . Equation (7) indicates how

the arrivals are routed to these servers: An arrival walks away if her valuation is sufficiently low;

otherwise, she joins server i based on the routing rule specified in Section 2. From Equation (7), the

orders get awarded to the various suppliers at a rate ΛF̄ (p̄) =
∑

i∈N µ′i, i.e., F̄ (p̄) =
∑

i∈N µi (as

indicated by the aggregate counting process N(F̄ (p̄)t)). Equation (9) demonstrates the non-idling

property: Ȳi(t) cannot increase unless Q̄i(t) = 0. Finally, Equation (11) establishes the connection

between the total workload and the queue lengths of each supplier.

The next Proposition establishes that starting from any arbitrary initial condition, the tran-

sient evolution of the market (as captured through (6)-(11)) converges to a state configuration where

all suppliers are equally costly in terms of the full cost of the bids given by (price + c × delay).

This is, of course, a consequence of the market mechanism that awards orders to the cheapest sup-

plier(s), until their queue lengths build up so that their full costs become equal. Simultaneously,

expensive suppliers do not get any new orders and therefore drain their backlogs until their costs

become equal to that of the cheapest suppliers. From then on, orders are distributed in a way that

balances the load across suppliers. This result is robust with respect to the tie-breaking rule that

one may apply when multiple suppliers are tied in terms of their full cost.
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Proposition 1. Let Q̄, Ā, D̄, T̄ , Ȳ , W̄ be the solution to (6)-(11) with max{|Q̄(0)|, |W̄ (0)|} ≤ M0

for some constant M0. Then for all δ > 0, there exists a continuous function s(δ,M0) < ∞ such

that

max
i,j∈N

∣∣∣∣∣
(

πi + c
Q̄i(s)

µi

)
−

(
πj + c

Q̄j(s)
µj

) ∣∣∣∣∣ < δ, ∀s > s(δ,M0).

3.4 State-space collapse and the aggregate marketplace behavior

The next result shows that the transients studied above appear instantaneously in the natural time

scale of the system, and as such the marketplace dynamics appear as if all suppliers are equally

costly at all times.

We use the superscript r to denote the performance parameters in the r-th system, e.g., Ar
i (t),

Sr
i (t), T r

i (t), and Qr
i (t). The (expected) workload (i.e., the time needed to drain all current pending

orders across all suppliers) is defined as W r(t) =
∑

i∈N
Qr

i (t)
µr

i
.

Motivated by the discussion in §3.1 we will optimistically assume (and later on validate) that

the supplier queue lengths are of order
√

r, and accordingly define re-scaled queue length processes

for all suppliers according to

Q̃r
i (t) =

Qr
i (t)√
r

. (12)

The corresponding re-scaled expected workload process is given by W̃ r(t) =
√

rW r(t) =
∑

i∈N
Q̃r

i (t)
µi

.

Define Z̃r(t) = π̄ + c̄W̃ r(t), where π̄ =
P

i∈N πi

n , c̄ = c
n . Z̃r(t) can be regarded as a proxy

for the average of the second-order terms of suppliers’ bids since Z̃r(t) = 1
n

∑
i∈N

(
πi + c

Q̃r
i (t)
µi

)
.

Note that the first-order term, p̄, is common for all suppliers, and can be omitted while comparing

suppliers’ bids.

Proposition 2. (State Space Collapse) Suppose πi + c
Q̃r

i (0)
µi

= π̄ + c̄W̃ r(0) in probability,

∀i ∈ N . Then, for all τ > 0, for all ε > 0, as r −→ ∞,

P

{
sup

0≤t≤τ
max
i,j∈N

∣∣∣∣∣

(
πi + c

Q̃r
i (t)
µi

)
−

(
πj + c

Q̃r
j(t)
µj

)∣∣∣∣∣ > ε

}
−→ 0,

P

{
sup

0≤t≤τ
max
i∈N

∣∣∣∣∣

(
πi + c

Q̃r
i (t)
µi

)
− Z̃r(t)

∣∣∣∣∣ > ε

}
−→ 0.

The proof applies the “hydrodynamic scaling” framework of Bramson [1998], introduced in the

context of studying the heavy-traffic asymptotic behavior of multi-class queueing networks. Our
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model falls outside the class of problems studied in Bramson [1998], but as we show in appendix,

his analysis can be extended to address our setting in a fairly straightforward manner.

3.5 Limit model and discussion

Proposition 2 shows that the supplier behavior can be inferred by analyzing an appropriately defined

one-dimensional process Z̃r(t) that is related to the aggregated market workload. This also implies

that although each supplier only observes his own backlog, he is capable of inferring the backlog

(or at least the full cost) of all other competing suppliers.

The next theorem characterizes the limiting behavior of the one-dimensional process Z̃r(t),

and as a result also that of W̃ r(t) and Q̃r(t).

Theorem 1. (Weak Convergence) Suppose πi + c
Q̃r

i (0)
µi

= π̄ + c̄W̃ r(0) in probability, ∀i ∈ N .

Then Z̃r(t) weakly converges to a reflected Ornstein-Unlenbeck process Z̃(t) that satisfies

Z̃(t) = Z̃(0)− γc

∫ t

0
Z̃(s)ds + Ũ(t) +

c
√

σ2 + µ̂

µ̂
B(t), (13)

where Ũ(0) = 0, Ũ(t) is continuous and nondecreasing, and Ũ(t) increases only when Z̃(t) =

π̂ ≡ maxi∈N πi; B(t) is a standard Brownian motion. The parameters are γ = f(p̄)/F̄ (p̄), and

σ ≡
√∑

i∈N σ2
i . In addition, W̃ r(t) ⇒ 1

c̄ (Z̃(t)− π̄), and Q̃r
i (t) ⇒ µi

c (Z̃(t)− πi), ∀i ∈ N .

The process Ũ(t) is the limiting process of Ũ r(t) ≡ c
µ̂

∑
i∈N µiỸ

r
i (t) (defined in the proof of

Theorem 1), which can be regarded as the aggregate market idleness of the system.

This theorem characterizes the limiting marketplace behavior under a given price vector p.

The market exhibits a form of “resource pooling” across suppliers. Given that Z̃(t) ≥ π̂, where

π̂ ≡ maxi∈N πi, it follows that W̃ (t) ≥ 1
c̄ maxi∈N (πi − π̄) := ζ. This says that unless all the

suppliers submit the same price bid, the aggregate workload in the marketplace will always be

strictly positive and some suppliers will never incur any idleness. The intuition for this result is

the following. When the queue of the most expensive supplier(s) gets depleted, and this supplier(s)

starts to idle, momentarily the imbalance between the aggregate arrival rate and service rate force

suppliers to build up their queue lengths instantaneously. Consequently, suppliers that price below

π̂ never deplete their queue lengths asymptotically.

To summarize, in the limit model, the suppliers’ queue length processes follow from Q̃i(t) =
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µi

c (Z̃(t)− πi), ∀i ∈ N , where Z̃(t) is defined through (13). The next section will use this result as

an input to study the supplier pricing game.

A numerical example: To demonstrate the system dynamics, we consider a system with

two M/M/1 servers, delay sensitivity parameter c = 0.5, and arrival rate of buyers Λ = 1. The

valuation v of each customer is assumed to follow an exponential distribution with mean 1
10 . The

aggregate and individual service rates are respectively µ̂ = e−1.3, µ1 = 0.8µ̂, and µ2 = 0.2µ̂.

Moreover, suppose the price parameters are π1 = −1, π2 = −2, and therefore π̄ = π1+π2
2 = −1.5.

The workload trajectories for r = 30 and r = 80, depicted in Figures 1 and 2 respectively, show

that the cumulative time that the workload process spends below the respective boundaries ηr is

small; the above analysis proves that this time is asymptotically negligible.
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Figure 1: An instance of workload process when

r = 30.
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Figure 2: An instance of workload process when

r = 80.

4 Competitive behavior and market efficiency

In this section, we discuss the equilibrium behavior of suppliers in the pricing game described in

Section 2. We use the performance characterization of Section 3 to study the supplier pricing game.

This is done by casting the suppliers’ prices as “small” deviations around the market clearing price

p̄. This results in a pricing game with respect to these price deviations that is simplified due to the

structural results of the previous section.

We first derive the suppliers’ payoffs and focus on the analysis of the second-order revenues.
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We then briefly discuss the centralized solution that maximizes the aggregate payoffs. Next, we

characterize the non-cooperative behavior of suppliers under the competitive environment. Finally,

we propose a coordination scheme that achieves the aggregate payoff under the centralized solution,

and describe how this coordination scheme can be implemented in the original system.

4.1 Suppliers’ payoffs

Let Rr
i (t) denote supplier i’s cumulative revenue. Since the pricing is static, supplier i earns

Rr
i (t) = (p̄ + πi√

r
)Sr

i (t − Y r
i (t)), where Sr

i (·) is the counting service completion process, and Y r
i (t)

is the cumulative idleness process for supplier i. The next lemma shows that the “first-order”

revenues of the suppliers only depend on the first-order price term p̄ and the service rates {µi}’s.

Lemma 1. Rr
i (t)
r → p̄µit, as r →∞, ∀i ∈ N .

The characterization in Lemma 1 is too crude, and oversimplifies the suppliers’ decision making

problem for purposes of studying their equilibrium behavior. To study the supplier pricing game we

will focus on the second order correction around Rr
i (t) defined as rr

i (t) ≡ 1√
r
(Rr

i (t)−rp̄µit), ∀i ∈ N .

The limiting processes of these corrected terms are characterized in the following lemma.

Lemma 2. rr
i (t) ⇒ µiπit + p̄σiBs,i(t) − µip̄Ỹi(t), as r → ∞, ∀i ∈ N , where Ỹi(t) is the limiting

process of Ỹ r
i (t) as r →∞.

Define ri(t) := µiπit + p̄σiBs,i(t) − µip̄Ỹi(t), ∀i ∈ N . Instead of using the revenue functions

{Φi(pi, p−i)}’s defined in (3), we will study the supplier pricing game based on their (second-order)

revenues given by

Ψi(πi, π−i) ≡ lim
t→∞

ri(t)
t

= µi(πi − p̄E[Ỹi(∞)]), (14)

where π−i ≡ (π1, . . . , πi−1, πi+1, . . . , πn). Define hi as the (steady-state) proportion of the market

idleness incurred by supplier i, i.e.,

E[Ỹi(∞)] = hiE[Ũ(∞)], (15)

where E[Ũ(∞)] is the long-run average of the local time process of Z̃(t) specified in Theorem 1.

Dividing (13) by t and letting t →∞, we obtain that E[Ũ(∞)] = limt→∞
Ũ(t)

t = γcE[Z̃(∞)] =

γcβ φ(π̂/β)
1−Φ(π̂/β) , where

β = (
c(µ̂2 + σ2)

2γµ̂2
)1/2, (16)
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and the closed-form expression follows from the fact that the reflected Orstein-Uhlenbeck process

Z̃(t) has the stationary distribution as a truncated Normal random variable ([Browne and Whitt,

2003, Proposition 1]).6 Note that we do not derive the closed-form expressions of {hi}’s and, as we

will see below, they are not needed for our equilibrium analysis.

Let J = {j|πj = π̂}, where π̂ ≡ maxi∈N πi, denote the set of the most expensive suppliers

(allowing for ties). It is easy to see that hj = 0, if j /∈ J , and
∑

k∈J µkhk = µ̂
c . Therefore, from

(14) and (15), we obtain the suppliers’ second-order long-run average revenue functions as follows:

Ψi(πi, π−i) =





µiπi − µip̄hiγcβ φ(π̂/β)
1−Φ(π̂/β) , if i ∈ J,

µiπi, otherwise.
(17)

4.2 Centralized system performance

In the centralized version of the system, a central planner makes the price decisions π ≡ (π1, . . . , πn)

in order to maximize the total aggregated revenue:

max
�

{∑

i∈N
µiπi − p̄γµ̂β

φ(π̂/β)
1− Φ(π̂/β)

: πi ≤ π̂

}
, (18)

where we have applied
∑

i∈J µihi = µ̂
c to combine all the penalties imposed on the most expensive

suppliers.

For convenience we define L(π̂) ≡ p̄γµ̂β φ(π̂/β)
1−Φ(π̂/β) as the revenue loss that the system suffers if π̂

is the highest price offered. The optimal pricing decisions are summarized in the following lemma:

Lemma 3. In a centralized system, all prices πis are equal. The optimal static price is πC :=

arg maxπ[µ̂π − L(π)].

4.3 Competitive equilibrium

In a decentralized (competitive) system, each supplier is maximizing his own payoff, Ψi(πi, π−i),

in a non-cooperative way: maxπi Ψi(πi, π−i). Recalling the definition of L(π̂), we can rewrite the

supplier’s payoff in (17) as

Ψi(πi, π−i) = µiπi − µihi
c

µ̂
L(π̂)11{i ∈ J}] (19)

6We can verify that using their notation, the Z̃(t) process corresponds to the following parameters: a = γc, m = 0,

and the process has only a left reflecting barrier π̂.

