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Abstract Economic evaluation of climate policy traditionally treats uncertainty by appeal-
ing to expected utility theory. Yet our knowledge of the impacts of climate policy may not be
of sufficient quality to be described by unique probabilistic beliefs. In such circumstances,
it has been argued that the axioms of expected utility theory may not be the correct stan-
dard of rationality. By contrast, several axiomatic frameworks have recently been proposed
that account for ambiguous knowledge. In this paper, we apply static and dynamic versions
of a smooth ambiguity model to climate mitigation policy. We obtain a general result on
the comparative statics of optimal abatement and ambiguity aversion, and then extend our
analysis to a more realistic, dynamic setting, where we introduce scientific ambiguity into
the well-known DICE model of the climate-economy system. For policy-relevant exogenous
mitigation policies, we show that the value of emissions abatement increases as ambiguity
aversion increases, and that this ‘ambiguity premium’ can in some plausible cases be very
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large. In these cases the effect of ambiguity aversion on welfare is comparable to that of other
much studied welfare parameters. Thus ambiguity aversion may be an important neglected
aspect of climate change economics, and seems likely to provide another argument for strong
abatement policy.

Keywords Climate change · Uncertainty · Ambiguity

JEL Classification Q54 · D81

1 Introduction

The literature on optimal climate change mitigation policy has thus far remained faithful to
the long tradition of welfare analysis based on expected utility theory. The integrated assess-
ment models that are widely used for policy evaluation all have a common welfare-analytic
core. Most studies employ deterministic models (e.g. Manne and Richels 1992; Nordhaus
2008; Tol 1997), allowing for efficient determination of optimal policies, which are then sub-
jected to sensitivity analysis in order to test their robustness to changes in model parameters.
Other studies employ monte carlo style simulation models (e.g Hope 2006), and generally
do not find optimal policies, but rather provide welfare assessments of exogenously specified
greenhouse gas emissions pathways. A few authors have combined these two approaches by
solving stochastic-dynamic control problems to determine optimal policies that account for
learning about future risks (e.g. Keller et al. 2004; Kelly and Kolstad 1999; Karp and Zhang
2006). Thus, while there are several models of varying complexity and emphasis, they share
a common commitment to the expected utility framework.

The reasons for the primacy of expected utility theory as a normative model of rational
choice are well known to economists. Its axiomatic foundations have been developed by sev-
eral authors (von Neumann and Morgenstern 1944; Savage 1954; Anscombe and Aumann
1963; Herstein and Milnor 1953). Savage’s presentation is widely considered the most sat-
isfactory, since it derives both utility functions and subjective probabilities from primitive
preferences over very general mathematical objects known as ‘acts’—maps between states
and outcomes. Indeed the Savage axioms are often considered to be synonymous with rational
choice. Nevertheless, Savage himself took a cautious approach to his theory, suggesting that
it should only be applied in small worlds, in which it is possible to ‘look before you leap’, i.e.
imagine every possible contingency, and identify a complete ordering of acts over these con-
tingencies (see Binmore 2009 for a discussion). Further potential limitations on the domain
of applicability of Savage’s theory were famously identified by Ellsberg (1961), who showed
that when our state of knowledge is more accurately described as uncertainty (i.e. unknown
probabilities) rather than risk (i.e. known probabilities—we use these terms in the sense of
Knight 1921), we may wish to violate Savage’s second axiom, the ‘sure-thing principle’.

