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This paper studies product ranking mechanisms of a monopolistic online platform in the presence of social

learning. The products' quality is initially unknown, but consumers can sequentially learn it as online reviews

accumulate. A salient aspect of our problem is that consumers, who want to purchase a product from a

list of items displayed by the platform, incur a search cost while scrolling down the list. In this setting,

the social learning dynamics, and hence the demand, is a�ected by the interplay of two unique features:

substitution and ranking e�ects. The platform can in�uence the social learning dynamics by adjusting the

ranking of the products to ultimately maximize the revenue collected from commission fees for sold items.

To formulate the problem in a tractable form, we use a large-market (�uid) approximation and show that

consumers eventually learn the products' quality and characterize the speed of learning. Armed with this

backing, we formulate the platform's ranking problem in the �uid setting, where we assume the perspective

of an uninformed platform that does not know the true quality vector but rather learns it through consumers'

review process. We compare di�erent ranking policies based on the worst-case regret with respect to a fully-

informed platform benchmark. Our analysis yields three main insights. First, a greedy policy that maximizes

immediate revenue by displaying products based on current ratings may incur highly suboptimal worst-case

regret, as it may relegate the most pro�table products to the lowest positions in the ranking if their current

rating is not high enough. Second, a simple variant of the greedy policy can su�ciently alleviate the regret

by balancing the trade-o� between exploration and exploitation. Third, we characterize the critical level of

search cost for which the regret does not grow exponentially with the number of products.
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1. Introduction

1.1. Motivation

It is common for consumers to rely on online review platforms, such as Amazon, TripAdvisor, Yelp,

IMDb, etc., when planning to purchase a new product (or service). In such online environments,

owing to a marked increase in product variety and complexity, consumers often refer to online reviews
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to estimate the quality of a product. As consumers observe and report online reviews over time, they

engage in what is called a social learning process; namely, through online reviews, consumers share

their experiences and opinions about products with other consumers. As more reviews accumulate,

consumers can have a more reliable estimate of the quality of di�erent products to make better-

informed purchase decisions. In the past decades, online reviews have gained an increasingly central

role in the consumer decision process. As a consequence, the literature in operations management

and economics has recently dealt with review-based social learning problems. However, despite the

fact that users typically choose among many competing alternatives in online marketplaces, most

academic studies of social learning concern single-product settings. In this paper, we shed light on

new challenges that platforms face when social learning involves consumers' choice among multiple

products. In particular, we focus on the challenges that emerge from the interplay of two unique

features: substitution e�ects and ranking e�ects among displayed products.

In the presence of product choice, the social learning processes are correlated across products:

information accumulates faster for products that consumers perceive as more appealing in terms

of online ratings and price, as these products will be selected more frequently and produce more

reviews. In other words, alongside the usual questions on what the �nal outcomes of the social

learning process are (that is, whether consumers' beliefs converge and where), when product choice

is considered, it is also important to understand how these quality beliefs converge to their limiting

points, that is, how learning paths interfere with each other, and how this coupling depends on the

market parameters (number of alternatives, prices, true qualities, consumers' prior beliefs).

In most online review platforms, multiple items are displayed with a rank, and consumers exert

more cognitive (and physical) e�ort while scrolling down a list of items (Kempe and Mahdian,

2008, Craswell et al., 2008, Ghose et al., 2013, Lerman and Hogg, 2014). This ranking e�ect can be

costly for platforms: since the product's quality is typically unknown to platforms, due to possible

misalignment between perceived and actual qualities, a high-quality product may be ranked low,

and consumers would then require an increased cognitive e�ort to purchase it. Such additional e�ort

can be modeled in the consumers' choice model as the so-called search cost (Stigler, 1961): due to

this extra cost, high quality products may remain underexplored relative to other (possibly inferior)

products. At the same time, the ranking e�ect gives the platform a control mechanism; that is,

by picking the product ranking, the platform can a�ect product choice and stimulate information

acquisition to ultimately maximize revenues. Without an understanding of the consumer learning

dynamics and the in�uence of product choice, the question of how to best choose the product ranking

cannot be properly addressed. In this paper, we seek to improve our understanding by modeling the

aforementioned market circumstances, as we brie�y describe next.
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1.2. High-level Overview of the Model

We study a model of a marketplace where consumers arrive sequentially over time and decide

whether to buy one of the available products or to take an outside option. Consumers are het-

erogeneous in their preferences towards the observable features of the products. Although initially

uninformed about the intrinsic quality of the products, consumers observe the binary online reviews

reported by earlier purchasers and infer the unknown quality via Bayesian updating. The probability

of purchasing a product, which we refer to as the demand function, depends on consumers' qual-

ity estimates, their idiosyncratic preferences, and the prices of the available products; we assume

Multinomial Logit (MNL) demand for our main analysis, while some of our preliminary analysis

holds for a general class of demand models. Each product is characterized by a uni-dimensional

quality parameter that represents the probability that a customer has a positive post-purchase expe-

rience. We assume that purchasers of a given product report �like�/�dislike� reviews that truthfully

express whether they liked the product or not. Reviews are gathered and displayed to the upcoming

consumers by an information aggregator, the platform.

As alluded to earlier, consumers in our model perceive an additional �search cost� which is an

increasing function of the ranking in which the product is displayed by the platform and, in turn,

a�ects the multinomial choice probabilities. Consequently, the presence of the search cost allows the

platform to in�uence information acquisition and the learning transient by choosing the ordering in

which the products are displayed to arriving consumers. In particular, the platform can boost infor-

mation acquisition for a product by showing it in the top positions of the list, so that consumers can

learn its quality sooner. The platform receives a constant payment from every purchase and wants

to maximize cumulative revenues over a �nite selling horizon. The platform is initially uninformed

about the true product qualities but can learn them by dynamically adjusting the product ranking

over time.

In this problem setting, the platform should simultaneously attempt to acquire information about

the unknown qualities (called �exploration�) and optimize the ranking decisions based on that

information (called �exploitation�). This intrinsic trade-o� is a salient characteristic of the ranking

problem in the presence of social learning. Our goal is to illuminate two aspects in this regard: the

impact of search cost on the social learning behavior of consumers; and the manner in which the

ranking decisions interact with social learning. Can consumers learn the unknown quality in the

presence of product choice and search cost, and if so, how fast? To what extent should the platform

rely on exploration rather than on exploitation for di�erent levels of search cost? An overarching

goal of the paper is to shed light on the aforementioned questions.
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1.3. Summary of the Main Results

As alluded to earlier, the interplay between the substitution and ranking e�ects signi�cantly com-

plicates the study of optimal ranking policies. To have a tractable characterization of the learning

transient, we derive a large-market asymptotic (�uid) model, which provides a good approximation

of the learning transient when the volume of sales is large. In this �uid model, the learning transient

is described by ordinary di�erential equations, which are su�ciently tractable to deduce structural

insights on the fundamental trade-o� between exploration and exploitation in the platform's ranking

problem.

We characterize the transient dynamics of the learning paths in this deterministic approximation.

To isolate the substitution e�ect from the ranking e�ect, we focus on the case without search cost

and provide a comparative statics analysis for how the speed of the learning transients depends on

the parameters of multiple products with substitutable demand. At a high level, our �ndings indicate

that the substitution e�ect is intensi�ed by social learning: consumers tend to choose products that

are more appealing in terms of review rating/price di�erence, which not only reduces the demand

for less-appealing products but also delays their learning transients over time.

In the presence of search costs, we show that, through its ranking policy, the platform can dra-

matically in�uence the speed of learning. For example, consider a �xed (say, alphabetical) product

display ordering and linearly increasing search costs. In this case, due to search costs, many low-

ranked products will be very undesirable alternatives from the consumers' viewpoint. As a result,

products displayed towards the end of the list will experience a slowdown as the number of products

increases. In other words, as consumers take the relative positioning of products into account in their

choice mechanism, consumers may need a potentially very long time to discover the high-quality

products, resulting in suboptimal revenues for the platform.

For a tractable analysis of the platform's ranking problem, we continue to focus on the �uid

model. In a full-information setting where the platform knows the true quality of each product,

we analytically characterize the optimal ranking policy. Interestingly, the optimal ranking policy is

static; that is, the optimal product ranking is �xed throughout the selling horizon, and corresponds

to the ranking that maximizes the revenue rate in the full-information scenario where consumers

know the products' quality. The revenue obtained by this �oracle� platform serves as an upper bound

for the attainable revenue.

In our focal setting where the platform is not informed about the true quality of products, it

may be bene�cial for the platform to induce consumers to su�ciently explore all products (perhaps

sacri�cing initial revenues) in order for them to learn the products' quality faster, and to exploit

this information later on. The goal of the platform is to judiciously balance the tradeo� between
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exploration and exploitation to achieve the revenue that is close to the aforementioned upper bound.

The performance metric we use to characterize a given ranking policy is the long-term regret, de�ned

as the revenue gap between such policy and the previously mentioned oracle ranking policy for a

su�ciently large selling horizon.

Our departure point is the greedy ranking policy, in which, at any point in time, products are

ranked to maximize the revenue in the next period. Our analysis reveals that the greedy policy is

under-explorative: in the worst case (in terms of initial quality beliefs and true quality), the regret

grows with the number of products and the growth rate depends critically on the extent to which the

search cost increases with product position. Our explicit characterization of the worst-case regret

(Theorem 4.1) provides rough guidelines for practitioners not just in assessing the revenue loss due

to the simple (and easily implementable) ranking strategy, but also in choosing the optimal number

of products to display in di�erent search environments.

Somewhat surprisingly, we show that a simple variation of the greedy policy can e�ectively allay

the negative e�ect of under-exploration. This policy is referred to as semi-greedy : instead of assigning

the top position to the most appealing product at present, the semi-greedy policy assigns the ranking

based on an �index� that amalgamates the estimated quality as well as the term that represents the

degree of exploration for each product. We characterize the worst-case regret under the semi-greedy

policy and show, both theoretically and numerically, that the regret grows at a substantially slower

rate compared to the greedy policy. By comparing the greedy and semi-greedy policies in di�erent

settings for search cost, we provide qualitative insights into the bene�t of exploration relative to the

extent to which the ranking e�ect a�ects consumers' decision-making.

1.4. Related Literature

Early examples of papers focusing on social learning trace back to the observational learning models

studied in Banerjee (1992) and Bikhchandani et al. (1992); in a model with private signals, observable

actions, and Bayesian updating, they demonstrate that rational agents may eventually ignore their

private signals and decide to imitate their predecessors. Following these seminal papers, a recent

stream of papers has studied social learning from consumer reviews as opposed to signals. Ifrach et al.

(2019) provided su�cient conditions for perfect learning in a monopolistic market with Bayesian

consumers and binary reviews, whereas Besbes and Scarsini (2018), again in a Bayesian setting,

addressed the issue of self-selection bias when consumers report their ex-post utility. While the

latter focused on a single-product setting, Chen et al. (2021) identi�ed the self-selection bias in a

multiproduct setting with boundedly rational consumers. Acemoglu et al. (2017) characterized the

speed of learning under di�erent rating systems in a monopolistic model of Bayesian social learning.

The impact of asymmetry in learning technologies in a duopolistic market was analyzed by Kakhbod
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et al. (2021), who studied a model where consumers are Bayesian and di�er in the way they process

the online review information.

In the �eld of revenue management, several papers have studied social learning from consumer

reviews in various contexts; see, e.g., pricing problems (Crapis et al., 2017, Papanastasiou and

Savva, 2017, He and Chen, 2017, Yang and Zhang, 2018, Shin et al., 2021, Stenzel et al., 2020);

product design problems (Feldman et al., 2019, Shin and Zeevi, 2021); and information provision

problem (Papanastasiou et al., 2018). In particular, our model of consumer reviews is closely related

to the one in Papanastasiou et al. (2018) in that they, too, assumed that binary reviews follow

a Bernoulli distribution with unknown mean and consumers use Bayesian updating (with a beta

prior) to infer it. Papanastasiou et al. (2018) studied a platform's messaging policies and how they

in�uence consumers' learning, whereas our paper concerns product ranking policies. Crapis et al.

(2017) studied social learning from binary reviews in a market with non-Bayesian agents and a

monopolist who makes the pricing decision; their analysis, based on a �uid approximation, is closely

related to the one used in this paper.

Whereas the aforementioned papers focused on single-product settings, Pixton and Simchi-Levi

(2020) studied the dynamics of social learning in the case of many products with substitutable

demand. Using a �uid approximation, they proved that social learning makes the product substi-

tution e�ects stronger; that is, consumers tend to buy and report reviews for incumbent products,

leaving a new product underexplored for very long periods of time. They showed that asynchronous

launch times may lead to doubly-exponential di�erences in market share. In our paper we assume

that products are launched simultaneously and consumers incur search costs when browsing dis-

played items with rank, which introduces new challenges to the platform since the social learning

transients can be in�uenced by the platform's ranking decision.

Mostly owing to the proliferation of online platforms, the analysis of information disclosure policies

designed to incentivize consumers to learn about products has recently attracted quite a lot of

attention. See, for instance, Frazier et al. (2014), Kremer et al. (2014), Papanastasiou et al. (2018),

Bimpikis et al. (2019), Che and Hörner (2018). Whereas these papers focused on a platform's

incentive mechanisms to facilitate learning, Zhao (2021) studied how a monopolistic platform can

in�uence consumers' learning via product ranking. In her model, consumers form a consideration set

consisting of some number of top-ranked products and then make a selection from the set following a

choice model�hence, consumers' learning is in�uenced by product ranking. Zhao (2021) proposed an

upper con�dence bound (UCB) ranking algorithm that balances exploration-exploitation trade-o�s

and characterized its performance bounds. Golrezaei et al. (2021) studied the problem of learning

product rankings when a platform faces a mixture of real and fake users. They proposed e�cient

learning algorithms and characterized their worst-case performance bounds. Our work, too, concerns
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the platform's problem of learning product rankings, but di�ers from Zhao (2021) and Golrezaei

et al. (2021) at least in two dimensions: our model assumes rank-dependent search cost; and our

analysis focuses on a �uid formulation in which the performance of our proposed ranking policies

can be expressed in semi-closed forms, rather than as bounds.

The product display problem analyzed in Section 4 belongs to the family of dynamic assortment

optimization problems with multiple products under a general choice model. Starting with Talluri

and Van Ryzin (2004), this type of problems has been investigated when the distribution of con-

sumers' preferences is a priori known (Davis et al., 2014) and when preferences have to be learned

by the designer along the selling horizon (Rusmevichientong et al., 2010, Sauré and Zeevi, 2013,

Agrawal et al., 2019). Extant empirical works provided evidence of the ranking e�ects due to search

cost in online market environments; see, e.g., Kempe and Mahdian (2008), Craswell et al. (2008),

Lerman and Hogg (2014), and Ghose et al. (2013). In the context of search cost, L'Ecuyer et al.

(2017) considered the static optimal ranking policy of a revenue-maximizing search engine. They

investigated the platform's dilemma of balancing between minimizing expected consumers' regret

and maximizing long-term pro�ts. We use a similar approach with the additional complexity due to

learning e�ects on the consumers' side. Abeliuk et al. (2016) studied the assortment optimization

problem when consumers are in�uenced by the aggregate past purchases. They showed that a static

ranking policy can be optimal despite the time-varying demand due to social in�uence. In a related

paper Berbeglia et al. (2021) showed that a platform always bene�ts from market segmentation

when consumers are shown a ranking of products relevant to their own segment, rather than show-

ing a ranking of all products. Whereas these papers examined the platform's assortment/ranking

problem when the platform is well informed about consumers' valuations of underlying products,

our paper considers an uninformed platform that must learn them on the �y.

The platform's learning and ranking problem in the current paper is related to the literature

of dynamic pricing when sellers do not know the demand function (see, e.g., Besbes and Zeevi,

2009, Broder and Rusmevichientong, 2012, den Boer and Zwart, 2014, Keskin and Zeevi, 2014).

These studies highlighted the trade-o� between exploration (learning) and exploitation (earning);

in particular, most extant studies show poor performance of myopic/greedy policies that do not put

explicit e�orts in exploration and, as a consequence, su�er from a phenomenon called incomplete

learning. Our paper shares an important common theme with these papers in that we rigorously

characterize the performance loss incurred under a greedy ranking policy and modify it to guard

against poor performance.

Notation. Throughout the paper, for any pair of functions f(·), g(·), the notation f(x) =O(g(x))

indicates that there exists a positive constant M such that f(x) ≤Mg(x) for x→∞, whereas

f(x) = Ω(g(x)) means that there exist two positive constantsM such that f(x)≥Mg(x) for x→∞.
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Moreover, f(x) = Θ(g(x)) if f(x) =O(g(x)) and f(x) = Ω(g(x)). We use �∼� to denote asymptotic

equivalence; formally, given functions f(x) and g(x), we de�ne a binary relation f(x) ∼ g(x) as

x→∞ if and only if f(x)/g(x)→ 1 as x→∞. Additionally, the terms decreasing and increasing are

to be taken in the strict sense representing strictly increasing and strictly decreasing, respectively.

The organization of the paper. In Section 2 we introduce a demand model that incorporates

review information and search cost, and formulate a platform's ranking problem. In Section 3 we

provide a preliminary analysis of the consumer learning dynamics using a �uid approximation. In

Section 4 we present our main theoretical results: we reformulate the platform's ranking problem

using the aforementioned �uid approximation (Section 4.1); we characterize the optimal ranking

policy in the full-information setting as a benchmark (Section 4.2); we propose the greedy policy and

characterize the performance gap with the fully informed platform (Section 4.3); and we introduce

the semi-greedy policy for performance improvement and examine its e�ectiveness (Section 4.4). In

Section 5, we show via simulation studies the performance of the two ranking policies in a wide

spectrum of scenarios. In Appendix A we examine several extensions to the basic settings. Proofs

are collected in Appendix B.

2. Modeling Framework

2.1. Discrete Consumers Setting

Model overview. We consider a marketplace where a set of K substitutable goods or services�

henceforth, called the products�are o�ered to a market of consumers who decide whether to buy

one of them, or to choose a no-purchase option. For each k ∈ {1, . . . ,K}, qk ∈ [0,1] represents the

intrinsic quality of product k and pk is the �xed price of the product. The index k= 0 indicates the

no-purchase option, which has known intrinsic quality q0 = 0 and a price p0 = 0.

Consumers are indexed by n= 1,2, . . . , and arrive at random times t1, t2, . . . according to a Poisson

process with rate Λ > 0; they make a once-and-for-all decision, and never re-enter the market.

Without loss of generality, we assume the normalization Λ = 1 throughout the paper. Initially,

consumers do not know the quality of the products and, in order to make their purchase decision,

use their available information to compute a vector of quality estimates q̂n := (q̂1,n, . . . , q̂K,n), where

q̂k,n denotes the estimate of the quality of product k evaluated by consumer n.

In case consumer n decides to buy product k, she may have a positive or a negative experience

with it; namely, consumer n' experience is νk,n, where the νk,n's are i.i.d. binary variables that take

values L (like) or D (dislike), with

P(νk,n =L) = 1−P(νk,n =D) = qk. (2.1)

So, the quality qk represents the probability that a buyer of product k gets a positive experience.

A similar model was considered by Papanastasiou et al. (2018). In what follows, we formalize the

functional relationships among demand, reviews, and product rankings.
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Product rankings and search costs. The search cost associated with a given product depends on the

position in which the product is displayed to consumers. To formalize the search cost as a function of

product ranking, we let ZK denote the set of all permutations of {1, . . . ,K} and let ∆(ZK) represent

the space of all probability distributions over ZK . Elements of ZK will be referred to as position

assignments or, more simply, as rankings. Given a product ranking z = (z1, . . . , zK) ∈ ZK , zk = j

indicates that product k occupies the j-th highest position in the ranking. For instance, when zk = 1

(zk =K), product k occupies the highest (lowest) position. In particular, if a product occupies the

j-th highest position in the ranking, customers incur a search cost g(j), where g :N→R is a strictly

increasing function; without loss of generality, we normalize g(1) = 0.

Purchase decision. Consider a class of i.i.d. random variables (αk,n), with k = 0,1, . . . ,K and

n∈N. The random variable αk,n represents the idiosyncratic preference of consumer n for product k.