19



Although a standard approach is to look for a pure-strategy Nash equilibrium, the next result shows

that none exists:

Lemma 4. There exists no pure-strategy equilibrium for the supplier pricing game with the payoff

function given in (19).

The reason for not having any pure-strategy equilibrium is intuitively due to the discontinuity

of suppliers’ revenue functions. This creates an incentive for the cheap suppliers to increase their

prices all the way to π̂; however, they would also avoid to reach π̂ when themselves become the

most expensive and incur a discontinuous penalty.

The full characterization of the competitive equilibrium is provided in the online appendix,

where we show that the suppliers randomize over certain range of prices in equilibrium, and each

supplier receives an expected payoff lower than what he would obtain under the centralized solution.

This implies that the centralized solution Pareto dominates all decentralized equilibria. Thus,

implementing a coordination scheme results in no conflict of interests, even though the suppliers

may be ex ante heterogeneous with respect to service rates. We also illustrate the competitive

equilibrium behavior through representative numerical examples in the online appendix. We further

show that as the market size grows, the competitive behavior among the suppliers may result in

an unbounded efficiency loss. This demonstrates a significant inefficiency due to the market7

mechanism and motivates the search for a coordination scheme.

4.4 Coordination scheme

4.4.1 Sufficient condition for coordination

We will first study the suppliers’ behavior if they were “forced” to share the penalty, or revenue

loss, that arises due to the market idleness. Under this scheme, supplier i ’s payoff is

ΨPS
i (πi, π−i) ≡ µiπi − µi

µ̂
L(max

j∈N
πj), (20)

where the superscript PS refers to penalty sharing according to the service rates. The first term µiπi

is the gross revenue supplier i earns by serving customers, and the second term µi

µ̂ L(maxj∈N πj)

corresponds to his penalty share that is proportional to his service rate µi. Note that this scheme

is budget-balanced, i.e., no financing from outside parties is required. Let
{
πPS

i

}′
s denote the
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equilibrium prices under this sharing scheme. Under this sharing scheme, the centralized solution

can be achieved.

Proposition 3. Under the penalty sharing schemes that satisfy (20), {πPS
i = πC , ∀i ∈ N} is the

unique equilibrium.

Under the PS scheme, a supplier’s objective is in fact an affine function of the aggregate

revenue (18). Hence, this coordination mechanism eliminates the wrong incentives of suppliers,

regardless of the number of suppliers and their service rates. Since in both competitive and the

coordinated equilibria the suppliers’ expected payoffs are proportional to their service rates, all

suppliers have a natural incentive to join.

4.4.2 “Compensation-while-idling” mechanism that achieves coordination

The natural question is whether we can implement a penalty-sharing mechanism based on observ-

able quantities. We now show that this is achievable through an appropriate set of transfer prices

between suppliers when one or more suppliers are idling.

Let ηij be the transfer price per unit of time from supplier i to supplier j when supplier j is

idle in the limit model, with ηii = 0. The second-order revenue process for a supplier i under this

compensation scheme becomes

r̃PS
i (t) = r̃i(t) + δ̃i(t), (21)

where

r̃i(t) ≡ µiπit + p̄σiBs,i(t)− µip̄Ỹi(t), (22)

δ̃i(t) ≡
∑

j∈N ,j 6=i

ηjiỸi(t)−
∑

j∈N ,j 6=i

ηij Ỹj(t). (23)

According to (22), the three terms correspond to his revenue by serving customers. In (23), δ̃i(t)

corresponds to the net transfers for supplier i :
∑

j∈N ,j 6=i ηjiỸi(t) is the compensation he receives

from other suppliers during the idle period, and
∑

j∈N ,j 6=i ηij Ỹj(t) is the cash outflow to other

suppliers while compensating their idleness.
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Given (21), supplier i’s long-run average revenue can be expressed as

Ψ̃i(πi, π−i) ≡ lim
t→∞

1
t
[r̃i(t) + δ̃i(t)] (24)

= µiπi − µip̄E[Ỹi(∞)] +
∑

j∈N ,j 6=i

ηjiE[Ỹi(∞)]−
∑

j∈N ,j 6=i

ηijE[Ỹj(∞)].

The next proposition specifies a set of transfer prices that implement the PS scheme.

Proposition 4. The transfer prices

ηij =
µiµj

µ̂
p̄, ∀i 6= j, i, j ∈ N , and ηii = 0, ∀i ∈ N , (25)

implement the PS rule, i.e., Ψ̃i(πi, π−i) = ΨPS
i (πi, π−i).

The transfer prices proposed in Proposition 4 essentially eliminate the imbalance between

the current share of the market idleness incurred by an individual supplier and his required share

(µi

µ̂ L(maxj∈N πj)). Given these transfer prices, every supplier’s objective is aligned with the cen-

tralized system (i.e., the objective is ΨPS
i (πi, π−i) in (20)), and thus all suppliers are induced to

set prices equal to πC .

Proposition 4 shows that we are able to achieve coordination since given any chosen prices, we

can align the suppliers’ objectives with the planner’s objective. To implement this compensation

scheme in the original system, we can simply request each supplier make transfers according to (25).

Note that the coordination scheme is independent of the the static prices {πi}’s; it only requires

the information of the service rates {µi}’s.7

Our approximate analysis of the supplier game is internally consistent in the sense that the

lower order price perturbations that essentially capture the supplier pricing game do not become

unbounded that would indicate a desire to deviate from the operating regime that supports our

limiting model. In essence, all suppliers choose to operate in the regime that we proposed in Section

3, both under the originally proposed market mechanism and the coordinating mechanism derived

in this section.
7In this paper we do not directly address the issue of whether the suppliers will truthfully report their capacity/

service rates. In a high volume setting such as the one analyzed in this paper, the market maker observes the orders

routed to each supplier, and can, indirectly through the supplier’s delay bid, compute the supplier’s capacity to

within an error that will be of lower order than the relevant quantities. This allows the market maker to accurately

set transfer prices as if she knew the true service rates.
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5 Conclusion

In this paper we study an oligopolistic model in which suppliers compete for the buyers that are

both price and delay averse. We apply both fluid and diffusion approximations to simplify the multi-

dimensional characteristics of the decoupled suppliers into a single-dimensional aggregated problem.

Specifically, we establish the “state space collapse” result in this system: the multi-dimensional

queue length processes at the suppliers can be captured by a single-dimensional workload process

of the aggregate supply in the market, which can be expressed explicitly as a reflected Ornstein-

Unlenbeck process with analytical expressions. Based on this aggregated workload process, we

derive the suppliers’ long-run average revenues and show that the supplier competition results in

a price randomization over certain ranges, whereas under the centralized control suppliers should

set identical and deterministic prices.

To eliminate the inefficiency due to the competition, we propose a novel compensation-while-

idling mechanism that coordinates the system: each supplier gets monetary transfers from other

suppliers during his idle periods. This mechanism alters suppliers’ objectives and implements the

centralized solution at their own will. The implementation only requires a set of static transfer

prices that are independent of the suppliers’ prices and the queueing dynamics such as the current

queue lengths or the cumulative idleness. Its simplicity is an appealing feature to be considered for

practical implementations.

Appendix. Proofs of main results

This appendix gives the proofs of the main results, while proofs of technical lemmas introduced in

the sequel are relegated to the online appendix.

Proof of Proposition 1

Define κi(t) = πi + c Q̄i(t)
µi

,∀i ∈ N as the total cost supplier i submits for the buyer at epoch t, and

κ(t) = [κ1(t), ..., κn(t)]. Let Υ(s) ⊆ N be the set of suppliers tied as the cheapest at time s and

Υc(s) ≡ N \Υ(s) be its complement. By the continuity of {κi(t)}’s (κi is continuous in Q̄i(t) and

Q̄i(t) is continuous in t), we have Υ(s) ⊆ Υ(t), ∀s ≤ t. In words, once a supplier’s proposed cost

ties the lowest one, his cost stays the lowest.
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Define the function

g(κ(t)) = max
i,j∈N

(κi(t)− κj(t)) = max
i∈N

κi(t)−min
j∈N

κj(t).

Note that g(κ(t)) is nonnegative, and g(κ(t)) = 0 if and only if κi(t) = κj(t), ∀i, j ∈ N . When

g(κ(t)) > 0, the arrivals will not be routed to the most expensive supplier at time t, and the

cheapest supplier accumulates customers. We will show that g(κ(t)) can be used as a Lyapunov

function to prove that |κi(t) − κj(t)| → 0 as t → ∞, and subsequently conclude the statement of

the proposition.

We now prove that there exists a lower bound for the depreciation rate of g(κ(t)). To this end,

we will bound d
dt (maxi∈N κi(t)) and d

dt (minj∈N κj(t)) separately. We first note that as long as not

all suppliers receive new orders, the aggregate arrival rate, that equals
∑

j∈N µj , is always higher

than the aggregate service rate of servers that tie as the cheapest ones. Recall that the orders are

routed only to these cheapest suppliers according to (7). Thus, from the imbalance between the

arrival and the service completion in (6) and (8), the queue lengths of these cheapest suppliers

increase as time goes by. Moreover, once a supplier becomes the cheapest before the state space

collapse occurs, his queue length grows unambiguously. On the contrary, those suppliers who do

not receive any customer only depreciate their queues and decrease their {κi(t)}’s (according to

the non-idling property (9)). This implies d
dt (minj∈N κj(t)) ≥ 0.

From the above discussions, it suffices to bound d
dt (maxi∈N κi(t)). Let k ∈ Υ(t) denote one of

the cheapest suppliers at epoch t. We then have

ġ(κ(t)) ≥ κ̇k(t) =
c

µk

µk∑
i∈Υ(t) µi


∑

i∈N
µi −

∑

i∈Υ(t)

µj


 ≥ c∑

i∈N µi −minj∈N µj


∑

i∈N
µi −

∑

i∈Υ(t)

µj


 ,

where
∑

i∈N µi −
∑

i∈Υ(t) µj is the imbalance between the aggregate arrival rate and aggregate

service rate for those cheapest suppliers, and µkP
i∈Υ(t) µi

is the proportion of customers routed to

supplier k. From
∑

i∈N µi −
∑

i∈Υ(t) µj ≥ minj∈N µj as long as Υ(t) 6= N , we then have ġ(κ(t)) ≥
c minj∈N µjP

i∈N µi−minj∈N µj
. Note that this lower bound is independent of epoch t and is strictly positive;

the tie-breaking rule does not matter due to the continuity of queue length processes.

Let 4κ be such that πl + c Q̄l(0)
µl

+4κ = maxi∈N {πi + c Q̄i(0)
µi

}. In words, 4κ is the amount

of cost that supplier l has to add so that his κl(0) ties the maximum initial cost. Because the

imbalance of proposed costs is decreasing in t at a guaranteed rate, the κi(t)’s will become equal

before time s∗(Q̄(0), W̄ (0)) = 4κ(
P

i∈N µi−minj∈N µj)

c minj∈N µj
. Thus, g(κ(t)) = 0, ∀t ≥ s∗.
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The next step needed is to bound 4κ as a function of M0. Call it 4(M0). Then for any δ > 0,

s∗(δ,M0) ≤ s∗(M0) = 4(M0)(
P

i∈N µi−minj∈N µj)

c minj∈N µj
. This completes the proof for the convergence of

fluid model.

Proof of Proposition 2

The proof builds on the framework advanced by Bramson [1998]. To facilitate exposition we

will follow Bramson [1998] very closely, stating and addressing the differences and the required

modifications.

A brief sketch of the proof is as follows. Step 1. Hydrodynamic limits: Lemmas 5-9 will

establish that appropriately scaled processes that focus on the system behavior over order 1√
r

time

intervals satisfy the fluid equations (6)-(11). Step 2. Convergence of diffusion scaled processes:

Combining the above with Proposition 1, we will establish that the supplier queue length process

is close to the “balanced” state configuration for all time t; i.e., the short transient digressions are

not visible in the natural time scale of the system.