A strong Bayesian would interpret Ellsberg’s results as a contribution to positive, rather
than normative, decision theory. Bayesians believe that Savage’s axioms define rational
choice, in which case the preferences Ellsberg observes in his investigations are deemed
irrational, and all uncertainty is always describable by a unique subjective probability distri-
bution. This viewpoint has however been strongly contested. As noted by Ellsberg (1961) and
Slovic and Tversky (1974), people often stick to choices that violate the sure-thing principle
in Ellsberg’s choice experiments, even when this violation is pointed out to them. This is
in stark contrast to other decision theoretic ‘paradoxes’, such as the Allais paradox, where
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people often revert to the prescriptions of expected utility once their violation of the axioms
is explained. It has been argued, we think convincingly, that when our information about the
world is incomplete, inconsistent, or nonexistent, Savage’s axioms need not be the correct
standard of rationality (Gilboa et al. 2008, 2009), and it does not necessarily make sense
to describe our state of knowledge with a unique probability distribution over states of the
world.1

Given these views, our assessment of the validity of the expected utility approach to the
welfare analysis of climate change policy must depend on how structured our beliefs about
the climate system2 are. If we have sufficiently high quality information to justify probabilis-
tic beliefs, then the approach adopted thus far in the literature is unequivocally useful. If not,
we need to justify why this approach is a useful approximation, or attempt to define welfare
measures that are true to our actual state of knowledge about the climate system, and reflect
our preferences over bets with unknown probabilities. Very often a good way of justifying an
approximation is to embed it in a more general framework, and show that the increased power
of this framework does not materially alter the results achieved by the approximation. Thus,
provided we suspect that our knowledge of the climate system is not very high quality, there
would seem to be good reason to develop approaches to policy evaluation which account for
uncertainty and not just risk, since these will either justify our reliance on existing methods,
or provide appropriate tools for future work.

What is our state of knowledge about the climate system, and can it be described by
unique probabilities? We feel it is important to break the state of scientific knowledge about
climate into two categories: broad scientific principles, and detailed empirical predictions. In
the first category belong concepts such as the laws of thermodynamics, fluid dynamics, and
statements of fact such as ‘CO2 traps outgoing long-wave radiation, causing warming’. We
believe these principles to be unimpeachable. In the second category belong the sophisticated
models scientists use to convert these principles into predictions—energy balance models
(EBMs), earth systems models of intermediate complexity (EMICs), and full-scale general
circulation models (GCMs). These models can be enormously complex, and attempt to pre-
dict, among other things, the response of the global climate to increases in the concentrations
of greenhouse gases. Because of the complexity of their task, and the intrinsic difficulties of
prediction in highly nonlinear multi-dimensional physical systems (see Smith 2002, 2007;
Stainforth et al. 2007; Frame et al. 2007 for illuminating discussions of the scientific and
philosophical challenges of climate prediction), these models are not always in agreement
with one another. As an example of this, consider Fig. 1, which plots the results of several
recent studies’ attempts to use different models and observational data to estimate climate
sensitivity—the amount by which global mean surface temperature rises for a doubling of
CO2 concentration, in equilibrium. Climate sensitivity is a crucial summary statistic that
coarsely captures how the global climate responds to increases in CO2 concentrations, and
features prominently in integrated assessment models.

From the figure it is clear that there are many inconsistent estimates of this important
quantity. This suggests that we may indeed be in an environment characterized by uncer-
tainty, rather than risk. There are two common responses to this assertion: Why not simply

1 Ellsberg himself emphasizes that ‘...either the postulates failed to be acceptable in those circumstances as
normative rules, or they failed to predict reflective choices...But from either point of view, it would follow
that there would be simply no way to infer meaningful probabilities for those events from their choices, and
theories which purported to describe their uncertainty in terms of probabilities would be quite inapplicable in
that area.’
2 Our work focuses on uncertainty about a key parameter of the climate system—climate sensitivity—and for
the most part assumes that economic parameters are known. More on this later.

123



24 A. Millner et al.

Fig. 1 Estimated probability density functions for climate sensitivity from a variety of published studies,
collated by Meinshausen et al. (2009)

aggregate the different estimates into a single probability density (“Bayesian response”); and
surely all the estimates are not equally valid, so why not simply choose the ‘best’ estimate
(“scientists’ response”)? To answer these questions, it is important to understand that the
estimates of climate sensitivity in Fig. 1 are based on different climate model structures (i.e.
different representations of physical processes, and choices of physical parameters), differ-
ent statistical methodologies, and different observational data. Climate science is currently
unable to identify how these different estimates might best be combined. The problem of
model comparison is made especially difficult by the fact that the estimates are not indepen-
dent, and the fact that the historical instrumental record has already been used to generate
the estimates in Fig. 1, thus precluding us from using it again to determine which of the
models fits the data best (see Tebaldi and Knutti 2007 for a discussion of the difficulties of
combining predictions from multiple climate models.). Thus we cannot quantify how the
different estimates relate to one another, or objectively single out a ‘best’ study.