The distribution of αk,n is common knowledge, but its realization is private information of consumer

n. Given a vector of quality estimates q̂n and a position assignment z ∈ZK , consumer n assigns a

utility αk,n + q̂k,n− pk− g(zk) to the purchase of product k, and a utility of α0,n + q0− p0 = α0,n to

the outside option. Then, she buys the product cn that maximizes her estimated utility, i.e., cn =

arg maxk=0,1,...,K

{
αk,n + q̂k,n − pk − g(zk)

}
, where we let g(z0) := 0. Under the above assumptions,

consumer n purchases product k with probability dk(q̂n,z), hereafter referred to as the demand

function; formally,

dk(q̂n,z) := P(cn = k | q̂n,z). (2.2)

We make the following assumption on the demand function.

Assumption 2.1. For �xed K, there exists a positive constant δ < 1 such that for any k ∈
{1, . . . ,K}, dk(q̂,z)≥ δ for any vector of quality estimates q̂ ∈ [0,1]K and ranking z ∈ZK.

The preceding assumption implies that the demand for each product is strictly positive (although

possibly small) for any consumer, which ensures that a new review for each product will eventually

enter the learning process. Assumption 2.1 is satis�ed for well-known multinomial choice models with

unbounded support for preference {αk,n}, including the multinomial logit (MNL) and nested logit

models. For example, the MNL model postulates that consumers' preferences {αk,n : k= 0,1, . . . ,K}
have a standard Gumbel distribution, i.e., P(αk,i ≤ x) = exp(− exp(−x)), where the demand func-

tion in (2.2) is written as

dk(q̂,z) :=
exp(q̂k− pk− g(zk))

1 +
∑K

j=1 exp(q̂j − pj − g(zj))
. (2.3)

In Section 3 we consider general demand functions that satisfy Assumption 2.1 for our analysis of

learning transient. From Section 4 and on, we focus on the MNL demand function for our analysis of

the platform's ranking problem to elucidate the key features of the problem in analytically tractable

forms.
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Review mechanism and information structure. Consumers who buy one product truthfully report

online their experience. So consumer n, after purchasing product k, reports the online review νk,n.

The quantities Lk,n :=
∑n−1

s=1 1{cs = k and νk,s = L} and Dk,n :=
∑n−1

s=1 1{cs = k and νk,s = D},
respectively, represent the numbers of positive and negative reviews for product k observed by

consumer n, and Bk,n :=Lk,n+Dk,n is the total number of purchases (and, consequently, of reviews)

for product k observed by consumer n. The symbol In := {(Lk,n,Dk,n) : k = 1, . . . ,K} denotes the
whole information available to consumer n.

Quality estimation procedure. We assume that consumers use Bayesian updating for the unknown

qualities and their common prior for product k is Beta(Lk,0,Dk,0).1 This implies that the posterior

belief over qk is Beta(Lk,n+Lk,0,Dk,n+Dk,0). Hence, consumer n's Bayesian estimate of the quality

of product k is given by

q̂k,n :=
Lk,n +Lk,0

Lk,t +Lk,0 +Dk,n +Dk,0

=
Lk,n +Lk,0
Bk,n +Bk,0

. (2.4)

As it is apparent in (2.4), Bk,0 := Lk,0 +Dk,0 represents the weight that consumers assign to the

prior belief q̂k,0.
2

2.2. The Platform's Ranking Problem

The platform does not know q and receives a share 0<ρ≤ 1 of every payment that takes place on its

website, i.e., the platform realizes a revenue ρpk whenever product k is sold. Let σn = (σ1,n, . . . , σK,n)

be the position assignment observed by consumer n, where σk,n = j indicates that product k is

displayed in position j to consumer n. Consider the selling horizon of length T > 0 and let NT be

the index of the last consumer; although we consider a �nite horizon T here, our main analyses in

Sections 3 and 4 focus on performance metrics as functions of T (when T is su�ciently large). The

platform commits to a non-anticipating3 ranking policy ΠT := {Πn : n= 1, . . . ,NT} which, given an

information state In available to consumer n, returns a randomized ranking Πn ∈∆(ZK), i.e., a

probability distribution over the set of possible rankings ZK . More formally, for any consumer n,

the probability distribution Πn de�nes a vector (πz1,n, πz2,n, . . . , πzK!,n), where πz,n := P(σn = z)

satis�es the obvious normalization constraint
∑

z∈ZK πz,n = 1.

Given the quality estimate q̂n of consumer n, the expected demand for product k under a ran-

domized ranking Πn is given by

d̃k(q̂n,Πn) :=
∑

z∈ZK
πz,ndk(q̂n,z). (2.5)

The platform's objective is to choose a non-anticipating ranking policy that maximizes its expected

cumulative revenue over a selling horizon. Formally, the platform's optimal control problem can be

stated as follows:

maximize
{ΠT }

Eq

[
NT∑
n=1

K∑
k=1

ρpkd̃k(q̂n,Πn)

]
. (2.6)
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It is quite di�cult�if not impossible�to �nd an exact solution to the stochastic dynamic pro-

gramming problem (2.6). If the true quality vector q were known, one could characterize the optimal

solution to (2.6) via the Bellman equation, although obtaining it in closed form would be di�cult. A

more fundamental challenge arises from the fact the true quality vector q is unknown. In particular,

the expected value in (2.6) is taken with respect to the unknown true quality vector q, and hence the

platform does not know how the current ranking would change beliefs and optimal ranking decisions

for subsequent consumers.4 In the following sections, we provide alternative methods to characterize

consumers' learning transient in tractable form, which will be leveraged to derive structural insights

into the platform's ranking problem.

Remark 2.1. In solving (2.6), the platform should learn the unknown quality while ultimately

maximizing the accumulated revenue over time. Hence, the platform should judiciously balance the

trade-o� between learning and earning. In this regard, our ranking problem resembles combinatorial

multi-armed bandit (CMAB) problems (Chen et al., 2013); speci�cally, for every customer arriving

in the market, the platform has to choose an arm, i.e, a ranking z ∈ ZK , and receives a reward

given by the pro�t generated by the customer. However, there are fundamental di�erences between

our ranking problem and CMAB problems: in CMAB problems, the expected reward for each arm

is static but unknown, whereas in our ranking problem, the expected reward for each arm (ranking)

is known but time-varying, depending on the previous ranking decisions. Speci�cally, the platform

does not know how the demand function evolves over time (i.e., the ODE in (3.1)) because of the

unknown quality vector q. Thus, the methodologies used in CMAB problems cannot be directly

applied to our setting.

3. Preliminaries: Fluid Approximation and Learning Transient

In this section we introduce a �uid model where the learning transients can be described as solutions

of deterministic ordinary di�erential equation (ODE) systems, which is a signi�cantly more tractable

framework in many settings; see Crapis et al. (2017), Shin et al. (2021) for examples of recent

applications of �uid models to revenue management problems in the presence of online reviews. In

what follows, we will omit the detailed derivation of the �uid formulation, which can be found in

Appendix C, and we only illustrate the intuition behind it.

3.1. Associated Fluid Approximation of the Learning Dynamics

For the sake of building insights, assume that consumers arrive continuously over time at a constant

rate Λ = 1 so that over a small interval [t, t+ dt) a mass dt of consumers enters the market. In a

small interval [t, t+ dt), the ranking z ∈ZK is �xed and the state variables vary at a rate which is

given by the expected variation of their discrete counterpart over [t, t+ dt). That is, among the total
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mass of dt consumers arriving in the market during the in�nitesimal interval [t, t+ dt), roughly a

fraction dk(q̂n,z) will purchase product k. The dynamics for the state variables Lk,n and Dk,n can

be described in the same spirit as above, and the �uid approximation is obtained by taking limit

dt→ 0 in the system dynamics, along with a suitable scaling of the arrival rate Λ.

In what follows, we use the argument t in parenthesis to denote variables in continuous time;

for example, q̂k(t) represents consumers' quality estimate for product k at time t, which can be

considered as counterparts of q̂k,n for consumer n in the discrete consumers setting. Let σ(t) =

(σ1(t), . . . , σK(t)) be the position assignment observed by consumer t. The platform commits to a

non-anticipating ranking policy Π(T ) := {Π(t) : t∈ [0, T ]} which, given an information state I(t) at

any time t∈ [0, T ], returns a randomized ranking Π(t)∈∆(ZK), i.e., a probability distribution over

the set of possible rankings ZK .
Along with the initial conditions q̂k(0) = q̂k,0 and Bk(0) = 0, the learning trajectories in the �uid

approximation are governed by the following ODE system: for k= 1, . . . ,K, ˙̂qk(t) =
Ḃk(t)

Bk(t) +Bk,0
[qk− q̂k(t)] ,

Ḃk(t) = d̃k(q̂(t),Π(t)),

(3.1)

and L̇k(t) = qkḂk(t) and Ḋk(t) = (1− qk)Ḃk(t). From the ODE, one can show that q̂k(t) satis�es

q̂k(t) =
Lk(t) +Lk,0
Bk(t) +Bk,0

, (3.2)

which resembles the quality estimate (2.4) in the discrete consumers setting. Notice that in (3.1)

the time derivative of the number of purchases for product k is given by the expected value of the

ranking-dependent demand function d̃k(q̂(t),Π(t)) de�ned in (2.5). In contrast, the time derivative

of the quality estimate q̂k(t) is not dependent on the ranking policy Π(t) since the latter has no

direct impact on the consumers' belief updating procedure. Consequently, the ranking policy does

not in�uence the direction of the change in q̂k(t), but a�ects the speed of the learning process.

3.2. Structural Properties of the Learning Transient

Monotonicity and convergence. Using the fact that Lk(t) = qkBk(t) in the �uid formulation, the

quality estimate q̂k(t) in (3.2) can be rewritten as

q̂k(t) = qk− (qk− q̂k,0)
Bk,0

Bk,0 +Bk(t)
. (3.3)

Therefore, the learning transient exhibits some monotonicity properties as is formalized in the

following proposition.

Proposition 3.1. Consider the ODE system in (3.1). For any randomized ranking policy Π(t) ∈
∆(ZK) for t≥ 0, q̂(t)→ q as t→∞. Furthermore,
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• if q̂k,0 = qk, then q̂k(t) = qk for all t≥ 0;

• if q̂k,0 < qk, then q̂k(t) is monotonically increasing for all t≥ 0;

• if q̂k,0 > qk, then q̂k(t) is monotonically decreasing for all t≥ 0.

To paraphrase the preceding proposition, consumers' quality estimates converge to the true quality

vector q irrespective of the ranking policy adopted by the platform. Furthermore, consumers' per-

ceived quality increases (decreases) if the true quality is higher (lower) than their initial estimate.

These properties are useful in analyzing the speed of learning in the presence of product choice,

which we discuss next.

Time-to-learn analysis. We now investigate how fast consumers' quality estimates converge to

their limits and discuss how the speed of learning depends on various model primitives. To this end,

we temporarily assume that there is no search cost (i.e., g(·) = 0). For �xed k ∈ {1, . . . ,K}, let us

focus on the phase of the learning process for t≤ τKk (ε), where, given a small positive constant ε,

τKk (ε) := inf{t > 0 : |q̂k(t)− qk| ≤ ε} (3.4)

is the ε-time-to-learn for product k when the market containsK products, which we use as a measure

of the learning speed. Below, we provide insights on how τKk (ε) depends on the market parameters

relative to both product k and its competing products, which will be indicated with the index j 6= k.

It is evident that the ε-time-to-learn depends on various model parameters: however, to limit the

notation burden, we will not indicate this dependence explicitly in the de�nition of τKk (ε).

In single-product settings, the ε-time-to-learn can be obtained in closed form; see, e.g., a similar

discussion in Crapis et al. (2017). In multiproduct settings, τKk (ε) does not admit a closed form

owing to the substitution e�ect between products. However, we can make a number of qualitative

statements about the ε-time-to-learn with respect to model primitives. We summarize these in the

following theorem, where we use SK := {(pk, qk, q̂k,0) : k = 1, . . . ,K} to describe a market with K

products.

Theorem 3.1. Assume g(·) := 0. Fix ε > 0 and assume that |qk− q̂k,0|> ε. Let τKk (ε) and τK+1
k (ε)

be respectively the ε-time-to-learn for product k in the markets SK and SK+1 such that SK+1 =

SK ∪{(pK+1, qK+1, q̂K+1,0)}. Then, τKk (ε)< τK+1
k (ε). Moreover, for �xed K, τKk (ε) is

(i) decreasing (increasing) in q̂k,0 and increasing (decreasing) in qk if q̂k,0 < qk (q̂k,0 > qk);

(ii) increasing in qj and q̂j,0 for j 6= k;

(iii) increasing in pk and Bk,0, and decreasing in pj and Bj,0 for j 6= k.

Based on the above result, we can provide several insights on the factors that in�uence the learning

transient the most.
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(a) Number of product options: The time-to-learn τKk (ε) increases withK, the number of products,5

because the demand for each product is diluted when a new product is added in the market.

The e�ect of the new product on the time-to-learn is further analyzed in Proposition B.1 in

Section B.1, where we provide a tight upper bound for τKk (ε); for instance, when prices are all

set equal to p, there exists a certain market condition in which

τKk (ε)∼ Bk,0
ε

(ep−1 +K) as ε→ 0. (3.5)

In particular, τKk (ε) increases linearly with K for a su�ciently small ε > 0, which is a conse-

quence of the increased substitution e�ect when a new product is added in the market.

(b) Prior belief : The time-to-learn is increasing in the distance of the prior from the truth; for

example, the more consumers initially underestimate (or overestimate) the true quality of a

product, the longer it takes for consumers to learn the truth. Furthermore, the time-to-learn is

increasing with Bk,0, the weight of prior estimate; that is, the higher the weight assigned to the

prior belief, the larger the number of reviews required to forget prior estimates, thus slowing

down learning.

(c) Relative attractiveness vs. competing alternatives: The time-to-learn for a product depends on

how the product is attractive relative to other products. Speci�cally, Theorem 3.1 implies that

τKk (ε) increases with both q̂j,0− pj and qj − pj, i.e., the initial and the eventual attractiveness

of its competing products j 6= k, respectively. In other words, more attractive products (either

because they started from a higher prior belief, or because they have higher intrinsic quality, or

because they are cheaper) will be selected more frequently by consumers, hindering information

accumulation for their competitors.

4. The Platform's Ranking Problem: A Fluid Formulation

In the absence of search cost, Theorem 3.1 suggests that consumers' learning transients are cor-

related across products due to the substitution e�ects. In this section, we assume that the search

cost is positive and strictly increasing with the position in the ranking. The interplay between the

substitution and ranking e�ects makes the learning transients more complicated. To facilitate trans-

parent analysis of the platform's ranking problem, we will focus on the MNL model throughout this

section, where the demand function is given as (2.3).

4.1. Fluid Formulation under Multinomial Logit Demand

The platform's ranking problem in the �uid formulation. Recall from Theorem 3.1 that irrespec-

tive of the ranking policy adopted by the platform, consumers' quality estimates converge to the

true quality q via social learning. As a result, the platform has no control over the asymptotic
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learning outcome. Conversely, search cost can have a potentially signi�cant impact on the learning

speed since, by picking the product ordering, the platform can a�ect product choice and the speed

of information acquisition. In particular, information acquisition for products placed in the highest

positions is much faster with search cost, compared to the case without search cost. The opposite

happens for products displayed in the lowest positions in the ranking: the platform may need a

high number of iterations�possibly, exponential in the number of products�to discover the most

pro�table products in the market.

For the sake of building intuition, suppose that search cost increases linearly with the displayed

position, i.e., g(k) = γ(k − 1), where γ is a positive constant. Consider two deterministic position

assignments z and z′, and suppose that z places product k exactly one position lower than z′ does,

that is, zk = z′k + 1. It is easy to see that, for large enough values of K and all other things being

equal, dk(q̂(t),z)' e−γdk(q̂(t),z′). Namely, the demand function of product k roughly decreases of

a factor e−γ when the ranking of product k is decreased by exactly one unit. In other words, the

demand, and hence the learning speed, of the product at position k is roughly e−γk times smaller

than that of the top-ranked product. Concretely, if γ = 0.2, then customers e�ectively restrict their

option set to the �rst 15-20 products, whereas if γ = 0.8, then this is true only for the top 4-6

products.

The platform does not know q and receives a share 0< ρ≤ 1 of every payment that takes place

on its website, i.e., the platform realizes a revenue ρpk whenever product k is sold. The platform's

objective is to choose a non-anticipating ranking policy that maximizes its expected cumulative

revenue over a selling horizon of length T > 0. Formally, given a quality con�guration Q= (q,q0)∈

QK , the platform's optimal control problem can be stated as follows:

R∗T (Q) :=maximize
{Π(T )}

Eq

[∫ T

0

K∑
k=1

ρpkd̃k(q̂(t),Π(t))dt

]
subject to ODE in (3.1).

(4.1)

Notice that the expected value in (4.1) is taken with respect to the unknown true quality vector

q. That is, even though the �uid model approximation removes the discreteness and stochasticity of

consumer demand and the heterogeneity of consumers' preferences and of the ex-post quality noise,

enabling a deterministic description of the learning transients, the platform still faces a stochastic

control problem with respect to the unknown true quality vector q, which a�ects the learning

dynamics and the achievable revenue objective.
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4.2. Full Information Benchmark and the Notion of Regret

The oracle platform. De�ne z∞ as the position assignment that maximizes revenues if consumers

make decisions based on q:

z∞ := arg max
z∈ZK

{
K∑
k=1

pkdk(q,z)

}
.

For simplicity, it will be assumed that z∞ is unique in the remainder of the paper.6 The optimal

revenue rate r∞ is de�ned accordingly as

r∞ =
K∑
k=1

pkdk(q,z∞). (4.2)

The following proposition characterizes the optimal policy for the control problem in (4.1) for an

oracle platform that knows the true quality vector q. In this full-information benchmark, the oracle

platform's ranking decision may convey information about the product's quality, but we assume

that consumers do not adjust their quality estimate in response to that information.

Proposition 4.1. If the platform knows q, then, there exists a unique solution Π∗(t) to the platform

optimal control problem (4.1). Moreover, there exists T0 <∞ such that for all T ≥ T0, Π∗(t) satis�es

πz∞(t) = 1 for all t∈ [0, T ].

In the preceding proposition, the condition T ≥ T0 ensures that the time horizon is su�ciently large

such that under the optimal policy, the true ranking can be recovered at the end of the selling

horizon7; that is, q̂k1(T )≤ q̂k2(T ) if qk1 ≤ qk2 for any k1 6= k2. Note that the threshold T0 depends on

the search cost g(·); for example, in the case of linear search cost g(k) = γ(k−1), the demand for the

product at the kth position is roughly of order e−γk, so T0 must be of order eγK to ensure su�cient

time to learn the qualities of all products. Proposition 4.1 establishes that, if the selling horizon

is large enough, then it is optimal for the platform to adopt a static deterministic ranking policy

that displays products according to the asymptotically optimal ranking z∞ throughout [0, T ]. The

optimality of Π∗ guarantees that the revenue achieved by an oracle platform that knows q (and,

hence, z∞), henceforth denoted by R∗T , provides an upper bound for the revenue achieved by any

other policy Π implemented without knowing the optimal ranking z∞.

Proposition 4.1 highlights another important aspect of the interplay between this pro�t maximiz-

ing platform and the consumer learning process. Speci�cally, since the optimal policy is static and

displays products according to the asymptotically optimal ranking z∞, for an uninformed platform

it is bene�cial to design ranking policies that allow to discover z∞ as quickly as possible. This

suggests that the platform and the consumers have aligned interests, as they both have a strong

incentive to discover q in the shortest amount of time. Speci�cally, if consumers knew q, they would

be able to choose the product that, given their personal preferences and the price, best �ts their

needs, whereas, if the platform knew q, it would use this information to derive z∞ and achieve the

optimal revenue rate r∞.
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The regret of a ranking policy. The performance metric we will use throughout this study is the

long-run regret, de�ned as

RΠ(Q) := lim
T→∞

{
R∗T (Q)−RΠ

T (Q)
}
, (4.3)

where, given a con�gurationQ := (q, q̂0),R∗T (Q) is the T -period optimal revenue achieved by the ora-

cle platform characterized in Proposition 4.1 under Q, and RΠ
T (Q) is the T -period revenue achieved

by the ranking policy Π under Q. Note that the regret RΠ(Q) can be in�nite for some policies whose

ranking does not converge to z∞ in the long run. However, it will be shown later that the regret is

�nite for reasonable ranking policies: among such policies our analysis will focus on asymptotically

optimal ranking policies such that πz∞(t)→ 1 as t→∞.