Step 1:

The hydrodynamic scaling we adopt here is the following (cf. [Bramson, 1998, Equation (5.3)]):

For m = 1, 2, ..., b√rτc,

Qr,m(t) =
1√
r
Qr(

1√
r
t +

1√
r
m),

Ar,m(t) =
1√
r
[Ar(

1√
r
t +

1√
r
m)−Ar(

1√
r
m)],

Dr,m(t) =
1√
r
[Dr(

1√
r
t +

1√
r
m)−Dr(

1√
r
m)],

T r,m(t) = T r(
1√
r
t +

1√
r
m)− T r(

1√
r
m),

Y r,m(t) = Y r(
1√
r
t +

1√
r
m)− Y r(

1√
r
m),

Xr,m(·) = (Qr,m(·), Ar,m(·), Dr,m(·), T r,m(·), Y r,m(·)),

where Qr, Ar, Dr, T r, and Y r are all n-dimensional vectors. Note that for cumulative processes

Ar(·), Dr(·), T r(·), and Y r(·), the associated hydrodynamic scale processes Ar,m(t), Dr,m(t), and

T r,m(t), Y r,m(t), account for the cumulative changes between [ 1√
r
m, 1√

r
t + 1√

r
m]. On the contrary,

Qr,m(t) only keeps record of the values at epoch 1√
r
t + 1√

r
m. The scaling 1√

r
is used to ensure that

the scaled processes admit meaningful limits as r →∞.
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We now analyze the processes introduced above and provide probabilistic bounds. This es-

sentially is equivalent to [Bramson, 1998, Proposition 5.1]. For ease of notation, let us define

Qr,m(t) = {Qr,m
i (t)}. The routing indicator is Ii(Qr,m(t)) =





1 if ΞJ ( 1√
r
t+ 1√

r
m) = i,

0 otherwise.
. Note that

√
rQr,m

i (t) = Qr
i (

1√
r
t + 1√

r
m) is the queue length of supplier i at epoch 1√

r
t + 1√

r
m. Therefore,

p̄ +
πi√
r

+ c

√
rQr,m

i (t) + 1
rµi

= p̄ +
πi√
r

+ c
Qr

i (
1√
r
t + 1√

r
m) + 1

µr
i

is simply the total cost submitted by supplier i since
Qr

i ( 1√
r
t+ 1√

r
m)+1

µr
i

is the delay quotation. We

further define

Jr
i (Q

r,m
i (t)) = P

{
v ≥ p̄ +

πi√
r

+ c

√
rQr,m

i (t) + 1
rµi

}
, ∀i ∈ N

as the probability that at time epoch 1√
r
t + 1√

r
m, the valuation of a new arrival, v, exceeds the

total cost submitted by supplier i. The following lemma establishes the probability bounds.

Lemma 5. Fix ε > 0, L > 0, and τ > 0. For r large enough,

P
{

max
m<

√
rτ

max
i∈N

||Ar,m
i (t)−

∫ t

0
ΛrIi(Qr,m(u))Jr

i (Q
r,m
i (u))du||L > ε

}
≤ ε, (26)

P
{

max
m<

√
rτ

max
i∈N

||Dr,m
i (t)− µiT

r,m
i (t)||L > ε

}
≤ ε, (27)

P

{
max

m<
√

rτ
max
i,j∈N

||
(

πi + c
Qr,m

i (t)
µi

)
−

(
πj + c

Qr,m
j (t)
µj

)
||L > ε

}
≤ ε. (28)

The next lemma shows that the hydrodynamic processes are “nearly Lipschitz continuous.”

Lemma 6. Fix ε > 0, L > 0, and τ > 0. There exists a constant N0 such that for r large enough,

P

{
max

m<
√

rτ
sup

t1,t2∈[0,L]
|Xr,m(t2)−Xr,m(t1)| > N0|t2 − t1|+ ε

}
≤ ε. (29)

The above two lemmas imply that the measure of “ill-behaved” events is negligible for the

hydrodynamic scale processes. Let N0 denote the constant required in Lemma 6 and focus on the

complement of these ill-behaved events. We can choose a sequence ε(r) decreasing to 0 sufficiently
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slowly such that the inequalities (28), (27), and (29) still hold. For such a sequence ε(r), we define

Kr
0 =

{
max

m<
√

rτ
sup

t1,t2∈[0,L]
|Xr,m(t2)−Xr,m(t1)| ≤ N0|t2 − t1|+ ε(r)

}
,

Kr
1 =





maxm<
√

rτ maxi∈N ||Ar,m
i (t)− ∫ t

0 ΛrIi(Qr,m(u))Jr
i (Q

r,m
i (u))du||L ≤ ε(r);

maxm<
√

rτ maxi∈N ||Dr,m
i (t)− µiT

r,m
i (t)||L ≤ ε(r)

maxm<
√

rτ maxi,j∈N ||
(
πi + c

Qr,m
i (t)
µi

)
−

(
πj + c

Qr,m
j (t)

µj

)
||L ≤ ε(r);





,

Kr = Kr
0 ∩Kr

1 .

Note that the set Kr contains those events that possess our desired properties. The next step is to

show that when r is sufficiently large, we can restrict our attention to these well-behaved events.

This is parallel to [Bramson, 1998, Proposition 5.2, Corollary 5.1]. and follows from Lemmas 5 and

6.

Lemma 7. P(Kr) → 1, as r →∞.

Let E be the space of functions x : [0, L] → R5 that are right continuous and have left

limits. Define E′ = {x ∈ E : |x(0)| < M0, |x(t2) − x(t1)| < N0|t2 − t1|, ∀t1, t2 ∈ [0, L]}, where

M0 is a fixed constant. Let Er
0 = {Xr,m(·, ω), m <

√
rτ, ω ∈ Kr} denote the sets of well-behaved

events and E0 = {Er
0, r ∈ R+} is the collection of these sets. We next show that the set of

candidate hydrodynamic limits is “dense” in the state space: when r is sufficiently large, the vector

of processes Xr,m(·, ω) is close to some cluster point of E0. A function X̂ is said to be a cluster

point of the functional space E0 if for all δ > 0, there exists a Xδ ∈ E0 such that ||X̂ −Xδ||L < δ.

Lemma 8. Fix ε > 0, L > 0, and τ > 0. There exists a sufficiently large r(ε) such that for all

r > r(ε), for all ω ∈ Kr and for all m = 1, 2, ..., b√rτc, ||Xr,m(·, ω) − X̂(·)||L < ε, for some

X̂(·) ∈ E0 ∩ E′ with X̂(·) being a cluster point of E0.

The above lemma follows closely from [Bramson, 1998, Proposition 6.1]. Given that all hy-

drodynamic scale processes have a close-by cluster point, it remains to study the behavior of these

cluster points. The next step proves that all these cluster points are in fact solutions to the deter-

ministic fluid equations (6)-(11) (cf. [Bramson, 1998, Proposition 6.2]).

Lemma 9. Fix L > 0 and τ > 0. Let X̂(·) be an arbitrary cluster point of E0 over [0, L]. Then

X̂(·) satisfies the fluid equations (6)-(10).
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Step 2:

Combining the above results with Proposition 1, we will now establish the desired state space

collapse property for the supplier queue length processes. Let us first fix constants η, ξ, ε > 0. By

Lemma 7, there exists a sufficiently large r(ξ) > 0 such that P (Kr) > 1− ξ for all r > r(ξ).

Take L = s(ε,M0) + 1 where s(·, ·) was defined in Proposition 1. Let r(η) be sufficiently

large such that L√
r

< η whenever r > r(η). Now we consider the diffusive scaled processes in

the time interval [ L√
r
, τ ]. For all ς ∈ [ L√

r
, τ ], let mr(ς) = min{m ∈ N+ : m <

√
rς < m + L} =

max{d√rς − Le, 0} and τ
′
r(ς) :=

√
rς − mr(ς). Thus, ς = 1√

r

[
τ
′
r(ς) + mr(ς)

]
. Straight-forward

algebra shows that Q̃r
i (ς) = 1√

r
Qr

i (ς) = 1√
r
Qr

i

(
1√
r
τ
′
r(ς) + 1√

r
mr(ς)

)
= Q

r,mr(ς)
i (τ

′
r(ς)). From the

definition of τ
′
r(ς), if r > r(η), for all ς ∈ [ L√

r
, τ ], we have

τ
′
r(ς) =

√
rς −mr(ς) =

√
rς −max{d√rς − Le, 0} ≥ √

rς − (
√

rς − L− 1) = L− 1 = s(ε,M0).

This implies that the convergence of fluid scale process can be applied at time ς ∈ [ L√
r
, τ ] when r >

r(η). Moreover, mr(ς) ≤
√

rς ≤ √
rτ by construction. Therefore, the convergence of hydrodynamic

scale processes is valid here for all ς ∈ [ L√
r
, τ ] as well.

We now verify that the imbalance between πi + c
Q̃r

i (ς)
µi

and πi + c
Q̃r

i (ς)
µi

is upper bounded (note

that the additional terms { 1
µr

i
}’s in the suppliers’ bids have been taken into account in Lemma 5

through (28)):

max
i,j∈N

|
(

πi + c
Q̃r

i (ς)
µi

)
−

(
πj + c

Q̃r
j(ς)
µj

)
|

≤ max
i,j∈N





|
(

πi + c
Q

r,mr(ς)
i (τ

′
r(ς))

µi

)
−

(
πi + c

bQi(τ
′
r(ς))

µi

)
|+ |

(
πi + c

bQi(τ
′
r(ς))

µi

)
−

(
πj + c

bQj(τ
′
r(ς))

µj

)
|

+|
(

πj + c
bQj(τ

′
r(ς))

µj

)
−

(
πj + c

Q
r,mr(ς)
j (τ

′
r(ς))

µj

)
|





≤ 2max
i∈N

|
(

πi + c
Q

r,mr(ς)
i (τ

′
r(ς))

µi

)
−

(
πi + c

Q̂i(τ
′
r(ς))

µi

)
|

+ max
i,j∈N

|
(

πi + c
Q̂i(τ

′
r(ς))

µi

)
−

(
πj + c

Q̂j(τ
′
r(ς))

µj

)
|.

From Lemmas 5 and 8, for fixed L, τ, ξ, η, and ε > 0, there exists a sufficiently large r(L, τ, ξ, η, ε) >

max{r(ξ), r(η)} such that for all r > r(L, τ, ξ, η, ε),ω ∈ Kr, for all ς ∈ [ L√
r
, τ ], we have

max
i∈N

|
(

πi + c
Q

r,mr(ς)
i (τ

′
r(ς))

µi

)
−

(
πi + c

Q̂i(τ
′
r(ς))

µi

)
| ≤ ε

3
,
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and maxi,j∈N |
(

πi + c
bQi(τ

′
r(ς))

µi

)
−

(
πj + c

bQj(τ
′
r(ς))

µj

)
| ≤ ε

3 . This implies that maxi,j∈N |
(
πi + c

Q̃r
i (ς)
µi

)
−

(
πj + c

Q̃r
j (ς)

µj

)
| ≤ ε

3 + ε
3 + ε

3 = ε. Note that P (Kr) → 1 as r → ∞, i.e., the state space collapse

holds in probability (the additional term 1
µr

i
is of order 1

r and therefore does not affect the result

as demonstrated in Lemma 5). We can then choose appropriate L, τ, ξ, η, and ε such that the

proposition is established.

Proof of Theorem 1

We start with a sketch of the proof, and then provide the details for each part.

Step 1. Write down the equation of W r(t). Recall that the workload process is W r(t) =
∑

i∈N
Qr

i (t)
µr

i
, where Qr

i (t) = Qr
i (0) + Ar

i (t) − Sr
i (T

r
i (t)), and the scaled workload process W̃ r(t) =

√
rW r(t). We first apply strong approximations ([Glynn, 1990, Theorem 5]) on the cumulative

arrival process routed to each supplier and the service requirement processes, and then the state

space collapse result to derive the expression of W r(t) as a function of the total arrival process

Ar(t).

Step 2. Fluid model properties of cumulative idleness and aggregate market demand. Let

Y r
i (t) = t − T r

i (t) denote the market idleness, where T r
i (t) is the cumulative work completion for

supplier i up to time t, and Λr(t) be the aggregate arrival rate into the market. We will prove that

Y r
i (t) → 0, in probability, u.o.c., ∀i ∈ N , and Λr(t)

r → (
∑

i∈N µi)t, u.o.c.

Step 3. Use strong approximations and oscillation inequalities to bound Ũ r(t) and W̃ r(t). In

this step, we approximate W̃ r(t) using the reflection maps (ϕ,ψ) (similar to the framework in

Williams [1998]) and apply Lemma 7 in Ata and Kumar [2005] to bound the market idleness Ũ r(t)

and workload W̃ r(t).

Step 4. Establish the weak convergence of Z̃r(t). Having established the convergence for

individual idleness process, we now focus on the process W̃ r(t). We will follow Mandelbaum and

Pats [1995] and use Gronwall’s inequality to bound the difference of W̃ r(t) from another process

that has the “desirable” limit, and then apply convergence together lemma to establish the weak

convergence. The weak convergence of Q̃r(t) follows immediately from the state space collapse

result and the convergence together lemma.
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Complete Proof of Theorem 1

Step 1:

From Proposition 2, we have πi + c
Q̃r

i (t)
µi

= π̄ + c̄W̃ r(t) + op(1), ∀i ∈ N . In the sequel we

can simply focus on those events in which state space collapse arises. Recall that the queue length

process can be rewritten as Qr
i (t) = Qr

i (0) + Ar
i (t) − Sr

i (t − Y r
i (t)), where Sr

i (·) is the cumulative

service completions when the underlying random service times are i.i.d. with mean 1
rµi

and standard

deviation σi
r . Then,

πi + c
Q̃r

i (t)
µi

= π̄ + c̄W̃ r(t) + op(1),

⇒ πi + c
Q̃r

i (0)
µi

+ c
Ar

i (t)√
rµi

− cSr
i (t− Y r

i (t))√
rµi

= π̄ + c̄W̃ r(t) + op(1).