Any putative weights that we might assign to the different estimates would thus reflect
largely subjective choices. Importantly, the standard expected utility paradigm does not dis-
tinguish between subjective choices (e.g. the weights on models in our application) and the
conditionally objective knowledge generated by assuming a given model structure is correct
and comparing it to the data (e.g. the probability densities in Fig. 1 in our application). In
the standard Bayesian model subjective weights combine linearly with conditionally objec-
tive probabilities to give rise to a unique compound distribution which is indistinguishable
from an equivalent objective lottery—we have lost sight of the fact that this compound
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distribution combines two very different kinds of knowledge.3 If policy makers are sensitive
to the difference between arbitrary subjective weights and objective probabilities that arise
from empirical comparisons of models to data (surely a desirable quality in a planner), and
would prefer to choose policies that, all else being equal, lead to less ambiguous (or more
objective) distributions of outcomes, then there is a strong case that the traditional tools are
not capable of reflecting policy makers’ preferences.

Thankfully there has been a series of theoretical advances in decision theory which provide
axiomatic representations of preferences accounting for the distinction between uncertainty
and risk, and for ambiguity aversion. Seminal contributions include Arrow and Hurwicz
(1977), Schmeidler (1989), Gilboa and Schmeidler (1989) and Klibanoff et al. (2005). These
are elegant models, and have found application in several areas of economics, especially
finance (e.g. Dow and da Costa Werlang 1992; Bassett et al. 2004; Gollier 2009; Bossaerts
et al. 2010). Hansen and Sargent (2007) have applied similar techniques, later axiomatized
by Maccheroni et al. (2006), in macroeconomics in order to derive policies that are robust
to model misspecification. These methods have been applied to environmental problems by
e.g. Gonzalez (2008) and Athanassoglou and Xepapadeas (2012).4 Yet such models have
only just begun to filter into the argument around climate policy. Henry and Henry (2002) is
perhaps the first paper to view climate policy through this lens, and focuses on formalizing
precautionary policies as policies that account for ambiguity in scientific knowledge. Lange
and Treich (2008) provide some limited comparative statics results on the effect of ambiguity
on optimal abatement in a parametric two-period model. Although not confined to climate
applications, the work of Traeger (2009) and Gollier and Gierlinger (2008) on the effect of
ambiguity aversion on the social discount rate is clearly relevant and has important impli-
cations for the assessment of mitigation investments. A recent working paper by Lemoine
and Traeger (2012) extends the work of Kelly and Kolstad (1999) to account for learning
about uncertain tipping points in the climate system. Knowledge about these tipping points
is represented as ambiguous and the effect of ambiguity aversion on the social cost of carbon
is examined.5

In this paper we hope to provide a further step along the path sketched out by these authors.
Our contribution to the literature is two fold. In Sect. 2 we introduce the model of ambiguity
averse choice obtained in Klibanoff et al. (2005) and derive some new and quite general
conditions which, in a static context, ensure that an arbitrary increase in ambiguity aversion
leads to an increase in optimal abatement. Examining the static case helps to build intuition
for the new effects that ambiguity aversion introduces into decision making, demonstrates
how the preference representation manages to maintain the distinction between subjective