Instead of solving the stochastic dynamic programming problem (4.1), throughout the paper we

adopt a worst-case scenario approach to the ranking optimization problem, that is, we take on the

challenge of identifying the market circumstances that are most adversarial to the ranking policy

adopted by the platform. The worst-case analysis provides an important piece of information for

a more complete evaluation of the platform's ranking policy. In particular, we aim at identifying

the con�guration Q ∈ QK that maximizes the regret RΠ(Q). Formally, given the ranking policy

Π∈∆(ZK), the worst-case regret is denoted by

RK
Π := max

Q∈QK
{RΠ(Q)} . (4.4)

The maximizer of (4.4) is denoted by QK
Π , henceforth referred to as the worst-case con�guration

under the ranking policy Π over K products.

4.3. Regret Analysis for the Greedy Policy

The greedy ranking policy. In online marketplaces, the ranking decision must be made on a real-

time basis. The platform, uninformed of the true quality vector, may not be able to e�ciently solve

the stochastic dynamic programming problem (4.1) but rather employs a computationally tractable

solution. In this section, we focus on the greedy policy where the platform makes the ranking

decision to maximize the instantaneous revenue rate as if the current estimates of the qualities were

accurate. In general contexts of dynamic programming that involve learning, this type of policy

is often dismissed by practitioners since it does not acquire su�cient information about unknown

features of the model, incurring a signi�cant loss in revenue (see, e.g., den Boer and Zwart, 2014,

Keskin and Zeevi, 2014). In our problem, such a policy does not su�er from incomplete learning

because the true quality of each product will be eventually revealed to the market, even though the

platform does not exert an explicit e�ort to explore the product quality (Theorem 3.1). As will be

shown below, this policy passes a basic sanity check in that the regret (4.3) is �nite in the long run.
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Formally, at any t≥ 0, the greedy ranking policy G displays a position assignment drawn from the

probability distribution ΠG(t)∈∆(ZK) such that

ΠG(t) = arg max
Π∈∆(ZK)

EΠ

[
K∑
k=1

pkd̃k(q̂(t),Π)
∣∣∣q̂(t)

]
= arg max

Π∈∆(ZK)

K∑
k=1

pk
∑

z∈ZK

πz d̃k(q̂(t),z), (4.5)

where EΠ denotes the expected value with respect to the probability distribution Π. In fact, solving

(4.5) is equivalent to �nding the solution of a combinatorial optimization problem over the space of

possible deterministic position assignments ZK (Lemma C.2); formally, for t≥ 0, we have

EΠG(t)

[
K∑
k=1

pk d̃k(q̂(t),ΠG(t))

]
= max

z∈ZK

K∑
k=1

pk dk(q̂(t),z). (4.6)

Speci�cally, under the greedy policy, ΠG(t) is a degenerate probability distribution that assigns

maximal probability to the position assignment zG(t) = (zG1 (t), . . . , zGK(t)), which is the solution of

the combinatorial optimization problem on the right-hand side of (4.6), hereafter referred to as the

Multinomial Logit Positioning Problem (MNLPP).

Even if the number of permutations of {1, . . . ,K} grows super-exponentially with K, Abeliuk

et al. (2015) showed that MNLPP can be solved in polynomial time, and that any optimal position

assignment zG(t) for (4.6) and the corresponding optimal revenue rG(t) :=
∑K

k=1 pkdk(q̂(t),zG(t))

are such that

zGk1(t)≤ zGk2(t) ⇐⇒ (pk1 − r
G(t))eq̂k1 (t)−pk1 ≥ (pk2 − r

G(t))eq̂k2 (t)−pk2 , (4.7)

for all k1, k2 ∈ {1, . . . ,K}. Notice that if there exist k1 6= k2 such that pk1 = pk2 , then (4.7) implies

that only estimated qualities matter for determining the relative position of products k1 and k2, i.e.,

zGk1(t)≤ zGk2(t) if and only if q̂k1(t)≥ q̂k2(t). In particular, if prices are all equal, then zG(t) simply

displays products in decreasing order of their current estimated quality, i.e.,

pk = p for all k ∈ {1, . . . ,K} =⇒ zGk (t) =
K∑
j=1

1{q̂k(t)≤ q̂j(t)} for all k ∈ {1, . . . ,K}. (4.8)

We assume that in case of ties the platform ranks products in alphabetic order, i.e., when there exist

two products k1 6= k2 such that pk1 = pk2 and q̂k1(t) = q̂k2(t) then zGk1 < z
G
k2

if and only if k1 <k2.

Worst-case regret for the greedy policy. The analysis of this section will be conducted under the

following assumption.

Assumption 4.1. (a) Bk,0 =B0 for all k= 1, . . . ,K.

(b) pk = p for all k= 1, . . . ,K.

(c) q̂1,0 ≤ qk for each k 6= 1.
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Assumption 4.1(a) is needed for clarity of exposition. Assumption 4.1(b) simpli�es the analysis,

but it has no bearing on our qualitative insights. It is appropriate for products such as smartphone

apps and movies, whose price is typically �xed at a level common to the industry. Moreover, the

assumption is approximately true for quality-di�erentiated products for which customers are more

sensitive to quality than price. Our extended analysis for the case of di�erent prices is provided in

Section B.2. Finally, Assumption 4.1(c) ensures that the prior estimate of the best product (i.e.,

product 1) is su�ciently low, so that it is initially ranked low under the greedy policy; we focus on

this setting that is more adversarial to the greedy policy than the one with high q̂1,0. As we will see,

this assumption is not restrictive in our worst-case analysis since q̂1,0 is equal to zero in the worst

case for su�ciently large K (Proposition 4.2).

For worst-case analysis, it will be useful to focus �rst on the set of con�gurations QK(η)⊂QK ,
which, given some constant η ∈ (0,1), is de�ned as

QK(η) :=
{

(q, q̂0)
∣∣∣q1 ≤ 1 and q1− η= q2 ≥ q3 ≥ · · · ≥ qK ≥ 0, q̂0 ∈ [0,1]K

}
, (4.9)

that is, QK(η) contains con�gurations where the highest quality is greater than the second-highest

quality by η. Note that QK =
⋃
η∈(0,1)QK(η).

For �xed η ∈ (0,1), let RK
G (η) := sup{RG(Q) : Q ∈ QK(η)} be the worst-case regret under the

greedy policy. The worst-case con�guration, if it exists, is di�cult to characterize precisely, but can

be approximated when the number of products is su�ciently large, as is formalized in the next

proposition.

To make this asymptotic analysis with respect to K precise, we need to de�ne nested markets.

Recall the de�nition of market SK := {(pk, qk, q̂k,0) : k= 1, . . . ,K}.

Definition 4.1 (Nested market). For any K ≥ 1, we say that SK is nested in SK+1 if SK+1 =

SK ∪{(pK+1, qK+1, q̂K+1,0)}.

The nested market structure ensures that the consecutive markets di�er only by one product, which

allows us to capture marginal e�ects when one more product is added to the market. For any quality

con�guration with K products QK := (q, q̂0) ∈ [0,1]K × [0,1]K , for the sake of convenience the

qualities will be reordered nonincreasingly: q1 ≥ q2 ≥ · · · ≥ qK . We let QK be the set of all possible

con�gurations QK .

Proposition 4.2. Fix η ∈ (0,1) and suppose that Assumption 4.1 holds. Then, as K→∞,

RG(QK
∗ (η))

RK
G (η)

→ 1, (4.10)

where QK
∗ (η) := (q∗, q̂∗0) is such that

q∗ = (1,1− η, . . . ,1− η)

q̂∗0 = (0,1− η, . . . ,1− η).
(4.11)
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Figure 1 The regret of the greedy policy under randomly generated con�gurations.
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G , is plotted as a function of η= q1−q2. The box plot for each η shows the

minimum, maximum, median, and the �rst and third quartiles of the normalized regret over 300 randomly generated

con�gurations.

The preceding proposition implies that the worst-case regret for the greedy policy is achieved,

approximately, when (i) the best-quality product has the lowest-possible prior expectation (i.e.,

q∗1 = 1 and q̂∗1,0 = 0), (ii) customers have perfect prior on the non-best products (i.e., q∗k = q̂∗k,0 for

k 6= 1), and (iii) the qualities of the non-best products are as high as possible (i.e., qk = 1− η for

k 6= 1). Therefore, when the number of products is su�ciently large, the worst-case regret for the

greedy policy reduces to that of con�guration QK
∗ (η).

This result is illustrated in Fig. 1. Speci�cally, for each η ∈ {0.1, . . . ,0.9} we randomly generate

300 con�gurations QK(η) ∈ QK(η) as follows: for the quality, set q1 = 1 and q2 = 1− η, and draw

qk ∼ Beta(3,1) for k 6= 1,2; and for the prior belief, set q1,0 = 0 and draw qk,0 ∼ Uniform(0,1) for

k 6= 1. In all cases, we assume a linear search cost g(k) = 0.5k. For a small number of products (K =

3), observe that QK
∗ (η) may not be a worst-case con�guration; that is, RG(QK(η)) ≥RG(QK

∗ (η))

for some con�guration QK(η). For a large number of products (K = 20), QK
∗ (η) is a worst-case

con�guration for which RG(QK(η))≤RG(QK
∗ (η)) for any random con�guration QK(η).
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Figure 2 The growth of the worst-case regret of the greedy policy.
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Note. The worst-case regret RK
G is plotted as a function of K in log-linear scale. In all cases, the regret is estimated

over the same selling horizon [0, T ] for a large T .

In con�guration QK
∗ (η), the regret can be characterized in a tractable form, which is given in the

theorem that we now present. Before stating the result, for x1, x2 < 0, we de�ne the function ψ as

ψ(x1, x2) :=

∫ x2

x1

e−y

y2
dy. (4.12)

Theorem 4.1. Fix η ∈ (0,1). Under Assumption 4.1, consider the (asymptotic) worst-case con�g-

uration QK
∗ (η) characterized in Proposition 4.2. Then, as K→∞,

RG(QK
∗ (η))∼MK

G (η) :=
(e1−p− e1−p−η)

(
eg(K)− 1

)
1 + e1−p + e1−p−η

∑K

j=2 e−g(j)
ψ(−1,−η), (4.13)

where MK
G (η) is non-negative, continuous, and quasi-concave in η ∈ [0,1] with MK

G (0) =MK
G (1) = 0.

The dotted lines in Fig. 1 illustrate the (normalized) regret RG(QK
∗ (η))∼MK

G (η) as a function of

η. The quasi-concavity of MK
G (η) implies that the regret RG(QK

∗ (η)) is maximized at a unique η∗ =

arg maxη∈[0,1]{RG(QK
∗ (η))} for su�ciently large K. Combined with Proposition 4.2, the preceding

theorem provides an approximate characterization of the worst-case regret (4.4) under the greedy

policy, which is formalized in the following corollary.

Corollary 4.1. Under Assumption 4.1, the worst-case regret under the greedy policy satis�es

RK
G = Θ

(
eg(K)∑K

k=1 e−g(k)

)
as K→∞. (4.14)

As alluded to earlier, the greedy policy puts little emphasis on learning and more on exploiting

pro�t. Therefore, although the greedy policy achieves a �nite regret for given K, the platform may

incur signi�cant loss of revenue as the number of competing products grows large. In particular,

Corollary 4.1 indicates how fast the revenue loss in the worst case increases with K due to such

under-exploratory behavior. Concretely, consider the following examples:
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• (Linear cost function) If g(k) = γ(k− 1) for some γ > 0, then the worst-case regret increases at

an exponential rate with K; that is, RK
G = Θ(eK).

• (Logarithmic cost function) If g(k) = γ log(k) for some γ > 0, then the worst-case regret increases

at most at a linear rate with K; that is, RK
G = Θ(K/ log(K)).

These observations are generalized in the following corollary.

Corollary 4.2. Suppose that Assumption 4.1 holds. If g(k) = Ω(kα) for some α > 0, then the

regret grows exponentially with K; formally,

lim inf
K→∞

RK+1
G

RK
G

> 1. (4.15)

If g(k) =O(kα) for any α> 0, then the regret does not grow exponentially with K; formally,

limsup
K→∞

RK+1
G

RK
G

= 1. (4.16)

Corollaries 4.1 and 4.2 suggest that the platform should consider the implications of the search cost

on the design of the ranking system. Several comments are in order.

First, our �ndings identify the parametric regimes of market environments that are favorable (and

not favorable) to the greedy policy. Speci�cally, if the platform wishes the regret to be subexponential

in K, the greedy policy can be a desirable solution only when the search cost is subpolynomial

(Corollary 4.2); in such circumstances, even if the platform places a �good� product at a low rank,

consumers su�ciently explore such a product and help the platform eventually raise its rank. In

contrast, if consumers incur signi�cant search cost that is polynomial with product position, then the

platform essentially shades the low-ranked products from consumers (i.e., preempts the consumers'

opportunity to learn), thereby su�ering from an exponential revenue loss as the number of product

increases. In such circumstances, an important managerial implication is that the greedy policy

alone cannot be a desirable approach and the platform should consider, for instance, a market

segmentation strategy (Berbeglia et al., 2021): instead of showing a ranking of all products, the

platform may segment consumer population and show a ranking of products that are relevant to a

speci�c segment.

Furthermore, �rms display a di�erent number of products to customers on di�erent platforms. For

example, mobile phones have smaller screens than do PCs, which increases the cognitive cost associ-

ated with information gathering (Ghose et al., 2013). Thus, it is typical to display a smaller number

of products on mobile versions of the platform than on PC versions (e.g., Amazon and Net�ix). Our

analysis provides a rough guideline for choosing how many products to display. Speci�cally, if the

platform employs the greedy policy and aims to achieve the regret due to the ranking e�ect less

than a constant C > 0, then the platform should display O(g−1(log(C))) products to customers.

Concretely, in the case of the linear cost function, the desired number of products is O(log(C)),

whereas in the case of the logarithmic cost function, the desired number of products is O(C).
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4.4. Regret Analysis for the Semi-greedy Ranking Policy

The semi-greedy ranking policy. Our regret analysis of the greedy ranking policy indirectly empha-

sizes the value of exploration, as it suggests that the platform has a strong incentive to discover

the high-quality products especially when the growth of search cost is polynomial with the prod-

uct position. To improve the (worst-case) performance of the greedy policy, we now consider the

semi-greedy ranking policy, denoted by SG, which is structured around the implied belief process

{q̃k(t) : t > 0} de�ned as

q̃k(t) := q̂k(t) +
u

Bk(t) +Bk,0
, (4.17)

where u > 0 is the parameter of the policy that controls the level of exploration;8 note that the

implied belief q̃k(t) may exceed one. It is easily seen that

˙̃qk(t) =
Ḃk(t)

Bk(t) +Bk,0
(qk− q̃k(t)), (4.18)

which means that the implied belief process q̃k(t) is increasing (decreasing) at t if q̃k(t) < qk (if

q̃k(t)> qk). For each t, the semi-greedy policy ranks the product based on the implied belief q̃(t) =

(q̃1(t), . . . , q̃K(t)); that is,

zSG ∈ arg max
z∈ZK

{
K∑
k=1

pkdk(q̃(t),z)

}
. (4.19)

The above problem can be framed as another instance of MNLPP, whose optimal solution can be

characterized as in (4.7), with q̂k(t) being replaced with q̃k(t). Because of the additional term in

(4.17), the semi-greedy policy puts more emphasis on exploration than the greedy; for instance,

although the estimated quality of product k is lower than that of k′ (i.e., q̂k(t)< q̂k′(t)), product k

can be ranked higher if it is under-explored compared to product k′ (i.e., Bk(t)<Bk′(t)).

Worst-case regret for the semi-greedy policy. For �xed η ∈ [0,1], let RK
SG(η) := sup{RSG(Q) :Q ∈

QK(η)} denote the worst-case regret under the semi-greedy policy. The following proposition sug-

gests that the worst-case scenarios for the semi-greedy and greedy policies coincide, although the

corresponding regrets may di�er signi�cantly.

Theorem 4.2. Fix η ∈ (0,1). Under Assumption 4.1, consider the semi-greedy policy parametrized

by a positive constant u< ū :=B0(1− η). Then, RK
SG(η)∼RSG(QK

∗ (η)) as K→∞, where QK
∗ (η) is

characterized in (4.11). Furthermore, as K→∞,

RSG(QK
∗ (η))∼MK

SG(η) :=
(e1−p− e1−p−η)

(
eg(K)− 1

)
1 + e1−p + e1−p−η

∑K

j=2 e−g(j)
ψ

(
−1,− ηB0

B0−u

)
, (4.20)

where MK
SG(η) is non-negative, continuous, and quasi-concave in η ∈ [0,1] with MK

SG(0) =MK
SG(1) = 0

and ψ is de�ned in (4.12). Additionally, MK
SG(η)<MK

G (η), where MK
G (η) is de�ned in Theorem 4.1.



24

In the preceding theorem, the condition u≤ ū ensures that the estimated quality of the best product

is initially low such that q̃1(0)< qk for k 6= 1. As in Assumption 4.1(b), this condition is imposed

to ensure that the worst-case regret is characterized in a tractable form, but we remark that the

semi-greedy policy admits the parameter u> ū in general settings. Theorem 4.2 implies that, as in

the greedy policy, the worst-case regret under the semi-greedy policy grows with K in the order

equivalent to eg(K)/
∑K

k=1 e−g(k). However, it is important to note that the worst-case regret under

the semi-greedy policy increases at a slower rate than under the greedy; namely, MK
SG(η)<MK

G (η).

Several comments on this relation are in order.

The comparison of Theorems 4.1 and 4.2 suggests that the semi-greedy policy can signi�cantly

reduce the worst-case regret by changing the exploration-exploitation balance; speci�cally, whereas

the greedy policy gives priority to the product with high estimated quality, the semi-greedy policy

puts more emphasis on learning the quality of products that are less explored. Concretely, recall

from Theorems 4.1 and 4.2 that the worst-case regrets RK
G (η) and RK

SG(η) for the greedy and semi-

greedy policies are approximated by MK
G (η) and MK

SG(η), respectively, which satisfy, for any K ≥ 2

and u∈ (0, ū),

MK
SG(η)

MK
G (η)

=
ψ
(
−1,− ηB0

B0−u

)
ψ (−1,−η)

< 1, (4.21)

where the function ψ is the exponential integration function de�ned in (4.12). This ratio represents

the e�ciency of the semi-greedy policy relative to the greedy; in particular, as the ratio is close to

zero, the semi-greedy policy is considered more e�cient relative to the greedy. The ratio is equal

to one for u= 0 (in which case the greedy and semi-greedy policies are identical) and is decreasing

with u ∈ [0, ū]. In other words, the performance of the semi-greedy policy improves as the level of

exploration, u, increases in the worst-case con�guration. However, note that the preceding arguments

are made based on the worst-case analysis, and it may not be always bene�cial to increase the level

of exploration u in general con�gurations; see Section 5 for the e�ect of u on the performance of

the semi-greedy policy for general con�gurations.

Fig. 3 illustrates these observations when the (linear) search cost function is given as g(k) =

0.1k. The �gure depicts the worst-case regret of the semi-greedy policy as a function of K for

di�erent values of the parameter u ∈ {0,20,40,60,80}, where ū > 80 in all cases. As is anticipated

by Theorems 4.1 and 4.2, one can observe that under the semi-greedy policy, the worst-case regret

RK
SG is of order eK , or, equivalently, log(RK

SG) is approximately linear in K. Surprisingly, as a simple

modi�cation from the greedy, the semi-greedy policy can reduce the regret by orders of magnitude,

highlighting the bene�t of balancing between exploration and exploitation.
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Figure 3 The growth of the worst-case regret of the semi-greedy policy.
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Note. The worst-case regret RK
SG is plotted as a function of K in log-linear scale. In all cases, pk = 1 and Bk,0 = 100 for

all k= 1, . . . ,K, and the search cost function is g(k) = 0.1k. Note that the semi-greedy policy with u= 0 is identical

with the greedy.