Rearranging the above equation, we see that

Ar
i (t)√
r

=
µi

c
[π̄ + c̄W̃ r(t)] +

Sr
i (t− Y r

i (t))√
r

− µiπi

c
− Q̃r

i (0) + op(1),

and therefore the aggregate market demand Ar(t) ≡ ∑
i A

r
i (t) satisfies

Ar(t)√
r

=
∑

i∈N µi

c
[π̄ + c̄W̃ r(t)] +

∑

i∈N

Sr
i (t− Y r

i (t))√
r

−
∑

i∈N µiπi

c
−

∑

i∈N
Q̃r

i (0) + op(1). (30)

Next we focus on the demand and service time processes. A strong approximation ([Glynn,

1990, Theorem 5]) for the Poisson process N(·) allows us to rewrite Ar(t) = N(Λr(t)) as

Ar(t) = Λr(t) + Ba(Λr(t)) + O(log rt), (31)

where Λr(t) =
∫ t
0 λr(mini∈N [p̄+ πi√

r
+c

√
rQ̃r

i (s)+1
rµi

])ds is the arrival rate of aggregate market demand,

and Ba(·) is a standard Brownian motion and the subscript “a” stands for “arrival.”

Similarly, a strong approximation of the renewal process Sr
i (·) gives that

Sr
i (t− Y r

i (t)) = µr
i t− µr

i Y
r
i (t) +

√
rσiBs,i(t− Y r

i (t)) + O(log r[t− Y r
i (t)]), (32)

where Bs,i(·) is the standard Brownian motion associated with supplier i’s service time distribution,

and the subscript “s” stands for “service.” Note that the service rate is of order r, and therefore

the Brownian motion is scaled by
√

r.
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From Proposition 2 we have that mini∈N
{

πi + c
Q̃r

i (t)
µi

+ c 1
µr

i

}
= π̄ + c̄W̃ r(t) + op(1), ∀t, and

P (W̃ r(t)√
r

> 0) → 0, uniformly in t. Therefore, the arrival rate can be expressed as

λr

(
min
i∈N

{
p̄ +

πi√
r

+ c

√
rQ̃r

i (s) + 1
rµi

})
= λr

(
p̄ +

π̄ + c̄W̃ r(s)√
r

+ op(
1√
r
)

)

= λr(p̄)− λr(p̄)
′

√
r

[π̄ + c̄W̃ r(s)] + op(
√

r) =
∑

i∈N
µr

i −
√

r(
∑

i∈N
µi)

f(p̄)
F̄ (p̄)

[π̄ + c̄W̃ r(s)] + op(
√

r),

where the second equality follows from a first-order Taylor expansion at p = p̄ and the last equality

follows from the fact that p̄ induces full resource utilization and the definition of λr(·). With this

expression, the cumulative rate of aggregate market demand Λr(t) becomes

Λr(t) = (
∑

i∈N
µr

i )t−
√

r(
∑

i∈N
µi)

f(p̄)
F̄ (p̄)

∫ t

0
[π̄ + c̄W̃ r(s)]ds + op(

√
rt). (33)

Combining (30), (31), (32), and (33), and for γ ≡ f(p̄)
F̄ (p̄)

, we obtain

1√
r

{
(
∑

i∈N
µr

i )t− (
∑

i∈N
µi)γ

∫ t

0
[π̄ + c̄W̃ r(s)]ds

}
+

Ba(Λr(t))√
r

+ op(1)

=
∑

i∈N µi

c
[π̄ + c̄W̃ r(t)] +

∑
i∈N µr

i√
r

t−
∑

i∈N µr
i√

r
Y r

i (t) +
∑

i∈N
σiBs,i(t− Y r

i (t))−
∑

i∈N µiπi

c
−

∑

i∈N
Q̃r

i (0).

We can rearrange the equation as follows:
∑

i∈N µi

c
[π̄ + c̄W̃ r(t)] = −(

∑

i∈N
µi)γ

∫ t

0
[π̄ + c̄W̃ r(s)]ds +

√
r

∑

i∈N
µiY

r
i (t) +

∑
i∈N µiπi

c
+

∑

i∈N
Q̃r

i (0)

+
Ba(Λr(t))√

r
−

∑

i∈N
σiBs,i(t− Y r

i (t)) + op(1).

Recall that Z̃r(t) = π̄ + c̄W̃ r(t), µ̂ ≡ ∑
i∈N µi, and Ỹ r

i (t) =
√

rY r
i (t), ∀i ∈ N . From the

assumption of initial queue lengths πi+c
Q̃r

i (0)
µi

= π̄+ c̄W̃ r(0), ∀i ∈ N , we obtain Q̃r
i (0) = µi

c (Z̃r(0)−
πi), and therefore that

∑
i∈N Q̃r

i (0) = µ̂
c Z̃r(0)−

P
i∈N µiπi

c .

Using these substitutions, we get that

µ̂

c
Z̃r(t) = −µ̂γ

∫ t

0
Z̃r(s)ds +

∑

i∈N
µiỸ

r
i (t) + Z̃(0) + [

Ba(Λr(t))√
r

−
∑

i∈N
σiBs,i(t− Y r

i (t))] + op(1).

Defining Ũ r(t) = c
µ̂

∑
i∈N µiỸi(t) as the “total market idleness,” we conclude that

Z̃r(t) = Z̃(0)− γc

∫ t

0
Z̃r(s)ds + Ũ r(t) +

c

µ̂

[
Ba(Λr(t))√

r
−

∑

i∈N
σiBs,i(t− Y r

i (t))

]
+ op(1). (34)
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Step 2:

In this section, we will establish the convergence of scaled copies of Λr(t) and Y r
i (t) according

to
Λr(t)

r
→ µ̂t, in probability, u.o.c. (35)

Y r
i (t) → 0, in probability, u.o.c.,∀i ∈ N . (36)

First we prove (35). From (33), we have Λr(t)
r = µ̂t− µ̂γ√

r

∫ t
0 Z̃r(s)ds+op( 1√

r
), where the last term

vanishes in the limit. From Proposition 2, we know that for any fixed constant C, P (supt≤T W̃ r(t) >

C) → 0, and hence P (supt≤T
W̃ r(t)√

r
> ε) → 0, ∀ε > 0. Moreover, µ̂γ√

r

∫ t
0 Z̃r(s)ds = µ̂γ√

r
[π̄t +

c
∫ t
0 W̃ r(s)ds] → 0,in probability, u.o.c., as r → ∞, because the first term inside the brackets is a

constant and the integral is uniformly bounded by ε
√

r. Therefore, Λr(t)
r → µ̂t, in probability, u.o.c.,

which completes the proof of (35).

Next we show (36) by contradiction. Suppose that there exists a supplier i such that Y r
i (t)9 0

u.o.c., then we can find a constant ε1 > 0 and a sequence (rk, tk) such that rk →∞ as k → ∞ and

Y rk
i (tk) > ε1, ∀k. Along this sequence, due to the nonnegativity of Ỹ r

j (t)’s and the scaling
√

r for

Ỹ r
i (t), we obtain Ũ rk(tk) >

√
rk(cµiε1/µ̂). Thus, as k →∞, Ũ rk(tk) →∞. From (34), this implies

that Z̃rk(tk) → ∞, and therefore that W̃ rk(tk) → ∞. This, however, contradicts the fact that for

all T > 0, ε > 0, there exists a constant C such that P (supt≤T
˜W r(t) > C) < ε. This completes the

proof of (36).

Step 3:

We can rewrite (34) as Z̃r(t) = Z̃r(0)−γc
∫ t
0 Z̃r(s)ds+Ũ r(t)+Ṽ r(t), where Ṽ r(t) = c

µ̂ [Ba(Λr(t))√
r

−
∑

i∈N σiBs,i(t − Y r
i (t))]. Recalling that Λr(t)

r → µ̂t and Y r
i (t) → 0, we can apply the invariance

principle of Brownian motion and convergence together lemma to obtain

Ba(Λr(t))√
r

D= Ba(
Λr(t)

r
) ⇒ Ba(µ̂t) D=

√
µ̂Ba(t),

∑

i∈N
σiBs,i(t− Y r

i (t)) ⇒
∑

i∈N
σiBs,i(t)

D= σBs(t),

where σ ≡
√∑

i∈N σ2
i and Ba, Bs are independent standard Brownian motions. Thus, Ṽ r(t) ⇒

c
µ̂ [
√

µ̂Ba(t)−σBs(t)]
D= c

µ̂

√
σ2 + µ̂B(t), where B(t) is a standard Brownian motion and the second

expression follows again from the invariance principle. Since Ỹ r
i (t) is nonnegative, non-decreasing,

and continuous, we have Ũ r(t) is continuous, non-decreasing, and Ũ r(t) ≥ 0.

32



Now we quote a technical lemma:

Lemma 10. Let εr be a real-valued sequence such that εr → 0 as r →∞, and ζ ≡ 1
c̄ maxi (πi− π̄).

Then,
∫ t
0 11{|W̃ r(s)− ζ| > εr}dŨ r(s) → 0 in probability, u.o.c.

Motivated by the result in Lemma 10, we will rewrite Ũ r(t) in two parts as follows:

Ũ r(t) =
∫ t

0
11{|W̃ r(s)− ζ| > εr}dŨ r(s)

︸ ︷︷ ︸
Ũr

ε (t)

+
∫ t

0
11{|W̃ r(s)− ζ| ≤ εr}dŨ r(s)

︸ ︷︷ ︸
Ũr

ζ (t)

.

Note that Ũ r
ζ (·), Ũ r

ε (·) are nonnegative, continuous, and nondecreasing. Moreover, Ũ r
ε (t) → 0,

as r → ∞ in probability, u.o.c., and supt≤T |Ũ r
ζ (t) − Ũ r(t)| → 0 in probability. Define now the

process V (t) = c
µ̂

√
σ2 + µ̂2B(t), and consider the auxiliary process R̃(t) defined as follows: R̃(t) =

R̃(0)−γc
∫ t
0 R̃(s)ds+V (t)+U(t), where U(t) is continuous and nondecreasing, U(0) = 0, and U(t)

increases only when W̃ (t) hits ζ, i.e., only when R̃(t) = π̄ + c̄ζ = maxi∈N πi ≡ π̂. Note also that π̂

can be regarded as the lower reflecting barrier of the limiting process of R̃(t). We later on show that

this coincides with the limit of Ũ r(t). By construction, R̃(t) has the behavior of the hypothesized

limit for Z̃r(t) specified in Theorem 1.

Let X̃(t) = R̃(t)− π̂. Then,

X̃(t) = X̃(0)− γc

∫ t

0
[X̃(s) + π̂]ds + V (t) + U(t) ≡ ϕ(X̂(t)), (37)

where ϕ(·) is the reflection operator (Mandelbaum and Pats [1995]) and X̂(t) is defined by X̂(t) =

X̃(0)− γc
∫ t
0 [X̃(s) + π̂]ds + V (t).

The remaining goal is to show that Z̃r(t) converges to R̃(t). Recall that Z̃r(t) = Z̃r(0) −
γc

∫ t
0 Z̃r(s)ds + Ṽ r(t) + Ũ r

ζ (t) + Ũ r
ε (t), Z̃r(t) = Z̃r(0)− γc

∫ t
0 Z̃r(s)ds + Ṽ r(t) + Ũ r

ζ (t) + Ũ r
ε (t),and

define H̃r(t) = Z̃r(t)− π̂ and its primitive process Ĥr(t) as follows: Ĥr(t) = Ĥr(0)−γc
∫ t
0 [H̃r(s)+

π̂]ds + Ṽ r(t), and H̃r(t) = Ĥr(t) + Ũ r(t).