3 This somewhat complex point will be elaborated on in the next section.
4 While the Hansen–Sargent robust control methods have analytic appeal due to their tractability, they are
limited in other important respects. They assume the most extreme aversion to ambiguity (by adopting a
max- min decision rule), are not able to reflect the likelihood information available in the scientific literature,
and what analytic insights they do deliver are in practice limited to linear-quadratic models of questionable
relevance to the climate problem.
5 Our work focuses on ambiguity about climate sensitivity, and excludes tipping points, for several reasons.
First, climate sensitivity has long been the most important summary statistic in climate change science, yet
even this well known quantity is not well characterized in the scientific literature, and is arguably ‘ambiguous’.
Second, climate sensitivity features in most integrated assessment models in a similar manner, whereas those
integrated assessment models that do account for tipping points do so idiosyncratically. Third, while climate
sensitivity has a widely recognized meaning, and is very much part of the scientific mainstream, the science
of tipping points, while undoubtedly of considerable economic importance, is still in its infancy (see Lenton
et al. 2008). Since our aim in this paper is to stay as close as possible to well established science, we do not
account for tipping points in our analysis.
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and objective knowledge, and allows us to gain a high-level insight into how ambiguity
aversion is likely to affect the choice of climate policy. In Sect. 3 we extend this analysis
to the dynamic case, and attempt to understand how scientific ambiguity affects the welfare
evaluation of dynamic climate change abatement policies. We compute welfare measures
for realistic exogenous abatement pathways using the integrated assessment model DICE
(Nordhaus 2008) and assess how ambiguity over the correct probability distribution for cli-
mate sensitivity affects the welfare benefits of abatement over a business as usual policy. We
find that an increase in ambiguity aversion favors abatement—this ambiguity effect is small
when damages are flat, and very significant when damages are steep at high temperatures.
For steep damages, welfare is as sensitive to ambiguity aversion as it is to the elasticity of
marginal utility, which controls risk aversion and consumption smoothing. We interpret these
empirical results by appealing to theoretical work on the social discount rate under ambiguity.
Section 4 discusses the results of our analysis, and concludes.

2 The Smooth Ambiguity Model and Optimal Abatement

A potential difficulty with several of the decision models that account for ambiguity is that
they do not achieve a separation between ambiguous beliefs and attitudes towards ambiguity.
This was overcome by the contribution of Klibanoff et al. (2005), who provided a preference
representation that separates tastes from beliefs, and allows us to parameterize attitudes to
ambiguity via a differentiable function, in a manner analogous to the way utility functions
represent risk preferences.6 Their formalism is thus perfectly suited to understanding how
different degrees of ambiguity aversion affect policies and welfare estimates. We introduce
their model below.

Define an ‘act’ a la Savage as a map between states and outcomes (see e.g. Gilboa 2009
for a detailed explanation of Savage acts). Klibanoff et al. (2005) define a set of axioms for
preferences over ambiguous acts. They first assume that acts that are evaluated on unique
lotteries have an expected utility representation. Next they define ‘second order acts’, which
map probability distributions (not states) into outcomes. They assume that these acts also
have an expected utility representation. Finally they assume consistency between first and
second order acts—a second order act evaluated on a unique lottery yields the same valua-
tion as the first order value of the lottery. Combining these axioms they show that act f is
preferred to act g if and only if

Epφ(Eπ u ◦ f ) > Epφ(Eπ u ◦ g), (1)

where u is a von Neumann–Morgenstern utility function, φ is an increasing function, and p is
a subjective second-order probability over a set � of probability measures π that the decision
maker (DM) deems to be relevant to her decision problem. To immediately give this model
a climatic interpretation, suppose that � is the set of distributions for climate sensitivity (S)

in Fig. 1, indexed by m ∈ M, and that the the choice variable is the level of abatement a
of greenhouse gas emissions. For each probability model, write the expected utility obtained
under that model as a function of a as EUm(a) = ∫

U (a(S))πm(S)d S.7 Then the policy
maker’s objective function can be written as

6 Ghirardato et al. (2004) achieve a similar separation between tastes and beliefs, but their framework is not
well suited to the comparative statics analysis and dynamic applications we consider in this paper.
7 Note that a denotes an act which maps states of the world (values of S) into payoffs (a(S)). We integrate
over S, but sum over models m in Eq. (1), because within-model uncertainty is represented through a PDF
over the continuous climate sensitivity parameter, but there is a discrete set of distributions for S.
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V (a) = ∑
m pmφ (EUm(a)) (2)