5. Numerical Analysis

Whereas our theoretical analysis in Section 4 focuses on the worst-case regret of the proposed

policies, this section numerically investigates the regret in a wide spectrum of scenarios for the

platform's ranking problem.

Benchmark policy. In addition to the greedy and semi-greedy policies discussed in Section 4, we

consider the explore-then-exploit ranking policy, denoted by EtE, which consists of two stages: an

initial systematic exploration stage, where products are sequentially displayed in the top-position

until a su�cient number of reviews are accumulated for each product, and then a full exploit stage,

where the platform myopically chooses the ranking to maximize the immediate revenue rate. The

EtE ranking policy is parametrized by B̄, the minimum number of purchases for each product at

the end of the exploration stage, which is summarized as follows.

• (Exploration) The exploration stage consists of K phases indexed by i= 1, . . . ,K. For phase i,

products are displayed according to zEtE(t) := (zEtE1 (t), . . . , zEtEK (t)), where

zEtEk (t) =

{
k− i+K + 1 if k < i,

k− i+ 1 if k≥ i,
(5.1)

until Bi(t)≤ B̄. Whenever Bi(t) = B̄, the policy moves to the next phase i+ 1. Note that phase

i+ 1 can be skipped if Bi+1(t)> B̄ at the end of phase i.

• (Exploitation) After the exploration stage, products are displayed according to zG(t) by the greedy

policy.

Notice that after product i is displayed in the top position during phase i, it occupies the last

position in the (i+ 1)th phase, the second last in the (i+ 2)th phase, etc. The idea behind the EtE
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Table 1 Regret under linear search cost.

RΠ(QK)
K = 10 K = 50

G SG EtE G (·104) SG (·104) EtE (·104)

Min. 0.00 0.00 26.37 0.02 0.12 0.25
1% 0.03 7.49 54.90 0.31 0.15 0.33
25% 36.95 31.10 107.45 50.33 0.18 0.49
50% 98.07 55.09 150.45 390.60 0.22 0.62
75% 216.06 100.93 215.62 1969.81 0.33 0.86
99% 859.49 315.96 492.73 49576.21 2.56 3.80
Max. 1731.92 912.81 1343.02 394392.12 69.70 25.68

Average 158.42 77.06 173.95 3286.82 0.37 0.82
Std. dev. 182.22 67.87 93.20 12098.21 0.88 0.81

Notes. In all cases, we set g(k) = 0.5(k−1). The numbers are summary
statistics of the regret calculated in 105 random scenarios.

policy is to guarantee a su�ciently long exploration phase for each product by displaying it at the

top position, so that in the exploitation stage, the estimated quality of each product is not too far

from the true quality.

Experimental settings. In this numerical study, we �x pk = 1 and Bk,0 = 100 for all k and consider

randomly generated quality con�gurations. Speci�cally, the quality qk is generated from a uniform

distribution on [0,1]. Then, the prior belief q̂k,0 is generated from Beta(ak, bk), where ak and bk

are chosen such that E[q̂k,0] = qk and Var[q̂k,0] = 0.42. Note that Assumption 4.1(c) is relaxed in

our numerical study. We consider two types of search cost: the linear search cost g(x) = 0.5(x− 1)

and the logarithmic search cost g(x) = log(x). For each K ∈ {10,50}, we consider 105 randomly

generated quality con�gurations. For each con�guration QK , we calculate the regret RΠ(QK) for

each policy Π ∈ {G,SG,EtE}. The performance of the EtE and SG policies depend on the tuning

parameters B̄ and u, respectively. For fair comparison of these policies, for each K, we calculate the

regret for di�erent tuning parameters B̄ ∈ {20,40, . . . ,200} and u∈ {20,40, . . . ,100} and choose the

ones that give the smallest median regret among the 105 random con�gurations: in the case of linear

cost, we choose (B̄, u) = (20,60) for K = 10 and (B̄, u) = (180,80) for K = 50; and in the case of

logarithmic cost, we choose (B̄, u) = (20,60) for K = 10 and (B̄, u) = (20,20) for K = 50. These are

by no means optimal choices in general circumstances, but we have found that the key qualitative

conclusions do not depend on these choices.

Results and discussion. In the case of linear search cost, the estimated values of the regret are

summarized in Table 1. As anticipated by Theorems 4.1 and 4.2, the regrets under the greedy

and semi-greedy policies grow exponentially with K in scenarios that are near the worst case; in

particular, for the 99th percentile, the regret for K = 50 is more than 103 times greater than that

for K = 10 for both greedy and semi-greedy policies. Although both policies exhibit exponential

growth, the semi-greedy policy signi�cantly reduces the growth rate of the regret; in particular,

as K increases from 10 to 50, the regret under the greedy policy increases by a factor of 104 in
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Table 2 Regret under logarithmic search cost.

RΠ(QK)
K = 10 K = 50

G SG EtE G SG EtE

Min. 0.00 0.00 11.80 7.17 14.04 177.22
1% 0.00 1.65 25.16 31.12 38.15 213.47
25% 8.10 10.47 47.21 90.65 91.50 278.23
50% 21.62 18.40 58.64 136.10 131.56 312.98
75% 50.34 35.69 76.94 200.42 188.38 357.77
99% 171.12 105.09 148.49 444.45 400.88 517.67
Max. 255.67 166.83 223.19 711.72 637.03 677.04

Average 36.37 26.92 63.63 156.55 149.26 323.96
Std. dev. 40.12 23.82 27.27 90.62 79.82 64.88

Notes. In all cases, we set g(k) = log(x). The numbers are
summary statistics of the regret calculated in 105 random
scenarios.

the median case, whereas the regret under the semi-greedy policy increases only by a factor of 40.

For overall scenarios, the semi-greedy policy judiciously balances the trade-o� between exploration

and exploitation, and thus exhibits robust performance compared to the greedy. Note that the EtE

policy also exhibits robust performance across the wide spectrum of scenarios. However, since EtE

blindly puts all products into exploration, even some product whose quality is obviously low, its

performance is poor relative to the semi-greedy policy (except for some extreme cases).

In the case of logarithmic search cost, the estimated values of the regret are reported in Table 2.

Compared to the circumstances with linear search cost, low ranked products are only moderately

penalized, so that the performance of the greedy policy is not severely bad. Concretely, recall from

Corollary 4.2 that the regret grows only linearly with K under the greedy policy in the worst case.

In contrast to the case of linear search cost, where the regret increases by orders of magnitude as

K increases from 10 to 50, one can observe from Table 2 that the regret is comparable between the

cases with K = 10 and K = 50. Since the greedy policy is favorable in this market environment with

logarithmic search cost, the semi-greedy policy does not make a signi�cant improvement from the

greedy. The EtE policy, however, performs poorly in most scenarios; because of the (relatively) low

search cost, there is less need of forced exploration, making the EtE policy overly conservative.

Endnotes

1. Recall that, the probability density function gBeta of a beta with shape parameters a, b is given

by

gBeta(x) :=
Γ(a+ b)

Γ(a)Γ(b)
xa(1−x)b, x∈ [0,1], (5.2)

where Γ(z) is the gamma function.

2. Although our model focuses on the Bayesian updating based on the beta-Bernoulli pair, this

assumption has no bearing on our results. Our mathematical analysis can be easily extend to
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commonly used prior-posterior conjugate pairs such as normal-normal, beta-binomial, and gamma-

Poisson pairs.

3. We say that ΠT = {Πn : n= 1, . . . ,NT} is non-anticipating if Πn is only allowed to depend on

past information In.

4. The impact of partial information regarding the underlying demand function has been studied

in detail in the revenue management literature in the setting where the demand function is unknown

but constant over time; see, e.g., den Boer and Zwart (2014), Keskin and Zeevi (2014). In contrast, in

our problem setting, the demand function itself evolves over time in conjunction with the perceived

qualities of the o�ered products. Although the demand function is known at each time point, the

platform cannot anticipate how it evolves over time because of the lack of information about the

products' true quality.

5. The quantities
¯
wk and w̄k depend on K through the K − 1 (strictly positive) summands in∑

j 6=k exp(qj − pj) and
∑

j 6=k exp(q̂j,0− pj) respectively.

6. To guarantee that z∞ is unique, it su�ces to assume that when there are ties between products,

it is optimal for the platform to rank products, for instance, in alphabetic order, i.e., zk1 < zk2 i�

k1 <k2.

7. For instance, recalling (3.4), if ε is small enough, so that ε≤ |qk1 − qk2 | for all k1, k2 = 1, . . . ,K,

then this assumption holds when T ≥maxk τ
K
k (ε).

8. Our analysis easily extends to the case where the parameter u depends on the product index k,

but we suppress the dependence to simplify analysis and exposition.
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Appendix A: List of Symbols

The following table contains the symbols that have been used throughout the paper.

Bk,n Lk,n +Dk,n

Bk(t) amount of purchases of product k in the interval [0, t] (in the �uid approximation)
cn product that maximizes consumer n's expected utility
dk(q̂n,z) P(cn = k | q̂i,z), de�ned in (2.2)

d̃k(q̂n,Πn)
∑

z∈ZK πz,ndk(q̂n,z), de�ned in (2.5)

Dk,n

∑n−1

s=1 1{cs = k and xk,s =D}
Dk(t) amount of unfavorable reviews for product k in the interval [0, t] (in the �uid approx-

imation)
g search cost function
G greedy ranking policy
In {(Lk,n,Dk,n) : k= 1, . . . ,K}, whole information available to consumer n
I(t) information state at time t (in the �uid approximation)
k product index
K number of products

Lk,n
∑n−1

s=1 1{cs = k and xk,s =L}
Lk(t) amount of favorable reviews for product k in the interval [0, t] (in the �uid approxi-

mation)

MK
G (η)

(e1−p−e1−p−η)(eg(K)−1)
1+e1−p+e1−p−η

∑K
j=2 e−g(j)

ψ(−1,−η), de�ned in (4.13)

n consumer index
NT index of the last customer in a selling horizon of length T > 0
pk price of product k
qk quality of product k
q̂k,n estimated quality of product k evaluated by consumer n
q̂n (q̂1,n, . . . , q̂K,n)
q̂k(t) estimated quality of product k at time t (in the �uid approximation)
QK (q, q̂0)∈ [0,1]K × [0,1]K , quality con�guration with K products
QK

Π maximizer of (4.4)
QK set of all possible con�gurations QK

QK(η) de�ned in (4.9)

r∞
∑K

k=1 pkdk(q,z∞), de�ned in (4.2)
R∗T revenue achieved by the oracle platform
RΠ
T (Q) T -period revenue achieved by the ranking policy Π under Q

RΠ(Q) limT→∞ {R∗T (Q)−RΠ
T (Q)}, long-run regret, de�ned in (4.3)

RK
Π maxQ∈QK {RΠ(Q)}, de�ned in (4.4)

SK {(pk, qk, q̂k,0) : k= 1, . . . ,K}, market with K products
SG semi-greedy ranking policy
t time (continuous)
T horizon
u level of exploration
zk = j product k occupies the j-th highest position in the ranking

z∞ arg maxz∈ZK

{∑K

k=1 pkdk(q,z)
}
, de�ned in (4.2)

z (z1, . . . , zK)∈ZK
ZK set of all permutations of {1, . . . ,K}
zG(t) (zG1 (t), . . . , zGK(t)), the solution of maxz∈ZK

∑K

k=1 pk dk(q̂(t),z), in (4.6)
0 index of the outside option
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αk,n consumer n's preference for product k
δ positive constant such that, dk(q̂,z)≥ δ, de�ned in Assumption 2.1
∆(ZK) space of all probability distributions over ZK
Λ rate of the Poisson process
νk,n consumer n's experience after buying product k
πz,n P(σn = z)
Πn (πz1,n, πz2,n, . . . , πzK!,n)
ΠT {Πn : n= 1, . . . ,NT}, ranking policy
Π(t) randomized ranking at time t (in the �uid approximation)
Π(T ) {Π(t) : t∈ [0, T ]}, ranking policy (in the �uid approximation)

ΠG(t) arg max
Π∈∆(ZK)

EΠ

[∑K

k=1 pkd̃k(q̂(t),Π) | q̂(t)
]
, de�ned in (4.5)

ρ platform's share of every payment that takes place on its website
ρG(t) optimal pro�t
σk,n = j product k is displayed in position j to consumer n
σ(t) (σ1(t), . . . , σK(t)), position assignment observed at time t
σn (σ1,n, . . . , σK,n), position assignment observed by consumer n
τn random arrival time of consumer n
τKk (ε) inf{t > 0 : |q̂k(t)− qk| ≤ ε}, ε-time-to-learn for product k when the market contains

K products, de�ned in (3.4)
ψ(x1, x2)

∫ x2
x1

e−y/y2 dy, de�ned in (4.12)

Appendix B: Additional Theoretical Results

B.1. Worst-Case Analysis for the Time-to-Learn

In the absence of search cost, we characterize the con�guration under which consumers experience

the longest time to learn a product's quality. For �xed ε ∈ (0,1), this quality con�guration can be

identi�ed as the solution of

max
Q∈QK

{τKk (ε) s.t. |q̂k,0− qk| ≤ ε}, (B.1)

where QK represents the set of admissible quality con�gurations de�ned as

QK :=

{
(q, q̂0)

∣∣∣ 1≥ q1 ≥ q2 ≥ · · · ≥ qK ≥ 0
q̂0 ∈ [0,1]K

}
. (B.2)

Proposition B.1. Fix ε∈ (0,1) and assume that |qk− q̂k,0|> ε. Consider the �uid model approxi-

mation in (3.1). Then, ε-time-to-learn for product k is maximized under quality con�guration QK
k =

(q, q̂0) such that q= (1, . . . ,1) and q̂k,0 = 0 and q̂j,0 = 1 for j 6= k. In this con�guration, we have that

τKk (ε) =Bk,0

(
1− ε
ε

+ψ(−1,−ε)epk−1
(

1 +
∑

j 6=k
e1−pj

))
. (B.3)

Proof of Proposition B.1. Using Theorem 3.1, we know that the time-to-learn is maximized when

q̂j,0 = qj = 1 for j 6= k and |qk − q̂k,0| is maximal. Hence, we only have to check the quality con-

�gurations q̂k,0 = 0, qk = 1 and q̂k,0 = 1, qk = 0 to �nd the maximum time-to-learn. Call these two
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con�gurations A, and B, and let τK,Ak and τK,Bk be the ε-time-to-learn for A and B respectively; in

this proof, we �x ε and suppress it in function arguments for a clear exposition.

Consider con�guration A initially, and notice that, for all j ∈ {1, . . . ,K}, q̂j,0 = qj implies q̂j,0 =

q̂j(t) = qj for all 0≤ t≤ τK,Ak . Then, de�ning C−k := 1 +
∑

j 6=k exp(qj − pj) = 1 +
∑

j 6=k exp(1− pj),

we have

Bk(τ
K,A
k ) =Bk,0

1− ε
ε

=

∫ τ
K,A
k

0

Ḃk(t)dt=

∫ τ
K,A
k

0

exp(q̂k(t)− pk)
1 +

∑
j 6=k exp(qj − pj) + exp(q̂k(t)− pk)

dt

= τK,Ak −C−k
∫ τ

K,A
k

0

dt

1 +
∑K

j=1 exp(q̂j(t)− pj)
,

where the �rst equality follows from (3.3) and the fact that q̂k(τ
K,A
k ) = qk − ε = 1 − ε. Using

Lemma C.1 with g= 0, this leads to

τK,Ak =Bk,0
1− ε
ε

+C−kBk,0 exp(pk− 1)ψ(−ε,−1),

where ψ is de�ned as in (4.12). Using a similar logic, we can obtain

τK,Bk =Bk,0
1− ε
ε

+C−kBk,0 exp(pk)[−ψ(ε,1)].

Notice that the desired result follows if we prove τK,Bk − τK,Bk > 0, which is equivalent to show that

exp(−1)ψ(−ε,−1) +ψ(ε,1) =

∫ ε

1

exp(y− 1)− exp(−y)

y2
dy > 0.

To prove the above inequality, observe that there exist a constant c > 0 such that∫ ε

1

exp(y− 1)− exp(−y)

y2
dy≥ c

∫ ε

1

exp(y− 1)− exp(−y)dy

= c[1 + exp(−1)− exp(ε− 1)− exp(−ε)].

It is not di�cult to show that the last term in the above series of inequalities is positive for every

ε∈ (0,1), which proves τK,Bk − τK,Bk > 0 and concludes the proof. �

Proposition B.1 states that τKk (ε) is maximized for a quality con�guration under which product

k is the least attractive product (in terms of estimated quality) throughout its learning transient.

In this worst-case scenario, the value of the intrinsic quality of product k is the highest possible

(qk = 1), but consumers initially estimate its quality at the lowest possible level (q̂k,0 = 0). In other

words, the initial estimation bias qk − q̂k,0 for product k is maximal. At the same time, in this

worst-case scenario for product k, the estimated qualities of all the K − 1 competing products are

at the highest possible level for all 0≤ t≤ τKk (ε), which slows down the convergence of the learning

transient for product k (Theorem 3.1).
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Furthermore, when prices are all set equal to p, using the fact that ψ(−1,−ε)∼ 1/ε as ε→ 0, it

can be seen that

τKk (ε)∼ Bk,0(ep−1 +K)

ε
as ε→ 0. (B.4)

That is, for su�ciently small ε > 0, the worst-case τKk (ε) is roughly linear in the number of products

K, consistently with the intuition discussed in Section 3.

B.2. Worst-Case Regret with Di�erent Prices

Here we consider the more general setting where prices may be di�erent. In this case, recall from

(4.7) that the product ranking at any given time is determined by an index that depends both on

the quality and price of each product. As such, the (worst-case) regret of the greedy policy does not

admit a closed form. For the purpose of characterizing a lower bound of the worst-case regret, and

in light of Proposition 4.2, it is reasonable to consider a product con�guration where prior beliefs

are q̂k,0 = qk for all k 6= 1 and q̂1,0 = 0. The regret in this con�guration would serve as a lower bound

for the worst-case regret, which is characterized in the following theorem.

Theorem B.1. Consider the �uid model approximation in (3.1). Assume Bk,0 =B0 for each k =

1, . . . ,K. Consider the product con�guration QK ∈QK such that q̂k,0 = qk for all k 6= 1 and q̂1,0 = 0.

Let qK+1 := 0. Without loss of generality, assume zk,∞ = k for all k= 1, . . . ,K. Then, as K→∞,

RG(QK)∼
K∑
j=2

j∑
k=2

((p1− r∞)v1− (pk− r∞)vk)
(
eg(j)−g(k−1)− eg(j)−g(k)

)
ψ(qj+1− q1, qj − q1). (B.5)

Proof of Theorem B.1. Without loss of generality, we assume that 1 = q1 ≥ q2 ≥ · · · ≥ qK . De�ne

sj := inf{t≥ 0 : z1(t) = j− 1} for each j = 2, . . . ,K with sK+1 := 0; that is, sj is the �rst time when

the perceived quality of product 1 is the (j−1)-st highest. For the product con�guration QK de�ned

in the statement of the theorem, it is trivial to check that 0≡ sK+1 ≤ sK ≤ · · · ≤ s2. In the proof,

we consider a su�ciently large T ≥ s2. To simplify the exposition, we de�ne

φk :=

{
ψ(qk+1− q1, qk− q1) for k= 2, . . . ,K − 1;

ψ(−q1, qk− q1) for k=K.
(B.6)

The proof of the theorem will be done in three steps. In the �rst step, we characterize the revenue

under the greedy policy. In the second step, we characterize the revenue under the optimal policy.

Finally, we derive the expression for the regret and the revenue gap between the greedy and optimal

policies.