The key remaining element of the proof is to show that H̃r(s) ⇒ X̃(t), which will imply the

weak convergence of Z̃r(t) to R̃(t). From Lemma 10 and Proposition 2, for any sequence εr > 0,

s.t. εr → 0 as r → ∞, there exists a sequence δr > 0 where δr ↓ 0 and r̄ large enough such that

for all r > r̄, we have P (infs≤t W̃ r(s) ≥ ζ − εr) = 1− δr. Let Ω(εr) be the set of sample paths for

which infs≤t W̃ r(s) ≥ ζ − εr. Note that P (Ω(εr)) = 1− δr → 1 as r →∞.
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In the sequel we will use Lemma 7 of Ata and Kumar [2005]. We first observe that ∀ω ∈ Ω(εr),

W̃ r(t) ≥ ζ − εr ⇔ Z̃r(t) ≥ π̂ − c̄εr ⇔ H̃r(t) ≥ −c̄εr, and, similarly, W̃ r(s) > ζ + εr implies

H̃r(s) > c̄εr. If we define Hr
1(t) = H̃r(t) + c̄εr, Hr

2(t) = Ĥr(t) + c̄εr, and focus on the event

ω ∈ Ω(εr), then Hr
1 ,Hr

2 , Ũ r satisfy the following conditions:

Hr
1(t) = Hr

2(t) + Ũ r(t),

Hr
1(t) ≥ 0,

Ũ r(·) nondecreasing; Ũ r(0) = 0,
∫ t

0
11{Hr

1(s) > 2c̄εr}dŨ r(s) = 0,

where the last equation follows from a simple transformation H̃r(s) > c̄εr ⇔ Hr
1(s) > 2c̄εr. Since

H̃r, Ĥr, Ũ r all are right continuous and have left limits in [0, T ], ∀T > 0, these processes Hr
1 ,Hr

2 , Ũ r

fit the conditions of Lemma 7 in Ata and Kumar [2005]. Thus, if we define ψ(X(t)) = sup{X(s)− :

0 ≤ s ≤ t} where X− = max(0,−X), and ϕ(X) ≡ X − ψ(X) is the regulated process of X, we

obtain from Lemma 7 of Ata and Kumar [2005] that ψ(Hr
2(t)) ≤ Ũ r(t) ≤ ψ(Hr

2(t)) + 2c̄εr.

Recall that ψ(·) is nonincreasing and Lipschitz continuous with unity constant, and Hr
2(t) =

Ĥr(t) + c̄εr. It follows that

ψ(Ĥr(t))− c̄εr ≤ Ũ r(t) ≤ ψ(Ĥr(t)) + 2c̄εr, (38)

which in turn implies ϕ(Ĥr(t))− 2c̄εr ≤ H̃r(t) ≤ ϕ(Ĥr(t)) + c̄εr.

Step 4:

Subtracting Ĥr(t) by the auxiliary process X̂(t), we obtain

Ĥr(t)− X̂(t) = −γc

∫ t

0
[H̃r(s)− X̃(s)]ds + V r(t)− V (t) + op(1),

⇒|Ĥr(t)− X̂(t)| ≤ γc

∫ t

0
|H̃r(s)− X̃(s)|ds + |V r(t)− V (t) + op(1)|,

where the last inequality follows from the triangle inequality. Recall that ϕ(·) is Lipschitz continuous

and let K denote the Lipschitz constant. Thus, using (38), this inequality can be rewritten as

|Ĥr(t)− X̂(t)| ≤ γcK
∫ t
0 |Ĥr(s)− X̂(s)|ds + |V r(t)− V (t) + op(1)|+ 2γc2εrt.

From the strong approximation for V r(t), we have that for any sequence vr > 0, vr ↓ 0, there

exists r large enough such that

sup
t≤T

|V r(t)− V (t)| ≤ vr, w.p. 1− θr, (39)
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where θr ↓ 0 as r → ∞. In the sequel we concentrate on sample paths in Ω(εr) for which (39)

holds, i.e., we consider only ω ∈ Ω(εr, vr) ≡ Ω(εr) ∩ Ω(vr), where Ω(vr) is the set of sample paths

for which supt≤T |V r(t)− V (t)| ≤ vr. The measure of Ω(εr, vr) is more than 1− δr − θr. Then,

|Ĥr(t)− X̂(t)| ≤ γcK

∫ t

0
|Ĥr(s)− X̂(s)|ds + vr + 2γc2εrt

≤ (vr + 2γc2εrT )eγcKT ,

(40)

where the second inequality follows from Gronwall’s inequality and the fact that t ≤ T .

From the Lipschitz continuity of ϕ(·), (37), and (40), we get that |H̃r(t) − X̃(t)| ≤ K(vr +

2γc2εrT )eγcKT + 2c̄εr. Let r →∞, sequences εr, vr, δr, θr all vanish and therefore we conclude that

sup t≤T |H̃r(t)− X̃(t)| → 0 in probability. (41)

From (41), the fact that Z̃r(t) = H̃r(t) + π̂, and the convergence together theorem, it follows

that Z̃r(t) converges to R̃(t), which is the desired result identified in Theorem 1. The weak con-

vergence of the queue length processes follows immediately from the convergence of Z̃r(t) and the

state space collapse result of Proposition 2.

Proof of Proposition 3

From the PS rule, we can define ΠPS
i (πi, π−i) = µiπi−µi

µ̂ L(maxj∈N πj) = µi[πi− 1
µ̂L(maxj∈N πj)] as

the revenue for supplier i when other suppliers select π−i. Note that supplier i always benefits from

raising his price infinitesimally if it has not been the highest. Thus, in equilibrium all suppliers

must submit the same price. The derivative of ΠPS
i with respect to πi becomes ∂ΠPS

i (πi,π−i)
∂πi

=

µi[1− 1
µ̂L

′
(maxj∈N πj)11{πi = maxj∈N πj}].

Recall from Lemma 3 that πC = arg maxπ{µ̂π−L(π)} and therefore 1− 1
µ̂L

′
(πC) = 0. Imposing

symmetry and plugging πj = πC , ∀j ∈ N , we obtain ∂ΠPS
i (πi,π−i)

∂πi
|πj=πC ,∀j∈N = µi

[
1− 1

µ̂L
′
(πC)

]
=

0, where the second equality follows from the definition of πC . Therefore, every supplier setting

price πC is the symmetric equilibrium under this sharing rule. The uniqueness follows from the

strict convexity of L(·).
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Proof of Proposition 4

Given the transfer prices {ηij = µiµj

µ̂ p̄, i, j ∈ N}, supplier i’s second-order revenue becomes

r̃PS
i (t) = µiπit + p̄σiBs,i(t)− µip̄Ỹi(t) +

∑

j∈N ,j 6=i

ηjiỸi(t)−
∑

j∈N ,j 6=i

ηij Ỹj(t)

= µiπit + p̄σiBs,i(t)− p̄
µi

µ̂

∑

j∈N
µj Ỹj(t)

= µiπit + p̄σiBs,i(t)− µip̄
1
c
Ũ(t),

where we recall that Ũ(t) = c
µ̂

∑
j∈N µj Ỹj(t). Thus, supplier i’s long-run average second-order

revenue is Ψ̃i(πi, π−i) = µiπi − µi
p̄
cE[Ũ(∞)] = µiπi − µi

µ̂ L(maxj∈N πj) = ΨPS
i (πi, π−i).

Proof of Lemma 3

Since the second term in (18) is independent of the lower static prices πi, i /∈ J , at optimality these

πis should all be equal, i.e., πi = π̂, ∀i ∈ N . Thus, the problem reduces to a single-parameter max-

imization problem: maxπ̂

{
µ̂π̂ − p̄γµ̂β φ(π̂/β)

1−Φ(π̂/β)

}
. Recall that φ(z)

1−Φ(z) is the hazard rate of standard

normal distribution and hence it is increasing and convex ([Zeltyn and Mandelbaum, 2005, Section

5]).8 Thus, πC is well-defined and unique.
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Online Appendix for

“Design of an aggregated marketplace under congestion effects:

Asymptotic analysis and equilibrium characterization”

Proofs of auxiliary results

In this online appendix, we provide proofs for the auxiliary results for the asymptotic analysis

(Section 3) and equilibrium characterization (Section 4).

A. Proofs of auxiliary lemmas in Sections 3 and 4

Proof of Lemma 1

Recall that using the strong approximation theorem ([Glynn, 1990, Theorem 7]), the service time

process of supplier i can be expressed as follows:

Sr
i (t) = µr

i (t− Y r
i (t)) +

√
rσiBs,i(t− Y r

i (t)) + O(log rt),

where Bs,i is the associated Brownian motion with standard deviation σi, and Y r
i is the correspond-

ing idleness process. Recall that Rr
i (t) = (p̄ + πi√

r
)Sr

i (t). Thus, as r →∞,

Rr
i (t)
r

=
1
r
(p̄ +

πi√
r
)
[
rµi(t− Y r

i (t)) +
√

rσiBs,i(t− Y r
i (t)) + O(log rt)

] → p̄µit,

after removing the lower-order terms.

Proof of Lemma 2

Recalling the expression Rr
i (t) = (p̄ + πi√

r
)Sr

i (t) from Lemma 1, we have

1√
r
{Rr

i (t)− rp̄µit}

=
1√
r

{
(p̄ +

πi√
r
)
[
µr

i t− µr
i Y

r
i (t) +

√
rσiBs,i(t− Y r

i (t)) + O(log rt)
]− rp̄µit

}

=
1√
r
{√r[µiπit + p̄σiBs,i(t− Y r

i (t))− µip̄Ỹ r
i (t)]

+σiπiBs,i(t− Y r
i (t))− µiπiỸ

r
i (t) + O(log rt)}.
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From Qr
i (t) = Qr

i (0)+Ar
i (t)−Sr

i (t−Y r
i (t)), the idleness process can be represented as Y r

i (t) = t−
[Sr

i ]
−1 (Qr

i (0) + Ar
i (t)−Qr

i (t)) , where [Sr
i ]
−1 is well-defined since Sr

i (·) is monotonically increasing.

Since Ar
i (t), Qr

i (t) both converge according to Theorem 1, the convergence Ỹ r
i (t) =

√
rY r

i (t) to

the limiting process Ỹi(t) then follows from Theorem 1 and the convergence together theorem.

Moreover, since Y r
i (t) → 0 as r →∞ from the proof of Theorem 1, we get that

rr
i (t) = 1√

r
(Rr

i (t)− rp̄µit) ⇒ µiπi + p̄σiBs,i(t)− µip̄Ỹi(t), as r →∞.

Proof of Lemma 5

Our first goal is to show that the scaled arrival process Ar,m
i (t) increases if and only if Ii(Qr,m(t)) = 1

and p̄ + πi√
r

+ c
√

rQr,m
i (t)+1
rµi

≤ v, where v is the customer’s willingness to pay. To this end, we shall

consider two events {p̄+ πi√
r
+c

√
rQr,m

i (t)+1
rµi

≤p̄+ πj√
r
+c

√
rQr,m

j (t)+1

rµj
} and {p̄+ πi√

r
+c

√
rQr,m

i (t)+1
rµi

≤ v}.
We recall the definition of Qr,m(t) and establish the following equivalence:

p̄ +
πi√
r

+ c

√
rQr,m

i (t) + 1
rµi

≤p̄ +
πj√
r

+ c

√
rQr,m

j (t) + 1
rµj

(42)

⇔ p̄ +
πi√
r

+ c
Qr

i (
1√
r
t + 1√

r
m) + 1

µr
i

≤p̄ +
πj√
r

+ c
Qr

j(
1√
r
t + 1√

r
m) + 1

µr
j

⇔ p̄ +
πi√
r

+ c
Qr

i (
1√
r
t + 1√

r
m) + 1

µr
i

≤p̄ +
πj√
r

+ c
Qr

j(
1√
r
t + 1√

r
m) + 1

µr
j

,

where we recall Qr,m
i (t) = 1√

r
Qr

i (
1√
r
t + 1√

r
m) and

Qr
i ( 1√

r
t+ 1√

r
m)+1

µr
i

is simply the expected delay a

buyer encounters when joining the queue i at epoch 1√
r
t + 1√

r
m. Thus, (42) implies that the total

cost submitted by supplier i is less than that by supplier j.

Similarly, if p̄ + πi√
r

+ c
√

rQr,m
i (t)+1
rµi

≤ v, we obtain

p̄ +
πi√
r

+ c
Qr

i (
1√
r
t + 1√

r
m) + 1

µr
i

= p̄ +
πi√
r

+ c

√
rQr,m

i (t) + 1
rµi

≤ v.

Therefore, if p̄+ πi√
r
+ c

√
rQr,m

i (t)+1
rµi

≤p̄+ πj√
r
+ c

√
rQr,m

j (t)+1

rµi
, ∀j 6= i, and p̄+ πi√

r
+ c

√
rQr,m

i (t)+1
rµi

≤p̄+
πj√

r
+ c

√
rQr,m

j (t)+1

rµi
, ∀j < i, and p̄ + πi√

r
+ c

√
rQr,m

i (t)+1
rµi

≤ v, then Ar
i (

1√
r
t + 1√

r
m), the arrival pro-

cess routed to server i at time epoch 1√
r
t + 1√

r
m, increases. But this implies that Ar,m

i (t) =
1√
r

[
Ar

i (
1√
r
t + 1√

r
m)−Ar

i (
1√
r
m)

]
also increases since Ar

i (
1√
r
m) is unchanged. Therefore, the scaled

arrival process Ar,m
i (t) increases if and only if Ii(Qr,m(t)) = 1 and p̄ + πi√

r
+ c

√
rQr,m

i (t)+1
rµi

≤ v. This
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implies that

r max
i∈N

||Ar,m
i (t)−

∫ t

0
ΛrIi(Qr,m(u))Jr

i (Q
r,m
i (u))du||L ≤ ||N(t)− t||Lr,

where N(t) represents the counting process of the arrivals and we have applied

0 ≤ r

∫ t

0
ΛrIi(Qr,m(u))Jr

i (Q
r,m
i (u))du ≤ Lr,∀t ∈ [0, L].