= Esubjφ(EobjU (a)) (3)

where pm is a second order weight on probability model m, and the subscript notation in
the second line emphasizes that the pm are subjective weights between models, while the
EUm denote conditionally objective expectations taken within a given model. Notice that if
φ is nonlinear, we can never write the objective function as a single expectation over a com-
pound distribution—the nonlinearity of φ drives a wedge between subjective and objective
knowledge.

If we assume further that φ′′ < 0, i.e. φ is concave, then we have that

Esubjφ(EobjU (a)) ≤ φ
(
Esubj×objU (a)

)
(4)

where Esubj×obj denotes an expectation over the compound distribution
∑

m pmπm . This
elementary inequality (a version of Jensen’s inequality) demonstrates a vital property of the
model. The concavity of φ ensures that if the subjective uncertainty were in fact objective,
thus allowing all uncertainty to be described by a unique compound distribution [as in the
expectation on the right hand side of (4)], this would always be preferred to the equivalent
ambiguous situation where part of the uncertainty is subjective and part of it is objective
[as in the left hand side of (4)]. The decision maker thus always prefers a policy whose
consequences are objectively known to an equivalent policy whose consequences are in part
determined by subjective choices. When φ is concave, we will say that the decision maker
is ambiguity averse (Klibanoff et al. 2005).

From (2) we find that the first-order conditions can be written as

∑

m

p̂m(a∗) d EUm

da

∣
∣
∣
∣
a=a∗

= 0 (5)

where a∗ is the optimal abatement level, and we have defined ‘ambiguity-adjusted’ second-
order probabilities p̂m as:

p̂m(a∗) = φ′(EUm(a∗))pm∑
n φ′(EUn(a∗))pn

. (6)

Equation (5) just says that the weighted sum over models of marginal expected utility with
respect to abatement should be zero, where the weighting factors are just the p̂m . It is identical
to the condition one would obtain under ambiguity neutrality, except that pm is replaced by
p̂m(a∗), the ambiguity-adjusted weight on model m.

If we look at (6), it is clear that the ambiguity weighting emphasizes those models that
predict low expected utilities, since φ′ is a decreasing function (see also Lange and Treich
2008). Moreover, an increase in ambiguity aversion puts more weight on models with low
expected utilities, and less on those with high expected utilities. This can be formalized using
the concept of monotone likelihood ratios. Gollier and Gierlinger (2008) prove the following
result:

Proposition 1 Suppose there is a set M of possible models of cardinality M, and indexed by
m. Without loss of generality, assume that the EUm are ordered such that EU1 ≤ . . . ≤ EUM .
Let φ2 = f (φ1), where f is increasing and concave, and let ( p̂1

m)m∈M, ( p̂2
m)m∈M be the

ambiguity-adjusted second-order probabilities associated with φ1 and φ2 respectively, as
given by Eq. (6). Then ( p̂1

m)m∈M dominates ( p̂2
m)m∈M in the sense of the monotone likeli-

hood ratio order, i.e.
(

p̂2
m/ p̂1

m

)
m∈M is decreasing in m.
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EU 

Fig. 2 Examples of comonotonic (left) and anti-comonotonic (right) relationships between the sequences

(EUm (a))m∈M and
(

d EUm (a)
da

)

m∈M

The proof is very simple—the ratio p̂2
m/ p̂1

m ∝ f ′(φ1(EUm)), where the proportional-
ity constant is independent of m. Since φ is increasing, f ′ is decreasing, and the EUm are
increasing in m, the factor on the right decreases when m increases. This provides a simple
characterization of the effect of increased ambiguity aversion on the first-order condition. It
is important to stress however that the weights

(
p̂m

)
m∈M are endogenous to the optimization

problem, as they depend on a∗. Thus translating how these weights change into statements
about how optimal abatement changes when ambiguity aversion increases is a non-trivial
task in general.