Step 1. We characterize the revenue under the greedy policy. Observe that

RG
T =

K∑
j=1

pj

∫ T

0

dj(q̂(t),z(t))dt= p1

∫ T

0

d1(q̂(t),z(t))dt︸ ︷︷ ︸
A1

+
K∑
j=2

pj

∫ T

0

dj(q̂(t),z(t))dt︸ ︷︷ ︸
Aj

.
(B.7)
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The �rst integral on the right-hand side of the preceding equation can be written as

A1 =

∫ s2

0

d1(q̂(t),z(t))dt+

∫ T

s2

d1(q̂(t),z(t))dt

=B0

q2− q̂1(0)

q1− q2

+

∫ T

s2

d1(q̂(t),z(t))dt,

(B.8)

where the second equality follows from the de�nition of s2, so that

q̂1(s2) = q2 = q1 + (q̂1(0)− q1)
B0

B1(s2) +B0

⇐⇒ B1(s2) =B0

q2− q̂1(0)

q1− q2

. (B.9)

Furthermore, the term Aj in (B.7) for j 6= 1 can be written as

Aj =

∫ sj

0

dj(q̂(t),z(t))dt︸ ︷︷ ︸
A′j

+

∫ s2

sj

dj(q̂(t),z(t))dt︸ ︷︷ ︸
A′′j

+

∫ T

s2

dj(q̂(t),z(t))dt︸ ︷︷ ︸
A′′′j

.
(B.10)

We now derive expression for the individual terms in (B.10). First, A′j can be written as

A′j = eqj−pj−g(j−1)

∫ sj

0

dt

1 +
∑K

k=1 eq̂k(t)−pk−zk(t)
= eqj−pj−g(j−1)

∫ sj

0

Ḃ1(t)e−q̂1(t)+p1+g(z1(t)) dt

= eqj−pj−g(j−1)

K∑
k=j

∫ sk

sk+1

Ḃ1(t)e−q̂1(t)+p1+g(k) dt=
vj
v1

B0

K∑
k=j

eg(k)−g(j−1)φk,

(B.11)

where the last equation follows from Lemma C.1 and the de�nition vj := eqj−pj . Using the similar

logical steps, the second integral A′′j in (B.10) can be written as

A′′j = eqj−pj−g(j)
∫ s2

sj

1

1 +
∑K

k=1 eq̂k(t)−pk−zk(t)
dt= eqj−pj−g(j)

∫ s2

sj

Ḃ1(t)e−q̂1(t)+p1+g(z1(t)) dt

= eqj−pj−g(j)
j−1∑
k=2

∫ sk

sk+1

Ḃ1(t)e−q̂1(t)+p1+g(k) dt=
vj
v1

B0

j−1∑
k=2

eg(k)−g(j)φk.

(B.12)

In the third integral A′′′j of (B.10), note that z(t) = z∞ for t≥ s2. Combining these observations,

we obtain

RG
T

B0

= p1

q2

q1− q2

+
K∑
j=2

pj
vj
v1

(∑K

k=j eg(k)−g(j−1)φk
+
∑j−1

k=2 eg(k)−g(j)φk

)
+

K∑
j=1

pj

∫ T

s2

dj(q̂(t),z∞)dt. (B.13)

To derive an expression for τ , observe that

B1(s2) =B0

q2

1− q2

=

∫ s2

0

eq̂1(t)−p1−g(z1(t)

1 +
∑K

k=1 eq̂k(t)−pk−g(zk(t))
dt

= s2−
∫ s2

0

1 +
∑K

j=2 eqj−pj−g(zj(t)

1 +
∑K

k=1 eq̂k(t)−pk−g(zk(t))
dt︸ ︷︷ ︸

?

.
(B.14)
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Observe that

?=
K∑
i=2

∫ si

si+1

1 +
∑K

j=2 eqj−pj−g(zj(t))

1 +
∑K

k=1 eq̂k(t)−pk−g(zk(t))
dt

=

∫ sK

sK+1

1 +
∑K

j=2 eqj−pj−g(j−1)

1 +
∑K

k=1 eq̂k(t)−pk−g(zk(t))
dt+

K−1∑
i=2

∫ si

si+1

1 +
∑K

j=i+1 eqj−pj−g(j) +
∑i

j=2 eqj−pj−g(j−1)

1 +
∑K

k=1 eq̂k(t)−pk−g(k−1)
dt.

(B.15)

The �rst integral in (B.15) can be written as∫ sK

sK+1

1 +
∑K

j=2 eqj−pj−g(j−1)

1 +
∑K

k=1 eq̂k(t)−pk−g(zk(t))
dt=

(
1 +

K∑
j=2

vje
g(K)−g(j−1)

)∫ sK

sK+1

ep1−q̂1(t)Ḃ1(t)dt

=
B0

v1

(
1 +

K∑
j=2

vje
g(K)−g(j−1)

)
φK ,

(B.16)

where the �rst equality follows from the de�nition vj = eqj−pj and the second follows from

Lemma C.1. Following the similar steps, the second integral in (B.15) can be written as

K−1∑
i=2

∫ si

si+1

1 +
∑K

j=i+1 eqj−pj−g(j) +
∑i

j=2 eqj−pj−g(j−1)

1 +
∑K

k=1 eq̂k(t)−pk−g(k−1)
dt

=
K−1∑
i=2

(
1 +

∑K

j=i+1 vje
g(i)−g(j)

+
∑i

j=2 vje
g(i)−g(j−1)

)∫ si

si+1

ep1−q̂1(t)Ḃ1(t)dt

=
B0

v1

K−1∑
i=2

(
1 +

∑K

j=i+1 vje
g(i)−g(j)

+
∑i

j=2 vje
g(i)−g(j−1)

)
φi.

(B.17)

Therefore, we deduce that

s2

B0

=
q2

q1− q2

+
1

v1

(
1 +

K∑
j=2

vje
g(K)−g(j−1)

)
φK

+
1

v1

K−1∑
i=2

(
1 +

∑K

j=i+1 vje
g(i)−g(j)

+
∑i

j=2 vje
g(i)−g(j−1)

)
φi.

(B.18)

Step 2. Consider the optimal policy such that z∗(t) = z∞ = (1,2, . . . ,K) for each t ≥ 0. De�ne

τ ∗ := inf{t : q̂∗1(t)≥ q2}. Using similar steps as Step 1, one can derive the expression for the revenue

under the optimal policy. Speci�cally, one can write

R∗T
B0

= p1

q2

q1− q2

+
K∑
k=2

K∑
j=2

pj
vj
v1

eg(1)−g(j)φk +
K∑
j=1

pj

∫ T

s∗2

dj(q̂
∗(t), z∞)dt. (B.19)

To derive the expression for s∗2, observe that

B∗1(s∗2) =B0

q2

q1− q2

=

∫ s∗2

0

eq̂
∗
1(t)−p1−g(1)

1 +
∑K

k=1 eq̂
∗
k

(t)−pk−g(k)
dt

= s∗2−
∫ s∗2

0

1 +
∑K

j=2 eqj−pj−g(j)

1 +
∑K

k=1 eq̂
∗
k

(t)−pk−g(k)
dt︸ ︷︷ ︸

?′

,
(B.20)



38

where

?′ =

(
1 +

K∑
j=2

vje
g(1)−g(j)

)∫ s∗2

0

exp(p1− q̂1(t))Ḃ1(t)dt

=
B0

v1

(
1 +

K∑
j=2

vje
g(1)−g(j)

)
K∑
k=2

φk,

(B.21)

and the last equality follows from Lemma C.1. Thus, we obtain

s∗2
B0

=
q2

q1− q2

+
1

v1

(
1 +

K∑
j=2

vje
g(1)−g(j)

)
K∑
k=2

φk. (B.22)

Step 3. We characterize the di�erence in revenue between the greedy and optimal policies, char-

acterized in (B.13) and (B.19), respectively. First, it is trivial to check that s∗2 ≤ s2 because z
∗
1(t) = 1

for all t under the optimal policy while z1(t)> 1 until t < s2 under the greedy policy. Also, observe

that dj(q̂(t),z∞) = dj(q̂
∗(t−s2 +s∗2),z∞) for all t≥ s2. That is, the revenue under the greedy policy

during [s2, s2 + s] is identical to the revenue under the optimal policy during [s∗2, s
∗
2 + s] for any

s≤ T − s2. Therefore, the di�erence between the last terms in (B.13) and (B.19) can be written as

K∑
j=1

pj

∫ T

s∗2

dj(q̂
∗(t),z∞)dt−

K∑
j=1

pj

∫ T

s2

dj(q̂(t),z∞)dt

=
K∑
j=1

pj

∫ T

T−s2+s∗2

dj(q̂
∗(t),z∞)dt

= r̃∞(s2− s∗2),

(B.23)

where r̃∞ ∼ r∞ as K→∞ and r∞ is de�ned in (4.2). (To see this, note from (B.18) that s2→∞ as

K→∞, which, by construction, means T ≥ s2 also grows large as K increases.) To bound s2− s∗2,

observe from (B.18) and (B.22) that

s2− s∗2
B0/v1

=

(
1 +

K∑
j=2

vje
g(K)−g(j−1)

)
φK +

K−1∑
i=2

(
1 +

∑K

j=i+1 vje
g(K)−g(j)

+
∑i

j=2 vje
g(K)−g(j−1)

)
φn

−

(
1 +

K∑
j=2

vje
g(1)−g(j)

)
K∑
k=2

φk.

(B.24)

Recall the de�nition RG = limT→∞{R∗T −RG
T}. Combining these into (B.13) and (B.19), we have, as

K→∞,

RG

B0/v1

∼
K∑
k=2

K∑
j=2

pjvje
g(1)−g(j)φk−

K∑
j=2

pjvj

(∑K

k=j eg(k)−g(j−1)φk
+
∑j−1

k=2 eg(k)−g(j)φk

)

+ r∞


(

eg(K) +
∑K

j=2 vje
g(K)−g(j−1))

)
φK

+
∑K−1

k=2

(
eg(k) +

∑K

j=k+1 vje
g(k)−g(j) +

∑k

j=2 vje
g(k)−g(j−1)

)
φk

−
(

eg(1) +
∑K

j=2 vje
g(1)−g(j)

)∑K

k=2 φk

 .

(B.25)
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By changing the order of summation, one can write

K∑
j=2

pjvj

(∑K

k=j eg(k)−g(j−1)φk
+
∑j−1

k=2 eg(k)−g(j)φn

)
=

K∑
k=2

k∑
j=2

pjvje
g(k)−g(j−1)φk +

K−1∑
k=2

K∑
j=k+1

pjvje
g(k)−g(j)φk. (B.26)

Plugging this into (B.25) and recalling that g(1) = 0, we deduce

RG

B0/v1

∼
K∑
k=2

K∑
j=2

pjvje
−g(j)φk−

K∑
k=2

k∑
j=2

pjvje
g(k)−g(j−1)φk−

K−1∑
k=2

K∑
j=k+1

pjvje
g(k)−g(j)φk

+ r∞


(

eg(K) +
∑K

j=2 vje
g(K)−g(j−1))

)
φK

+
∑K−1

k=2

(
eg(k) +

∑K

j=k+1 vje
g(k)−g(j) +

∑k

j=2 vje
g(k)−g(j−1)

)
φk

−
(

1 +
∑K

j=2 vje
−g(j)

)∑K

k=2 φk

 .

(B.27)

Rearranging terms, one can write

RG

B0/v1

∼
K∑
k=2

K∑
j=2

pjvje
−g(j)φk−

K∑
k=2

n∑
j=2

pjvje
g(k)−g(j−1)φk−

K−1∑
k=2

K∑
j=k+1

pjvje
g(k)−g(j)φk

+ r∞

K∑
k=2

eg(k)φk + r∞

K−1∑
k=2

K∑
j=k+1

vje
g(k)−g(j)φn + r∞

K∑
k=2

k∑
j=2

vje
g(k)−g(j−1)φk

− r∞
K∑
k=2

φk− r∞
K∑
k=2

K∑
j=2

vje
−g(j)φk.

(B.28)

Collecting terms using factors eg(k)−g(j) and eg(k)−g(j−1), as K→∞, the above can be reformulated

as

RG

B0/v1

∼ r∞
K∑
k=2

k∑
j=2

vje
g(k)−g(j−1)φk−

K∑
k=2

k∑
j=2

pjvje
g(k)−g(j−1)φk

+ r∞

K−1∑
k=2

K∑
j=k+1

vje
g(k)−g(j)φk−

K−1∑
k=2

K∑
j=k+1

pjvje
g(k)−g(j)φk

− r∞
K∑
k=2

K∑
j=2

vje
−g(j)φk +

K∑
k=2

K∑
j=2

pjvje
−g(j)φk + r∞

K∑
k=2

eg(k)φk− r∞
K∑
k=2

φk

=
K∑
k=2

k∑
j=2

(r∞− pj)vjeg(k)−g(j−1)φk +
K−1∑
k=2

K∑
j=k+1

(r∞− pj)vjeg(k)−g(j)φk

−
K∑
k=2

K∑
j=2

(r∞− pj)vje−g(j)φk + r∞

K∑
k=2

eg(k)φk− r∞
K∑
k=2

φk.

(B.29)
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Using the relation r∞ =
∑K

j=1(pj − r∞)vje
−g(j), the above reduces to

K∑
k=2

k∑
j=2

(r∞− pj)vjeg(k)−g(j−1)φk +
K−1∑
k=2

K∑
j=k+1

(r∞− pj)vjeg(k)−g(j)φk

−
K∑
k=2

K∑
j=2

(r∞− pj)vje−g(j)φk +
K∑
k=2

K∑
j=1

(r∞− pj)vje−g(j)φk

−
K∑
k=2

K∑
j=1

(r∞− pj)vjeg(k)−g(j)φk.

(B.30)

Rewriting the last two summations, we obtain

K∑
k=2

k∑
j=2

(r∞− pj)vjeg(k)−g(j−1)φk +
K−1∑
k=2

K∑
j=k+1

(r∞− pj)vjeg(k)−g(j)φk

−
K∑
k=2

K∑
j=2

(r∞− pj)vje−g(j)φk +
K∑
k=2

K∑
j=2

(r∞− pj)vje−g(j)φk +
K∑
k=2

(r∞− p1)v1φk

−
K−1∑
k=2

K∑
j=1

(r∞− pj)vjeg(k)−g(j)φk−
K∑
j=1

(r∞− pj)vjeg(K)−g(j)φK .

(B.31)

Likewise, decomposing the �rst summation, the preceding expression can be written as

K−1∑
k=2

k∑
j=2

(r∞− pj)vjeg(k)−g(j−1)φk +
K∑
j=2

(r∞− pj)vjeg(K)−g(j−1)φK

−
K∑
k=2

K∑
j=2

(r∞− pj)vje−g(j)φk +
K∑
k=2

K∑
j=1

(r∞− pj)vje−g(j)φk +
K∑
k=2

(r∞− p1)v1φk

−
K−1∑
k=2

k∑
j=1

(r∞− pj)vjeg(k)−g(j)φk−
K∑
j=1

(r∞− pj)vjeg(K)−g(j)φK .

(B.32)

Rearranging terms, the preceding expression further reduces to

K∑
k=2

k∑
j=2

(r∞− pj)vjeg(k)−g(j−1)φk−
K∑
k=2

k∑
j=2

(r∞− pj)vjeg(k)−g(j)φk

+
K∑
k=2

(r∞− p1)v1φk−
K−1∑
k=2

(r∞− p1)v1eg(k)−g(1)φk.

(B.33)

Thus, we establish that, as K→∞,

RG

B0/v1

∼
K∑
k=2

(r∞− p1)v1(1− eg(k))φk−
K∑
k=2

k∑
j=2

(r∞− pj)vj(eg(k)−g(j)− eg(k)−g(j−1))φk

=
K∑
k=2

k∑
j=2

((p1− r∞)v1− (pj − r∞)vj)
(
eg(k)−g(j−1)− eg(k)−g(j))φk, (B.34)

where the last equality follows from the fact that
∑k

j=2(eg(k)−g(j−1) − eg(k)−g(j)) = eg(k) − 1. This

completes the proof of the theorem. �
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An immediate corollary of Theorem B.1 is that the RG(QK) is proportional to eg(K). To see this,

observe that
K∑
j=2

j∑
k=2

((p1− r∞)v1− (pk− r∞)vk)
(
eg(j)−g(k−1)− eg(j)−g(k)

)
ψ(qj+1− 1, qj − 1)

≥ ((p1− r∞)v1− (p2− r∞)v2)
K∑
j=2

eg(j)ψ(qj+1− q1, qj − q1)

j∑
k=2

(
e−g(k−1)− e−g(k)

)
≥ ((p1− r∞)v1− (p2− r∞)v2)

K∑
j=2

ψ(qj+1− q1, qj − q1)
(
eg(j)−g(1)− 1

)
≥ ((p1− r∞)v1− (p2− r∞)v2)ψ(−q1, q2− q1)

(
eg(K)−g(1)− 1

)
(B.35)

where the �rst inequality follows from the fact that (p1− r∞)v1 ≥ (p2− r∞)v2 ≥ · · · ≥ (pK − r∞)vK

from the characterization of z∞ in (4.7). Since RG(QK) serves as a lower bound for the worst-

case regret, we deduce that the worst-case regret RK
G is at least of order eg(K). Note that these

observations are consistent with Theorem 4.1 in the case with equal prices.

Appendix C: Proofs for the Main Theoretical Results

In the proofs, we de�ne vk := eqk−pk for each k= 1, . . . ,K to simplify notation.

C.1. Proofs for Section 3

Proof of Theorem 3.1. In the proof, we �x ε > 0 and omit in function arguments to improve

clarity of exposition. Recall from (3.3) that q̂k(t) = qk− (qk− q̂k,0)Bk,0/(Bk,0 +Bk(t)). By Assump-

tion 2.1, we have that Bk(t)→∞ as t→∞, and therefore, it follows that q̂k(t)→ qk for each k as

t→∞. We will next prove that τKk is strictly decreasing in q̂k,0 for q̂k,0 < qk. To this end, consider

the following control problem:

max
u(t)∈[

¯
q0,q̄0]

q̂k(T )

subject to Ḃj(t) = dj(Q̂(B(t))) for each j = 1, . . . ,K

Q̂k(Bk(t)) = qk− (qk−u(t))
Bk,0

Bk,0 +Bk(t)
,

(C.1)

where
¯
q0 and q̄0 are arbitrary constants such that

¯
q0 < q̄0 < qk. The desired result would follow

if we show that the static policy u∗(t) = q̄0, t ∈ [0, T ], is optimal for an arbitrary T > 0. Notice

that a solution to (C.1) exists because the objective function, being independent of u, is trivially a

concave function of the control variables, and because the control space [q
0
, q0] is a compact set. This

shows that the conditions of Theorem 1 in Cesari (1966) are satis�ed, and that a solution to (C.1)

exists. To characterize the solution of (C.1), de�ne the Hamiltonian function H(B(t),µ(t), u(t)) :=∑K

k=1 µk(t)dk(Q̂(B(t))), where the costate vector µ(t) satis�es the transversality condition; that is,

µj(T ) = 0 for j 6= k and

µk(T ) = Q̇k(B
∗
k(T )) = (qk−u∗(T ))

Bk,0
(Bk,0 +B∗k(T ))2

. (C.2)
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Note that the Hamiltonian is constant over time under the optimal solution, so we de�ne a constant

h :=H(B∗(t),µ(t), u∗(t)), t∈ [0, T ]. This implies that for t= T , h= µk(T )dk(Q̂(B∗(T ))) such that

µk(T ) − h = h

dk(Q̂(B∗(T )))
− h > 0. Furthermore, according to the Pontrygin Maximum Principle

(PMP), the costate variable must satisfy, for each j = 1, . . . ,K,

µ̇j(t) =− ∂

∂Bj
H(B∗(t),µ(t), u∗(t))

=− ˙̂
Q(B∗j (t))(µj(t)−h).

(C.3)

Note that µj(t) cannot cross h; speci�cally, when µj(t) = h for some t, then µ̇j(t) = 0 and hence

the costate variable is �xed to h till the end of the horizon, violating the transversaility condition.