We can now establish the probability bound based on the above inequality:

P
(

max
m<

√
rτ

max
i∈N

||Ar,m
i (t)−

∫ t

0
ΛrIi(Qr,m(u))Jr

i (Q
r,m
i (u))du||L > ε

)

≤
b√rτc∑

m=1

P
{
||Ar,m

i (t)−
∫ t

0
ΛrIi(Qr,m(u))Jr

i (Q
r,m
i (u))du||L > ε

}

≤
b√rτc∑

m=1

P
{

1
r
||N(t)− t||Lr > ε

}

≤
b√rτc∑

m=1

ε

L2r

≤ b√rτc 1
L2r

ε,

where in the third second inequality we have applied [Bramson, 1998, Proposition 4.3].

The proof for the departure process is similar to the above argument, and therefore we only

present the major steps here. Consider the term Dr,m
i (t)−µiT

r,m
i (t). From the definition of hydro-

dynamic scaling, we have

Dr,m
i (t)− µiT

r,m
i (t)

=
1√
r
[Dr

i (
1√
r
t +

1√
r
m)−Dr

i (
1√
r
m)]− µr

i

[
T r

i (
1√
r
t +

1√
r
m)− T r

i (
1√
r
m)

]

=
1√
r

{
Sr

i (T
r
i (

1√
r
t +

1√
r
m))− Sr

i (T
r
i (

1√
r
m))− µr

i T
r
i (

1√
r
t +

1√
r
m) + µr

i T
r
i (

1√
r
m)

}

=
1√
r

{
[Sr

i (T
r
i (

1√
r
t +

1√
r
m))− µr

i T
r
i (

1√
r
t +

1√
r
m)]− [Sr

i (T
r
i (

1√
r
m))− µr

i T
r
i (

1√
r
m)]

}
,
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where Sr
i (·) is the service completion process. Therefore, The probability bound

P
{

max
m<

√
rτ

max
i∈N

||Dr,m
i (t)− µiT

r,m
i (t)||L > ε

}

≤ P


 max

m<
√

rτ
max
i∈N




|| 1√

r

[
Sr

i (T
r
i ( 1√

r
t + 1√

r
m))− µr

i T
r
i ( 1√

r
t + 1√

r
m)

]
||L

+|| 1√
r
[Sr

i (T
r
i ( 1√

r
m))− µr

i T
r
i ( 1√

r
m)]||L



 > ε




≤
b√rτc∑

m=1

∑

i∈N
P





1√
r
||

[
Sr

i (T
r
i ( 1√

r
t + 1√

r
m))− µr

i T
r
i ( 1√

r
t + 1√

r
m)

]
||L

+ 1√
r
||[Sr

i (T
r
i ( 1√

r
m))− µr

i T
r
i ( 1√

r
m)]||L

> ε





≤ nb√rτcC1
ε

r
,

where C1 is an appropriate constant independent of r.

Finally, we consider the imbalance of πi + c
Qr,m

i (t)
µi

and πj + c
Qr,m

j (t)

µj
. The imbalance can be

expressed as

πi + c
Qr,m

i (t)
µi

−
(

πj + c
Qr,m

j (t)
µj

)

= πi + c

1√
r
Qr

i (
1√
r
t + 1√

r
m)

µi
−

(
πj+c

1√
r
Qr

j(
1√
r
t + 1√

r
m)

µj

)

= πi +
√

rc
Qr

i (
1√
r
t + 1√

r
m) + 1

rµi
−

(
πj +

√
rc

Qr
j(

1√
r
t + 1√

r
m) + 1

rµj

)
− c√

r
(

1
µi
− 1

µj
)

=
√

r

(
p̄ +

πi√
r

+ c
Qr

i (
1√
r
t + 1√

r
m) + 1

rµi

)
−√r

(
p̄ +

πj√
r

+ c
Qr

j(
1√
r
t + 1√

r
m) + 1

rµj

)

+
c√
r
(

1
µi
− 1

µj
).

Therefore,

||πi + c
Qr,m

i (t)
µi

−
(

πj + c
Qr,m

j (t)
µj

)
||L

≤ √
r||

(
p̄ +

πi√
r

+ c
Qr

i (
1√
r
t + 1√

r
m) + 1

rµi

)
−

(
p̄ +

πj√
r

+ c
Qr

j(
1√
r
t + 1√

r
m) + 1

rµj

)
||L

+
c√
r
| 1
µi
− 1

µj
|.

Note that
(

p̄ + πi√
r

+ c
Qr

i ( 1√
r
t+ 1√

r
m)+1

rµi

)
−

(
p̄ + πj√

r
+ c

Qr
j ( 1√

r
t+ 1√

r
m)+1

rµj

)
is simply the imbal-

ance of the total cost submitted by suppliers i and j. The probability bound can then be obtained
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as follows:

P

{
max

m<
√

rτ
max
i,j∈N

||
(

πi + c
Qr,m

i (t)
µi

)
−

(
πj + c

Qr,m
j (t)
µj

)
||L > ε

}

≤ P





maxm<
√

rτ

√
r maxi,j∈N ||

(
p̄ + πi√

r
+ c

Qr
i ( 1√

r
t+ 1√

r
m)+1

rµi

)
−

(
p̄ + πj√

r
+ c

Qr
j ( 1√

r
t+ 1√

r
m)+1

rµj

)
||L

> ε− c√
r
| 1
µi
− 1

µj
|





≤
b√rτc∑

m=1

P





maxi,j∈N ||
(

p̄ + πi√
r

+ c
Qr

i ( 1√
r
t+ 1√

r
m)+1

rµi

)
−

(
p̄ + πj√

r
+ c

Qr
j ( 1√

r
t+ 1√

r
m)+1

rµj

)
||L

> 1√
r

(
ε− c√

r
| 1
µi
− 1

µj
|
)





≤
b√rτc∑

m=1

nP
{

1
r
||N(t)− t||Lr >

1√
r

(
ε− c√

r
| 1
µi
− 1

µj
|
)}

≤ C2b
√

rτc
√

r

r

(
ε− c√

r
| 1
µi
− 1

µj
|
)

,

where the third inequality follows from a similar argument to bound the routing process, and C2

is an appropriate constant that is independent of r. This bound is arbitrarily small when r is

sufficiently large and ε is small. This completes the proof.

Proof of Lemma 6

The proof is similar to that of [Bramson, 1998, Proposition 5.2], and therefore we only discuss the

main steps. Consider first Ar,m(t). Without loss of generality, let us assume t2 > t1. We have that

Ar,m
i (t2)−Ar,m

i (t1) =
1√
r
[Ar

i (
1√
r
t2 +

1√
r
m)−Ar

i (
1√
r
m)]− 1√

r
[Ar

i (
1√
r
t1 +

1√
r
m)−Ar

i (
1√
r
m)]

=
1√
r
[Ar

i (
1√
r
t2 +

1√
r
m)−Ar

i (
1√
r
t1 +

1√
r
m)],

and therefore

Ar,m
i (t2)−Ar,m

i (t1) =
1√
r
N

(∫ 1√
r
t2+ 1√

r
m

1√
r
t1+ 1√

r
m

ΛrIi(Qr(t))P(v ≥ min
j∈N

{
p̄ +

πj√
r

+ c
Qr

j(t + m) + 1
µr

j

}
)dt

)
,

where N(·) is the counting process of a unit-rate Poisson. Note that the arrival rate is bounded

ΛrIi(Qr(t))P(v ≥ minj∈N
{

p̄ + πj√
r

+ c
Qr

j (t+m)+1

µr
j

}
) ≤ r. Therefore, the mean of Ar,m

i (t2)−Ar,m
i (t1)

is 1√
r
×r×( 1√

r
t2− 1√

r
t1) = t2−t1. This implies that Ar,m

i (t) is nearly Lipschitz continuous with unit

constant. Similarly, we can also show that the scaled processes {Dr,m
i (t), i ∈ N} are also nearly

Lipschitz continuous with Lipschitz constants {µi}’s. This parallels [Bramson, 1998, Proposition

5.2] and hence the details are omitted.
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We now consider {Qr,m
i (t), i ∈ N}. Recall that the queueing dynamics Qr

i (t) = Qr
i (0)+Ar

i (t)−
Dr

i (t),∀i ∈ N , we obtain that

|Qr,m
i (t2)−Qr,m

i (t1)| = | 1√
r
[Qr

i (
1√
r
t2 +

1√
r
m)−Qr

i (
1√
r
t1 +

1√
r
m)]|

≤ 1√
r
|Ar

i (
1√
r
t2)−Ar

i (
1√
r
t1)|+ 1√

r
|Dr

i (
1√
r
t2)−Dr

i (
1√
r
t1)|.

From the above discussions on Ar
i and Dr

i , {Qr,m
i (t), i ∈ N} are also nearly Lipschitz continuous

with constant maxi∈N {µi}+1. The Lipschitz continuity of T r,m
i (t) and W r,m

i (t) can be established

similarly.

Proof of Lemma 8

Although the routing in our model depends on the queue length processes {Qr,m
i (t), i ∈ N}, the

Lipschitz continuity of Xr,m
i from Lemma 7 and the definition of Kr lead to this lemma immediately

according to [Bramson, 1998, Proposition 4.1].

Proof of Lemma 9

This follows from [Bramson, 1998, Proposition 6.2]. The idea is to approximate the cluster point

X̂(·) by a sequence of {Xr,m(·)}, and then take r to the infinity. Specifically, let us consider, for

example, the queue length dynamics:

Q̂i(t) = Q̂i(0) +
∫ t

0
Λ̂Ii(Q̂(u))du− D̂i(t),∀i ∈ N .

We now show that this equation is indeed satisfied by the cluster point X̂(·). We first find a

sequence of {Xr,m(·)} that converges to X̂(·). We then obtain

|Q̂i(t)− Q̂i(0) +
∫ t

0
Λ̂Ii(Q̂(u))du− D̂i(t)|

≤ |Q̂i(t)−Qr,m
i (t)|+ |Q̂i(0)−Qr,m

i (0)|

+|D̂i(t)−Dr,m
i (t)|+ |

∫ t

0
Ii(Q̂(u))du−

∫ t

0
Ii(Qr,m(u))du|

+|Qr,m
i (t)−Qr,m

i (0) +
∫ t

0
ΛIi(Qr,m(u))du−Dr,m

i (t)|

= |Q̂i(t)−Qr,m
i (t)|+ |Q̂i(0)−Qr,m

i (0)|+ |D̂i(t)−Dr,m
i (t)|+ |

∫ t

0
Ii(Q̂(u))du−

∫ t

0
Ii(Qr,m(u))du|.
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Since Ii(·) is a continuous function, | ∫ t
0 Ii(Q̂(u))du − ∫ t

0 Ii(Qr,m(u))du| is bounded. Moreover, all

other terms are bounded by construction, and therefore |Q̂i(t)−Q̂i(0)+
∫ t
0 Λ̂Ii(Q̂(u))du−D̂i(t)| → 0

as r →∞. Likewise, other fluid equations can be verified as well.

Proof of Lemma 10

First we will show that there exists a constant r0 such that W̃ r(s) ≥ ζ− εr in probability, ∀r > r0.

The proof is by contradiction.

We let m = arg maxj∈N πj to denote the supplier with the highest static price and i /∈
arg max j∈Nπj in the sequel. In the following all the inequalities refer to the inequalities “in prob-

ability,” and we omit this indication for convenience. Suppose W̃ r(s) < ζ − εr, then

∑

j 6=m

Q̃r
j(s)
µj

< ζ − εr − Q̃r
m(s)
µm

≤ ζ − εr. (43)

Now since εr is given, we can define ηr = c
2(n−2)ε

r > 0 and ηr ↓ 0 because εr ↓ 0. If for all r we can

find a pair i, j ∈ N such that πj +
Q̃r

j (s)

µj
≤ πi + Q̃r

i (s)
µi

− ηr, then letting r → ∞ we have found a

sequence that contradicts Proposition 2. Thus from now on we assume that

πj +
Q̃r

j(s)
µj

> πi +
Q̃r

i (s)
µi

− ηr, ∀j 6= i,m; i, j ∈ N . (44)

Combining Equations (43) and (44), we obtain

ζ − εr >
∑

j 6=m

Q̃r
j(s)
µj

≥ (n− 1)
Q̃r

i (s)
µi

+
1
c

∑

j 6=i,m

(πi − πj)− n− 2
c

ηr

⇒ Q̃r
i (s)
µi

≤ 1
n− 1

[ζ − εr − 1
c

∑

j 6=i,m

(πi − πj) +
n− 2

c
ηr].