General results on the comparative statics of ambiguity aversion are hard to come by,
and depend on the properties of the sequence of functions (EUm(a))m∈M. The following
proposition defines conditions on these functions that allow us to ascertain the effect of an
arbitrary increase in ambiguity aversion on optimal abatement:8

Proposition 2 Suppose that d2 EUm
da2 < 0 for all m, and assume that for every fixed value of

a, the sequences (EUm(a))m∈M and
(

d EUm (a)
da

)

m∈M
are anti-comonotonic9 (comonoton-

ic) in m. Then an increase in ambiguity aversion increases (decreases) the optimal level of
abatement for the objective (2).

Proof See “Appendix”. �	

To understand the conditions on the functions EUm(a) in this proposition, consider the
diagram in Fig. 2, in which abatement a is plotted horizontally and EUm(a) is plotted verti-
cally for a model set containing 3 distinct models. Anti-comonotonicity means that for each
value of a the models with low expected utilities have high derivatives of expected utility with
respect to a—this case is represented in the right panel of Fig. 2. It is clear from the figure
that when these conditions are satisfied an increase in abatement will reduce the spread of
expected utilities across models, hence a rise in ambiguity aversion leads to more abatement.
Conversely, if the sequences are comonotomic then a decrease in abatement will decrease the
spread between expected utilities (represented in the left panel of Fig. 2) and so an increase
in ambiguity aversion leads to a drop in abatement.

8 Appendix A.2 of Lange and Treich (2008) investigates the comparative statics of ambiguity aversion in a sim-
ple parametric model. Our proposition considerably generalizes their analysis by abstracting from parametric
assumptions.
9 Two sequences are anti-comonotonic if one is increasing and the other is decreasing. They are comonotonic
if they are both increasing, or both decreasing.
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Note that an increase in ambiguity aversion always implies a policy change leading to a
smaller spread of expected utilities. With anti-comonotonicity this means more abatement
and with comonotonicity it means less.

Which (if any) of the conditions in this proposition holds in practice is an empirical ques-
tion. The proposition provides us with sufficient, but not necessary, conditions—it is quite
possible that neither condition is satisfied,10 in which case we need to make further paramet-
ric assumptions in order to investigate the effect of ambiguity aversion on policy choice. To
illustrate the application of the proposition however, consider the following example:

Example 1 Suppose that we have two models of the effect of greenhouse gases on climate:

• Model 1: Climate is not sensitive to anthropogenic emissions.
• Model 2: Climate is sensitive to anthropogenic emissions. Suppose that, conditional on

this model being correct, there are two climate states, a high damage state H , and a low
damage state L . Abatement increases the probability of state L materializing.

The DM attaches a default utility level u0 to today’s climate. Let u0 − dH be the utility level
in the high climate damages state, and u0 − dL be the utility level in the low damages state,
with dH > dL . The DM must decide the level of abatement, a. The utility cost of abatement is
given by a function �(a), and let π(a) be the probability of the low-damages state occurring
as a function of abatement. Clearly we need π ′(a) > 0, �′(a) > 0. Proposition 2 allows us
to obtain the following:

Proposition 3 Suppose that π ′′(a) < 0 and �′′(a) > 0. Then an increase in ambiguity
aversion increases optimal abatement in Example 1.

Proof The expected utilities obtained in models 1 and 2 are:

EU1 = u0 − �(a) (7)

EU2 = π(a)(u0 − dL − �(a)) + (1 − π(a))(u0 − dH − �(a))

= u0 − �(a) + π(a)(dH − dL) − dH . (8)

Clearly, EU1 > EU2, since π(a) ∈ [0, 1]. In addition, simple differentiation shows that
d EU1

da < d EU2
da . Thus the sequences (EU1, EU2) and

(
d EU1

da , d EU2
da

)
are anti-comonotonic

for all a. Finally, the conditions π ′′(a) < 0, �′′(a) > 0 ensure that d2 EUm
da2 < 0, m = 1, 2.