Recalling the fact that µk(T )− h > 0, we have that µk(t)− h > 0 for all t ∈ [0, T ]. Moreover, from

PMP, the optimal solution must satisfy that u∗(t) = arg maxv∈[
¯
q,q̄]{H(B∗(t),µ∗(t), v)}. From the

fact that µk(t)−h> 0 for t∈ [0, T ], we deduce

∂

∂v
H(B(t),µ(t), v)

∣∣∣
v=u(t)

=
Bk,0

Bk,0 +Bk(t)
dk(Q̂(B(t)))(µk(t)−h)> 0. (C.4)

This implies that u∗(t) = q̄0 for each t ∈ [0, T ] and the desired result follows. To show that τKk is

strictly increasing in q̂k,0 for q̂k,0 > qk, one may consider the minimization (instead of maximization)

in (C.1). Moreover, the above proof strategy can be easily adapted to prove the strict monotonicity

of τKk with respect to qk (considering the cases qk ≥ q̂k,0 and qk < q̂k,0 separately), pk, Bk,0, qj, q̂j,0,

pj, and Bj,0 for j 6= k. We thus omit the details of these proofs for the sake of space.

It remains to prove that τKk is strictly increasing in K. To this end, consider two nested markets

SK and SK+1 and let τKk and τK+1
k be respectively the time-to-learn for product k in SK and SK+1

respectively. Now, notice that SK is equivalent to a (K + 1)-dimensional market S̃K+1 where the

price p̃K+1 of the (K+ 1)-th product is set equal to +∞. Suppose now that k≤K and let τ̃K+1
k be

the time-to-learn for product k≤K in S̃K+1; notice that τ
K
k = τ̃K+1

k . The desired result then follows

because, as we proved in the �rst part of the proof, τ̃k is strictly decreasing in pK+1 and we clearly

have τKk = τ̃K+1
k ≤ τK+1

k . This proves that the time-to-learn for product k is strictly decreasing in

K, and concludes the proof of Theorem 3.1. �

The following lemma will be useful for the proofs of our main theoretical results. For the proofs

for Section 3, one may apply the following lemma with zero search cost; that is, g(z) := 0 for all

z ≥ 1.

Lemma C.1. Let q̂(t) = (q̂1(t), . . . , q̂K(t)) be the vector of quality estimates in the �uid approxima-

tion in (3.3). Then, for any vector z = (z1, . . . , zK), 0≤ t1 ≤ t2, and any k= 1, . . . ,K, we have∫ t2

t1

dt

1 +
∑K

j=1 eq̂j(t)−pj−g(zj)
=Bk,0(qk− q̂k,0)epk+g(zk)−qkψ(q̂k(t1)− qk, q̂k(t2)− qk), (C.5)

where the function ψ(·) has been de�ned in (4.12).



Maglaras, Scarsini, Shin, and Vaccari: Social Learning from Online Reviews with Product Choice

43

Proof of Lemma C.1. Using the de�nition of the demand function in (3.3), we obtain∫ t2

t1

dt

1 +
∑K

j=1 eq̂j(t)−pj−g(zj)
= epk+g(zk)

∫ t2

t1

e−q̂k(t)Ḃk(t)dt. (C.6)

The above equality holds for all k= 1, . . . ,K. Fix any k and notice that we can write

epk+g(zk)

∫ t2

t1

e−q̂k(t)Ḃk(t)dt= epk+g(zk)

∫ t2

t1

e
qk−(qk−q̂k,0)

Bk,0
Bk,0+Bk(t) Ḃk(t)dt

= epk+g(zk)

∫ Bk(t2)

Bk(t1)

e
qk−(qk−q̂k,0)

Bk,0
Bk,0+x dx

=Bk,0(qk− q̂k,0)epk+g(zk)−qk

∫ q̂k(t2)−qk

q̂k(t1)−qk

e−y

y2
dy, (C.7)

where we used the substitution y= (qk− q̂k,0)Bk,0/(Bk,0 +x) in the second equation. This completes

the proof of the lemma. �

C.2. Proofs for Section 4

C.2.1. Proofs for Section 4.2.

Proof of Proposition 4.1. First, we reformulate the platform's optimal control problem, rewriting

it in terms of the vector of purchases B(t). De�ne Q̂(B(t)) := (Q̂1(B(t)), . . . , Q̂K(B(t)), where

Q̂k(B(t)) := qk− (qk− q̂k,0)
Bk,0

Bk,0 +Bk(t)
. (C.8)

Then, we can see that solving (4.1) is equivalent to solving the following optimal control problem

maximize
{Π(t)}

K∑
k=1

pk
∑

z∈ZK

∫ T

0

πz(t)dk(Q̂(B(t)),z)dt

subject to Ḃk(t) =
∑

z∈ZK
πz(t)dk(Q̂(B(t)),z), k= 1, . . . ,K∑

z∈ZK
πz(t) = 1, t∈ [0, T ].

(C.9)

Note that the quality estimate vector q̂(t) no longer appears in the above formulation of the plat-

form's optimal control problem.

Having said that, we now prove that an optimal solution to (C.9) exists. Observe that the reachable

set at any time t is bounded as Bk(t) =
∫ t

0
Ḃk(s)ds < t for all k, and that the set of admissible

velocities

V (t,B) =
{

(Ḃ1(t), Ḃ2(t), . . . , ḂK(t)) : 0≤ πk(t)≤ 1, ∀k ∈PK ,
∑

z∈ZK
πz(t) = 1

}
,

is convex. The set V (t,B) can indeed be seen as the set of all convex combinations of the vectors
d1(Q̂1(B(t),z1)

d2(Q̂2(B(t),z1)
...

dK(Q̂K(B(t),z1)

 ,


d1(Q̂1(B(t),z2)

d2(Q̂2(B(t),z2)
...

dK(Q̂K(B(t),z2)

 , . . .


d1(Q̂1(B(t),zK!)

d2(Q̂2(B(t),zK!)
...

dK(Q̂K(B(t),zK!)

 .
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Moreover, notice that Ḃk(t) ≤ 1 + |B(t)| holds trivially as Ḃk(t) =
∑

z∈ZK
πz(t)dk(B(t),z) is a

probability. In particular, this implies that the hypotheses of Theorem 5.1.1 of Bressan and Piccoli

(2007) are satis�ed, and that there exist an optimal solution for (C.9).

Now we proceed with the characterization of the optimal solution of (C.9). To do that, we de�ne

the vector of costate variables µ(t) := (µ1(t), µ2(t), . . . , µK(t)), which satis�es the transversality

condition µk(T ) = 0 for all k ∈PK . The Hamiltonian function is de�ned as follows

H(Π(t),B(t),µ(t)) :=
∑

z∈ZK
πz(t)

K∑
k=1

(pk +µk(t))dk(Q̂(B(t)),z).

An optimal solution is denoted by (B∗(t),Π∗(t),µ∗(t)). By the Pontryagin Maximum Principle

(PMP), we know that any optimal solution satis�es the �rst order conditions

Π∗(t) = arg max{Π∈∆(ZK)}H(Π,B∗(t),µ∗(t)) (C.10)

µ̇∗k(t) =− ∂

∂Bk
H(Π∗(t),B∗(t),µ∗(t)) (C.11)

Ḃ∗k(t) =
∂

∂µk
H(Π∗(t),B∗(t),µ∗(t)) (C.12)

for all k= 1, . . . ,K. Moreover, the PMP guarantees that the Hamiltonian function, when evaluated

in any optimal solution (B∗(t),Π∗(t),µ∗(t)), is constant over time, i.e., there exists h ∈ R such

that H(Π∗(t),B∗(t),µ∗(t)) = h for all 0 ≤ t ≤ T . In the remainder of the section, for notational

convenience, we omit the dependence from t. We now analyze the conditions (C.10), (C.11), and

(C.12) separately.

Condition (C.10). We can use the result of Lemma C.2 to �nd that, for all t∈ [0, T ], we have

arg max{Π∈∆(ZK)}H(Π,B∗,µ∗) = arg maxz∈ZK

K∑
k=1

(pk +µk)dk(Q̂(B),z).

Let

Z̄ = arg maxz∈ZK

K∑
k=1

(pk +µk)dk(Q̂(B),z).

Then, it is easy to see that any probability distribution such that

Π∗ =

{
πz ≥ 0 if z ∈ Z̄,

0 if z 6∈ Z̄,
(C.13)

where
∑

z∈Z̄ πz = 1, is a candidate solution of (C.10). Moreover, by the the transversality condition,

evaluating the Hamiltonian in t= T yields

h=max{Π}
∑

z∈ZK
πz

K∑
k=1

pkdk(q̂(T ),z) = maxz∈Zk

K∑
k=1

pkdk(q̂(T ),z)

=
K∑
k=1

pkdk(q̂(T ),z∞).

(C.14)
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Since the Hamiltonian is constant over the optimal path, from (C.14) we can conclude that

K∑
k=1

(pk +µk)dk(Q̂(B),z′) =maxz∈ZK

K∑
k=1

(pk +µk)dk(Q̂(B),z)

=
K∑
k=1

pkdk(q̂(T ),z∞)) = h, (C.15)

for any z′ ∈ Z̄.

Condition (C.11). For j 6= k we have

∂

∂Bj
dk(Q̂(B),z) =−dk(Q̂(B),z)dj(Q̂(B),z)

∂

∂Bj
Q̂j(Bj),

∂

∂Bj
dj(Q̂(B),z) = dj(Q̂(B),z)(1− dj(Q̂(B),z))

∂

∂Bj
Q̂j(Bj).

Then

∂

∂Bj
H(Π,B,µ) =

∑
z∈ZK

πz

K∑
k=1

(pk +µk)
∂

∂Bj
dk(Q̂(B),z)

=

{∑
z∈ZK

πz

[
(pj +µj)−

K∑
k=1

(pk +µk)dk(Q̂(B),z)
]}
dj(Q̂(B),z)

∂

∂Bj
Q̂j(Bj). (C.16)

Plugging (C.13) and (C.15) into the above relation, we can see that, when evaluated over the optimal

path, (C.11) can be reformulated as follows

µ̇∗j =− ∂

∂Bj
H(Π∗,B∗,µ∗) =−(pj +µ∗j −h)Ḃ∗j

∂

∂Bj
Q̂j(B

∗
j ) =−(pj +µ∗j −h)

˙̂
Qj(B

∗
j ),

which, rewritten as −µ̇∗j/(pj−h+µ∗j ) =
˙̂
Qj(B

∗
j ), can be integrated over [0, T ] on both sides to obtain

pj +µ∗j (t) = h+ (pj −h) exp
[
Q̂j(B

∗
j (T ))− Q̂j(B

∗
j (t))

]
,

where we restored the explicit dependence on time. The instantaneous optimal ranking z̄(t) for

t∈ [0, T ] then satis�es

z̄(t) = arg max
z∈ZK

K∑
k=1

{
h+ (pk−h) exp

[
Q̂k(B

∗
k(T ))− Q̂k(B

∗
k(t))

]}
dk(Q̂(B∗(t)),z). (C.17)

The above combinatorial optimization problem can be seen as a MNLPP where the pro�t for product

k at time t is ρk(t) = h+ (pk−h) exp
[
Q̂k(B

∗
k(T ))− Q̂k(B

∗
k(t))

]
. Using Theorem 1 in Abeliuk et al.

(2016), we can show that the optimal any position assignment z∗ and the corresponding optimal

pro�t ρ∗ must satisfy the following condition for all t∈ [0, T ]:

z∗k1(t)< z∗k2(t) ⇐⇒ (ρk1(t)− ρ∗) exp(Qk1(B∗k1(t)))> (ρk2(t)− ρ∗) exp(Qk2(B∗k2(t))). (C.18)
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Notice that the optimal pro�t ρ∗ for (C.17) is given by the value of the Hamiltonian function, which

is constant when evaluated over the optimal solution, i.e.,

ρ∗ = max
z∈ZK

K∑
k=1

{
h+ (pk−h) exp

[
Q̂k(B

∗
k(T ))− Q̂k(B

∗
k(t))

]}
dk(Q̂(B∗(t)),z) = h,

Hence, condition (C.18) translates into

z̄k1(t)< z̄k2(t) ⇐⇒ (pk1 −h) exp
[
Q̂k1(B∗k1(T ))− pk1

]
> (pk2 −h) exp

[
Q̂k2(B∗k2(T ))− pk2

]
,

Notice that the above condition implies that z̄(t) = z∞ and that the r.h.s. does not depend on t.

This implies that the above condition holds for all t∈ [0, T ], which implies that the solution to the

optimal control problem is static throughout the selling horizon and assigns maximum probability

to the asymptotically optimal ranking z∞. �

C.2.2. Proofs for Section 4.3. For the proofs in Section 4.3, we use the asymptotics with

respect to the number of product K. Hence, most variables depend on K, but we suppress the

dependence to improve clarity.

The following lemma will be used for the proofs in this section.

Lemma C.2. Consider the �uid model approximation in (3.1), and de�ne ΠG as in (4.5). Then,

(4.6) holds true for all t≥ 0.

Proof of Lemma C.2. Recall that πz(t) := P(σ(t) = z). Then,

EΠ(t)

[
K∑
k=1

pkd̃k(q̂(t),Π(t))

]
=
∑

z∈ZK
πz(t)

K∑
k=1

pkdk(q̂(t),z).

Suppose that there exists z̄ ∈ZK such that
∑K

k=1 pkdk(q̂(t),z)≤
∑K

k=1 pkdk(q̂(t), z̄) for all z ∈ZK .

Then, since
∑

z∈ZK
πz(t) = 1 for all t, we have

∑
z∈ZK

πz(t)
K∑
k=1

pkdk(q̂(t),z)≤
K∑
k=1

pkdk(q̂(t), z̄)
∑

z∈ZK
πz(t) =

K∑
k=1

pkdk(q̂(t), z̄),

which gives the desired result and concludes the proof. �

Lemma C.3. Suppose that Assumption 4.1 holds. Fix a quality con�guration QK ∈QK and consider

k 6= 1. Then, under the greedy policy, there exists s > 0 such that (i) q̂1(s) = q̂k(s), (ii) q̂1(t)< q̂k(t)

for all t < s, and (iii) q̂1(t)> q̂k(t) for all t > s.

Proof of Lemma C.3. By Assumption 4.1, we have that q̂1(0)< qk < q1. If qk < q̂k(0), then the

desired result immediately follows from the fact that q̂k(t) and q̂1(t) are monotonically decreasing

and increasing, respectively. Therefore, it su�ces to consider qk > q̂k(0). We consider two cases: (i)

q̂k(0)> q̂1(0) and (ii) q̂k(0)≤ q̂1(0).
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In case (i), toward a contradiction, suppose that there exist multiple crossing points. This implies

that there exist s1 < s2 < s3 such that q̂1(s) = q̂k(s) for s= s1, s2, s3. By construction, it follows that

q̂k(t)> q̂1(t) if and only if t∈ [0, s1)∪(s2, s3). By continuity of the paths, we have that ˙̂qk(s1)< ˙̂q1(s1)

and ˙̂qk(s2)> ˙̂q1(s2). Let q̄1 := q̂k(s1) = q̂1(s1) and q̄2 := q̂k(s2) = q̂1(sk).

From (3.3), it can be seen that ˙̂qj(t) =
Ḃj(t)(qj−q̂j(t))2

B0(qj−q̂j(0))
for any j = 1, . . . ,K. Also note that for t < s1,

Ḃk(t) > Ḃ1(t) because Ḃj(t) = dj(q̂(t),z(t)) for any j = 1, . . . ,K, where dj(·) is de�ned in (2.3)

and q̂1(t)< q̂k(t) and g(z1(t))> g(zk(t)) under the greedy policy. By the continuity of the path, we

deduce that Ḃk(s1)≥ Ḃ1(s1). Combining these observations, we establish

˙̂q1(t)> ˙̂qk(t) =⇒ (q1− q̄1)2

(qk− q̄1)2
>
q1− q̂1(0)

qk− q̂k(0)
. (C.19)

Likewise, it can be seen that, for t ∈ (s1, s2), Ḃk(t) < Ḃ1(t), because q̂1(t) > q̂k(t) and g(z1(t)) <

g(zk(t)) under the greedy policy. By continuity, we have Ḃk(s2)≤ Ḃ1(s2). Combining these obser-

vations, we deduce that

˙̂q1(t)< ˙̂qk(t) =⇒ (q1− q̄2)2

(qk− q̄2)2
<
q1− q̂1(0)

qk− q̂k(0)
. (C.20)

However, f(x) = (q1−x)/(qk−x) is increasing with x∈ [0, qk]. Therefore, (C.19) and (C.20) lead to

a contradiction from the fact that q̄1 < q̄2.

In case (ii), multiple crossing implies that there exists at least two switching points, s1 < s2,

such that q̂k(t)> q̂1(t) if and only if t ∈ (s1, s2). First, suppose that q1 − q̂1(0)< qk − q̂k(0). Recall

that ˙̂qj(t) =
Ḃj(t)(qj−q̂j(t))2

B0(qj−q̂j(0))
for any j = 1, . . . ,K. Under the greedy policy, Ḃ1(t) > Ḃk(t) for t < s1

because Ḃj(t) = dj(q̂(t),z(t)) and q̂1(t)> q̂k(t) and g(z1(t))< g(zk(t)). Combined with the fact that

q1− q̂1(s1) = q1− q̄1 > qk− q̄1 = qk− q̂k(s1), we have ˙̂q1(t)≥ ˙̂qk(t) for t su�ciently close to, but smaller

than s1. This leads to a contradiction because near the crossing point s1, q̂k(t) must be increasing

faster than q̂1(t).

Now, suppose that q1− q̂1(0)≥ qk− q̂k(0). Observe that

˙̂q1(s1)≤ ˙̂qk(s1)⇐⇒ Ḃ1(s1)(q1− q̄1)2

q1− q̂1(0)
≤ Ḃk(s1)(qk− q̄1)2

qk− q̂k(0)

=⇒ (q1− q̄1)2

(qk− q̄1)2
≤ q1− q̂1(0)

qk− q̄k(0)
,

(C.21)

where the second line follows from the fact that Ḃ1(s1)≥ Ḃk(s1). However, observe also that

(q1− q̄1)2

(qk− q̄1)2
>
q1− q̄1

qk− q̄1

>
q1− q̂1(0)

qk− q̂1(0)
>
q1− q̂1(0)

qk− q̂k(0)
, (C.22)

where the �rst inequality follows from the fact that (q1− q̄1)/(qk− q̄1)> 1, the second follows from

the fact that f(x) = (q1 − x)/(qk − x) is increasing with x ∈ [0, qk], and the third follows from

the construction that q̂1(0) > q̂k(0). Comparing (C.21) and (C.2.2) leads to a contradiction. This

completes the proof of the lemma. �
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For j ≥ 2, de�ne sj := inf{t≥ 0 : q̂1(t)≥ q̂j(t)}. If q̂1,0 < q̂j,0, then there exists a unique crossing

between q̂1(t) and q̂j(t) by Lemma C.3 and sj ∈ (0,∞). If q̂1,0 ≥ q̂j,0, then we have sj = 0.

Lemma C.4. Suppose that Assumption 4.1 holds and �x j ≥ 2 such that q̂1,0 < q̂j,0. Then, under the

greedy policy, for each j ≥ 2, q̂1(sj)→ qj as K→∞.

Proof of Lemma C.4. In this proof, some variables depend on the quality con�guration QK

but we suppress the dependence in function arguments for clarity of exposition. Without loss of

generality we assume that s2 ≥ s3 ≥ · · · ≥ sK ; the proof can be easily extended to general cases by

re-indexing products. In what follows, we consider two cases: (i) q̂j(0)> qj and (ii) q̂j(0)< qj. (If

q̂j(0) = qj, then the proof would be trivial since q̂j(t) = qj for all t≥ 0 such that q̂1(sj) = qj.)