The proposed cost by supplier i is upper bounded by:

πi + c
Q̃r

i (s)
µi

≤ πi +
c

n− 1





1
c/n

[
πm − 1

n

∑

k∈N
πk

]
− εr − 1

c

∑

j 6=i,m

(πi − πj) +
n− 2

c
ηr





≤ πi +
c

n− 1


n

c
πm − 1

c

∑

k∈N
πk − 1

c

∑

j 6=i,m

(πi − πj)


− c

n− 1

(
εr − n− 2

c
ηr

)
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By our choice of ηr, the last term is strictly negative. The other terms can be combined such that

πi + c
Q̃r

i (s)
µi

≤ 1
n− 1

[(n− 1)πi + nπm −
∑

j∈N
πj − (n− 2)πi +

∑

j 6=i,m

πj ]− c

2(n− 1)
εr

= πm − c

2(n− 1)
εr.

Since the queue length can never be negative, we conclude that

πi + c
Q̃r

i (s)
µi

≤ πm + c
Q̃r

m(s)
µm

− c

2(n− 1)
εr,

which contradicts Proposition 2 if we let r → ∞. since costs proposed by supplier i and m are

different. Thus, W̃ r(s) ≥ ζ − εr, ∀r ≥ r0.

The next thing is to show that Q̃r(s) > 0 in probability if W̃ r(s) ≥ ζ + εr. We again prove

this by contradiction. Suppose that there exists i such that Q̃r
i (s) = 0. If i /∈ arg max j∈Nπj , then

πm + c
Q̃r

m(s)
µm

≥ πm > πi = πi + c
Q̃r

i (s)
µi

,

which contradicts the state space collapse while r →∞. So it suffices to consider the case Q̃r
m(s) =

0.

Recall the definition of ηr and apply state space collapse, we have

πj +c
Q̃r

j (s)

µj
≤ πi + c

Q̃r
i (s)
µi

+
ηr

c
, ∀j 6= m,

⇒ Q̃r
j(s)
µj

≤ 1
c
(πi − πj) +

Q̃r
i (s)
µi

+
ηr

c
,∀j 6= m.

Note that Q̃r
m(s) = 0 implies ζ + εr ≤ W̃ r(s) =

∑
j 6=m

Q̃r
j (s)

µj
, and therefore

ζ + εr ≤ 1
c

∑

j 6=i,m

(πi − πj) + (n− 1)
Q̃r

i (s)
µi

+
(n− 2)

c
ηr,

⇒ Q̃r
i (s)
µi

≥ 1
n− 1

[ζ − 1
c

∑

j 6=i,m

(πi − πj)] + εr − (n− 2)
c

ηr.

The cost proposed by supplier i is lower bounded by

πi + c
Q̃r

i (s)
µi

≥ πi +
c

n− 1
[

1
c/n

πm − 1
c/n

1
n

∑

k∈N
πk − n− 2

c
πi +

1
c

∑

j 6=i,m

πj ] + c(εr − (n− 2)
c

ηr).
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After some manipulation, the above inequality can be rewritten as

πi + c
Q̃r

i (s)
µi

≥ πm +
c

2
εr = πm + c

Q̃r
m(s)
µm

+
c

2
εr,

where the last equality follows from Q̃r
m(s) = 0. This, however, contradicts Proposition 2, and

hence Q̃r(s) > 0 if W̃ r(s) ≥ ζ + εr in probability.

B. Competitive equilibrium of the suppliers’ pricing game

Recall that in a decentralized system, each supplier is maximizing his own payoff in a non-

cooperative way. We first prove Lemma 4, which states that no pure-strategy equilibrium exists.

Proof of Lemma 4

Suppose that there exists a pure-strategy Nash equilibrium. If in equilibrium not all πi’s are the

same, then there exists a supplier j with πj < π̂. She will be better off by increasing his price πj a

little bit since his revenue µjπj is strictly increasing in πj . Thus, the only possibility is that prices

πi’s are all equal. But then, again, price undercutting by any supplier is a profitable deviation.

In the following we characterize the equilibrium behavior. We will separate our discussion into

two cases, depending on whether suppliers are endowed with homogeneous or heterogeneous service

rates.

Homogeneous service rate case

We first consider the case where the service rates are the same across suppliers, i.e., µi = µj ≡
µ, ∀i, j ∈ N , and focus on symmetric equilibria. Define π∗ = arg maxπ[µπ − L(π)] and Ψ∗ ≡
µπ∗−L(π∗). Note that we are charging all the idling penalty to a single supplier. In this way, a price

π∗ guarantees a lower bound for the payoff Ψi(πi, π−i). Hence, Ψ∗ is the payoff that a supplier can

guarantee herself to obtain, i.e., his minmax level. We further let π := Ψ∗/µ = π∗ −L(π∗)/µ < π∗

and observe that choosing price π < π is a dominated strategy. Thus, π can be regarded as a lower

bound of suppliers’ rational pricing strategies.

Let G(π) denote the mixing cumulative probability distribution of a supplier’s pricing strategy

π. The next proposition characterizes the structure of these mixing probabilities.
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Proposition 5. With homogeneous rates, there exists a unique symmetric equilibrium in which

all suppliers randomize continuously over [π, π∗], and every supplier gets Ψ∗. The randomizing

distribution is G(π) = [µ(π−π)
L(π) ]1/(n−1),∀π ∈ [π, π∗].

Proof. We will follow Baye et al. [1992] to prove this result. Let s̄ and s denote respectively

the essential upper and lower bounds of G(·)’s support. That is, G(π) = 0, ∀π < s, 0 ≤ G(π) <

1, ∀π ∈ (s, s̄), and G(π) = 1, ∀π ≥ s̄. If the support is not bounded above, we can simply set

s̄ = ∞. We further let α(π) denote the mass probability a supplier puts on price π.

First we observe that s ≥ π, ∀i ∈ N . To see this, if a supplier chooses π∗, his expected payoff is

at least µπ∗−L(π∗) = Ψ∗ = µπ. Thus, choosing any price π < π yields an expected payoff no more

than µπ < µπ = Ψ∗, and therefore is strictly dominated. Moreover, α(s) = 0, i.e., no supplier is

expecting to be the most expensive while placing s. We verify the latter by contradiction: Suppose

α(s) > 0, and that a supplier selects s. He will become the most expensive supplier (and therefore

shares the penalty) when all other suppliers also select s, which occurs with probability [G(s)]n−1.

When this occurs, all n suppliers share the penalty equally, and therefore the supplier’s expected

payoff is

µs− 1
n
L(s)[G(s)]n−1 < µs. (45)

Since G(s) is strictly positive, we are subtracting a positive amount in the LHS. Now suppose that

a supplier deviates and chooses a price s−ε while other suppliers set prices at s. Thus, his expected

payoff is µ(s−ε) (without any penalty incurred). When ε is small enough, µ(s−ε) is strictly higher

than the LHS of (45). This implies that the supplier will always intend to undercut the price by a

sufficiently small ε.

We now define Ψi(π) as the expected payoff of supplier i if he places price π, and Ψe
i his

equilibrium payoff. We claim that the suppliers get equal payoffs in equilibrium, i.e., Ψe
i = Ψe

j =

µs, ∀i, j ∈ N . The proof is as follows. Under a mixed-strategy equilibrium, a supplier should get

the same payoff from all strategies on which he places positive probabilities. Hence Ψe
i = Ψi(s) =

µs, ∀i ∈ N .

Next, we characterize the support. Suppose that α(s̄) > 0. Then transferring the weight α(s̄)

to a price just below it will be a profitable deviation. Therefore α(s̄) = 0. Given that, when a

supplier places price s̄, with probability one he will be the sole most expensive supplier and hence
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carries the entire market idleness. Thus, if s̄ 6= π∗, his payoff would be

Ψi(s̄) = µs̄− L(s̄) < µπ∗ − L(π∗) = µπ ≤ µs,

where the strict inequality follows from that π∗ is the unique maximizer of µπ − L(π). This leads

to a contradiction, since Ψe
i = µs, ∀i ∈ N . Thus, s̄ = π∗. Finally, since

µs = Ψe
i = Ψi(π∗) = µπ∗ − L(π∗) = µπ,

we conclude that s = π.

Having characterized the support, we now show that the suppliers will randomize continuously

over the entire support. We first claim that there is no point mass in (π, π∗). Suppose this is not

true. Then there exists a price π ∈ (π, π∗) such that each supplier puts a point mass on π. Following

the argument in Lemma 10 of Baye et al. [1992], it pays for a supplier to transfer a ε-neighborhood

mass above π to a δ-neighborhood below π, and thus this cannot be an equilibrium.

Now we show that G is strictly increasing in the entire support. If the claim is false, there

must exist an interval (π1, π2) such that G(π1) = G(π2). Since [G(π)]n−1 (i.e., the probability that

a supplier quoting π becomes the most expensive supplier) does not change in (π1, π2), by moving a

small mass from slightly below π1 to π2, a supplier is strictly better off. That is, the supplier charges

a higher price π, with a smaller probability of becoming the most expensive. This contradicts the

assumption that G(π) is an equilibrium strategy, and therefore G must be strictly increasing.

Combining all above, in a symmetric equilibrium suppliers randomize continuously in the

support. Finally, we derive the closed-form expression for G(π). Since G(π) is strictly increasing

in the entire support, π is involved in supplier i’s equilibrium strategy. Therefore a supplier should

get the same payoff for all such π’s (otherwise he would not be willing to play the equilibrium

strategy). Thus, For all π ∈ [π, π∗],

Ψe
i = µs = Ψi(π) = µπ − L(π)[G(π)]n−1, ∀π ∈ [π, π̄∗],

where the last equality follows from that with probability [G(π)]n−1 supplier i will become the

most expensive one. Rearranging the above equation, we obtain the expression for G(π), which

completes the proof.

Note that the range over which the price is randomized is completely determined by the

individual’s problem. In all generic cases, no tie of the highest static price may occur. In other
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words, the market idleness process is contributed by only one supplier. Moreover, any tie of two

prices takes place with probability zero, which is in contrast to the centralized system where prices

are always equal. Therefore, our homogeneous service model suggests that price dispersion can be

regarded as a sign of incoordination. Also note that in equilibrium the expected payoff of a supplier

is identical to the case where he carries the entire market idleness, and hence he receives on average

the minmax level. Competitive behavior drives away the possibility of extracting extra revenues.

Having characterized the competitive equilibrium, we now turn to the market efficiency issue.

Define ΠC ≡ maxπ̂ {µ̂π̂ − L(π̂)} as the aggregate (second-order) revenue under the centralized

solution and Π∗ as the aggregate revenue among suppliers in the unique competitive equilibrium.

The next proposition shows that the efficiency can be arbitrarily low when the market size explodes.

Proposition 6. Suppose that the service rates are homogeneous. For any given aggregate service

rate µ̂, for any given constant M , there exists a sufficiently large number NM such that |ΠC−Π∗| >
M , ∀n > NM .

Proof. Given µ̂ (and other relevant parameters such as c and σ), L(π) is a known function and

therefore ΠC is a fixed constant independent of n, the number of suppliers. From Proposition 5,

Π∗ = nΨ∗, where Ψ∗ = maxπ[µπ −L(π)] = maxπ[ µ̂
nπ −L(π)]. The function L(π) is strictly convex

and positive, and therefore Ψ∗ can be obtained via the first-order condition. When n is sufficiently

large, the maximizer π∗ = arg maxπ[ µ̂
nπ − L(π)] is arbitrarily small. Thus, for a given number M ,

we obtain that there exists a number such that π∗ < min{−M−ΠC

µ̂ , ΠC

µ̂ } whenever n > NM . When

n > NM , the difference between the aggregate revenues under the centralized and decentralized

systems is then

|ΠC −Π∗| = ΠC −Π∗ = ΠC − nmax
π

[
µ̂

n
π − L(π)] > ΠC − n

µ̂

n
π∗ = −µ̂π∗ + ΠC > M.

This completes the proof.

Proposition 6 shows that as the market size grows, the competitive behavior among the sup-

pliers may result in an unbounded efficiency loss. This demonstrates a significant inefficiency due

to the market mechanism and it therefore calls for the need of the coordination scheme, as we in-

vestigate in Section 4.4. Note also that the first-order aggregate revenues of the centralized solution

and the competitive equilibrium coincide; nevertheless, this is by construction of the asymptotic

regime specified in Section 3.
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Heterogeneous service rate case

Now we consider the scenario where suppliers are endowed with different service rates. We again

first define a global maximizers π∗1, π∗2,..., π∗m, if supplier i (1 ≤ i ≤ m) is the one who proposes

the highest price solely; i.e., we define π∗i = arg maxπi [µiπi − L(πi)] and Ψ∗
i ≡ µiπ

∗
i − L(π∗i ) as

the global maximum revenue that supplier i can achieve as J = {i}. Next we let πi = Ψ∗
i /µi and

recall that choosing price π < πi is a dominated strategy for supplier i. The following proposition

characterizes the relevant properties of an equilibrium needed for our purpose. Gi(·) denotes the

mixing distribution that supplier i adopts in equilibrium.

Proposition 7. Suppose suppliers are endowed with heterogeneous service rates. Then in a com-

petitive equilibrium,

• All Gi(·)’s have the same left endpoint (denoted by s) of their supports. Moreover, s ≥
maxi∈N πi.

• Suppliers’ expected payoffs are proportional to their service rates {µi}’s.

• If n = 2 and µ1 > µ2, then there exists a unique equilibrium in which supplier i’s revenue is

µiπ1, i = 1, 2. The equilibrium mixing probabilities are respectively

G2(π) =
µ1(π − π1)
L(π)

, ∀π ∈ [π1, π
∗
1], G1(π) =

µ2(π − π1)
L(π)

, ∀π ∈ [π1, π
∗
1),

and G1(π∗1) = 1. G1(π) = G2(π) = 0, ∀π ≤ π1.

Proof. Let si and s̄i denote respectively the essential lower and upper bounds of Gi(·)’s support,

and αi(π) is the probability mass supplier i puts at point π. Let Ψi(π, G−i) be the expected payoff

of supplier i when he plays π and other suppliers adopt the mixing probabilities G−i. Let Ψe
i be

his expected payoff in equilibrium.

Since quoting a price below πi is a dominated strategy for supplier i, we have si ≥ πi. Moreover,

the lower bounds of supports for Gi(·)’s must be equal. If this is not the case, a supplier with

the lowest si would refuse to put any positive weight on prices between his lower bound and the

highest lower bound maxj∈N sj . Combining the above, we know that si := s ≥ maxj∈N πj , ∀i ∈ N .
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Now we claim that if a supplier plays s, with probability 1 he will not be the most expensive

supplier. That is, there exist i, j such that αi(s) = αj(s) = 0. If this is not true, then transferring

some weight to a neighborhood just below s will be profitable for some supplier.

Since at least two suppliers put zero mass at s, and every supplier may place s in equilibrium,

we have

Ψi(s,G−i) = µis− L(s)× 0 = µis,

which results in Ψe
i = µis, ∀i ∈ N .

We now focus on the two-supplier case. The following lemma provides some relations of π∗1, π
∗
2

and π1, π2, which are needed for characterizing the equilibrium mixing probabilities.

Lemma 11. If µ1 > µ2, then π∗1 > π∗2 and π1 > π2.

Proof. Let us define Ψ∗(µ) = maxπ {µπ − L(π)} . Consider two service rates µ1 and µ2, and

assume without loss of generality that µ1 > µ2. By definition the maximizer for supplier with µ1

is π∗1, i.e., Ψ∗(µ1) = µ1π
∗
1 − L(π∗1). From the optimal condition, we have

Ψ∗(µ2) = max
π
{µ2π − L(π)} ≥ µ2π

∗
1 − L(π∗1) = µ1π

∗
1 − L(π∗1) + π∗1(µ2 − µ1) = Ψ∗(µ1) + π∗1(µ2 − µ1)

⇔ Ψ∗(µ2) ≥ Ψ∗(µ1) + π∗1(µ2 − µ1), ∀µ1, µ2.

Also, from the Envelope Theorem, ∂Ψ∗(µ1)
∂µ1

= π∗1. Note that the above inequality holds for arbitrary

pair of µ1, µ2, and hence Ψ∗(µ) is convex in µ.

Since Ψ∗(µ) is convex, its derivative π∗i (µ) is increasing in µ, and therefore π∗1 ≥ π∗2. The

strict monotonicity follows immediately from the first-order condition of maxπ {µπ − L(π)} . More-

over, π(µ) = Ψ∗(µ)/µ can be regarded as the average of the derivative over [0, µ], i.e., Ψ∗(µ)
µ =

1
µ

∫ µ
0

∂Ψ(v)
∂v dv, by the strict monotonicity of π∗(µ), it is also monotonic. Therefore, π1 := π(µ1) >

π2 := π(µ2).

We now return to the proof of Proposition 7. Note that the upper bounds of the supports

for both G1 and G2 must be the same. We argue by contradiction: If this is not true, then we

have either s̄1 > s̄2, or s̄2 > s̄1. Consider the first case. Note that when supplier 1 places a price

π ∈ (s̄2, s̄1], he will carry the entire market idleness. If π∗1 < s̄1, then transferring some distribution

weight in (s̄2, s̄1] downwards to max(π∗1, s̄2) is a profitable deviation for supplier 1. If π∗1 > s̄1 ,

then he would like to transfer all the weight in (s̄2, s̄1] upwards to π∗1. Thus s̄1 > s̄2 is impossible.

Similarly, one can show that the other case never occurs as well. Therefore s̄1 = s̄2 = s̄.
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Given that there are only two suppliers, both suppliers do not put a point mass on the common

upper bound simultaneously, otherwise a mass transfer from s̄ to its lower neighborhood will be

profitable for either supplier. Thus, at most one supplier puts probability zero on s̄. Suppose

α1(s̄) = 0. Then

Ψ2(s̄, G−2) = µ2s̄− L(s̄) ≤ Ψ∗
2 = µ2π2 < µ2π1 ≤ µ2s,

which contradicts the equilibrium condition. Hence, from the strict inequality in between the

extremes, α1(s̄) > 0 and consequently α2(s̄) = 0. Moreover,

Ψ1(s̄, G−1) = µ1s̄− L(s̄) ≤ µ1π
∗
1 − L(π∗1) = µ1π1 ≤ µis = Ψ1(s,G−1),

and the only chance for equalities to hold is that s̄ = π∗1 and s = π1. This determines the common

support.

In the interior, no hole and no point mass should be placed for both suppliers, otherwise one

can construct a profitable weight transfer. Thus, both G1, G2 increase continuously in [π1, π
∗
1).

Finally, since in equilibrium a supplier should obtain the same expected payoff at any point in

[π1, π
∗
1], we have

Ψ1(π,G−1) = µ1π −G2(π)L(π) = µ1π1 = Ψ1(π1, G−1), ∀π ∈ [π1, π
∗
1],

⇒ G2(π) =
µ1(π − π1)
L(π)

, ∀π ∈ [π1, π
∗
1].

Similarly,

Ψ2(π, G−2) = µ2π −G1(π)L(π) = µ2π1 = Ψ2(π1, G−2), ∀π ∈ [π1, π
∗
1),

⇒ G1(π) =
µ2(π − π1)
L(π)

, ∀π ∈ [π1, π
∗
1),

and α1(π∗1) = 1− µ2(π∗1−π1)
L(π) . This completes the proof.

The first result on left endpoints is not surprising. This comes directly from an analogous

argument for Proposition 5. The second result captures the ex ante difference between suppliers’

payoff function: higher service rate brings higher equilibrium payoff. When we restrict to the

duopoly setting, we know perfectly the range over which suppliers randomize their prices, and

we can obtain closed-form expressions of their expected payoffs. They randomize the prices over

the same range, and the supplier with a higher service rate tends to set a lower price: his mixing

distribution stochastically dominates the other’s in the usual, first-order sense. This implies that

when a supplier has capacity advantage, he can afford to price lower to capture more customers.
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Numerical results

We in the following give some numerical examples. Our goal is to compare the performance between

the centralized solution and the competitive equilibrium. We consider a system with n M/M/1

servers, delay sensitivity parameter c = 0.5, and arrival rate of buyers Λ = 1. The valuation v of

each customer is assumed to follow an exponential distribution with mean 1
10 , and p̄ is set such

that the effective arrival rate P(v ≥ p̄) matches the total service rate µ̂. As an example, if we let

µ̂ = e−1.3, then p̄ can be obtained as follows: Λe−10p̄ = µ̂ ⇔ p̄ ≈ 0.13. The other relevant parameter

is γ = f(p̄)/(1−F (p̄)) = 10. Note that as we scale according to Λ = r, µ̂ = µ̂r, p̄ stays unchanged.

The next two figures compare the centralized solution and the competitive equilibrium. Take

n = 2 and assume µ̂ = µ1 + µ2 = e−1.3. Without loss of generality, we assume that supplier 1 has

a higher capacity and let a ≡ µ1

µ̂ ∈ (0.5, 1) denote the heterogeneity of service rates between these

two suppliers. Figure 3 demonstrates the mixing distributions of supplier 1 under a competitive

equilibrium with different values of a. Figure 4 presents the upper and lower bounds of price of the

mixing distributions. Note that the mixing distribution may have a point mass at the upper bound

π∗1, in which case the mixing distribution jumps to 1 at π∗1 (e.g., a = 0.57, 0.64, 0.71 in Figure

3). Although the mixing distributions of supplier 2 have no point mass, the comparison of the

mixing distributions across different degrees of heterogeneity is qualitatively similar and therefore

is omitted. Combining Figure 3 and Figure 4, there is no unambiguous prediction for the suppliers’

pricing decisions when the capacity heterogeneity increases. The increase of the heterogeneity, a,

has two effects. First, it mitigates the competition between the suppliers due to the difference of

the capacity. This might induce higher prices. Second, the increase of a also increases the variance

of the service time (since σ =
√

( 1
aµ̂)2 + ( 1

(1−a)µ̂)2 is increasing in a in (0.5, 1)). This increases

the magnitude of the price through the parameter β. Since the second-order price is negative, it

implies that the suppliers would set a lower price when the variance is higher. Because of these two

conflicting forces, no clear ranking of the mixing distribution can be obtained (as seen in Figure 3),

and the bounds are non-monotonic in the degree of heterogeneity (see Figure 4). Note also that in

the centralized solution, only one price is set: πC ≡ arg maxπ

{
µ̂π − p̄γµ̂β φ(π/β)

1−Φ(π/β)

}
∈ [4.5, 6.0]

when a ∈ [0.5, 0.71]. Since πC is strictly positive, the prices in the competitive equilibrium are

significantly lower than that under the centralized control.

Finally, we investigate how the number of suppliers affects the efficiency gap between the

centralized solution and the competitive equilibrium. To this end, we focus on the case with
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Figure 3: The mixing distribution of prices versus

the heterogeneity of service rates.
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symmetric suppliers. This allows us to fully characterize the equilibrium pricing strategies and the

suppliers’ expected (second-order) revenues. We first assume µ̂ = e−1.3 and increase n, the number

of suppliers. Given the symmetry, the individual service rate is µi = µ̂
n , ∀i ∈ N . As demonstrated

in Figure 5, the range of price is shifted downwards when more suppliers participate in the market,

which implies that the increase of n results in a more severe competition among suppliers. In Figure

6, we draw the expected aggregate (second-order) revenue of the market,
∑

i∈N Ψi(πi, π−i), and

vary the number of suppliers. We find that the expected aggregate revenue decreases when there

are more suppliers due to the increasing price competition (as presented in Figure 6). Thus, the

mis-coordination problem becomes more serious when more suppliers participate in the market.

A remark on the suppliers’ participation

In characterizing the equilibrium behavior of the supplier pricing game, we have neglected the

suppliers’ participation decisions. Note that the pricing decisions {πj}’s only affect the suppliers’

second-order revenues, which are simply small perturbations around the first-order revenues p̄µi.

(as seen in Lemma 1). Thus, a supplier is willing to participate if and only if his first-order revenue

p̄µi is positive, which depends on the capacity (service rate) decisions rather than the pricing

decisions.

To study the capacity game, we can assume that each supplier incurs a cost of capacity, Ci(µi).

Since the pricing decisions do not affect the first-order term, the suppliers choose their capacities
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Figure 5: The mixing distribution of prices versus

the number of suppliers.
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Figure 6: The expected aggregate revenue versus

the number of suppliers.

to maximize

max
µi≥0

p̄µi − Ci(µi),

where p̄ is endogenously determined through F̄ (p̄) =
∑

j∈N µj , i.e., p̄ = F̄−1(
∑

j∈N µj). The

function F̄−1(
∑

j∈N µj) can be interpreted as the inverse demand function, since it represents the

customers’ effective arrival rate given the aggregate capacity
∑

j∈N µj . Notably, the above capacity

game does not involve any stochastic term.

Moreover, according to [Watts, 1996, Corollary 1], this capacity game has a unique equilibrium

if the following conditions are satisfied: 1) µF̄−1(µ) is concave in µ; 2) Ci(µi) is weakly convex in µi;

and 3) there exists a sufficiently large µ∗ such that µF̄−1(µ)−Ci(µ) is decreasing in when µ > µ∗.

The first condition is related to the price elasticity of the demand, the second condition implies

a diseconomy of scale for the capacity investment, and the third condition simply ensures that

the aggregate market payoff never explodes. These conditions are widely adopted in many surplus

sharing games, which contains the celebrated Cournot competition as a special case, to ensure that

the competitive equilibrium is well-behaved (see Watts [1996] and the references therein).

Finally, a supplier is willing to participate in the market whenever in equilibrium maxµi≥0 p̄µi−
Ci(µi) ≥ 0. If we consider a special case in which the marginal cost of capacity is constant, i.e.,

Ci(µi) = ciµi, ∀µi, it is verifiable that only the suppliers that are more cost efficient will participate,

ie., the ones for whom ci < p̄. The cost efficiency therefore ties in the suppliers’ participation

decisions.
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