Case (i). Suppose that q̂j(0)> qj. Towards a contradiction, assume that the lim infK→∞ q̂j(sj)≥

qj + ε for some ε > 0. From (3.3), it follows that as K→∞,

limsup
K→∞

Bj(sj) =B0

q̂j(0)− qj
ε

. (C.23)

Since q̂j(t)∈ [0,1] for all j, observe further that

Bj(sj) =

∫ sj

0

eq̂j(t)−p−g(zj(t))

1 +
∑K

l=1 eq̂l(t)−p−g(zl(t))
dt

= sj −
∫ sj

0

1

1 +
∑K

l=1 eq̂l(t)−p−g(zl(t))

(
1 +

∑
i<j eq̂i(t)−p−g(zi(t))+∑
i>j eq̂i(t)−p−g(zi(t))

)
dt

≤ sj −
∫ sj

0

1

1 +
∑K

l=1 eq̂l(t)−p−g(zl(t))

(
1 +

∑
i<j e−p−g(zi(t))+∑
i>j e−p−g(zi(t))

)
dt

= sj −
K∑
k=j

∫ sk

sk+1

1

1 +
∑K

l=1 eq̂l(t)−p−g(zl(t))

(
1 +

∑
i<k e−p−g(i−1)+∑
i>k e−p−g(i)

)
dt

= sj −
B0(q1− q̂1,0)

v1

K∑
k=j

ψ(q̂1(sk+1)− q1, q̂1(sk)− q1)

(
1 +

∑
i<k eg(k)−g(i−1)+∑
i>k eg(k)−g(i)

)
,

(C.24)

where the inequality follows by replacing q̂i(t) ∈ [0,1] with zero in the numerator of the integrand.

We deduce that

sj
B0

≥Bj(sj) +
q1− q̂1,0

v1

K∑
k=j

ψ(q̂1(sk+1)− q1, q̂1(sk)− q1)

(
1 +

∑
i<k eg(k)−g(i−1)+∑
i>k eg(k)−g(i)

)
.

Note that the last term in the preceding equation can be bounded as

(
1 +

∑
i<k eg(k)−g(i−1)+∑
i>k eg(k)−g(i)

)
≥

k−1∑
i=2

eg(k)−g(i) ≥ eg(k)− 1, (C.25)
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where the �rst inequality follows from the fact that g(i)> g(i− 1) and by dropping positive terms.

To �nd a lower bound of sj in a more tractable form, observe that

K∑
k=j

ψ(q̂1(sk+1)− q1, q̂1(sk)− q1)

(
1 +

∑
i<k eg(k)−g(i−1)+∑
i>k eg(k)−g(i)

)

≥
K∑
k=j

ψ(q̂1(sk+1)− q1, q̂1(sk)− q1)(eg(k)− 1)

≥ e−q̂1,0−q1

(q̂1,0− q1)2

K∑
k=j

(q̂1(sk)− q̂1(sk+1))(eg(k)− 1),

(C.26)

where the last inequality follows from ψ(x1, x2) =
∫ x2
x1

e−y/y2dy ≥ e−x2
∫ x2
x1

1/y2dy for x1 < x2 < 0.

Furthermore, there exists a constant c such that q̂1(sk)− q̂1(sk+1)≥ c/K for all k ≤K; otherwise,∑K

k=j(q̂1(sk) − q̂1(sk+1)) = q̂1(sj) − q̂1(0)→ 0 as K →∞, but this would lead to a contradiction

to the fact that q̂1(sj) − q̂1(0) > qj − q̂1(0) > 0 by Assumption 4.1(c). Let G1(n) :=
∑n

k=1 e−g(k)

and G2(n) :=
∑n

k=1 eg(k). The preceding observations imply that sj = Ω(G2(K)/K) as K →∞.

Furthermore, since zj(t)≤ j for t≤ sj and q̂j(t) ∈ [0,1], it can be seen that there exists a constant

c′ > 0 that is independent of K such that

d̃j(q̂(t),z) =
eq̂j(t)−p−g(zj(t))

1 +
∑K

l=1 eq̂l(t)−p−g(zl(t))
≥ c′

1 + e1−pG1(K)
, (C.27)

from which we deduce that d̃j(q̂(t),z) = Ω(1/G1(K)) as K→∞ for any z, and therefore, we have

Bj(sj) =

∫ sj

0

d̃j(q̂(t),z(t))dt≥Ω

(
G2(K)

KG1(K)

)
→∞ as K→∞, (C.28)

where the inequality follows from (C.27) and the fact that sj = Ω(G2(K)/K) as K →∞ and the

limit follows from the de�nitions of G1(·) and G2(·). This leads to a contradiction to the assumption

that limsupK→∞Bj(sj)≤B0(q̂j(0)− qj)/ε <∞ for some ε > 0.

Case (ii). Now suppose that q̂j(0)< qj. Note that if q̂j(0)≤ q̂1(0), then q̂j(t)≤ q̂1(t) for all t such

that there is no crossing point between q̂1(t) and q̂j(t). Hence, it su�ces to consider q̂j(0)∈ (q̂1(0), qj).

Note that, without loss of generality, we may assume that q̂j(0)≥ q̂1(0) + δ for an arbitrarily small

δ > 0 for each con�guration QK , K ≥ 2. (If this is violated for some K, then we may consider a

subsequence K1 <K2 < · · · for which the condition q̂j(0)≥ q̂1(0) + δ holds for all Km, m∈N.) The

rest of the proof follows from the same logical steps as Case (i). To avoid repetitions, we only remark

that in (C.26), there exists a constant c′′ > 0 such that q̂1(sk) − q̂1(sk+1) ≥ c′′/K for all k ≤ K;

otherwise,
∑K

k=j q̂1(sk)− q̂1(sk+1) = q̂1(sj)− q̂1(0)→ 0 as K →∞, which violates the assumption

that q̂1(sj)≥ q̂j(0)≥ q̂1(0) + δ. This implies that sj = Ω(G2(K)/K) as K→∞. Using (C.27) and

(C.28) once again, we derive a contradiction to the assumption that Bj(sj) <∞. This concludes

the proof of the lemma. �
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Proof of Proposition 4.2. For simple exposition, we �x QK ∈QK(η) and suppress the argument

η. For the greedy policy, the revenue over time horizon [0, T ] can be characterized as

RG
T

p
=

∫ T

0

K∑
j=1

dj(q̂(t),z(t))dt= T −
∫ T

0

1−
K∑
j=1

dj(q̂(t),z(t))dt

= T −

(∑K

j=2

∫ sj
sj+1

Ḃ1(t)e−q̂1(t)+p+g(j) dt

+
∫ T
s2
Ḃ1(t)e−q̂1(t)+p+g(1) dt

)

= T − B0

v1

(q1− q̂1,0)

(∑K

j=2 eg(j)ψ(q̂1(sj+1)− q1, q̂1(sj)− q1)

+eg(1)ψ(q̂1(s2)− q1, q̂1(T )− q1)

)
.

(C.29)

For the optimal policy, using the similar logical steps, one can show that

R∗T
p

= T − B0

v1

(q1− q̂1,0)
(
eg(1)ψ(q̂1,0− q1, q̂

∗
1(T )− q1)

)
. (C.30)

Combining these expressions, we deduce

R∗T −RG
T

p
=
B0(q1− q̂1,0)

v1

∑K

j=2 eg(j)ψ(q̂1(sj+1)− q1, q̂1(sj)− q1)

+eg(1)ψ(q̂1(s2)− q1, q̂1(T )− q1)
−eg(1)ψ(q̂1,0− q1, q̂

∗
1(T )− q1)

 . (C.31)

Recalling the de�nitions of the regret RG := limT→∞{R∗T −RG
T}, and using Lemma C.4, it follows

that as K→∞,

RG(Q)∼ B0p(q1− q̂1,0)

v1

K∑
j=2

(
eg(j)− eg(1)

)
φj, (C.32)

where φj is de�ned in (B.6).

Since the (asymptotic) regret, characterized in (C.32), does not depend on the prior belief q̂j,0,

j 6= 1, it su�ces to consider the quality con�guration such that q̂j,0 = qj for each j 6= 1. That is, we

may restrict our attention to the set of quality con�gurations QK1 ⊂QK(η) such that

QK1 =

{
(q, q̂0)

∣∣∣ q1 < 1 and q1− η= q2 ≥ q3 ≥ · · · ≥ qK ≥ 0
q̂1,0 = 0 and q̂j,0 = qj for j ≥ 1

}
. (C.33)

To show that RG(Q) for Q ∈QK1 is increasing with qj ≤ 1− η for j 6= 1, consider Q= (q, q̂0) ∈QK1
and Q′ = (q′, q̂′0)∈QK1 such that qi ≥ q′i for all i= 1, . . . ,K and qj > q

′
j for some j 6= 1. From (C.32),

under the con�guration Q′, the regret can be written as

RG(Q′)∼ B0(q1− q̂1,0)

v1

K∑
j=2

(
eg(j)− eg(1)

)
φ′j as K→∞, (C.34)

where φ′j is de�ned in (B.6) with qj being replaced by q′j for each j 6= 1. Furthermore, observe that

K∑
j=2

(
eg(j)− eg(1)

)
φj −

K∑
j=2

(
eg(j)− eg(1)

)
φ′j =

K∑
j=2

(
eg(j)− eg(1)

)(∫ qj

qj+1

e−y

y2
dy−

∫ q′j

q′j+1

e−y

y2
dy

)
> 0,
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where the inequality follows from the fact that qj ≥ q′j for each j 6= 1 with at least one strict

inequality. Thus, we deduce that RG(Q)>RG(Q′). Finally, note that the limit in (C.32) is increasing

with q1. Therefore, we establish that for su�ciently large K, the regret in (C.32) is maximized in

con�guration QK
∗ (η)∈QK1 . This concludes the proof of the proposition. �

Proof of Theorem 4.1. De�ne φ̄ := ψ(−q1,1− η− q1), where the function ψ is de�ned in (4.12).

Let s be the switching time such that q̂1(t)≥ 1− η if and only if t≥ s. We �x QK = Q̄K
∗ (η) de�ned

in the statement of the theorem and suppress QK in function arguments for simple exposition. We

prove the result in two steps. We �rst derive the expression for the regret in (4.13). Then, we prove

the properties of the function MK
G (η).

Step 1. To derive the revenue for the greedy policy, observe that

RG
T

p
=

K∑
j=1

∫ T

0

dj(q̂(t), z(t))dt=

∫ T

0

d1(q̂(t), z(t))dt︸ ︷︷ ︸
A1

+
K∑
j=2

∫ T

0

dj(q̂(t), z(t))dt︸ ︷︷ ︸
Aj

.
(C.35)

It can be checked that

A1 =

∫ s

0

d1(q̂(t), z(t))dt+

∫ T

s

d1(q̂(t), z(t))dt=B0

1− η
η

+

∫ T

s

d1(q̂(t), z(t))dt. (C.36)

Also, for j 6= 1, we deduce from Lemma C.1 that

Aj =

∫ s

0

dj(q̂(t), z(t))dt+

∫ T

s

dj(q̂(t), z(t))dt

= eqj−p−g(j−1)

∫ s

0

Ḃ1(t)e−q̂1(t)+p+g(K) dt+

∫ T

s

dj(q̂(t), z(t))dt

=
B0φ̄

v1

vje
g(K)−g(j−1) +

∫ T

s

dj(q̂(t), z(t))dt.

(C.37)

Combining these into (C.35), we deduce

RG
T

p
=B0

1− η
η

+
B0φ̄

v1

K∑
j=2

vje
g(K)−g(j−1) +

K∑
j=1

∫ T

s

dj(q̂(t), z(t))dt. (C.38)

To derive an expression for s, observe that

B1(s) =B0

1− η
η

=

∫ s

0

eq̂1(t)−p+g(K)

1 +
∑K

n=1 eq̂n(t)−p+zn(t)
dt

= s−
∫ s

0

1 +
∑K

j=2 eqj−p−g(j−1)

1 +
∑K

n=1 eq̂n(t)−p−zn(t)
dt

= s− (1 +
K∑
j=2

eqj−p−g(j−1))

∫ s

0

Ḃ1(t)e−q̂1(t)+p+g(K) dt

= s− (1 +
K∑
j=2

vje
−g(j−1))

B0φ̄

v1

eg(K),

(C.39)
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from which we have

s=B0

1− η
η

+

(
1 +

K∑
j=2

vje
−g(j−1)

)
B0φ̄

v1

eg(K). (C.40)

To derive the expression for the optimal revenue, one may follow the similar steps as above, from

which it can be seen that

R∗T
p

=B0

1− η
η

+
B0φ̄

v1

K∑
j=2

vje
g(1)−g(j) +

K∑
j=1

∫ T

s∗
dj(q̂

∗(t), z∗(t))dt. (C.41)

Also, the switching time s∗ can be written as

s∗ =B0

1− η
η

+

(
1 +

K∑
j=2

vje
−g(j)

)
B0φ̄

v1

eg(1). (C.42)

Finally, since s∗ ≤ s and d̃j(q̂(t),z∞) = d̃j(q̂
∗(t − s + s∗),z∞) for all t ≥ s, it follows that the

revenue under the greedy policy during [s, s + u] is identical to the revenue under the optimal

policy during [s∗, s∗ + u] for any u > 0. Furthermore, observe from (C.40) that s→∞ as K→∞.

Therefore, it can be easily seen that q̂j(t)∼ q̂∗j (t)∼ qj for each j 6= 1 as K→∞, and hence that the

instantaneous revenue p
∑K

j=1 dj(q̂(t),z(t))∼ p
∑K

j=1 dj(q̂
∗(t),z∗(t))∼ r∞ as K→∞ for t≥ s. (The

constant r∞ depends on K, although we suppress the dependence in notation.) Recall the de�nition

of the regret RG := limT→∞{R∗T −RG
T} and it can be seen that, as K→∞,

RG

B0/v1

∼ r∞(s− s∗) + pφ̄
K∑
j=2

vje
g(1)−g(j)− pφ̄

K∑
j=2

vje
g(K)−g(j−1)

= r∞φ̄

(1 +
∑K

j=2 vje
g(K)−g(j−1)

)
−(

1 +
∑K

j=2 vje
g(1)−g(j)

) + pφ̄

( ∑K

j=2 vje
g(1)−g(j)−∑K

j=2 vje
g(K)−g(j−1)

)

= φ̄

(
r∞(eg(K)− eg(1))+

(p− r∞)
(∑K

j=2 vje
g(1)−g(j)−

∑K

j=2 vje
g(K)−g(j−1)

))
,

(C.43)

where the �rst equality follows from (C.40) and (C.42). Using the fact that r∞ = (p −

r∞)
∑K

j=1 vj exp(−g(j)), we further deduce that

RG

B0/v1

∼ φ̄(p− r∞)

(
(eg(K)− eg(1))

∑K

j=1 vje
−g(j)+∑K

j=2 vje
g(1)−g(j)−

∑K

j=2 vje
g(K)−g(j−1)

)

= φ̄(p− r∞)

(∑K

j=2 vj(e
g(K)−g(j)− eg(K)−g(j−1))

+v1eg(K)−g(1)− v1

)
= φ̄(p− r∞)

(
eg(K)− 1

)
(v1− v2),

(C.44)

where the last equality follows from the fact that g(1) = 0 and v2 = v3 = · · · = vK . Therefore, we

obtain the desired expression by letting MK
G (η) := φ̄(p− r∞)(v1− v2).
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Step 2. We show the properties of MK
G (η) stated in the theorem. For simplicity, let h1 := e−p−g(K)

and h2 :=
∑

j 6=1 e−p−g(j−1). To show that MK
G (η) is quasi-concave in η, observe that

r∞ = p

∑K

j=1 eqj−p−g(j−1)

1 +
∑K

j=1 eqj−p−g(j−1)
= p

(
1− 1

1 +
∑K

j=1 eqj−p−g(j−1)

)
, (C.45)

from which we deduce that p− r∞ = p/(1 + eh1 + e1−ηh2). From the de�nition of φ̄, it is easy to see

that MK
G (η) is non-negative, continuous, and equal to zero for η= 0,1. To show the quasi-concavity,

recalling the expression MK
G (η) = φ̄(p− r∞)(v1− v2), it su�ces to check that

M̃K(η) :=
e− e1−η

1 + eh1 + e1−ηh2

φ̄ (C.46)

is quasi-concave for η ∈ [0,1]. To this end, observe that

∂M̃K(η)

∂η
=−e1−η(1 + eh1 + eh2)

(1 + eh1 + e1−ηh2)2

(
(e− e1−η)(1 + eh1 + eh2)

(1 + eh1 + e1−ηh2)e1−η
eη

(1− η)2
− φ̄
)

(C.47)

Note that the sign of ∂M̃K(η)/∂η is determined by that of

ZK(η) :=
(e− e1−η)(1 + eh1 + eh2)

(1 + eh1 + e1−ηh2)eq
eη

(1− η)2
− φ̄. (C.48)

After some straightforward algebra, one can deduce that

∂ZK(η)

∂η
=

eη

η3

(
2(1 + eh1 + e1−ηh2)(e1−η − qe)

(1 + eh1 + eh2)e1−η

)
. (C.49)

Since e1−η − qe > 0 for all η ∈ [0,1], we deduce that ∂ZK(η)/∂η > 0. Since ZK(0) < 0, we obtain

that there exists some η̄ ∈ (0,1) such that ZK(η) < 0 if and only if η < η̄. This, in turn, implies

that ∂M̃K(η)/∂η > 0 if and only if η < η̄. These observations imply that M̃K(η) is quasi-concave in

η ∈ [0,1], which completes the proof of the theorem. �

Proof of Corollary 4.1. The proof of the corollary follows from the expression of the regret in

(4.13) and will be omitted. �

Proof of Corollary 4.2. Recall from the proof of Theorem 4.1 that maximizing MK
G (η) over η ∈

[0,1] is equivalent to maximizing M̃K(η) de�ned in (C.46). Note that M̃K(η) ≤ (e− e1−η)φ̄ and

φ̄ = ψ(−1,−η) does not depend on K. Therefore, it is easy to check that M̃K(η) is uniformly

bounded in the sense that there exists a constant M̄ <∞ such that M̃K(η)≤ M̄ for any η ∈ [0,1]

and K ≥ 2. This implies that the sequence {M̃K(·) :K ≥ 2} is uniformly convergent to M∞(·), and

therefore, the maximizer ηK∗ = arg maxη∈[0,1]{M̃K(η)} also converges to η∞∗ = arg maxη∈[0,1]{M̃∞(η)}

as K→∞; that is,
RG(QK

∗ (η∗∞))

RG(QK
∗ (η∗K))

→ 1 as K→∞. (C.50)
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Further, we have from Proposition 4.2 that as K→∞,

RK+1
G

RK
G

∼ RG(QK+1
∗ (ηK+1

∗ ))

RG(QK
∗ (ηK∗ ))

=
RG(QK+1

∗ (η∞∗ ))

RG(QK
∗ (η∞∗ ))

RG(QK+1
∗ (ηK+1

∗ ))

RG(QK+1
∗ (η∞∗ ))

RG(QK
∗ (η∞∗ ))

RG(QK
∗ (ηK∗ ))

.

(C.51)

The second and third terms on the right-hand side of the preceding equation converges to one as

K→∞ by (C.50). Thus, the desired conclusion follows by applying Theorem 4.1, which concludes

the proof of the theorem. �

C.2.3. Proofs for Section 4.4. As in Section C.2.2, we use the asymptotics with respect to

the number of product K for proofs in this section. Hence, most variables depend on K, but we

suppress the dependence to improve clarity. Moreover, we adopt the notation sK+1 ≤ sK ≤ · · · ≤ s2

introduced in Section C.2.2. The following lemmas will be useful in proving Theorem 4.2.

Lemma C.5. Suppose that Assumption 4.1(a)-(b) hold. Fix a quality con�guration QK ∈ QK and

consider k ≤ K. Then, under the semi-greedy policy with u ≤ ū, there exists s > 0 such that (i)

q̃1(s) = q̃k(s), (ii) q̃1(t)< q̃k(t) for all t < s, and (iii) q̃1(t)> q̃k(t) for all t > s.

Proof of Lemma C.5. Note that the implied belief process q̃k(t) satis�es ˙̃qk(t) = Ḃk(t)

Bk(t)+Bk,0
(qk −

q̃k(t)), just like the original belief process which satis�es ˙̂qk(t) = Ḃk(t)

Bk(t)+Bk,0
(qk − q̂k(t)). For this

reason, the proof of the lemma follows immediately from that of Lemma C.3 with the belief process

{q̂k(t) : t≥ 0} replaced by {q̃k(t) : t≥ 0}. We omit the detail of the proof to avoid repetition. �

Lemma C.6. Suppose that Assumption 4.1 holds. Fix j ≥ 2 such that q̃1(0) < q̃j(0). Then, under

the semi-greedy policy with u≤ ū, q̃1(sj)→ qj as K→∞ for each j ≥ 2.

Proof of Lemma C.6. In this proof, we assume that q̂j(0)> qj; the case with q̂j(0)< qj follows

from identical steps and will be omitted to avoid repetition. Moreover, some variables depend on

the quality con�guration QK but we suppress the dependence for clarity of exposition. De�ne sj :=

inf{t ≥ 0 : q̃1(t) ≥ q̃j(t)}, which is well de�ned by Lemma C.5. Without loss of generality, we let

s2 ≥ s3 ≥ · · · ≥ sK ; the proof can be extended to general cases by re-indexing products.

Towards a contradiction, assume that lim infK→∞ q̃j(sj) ≥ qj + ε for a su�ciently small ε > 0.

From (3.3) and the fact that q̃j(t) = q̂j(t) +u/(Bj(t) +B0), it follows that

limsup
K→∞

Bj(sj) =
B0(q̂j(0)− qj) +u

ε
. (C.52)

Taking K→∞ on both sides of inequality in (C.24), we deduce that

sj
B0

≥ (q̂j(0)− qj) +u/B0

ε

+
q1− q̂1,0

v1

∞∑
k=j

ψ(q̂1(sk+1)− q1, q̂1(sk)− q1)

(
1 +

∑
i<k eg(k)−g(i−1)+∑
i>k eg(k)−g(i)

)
.

(C.53)
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We can �nd a constant c such that q̂1(sk)− q̂1(sk+1) ≥ c/K for all k ≤K and K ≥ 2; otherwise,∑K

k=j(q̂1(sk)− q̂1(sk+1) = q̂1(sj)− q̂1(0)→ 0 asK→∞. This leads to a contradiction because q̂1(sj)−

q̂1,0 > qj− q̂1,0 and qj is the jth largest quality in con�guration QK , which can only increase with K.

Now, from (C.26) and the fact that q̂1(sk)− q̂1(sk+1)≥ c/K for all k≤K and K ≥ 2, the third term

on the right-hand side of (C.53) increases to ∞ as K →∞. This implies that sj = Ω(G2(K)/K)

as K →∞, where G2(n) :=
∑n

k=1 eg(k). Furthermore, d̃j(q̂(t),z) = Ω(1/G1(K)) by (C.27), where

G1(n) :=
∑n

k=1 e−g(k). Therefore, we have

Bj(sj) =

∫ sj

0

d̃j(q̂(t),z(t))dt≥Ω

(
G2(K)

KG1(K)

)
→∞ as K→∞, (C.54)

where the limit follows from the de�nitions of G1(·) and G2(·). This leads to a contradiction to the

assumption that Bj(sj) = (B0(q̂j(0)− qj) + u)/ε <∞ for �xed ε > 0. This concludes the proof of

the lemma. �

Proof of Theorem 4.2. We prove the theorem in three steps. First, we prove thatQK
∗ (η) is asymp-

totically the worst-case con�guration in QK(η) as K →∞. Second, we characterize the regret in

the con�guration QK
∗ (η) to (4.20). Third, we prove the properties of the function MK

SG(η,u) de�ned

in (4.20).

Step 1.We show thatQK
∗ (η) is a worst-case con�guration inQK(η) asymptotically asK→∞. The

proof of this step follows from exactly the same logical steps of that of Proposition 4.2. Concretely,

note that the expression of the revenue under the semi-greedy policy is equivalent to the right-hand

side of (C.29). Thus, from (C.32), it can be seen that as K→∞,

RSG(Q)∼ pB0

v1

(q1− q̂1,0)
K∑
j=2

(eg(j)− eg(1))ψ(q̂1,0− q1, qj − q1), (C.55)

where we use the fact that q̂1(sj)→ qj as K→∞ (Lemma C.6). Since the regret characterized on

the right-hand side of (C.55) does not depend on the prior belief q̂j,0, j 6= 1, it su�ces to consider

the quality con�guration such that q̂j,0 = qj for each j 6= 1. That is, we may restrict our attention to

QK1 ⊂QK , where QK1 is (C.33). Note that RSG(Q) in (C.55) has the same functional form as RG(Q)

in (C.32). Thus, using the same logical steps as in the proof of Proposition 4.2, one can establish

that QK
∗ (η)∈QK1 maximizes the regret for su�ciently large K.

Step 2. Fix QK =QK
∗ (η). First, we derive the expression for the T -period revenue under the semi-

greedy policy. De�ne τ̃ := inft{q̃1(t) ≥ q2} and τ := inft{q̂1(t) ≥ q2}. By de�nition, τ̃ ≤ τ . Observe

that

RSG
T

p
=

K∑
j=1

∫ T

0

dj(q̂(t), z(t))dt=

∫ T

0

d1(q̂(t), z(t))dt︸ ︷︷ ︸
A1

+
K∑
j=2

∫ T

0

dj(q̂(t), z(t))dt︸ ︷︷ ︸
Aj

.
(C.56)
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For k= 1, we have

A1 =

∫ τ

0

d1(q̂(t), z(t))dt+

∫ T

τ

d1(q̂(t), z(t))dt=B0

1− η
η

+

∫ T

τ

d1(q̂(t), z(t))dt. (C.57)

For k 6= 1, observe

Aj =

∫ τ̃

0

dj(q̂(t), z(t))dt+

∫ τ

τ̃

dj(q̂(t), z(t))dt+

∫ T

τ

dj(q̂(t), z(t))dt,

where ∫ τ̃

0

dj(q̂(t), z(t))dt= eqj−p−g(j−1)

∫ τ̃

0

Ḃ1(t)e−q̂1(t)+p+g(K) dt

=
B0vj
v1

eg(K)−g(j−1)ψ(q̂1,0− q1, q̂1(τ̃1)− q1)∫ τ

τ̃

dj(q̂(t), z(t))dt= eqj−p−g(j)
∫ τ

τ̃

Ḃ1(t)e−q̂1(t)+p+g(1) dt

=
B0vj
v1

eg(1)−g(j)ψ(q̂1(τ̃)− q1,1− η− q1).

Furthermore, observe that at t= τ̃ ,

q1 +
(q̂1,0− q1)B0 +u

B1(τ̃) +B0

= q̂1(τ̃)⇐⇒B1(τ̃) +B0 =
(q̂1,0− q1)B0 +u

q̂1(τ̃)− q1

. (C.58)

Lemma C.6 implies that q̃1(τ̃)→ q2 = 1− η as K→∞, from which we obtain that as K→∞,

q̂1(τ̃)→ q2−
u

B1(τ̃) +B0

= q2−
(1− η− q1)u

(q̂1,0− q1)B0 +u
.

(C.59)

Combining these into (C.56), and recalling that q̂1,0 = 0 and q̂1 = 1 in con�guration QK
∗ (η), we

deduce, as K→∞,

RSG
T

p
∼B0

1− η
η

+
K∑
j=1

∫ T

τ

dj(q̂(t), z(t))dt

+
B0

v1

K∑
j=2

vje
g(K)−g(j−1)ψ

(
−1,− ηB0

B0−u

)

+
B0

v1

K∑
j=2

vje
g(1)−g(j)ψ

(
− ηB0

B0−u
,−η

)
.

(C.60)

To derive an expression for τ , observe that

B1(τ) =

∫ τ

0

eq̂1(t)−p+g(K)

1 +
∑K

n=1 eq̂n(t)−p+zn(t)
dt

= τ −
∫ τ̃

0

1 +
∑K

j=2 eqj−p−g(j−1)

1 +
∑K

n=1 eq̂n(t)−p−zn(t)
dt−

∫ τ

τ̃

1 +
∑K

j=2 eqj−p−g(j)

1 +
∑K

n=1 eq̂n(t)−p−zn(t)
dt.
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Thus, the second and third terms satisfy, as K→∞,

∫ τ̃

0

1 +
∑K

j=2 eqj−p−g(j−1)

1 +
∑K

n=1 eq̂n(t)−p−zn(t)
dt= (1 +

K∑
j=2

eqj−p−g(j−1))

∫ τ̃

0

Ḃ1(t)e−q̂1(t)+p+g(K) dt

= (1 +
K∑
j=2

vje
−g(j−1))

B0eg(K)

v1

ψ

(
−1,− ηB0

B0−u

)
,

∫ τ

τ̃

1 +
∑K

j=2 eqj−p−g(j)

1 +
∑K

n=1 eq̂n(t)−p−zn(t)
dt= (1 +

K∑
j=2

eqj−p−g(j))

∫ τ

τ̃

Ḃ1(t)e−q̂1(t)+p+g(1) dt

= (1 +
K∑
j=2

vje
−g(j))

B0eg(1)

v1

ψ

(
− ηB0

B0−u
,−η

)
.

Combined with the fact that B1(τ) =B0
1−η
η
, we have that as K→∞,

τ ∼B0

1− η
η

+ (1 +
K∑
j=2

vje
−g(j−1))

B0eg(K)

v1

ψ

(
−1,− ηB0

B0−u

)

+ (1 +
K∑
j=2

vje
−g(j))

B0eg(1)

v1

ψ

(
− ηB0

B0−u
,−η

)
.

(C.61)

To derive the expression for the optimal revenue, one may follow the similar steps as above, from

which it can be seen that

R∗T
p

=B0

1− η
η

+
B0ψ(−1,−η)

v1

K∑
j=2

vje
g(1)−g(j) +

K∑
j=1

∫ T

τ∗
dj(q̂

∗(t), z∗(t))dt. (C.62)

Also, the switching time τ ∗ can be written as

τ ∗ =B0

1− η
η

+

(
1 +

K∑
j=2

vje
−g(j)

)
B0ψ(−1,−η)

v1

eg(1). (C.63)

Since τ ∗ ≤ τ and d̃j(q̂(t), z∞) = d̃j(q̂
∗(t− τ + τ ∗), z∞) for all t ≥ τ , it follows that the revenue

under the greedy policy during [τ, τ + s] is identical to the revenue under the optimal policy during

[τ ∗, τ ∗+s] for any s > 0. Furthermore, observe from (C.61) that τ →∞ as K→∞. Therefore, it can

be easily seen that q̂j(t)∼ q̂∗j (t)∼ qj for each j 6= 1 as K→∞, and hence the instantaneous revenue∑K

j=1 d̃(q̂(t),z(t))∼
∑K

j=1 d̃(q̂∗(t),z∗(t))∼ r∞ as K →∞ for t≥ τ . (The constant r∞ depends on

K, although we suppress the dependence in notation.) Recalling the de�nition of the regret RSG =
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limT→∞{R∗T −RSG
T }, we have as K→∞,

RK
SG

B0/v1

∼ r∞


(

eg(K) +
∑K

j=2 vje
g(K)−g(j−1)

)
ψ
(
−1,− ηB0

B0−u

)
+(

eg(1) +
∑K

j=2 vje
g(1)−g(j)

)
ψ
(
− ηB0
B0−u

,−η
)
−(

eg(1) +
∑K

j=2 vje
g(1)−g(j)

)
ψ(−1,−η)



+ p


ψ(−1,−η)

∑K

j=2 vje
g(1)−g(j)−

ψ
(
−1,− ηB0

B0−u

)∑K

j=2 vje
g(K)−g(j−1)−

ψ
(
− ηB0
B0−u

,−η
)∑K

j=2 vje
g(1)−g(j)



= (p− r∞)


ψ(−1,−η)

∑K

j=2 vje
g(1)−g(j)−

ψ
(
−1,− ηB0

B0−u

)∑K

j=2 vje
g(K)−g(j−1)−

ψ
(
− ηB0
B0−u

,−η
)∑K

j=2 vje
g(1)−g(j)

+ r∞


eg(K)ψ

(
−̂1,− ηB0

B0−u

)
+

eg(1)ψ
(
− ηB0
B0−u

,−η
)
−

eg(1)ψ(−1,−η)

 .

(C.64)

To simplify the expression above, note that r̃∞ = (p− r̃∞)
∑K

j=1 vje
−g(j), from which we deduce that,

as K→∞,

RK
SG

B0/v1

∼ (p− r∞)ψ

(
−1,−η− ηu

B0−u

)( K∑
j=2

vje
g(K)−g(j−1)−

K∑
j=2

vje
g(K)−g(j)

)

= (p− r∞)ψ

(
−1,−η− ηu

B0−u

)(
eg(K)− 1

)
,

(C.65)

where we use the fact that r̃∞− r∞→ 0 as K→∞.

Step 3. We prove the properties of the function MK
SG(η). The non-negativity and continuity of

MK
SG(η) is trivial from the de�nition in (4.20). Moreover, note that MK

SG(η) in (4.20) di�ers from

MK
G (η) in (4.13) only by the terms ψ(−1,− ηB0

B0−u
) and ψ(−1,−η). From the chain rule, we have

∂

∂η
ψ

(
−1,− ηB0

B0−u

)
=

B0

B0−u
∂

∂η
ψ(−1,−η), (C.66)

from which we deduce that MK
SG(η) increasing in η if and only if MK

G (η) is increasing. Combined

with the fact that RK
G (η) is quasi-concave, the preceding observation implies that RK

SG(η) is also

quasi-concave. Lastly, the relation RK
SG(η) < RK

G (η) follows from the fact that ψ(a, b) =
∫ b
a

e−y

y2
dy

and that ψ(−1,− ηB0
B0−u

) is the integral of the function e−y

y2
over the smaller interval than ψ(−1,−η).

This completes the proof of the theorem. �

Appendix D: Derivation of the Fluid Approximation

The derivation generalizes to the multi-product case the approach of Crapis et al. (2017). Con-

sider a sequence of systems indexed by m = 1,2, . . . , where the m-th system describes a market

where consumers arrive according to a Poisson process with parameter Λm = mΛ. The symbols

Lmk (t),Dm
k (t) and Bm

k (t) denote the numbers of likes, of dislikes, and of purchases for product k
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before time t in system m, respectively. The corresponding scaled state variables for product k are

denoted by Īmk (t) = (L̄mk (t), D̄m
k (t)) := (Lmk (t)/m, Dm

k (t)/m) and Ī
m

(t) := (Īm1 (t), Īm2 (t), . . . , ĪmK (t))

is the total information available at time t in the m-th system. The following lemma establishes

that, if the arrival rate of consumers grows unbounded, there exist two deterministic processes Lk(t)

and Dk(t) that approximate with arbitrary precision the scaled state variables L̄mk (t) and D̄m
k (t). In

particular, de�ning Bk(t) :=Lk(t) +Dk(t) and q̂k(t) := (Lk(t) +Lk,0)/(Bk(t) +Bk,0), this determin-

istic approximation allows us to describe the learning trajectories as the continuous time solution

q̂(t) := (q̂1(t), q̂2(t), . . . , q̂K(t)) of the ODE (3.1).

Lemma D.1. For every t > 0 and every k = 1, . . . ,K we have sup0≤s≤t |L̄mk (s) − Lk(s)| → 0 and

sup0≤s≤t |D̄m
k (s)−Dk(s)| → 0 for n→∞ almost surely. Moreover, for all k= 1, . . . ,K, the processes

Lk(t) and Dk(t) are deterministic and satisfy the di�erential relations

L̇k(t) = Λ P(rk(t) =L | I(t)) = Λdk(q̂(t)) qk, (D.1)

Ḋk(t) = Λ P(rk(t) =D | I(t)) = Λdk(q̂(t)) (1− qk), (D.2)

where I(t) := (I1(t), I2(t), . . . , IK(t)) and Ik(t) := (Lk(t),Dk(t)).

Proof of Lemma D.1. The proof consists in verifying the conditions of Theorem 2.2 of Kurtz

(1977/78). First, observe that Īm(t)∈ {z/m | z ∈Z2K
+ }, where Zd+ denotes the d-dimensional integer

lattice. To validate the remaining hypothesis of the theorem, we �rst need to show that the scaled

number of likes and dislikes L̄mk (t) and D̄m
k (t) can be expressed as a suitable Poisson processes with

time-dependent rate, and then we must prove that the following inequalities hold

γLk (x)≤ ΓL1 (1 + |x|), γDk (x)≤ ΓD1 (1 + |x|), (D.3)

|γLk (x)− γLk (y)| ≤ ΓL2 |x− y|, |γDk (x)− γLk (y)| ≤ ΓD2 |x− y|, (D.4)

for some positive constants ΓL1 , ΓL2 , ΓD1 , and ΓD2 , and for all k ∈PK for all x, y ∈R2K .

We de�ne, for k ∈PK , the following functions:

γLk (I(t)) := P(rk(t) =L | I(t)), γDk (I(t)) := P(rk(t) =D | I(t)),

Furthermore, let Am be a Poisson process with parameter Λm and let NL
k (a),ND

k (a) be independent

Poisson processes with arrival rate a. Then we can write:

L̄mk (t) =
1

m

∫ t

0

1{rk(s) =L | Īm(s)}dAm(s) =
1

m
NL
k

(
Λm

∫ t

0

P(rk(s) =L | Īm(s))ds
)
, (D.5)

where in the last equality we used a Poisson thinning argument to replace the counting process of

consumers who liked product k with a Poisson process whose arrival rate is proportional to the prob-

ability of observing a like for product k. Similarly, one can show that D̄m
k (t) = 1

m
ND
k

(
Λm
∫ t

0
P(rk(s) =

D | Īm(s))ds
)
.
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It remains to prove the inequalities (D.3) and (D.4). Since γLk and γDk are probabilities, the

inequalities in (D.3) hold with ΓL1 = ΓD1 = 1 for all k ∈ PK . Moreover, from (D.1), we observe

that γLk depends on I(t) only through the quality estimates q̂1(t), q̂2(t), . . . , q̂K(t). We now show

that the quality estimate q̂k(t) = (Lk(t) + Lk,0)/(Bk(t) +Bk,0) is Lipschitz continuous in I(t). In

fact, since q̂k(t) does not depend on Lk(t) and Dk(t) if k 6= i it is trivially Lipschitz continuous in

Ik(t) = (Lk(t),Dk(t)) if k 6= i. Moreover, de�ning lk(t) = (Lk(t) + Lk,0)/(Bk(t) +Bk,0) and l′k(t) =

(L′k(t) +Lk,0)/(B′k(t) +Bk,0), for all Ik(t) = (Lk(t),Dk(t)) and I
′
k(t) = (L′k(t),D

′
k(t)) we have∣∣∣∣Lk(t) +Lk,0

Bk(t) +Bk,0
−
L′k(t) +Lk,0

B′k(t) +Bk,0

∣∣∣∣= ∣∣∣∣(Lk(t) +Lk,0)(D′k(t) +Dk,0)− (L′k(t) +Lk,0)(Dk(t) +Dk,0)

(Bk(t) +Bk,0)(B′k(t) +Bk,0)

∣∣∣∣
=

∣∣∣∣(Lk(t) +Lk,0)(D′k(t) +Dk,0)− (L′k(t) +Lk,0)(D′k(t) +Dk,0)

(Bk(t) +Bk,0)(B′k(t) +Bk,0)

+
(L′k(t) +Lk,0)(D′k(t) +Dk,0)− (L′k(t) +Lk,0)(Dk(t) +Dk,0)

(Bk(t) +Bk,0)(B′k(t) +Bk,0)

∣∣∣∣
≤

1− l′k(t)
Bk(t) +Bk,0

|Lk(t)−L′k(t)|+
l′k(t)

Bk(t) +Bk,0
|Dk(t)−D′k(t)|

≤
2

Bk,0
|Ik(t)− I ′k(t)|,

for all k ∈ PK . Noticing that dk(·) ∈C∞([0,1]K) and that [0,1]K is trivially a compact convex set,

we conclude that γLk is Lipschitz continuous for all k ∈PK . A similar proof can be provided for γDk

for all k ∈PK , so this proves the inequalities in (D.4).

To conclude the proof, observe

˙̂qk(t) =
d

dt

Lk(t) +Lk,0
Bk(t) +Bk,0

=
L̇k(t)

Bk(t) +Bk,0
− (Lk(t) +Lk,0)Ḃk(t)

(Bk(t) +Bk,0)2
=
Ḃk(t)[qk− q̂k(t)]
Bk(t) +Bk,0

,

from which we derive (3.1). �
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