Thus the conditions of Proposition 2 are satisfied, and the result is established.

�	
At a very high level of abstraction we can ask which, if any, of the scenarios represented

in Proposition 2 and Fig. 2, is likely to be relevant for understanding the effect of ambigu-
ity on climate policy choice. There are three main sources of uncertainty in climate policy
at the global scale—scientific uncertainty about the effect of increases in greenhouse gas
concentrations on global climate, uncertainty about the damage function (i.e. how tempera-
ture changes translate into economic impacts), and technological uncertainty about the costs
of abatement. Arguably, all of these uncertainties should be represented as ambiguous. At
present the state of the empirical literature is that we have some credible probabilistic rep-
resentations of scientific uncertainty (as in e.g. Fig. 1), while uncertainties in the damage
function and technological change are at best represented by ad hoc assumptions based on

10 For example, notice that the conditions of the proposition ensure that the curves {EUm (a)} never intersect.
This is clearly a strong restriction if insisted upon globally.
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loose extrapolations and intuition (see e.g. Nordhaus 2008 p. 126)—we simply do not have
the data or the understanding to quantify these uncertainties probabilistically at this time.
Thus, ironically, the least ambiguous uncertainty is the only one we can model credibly using
formal tools. Nevertheless, it is clear that both scientific uncertainty and impacts uncertainty
give rise to an exposure to ambiguity at low values of abatement, while technological uncer-
tainty gives rise to an exposure to ambiguity at high values of abatement.

The key point to appreciate however is that the magnitude of the effects of these differ-
ent uncertainties on aggregate welfare is very different—one would expect ambiguity in the
science and impacts to give rise to much larger variations in expected welfare over a set
of probabilistic models than what would arise from ambiguity in abatement costs. This is
so because the downside of scientific and impacts uncertainty is both highly ambiguous (as
Fig. 1 demonstrates) and deeply damaging to global welfare (Weitzman 2009, 2012). Even
if aggressive abatement turns out to be very costly (e.g. about 10 % of global GDP in net
present value terms for a 450ppm stabilization target—at the very high end of current esti-
mates McJeon et al. 2011), these costs are likely to pale into insignificance when compared
to the persistent global catastrophe that would occur if climate sensitivity is greater than
say 6 ◦C.11 Thus ambiguity in costs will translate into much smaller variations in aggregate
welfare than ambiguity in the science and impacts. It thus seems likely that ambiguity is high
for low levels of abatement, and that, at least for a reasonable range of abatement policies, it
decreases as we increase abatement. Thus the anti-comonotonicity condition represented in
the right panel of Fig. 2 is probably a reasonable, if abstract, first-order representation of the
effect of ambiguity on climate policy.

3 Evaluating Dynamic Abatement Pathways Under Ambiguity

The preceding section abstracted the climate change abatement problem to a high level.
Perhaps most importantly, the models examined thus far have all been atemporal. While
static models are useful for gaining an intuition for the new effects that ambiguity aversion
introduces into familiar problems, they are of limited use for deriving quantitative results
about the effect of ambiguity on climate policy. The abatement problem is in its essentials
a dynamic decision problem, in that it requires us to trade off near-term costs against long-
term benefits. This section examines how scientific ambiguity affects the welfare analysis
of alternative climate policies. We introduce the dynamic extension of the smooth ambi-
guity preference representation derived in Klibanoff et al. (2009) and apply it to the DICE
integrated assessment model (Nordhaus 2008) to investigate how ambiguity about climate
sensitivity, represented by the 20 distributions in Fig. 1, affects a measure of willingness to
pay for abatement policy. As noted in the previous section, scientific ambiguity is only one of
the channels through which ambiguity may affect welfare, however it is the only one we have
credible (albeit ambiguous) probabilistic estimates of. It is also likely to be a dominant source
of ambiguity because differences between estimates of the tails of the distribution for climate
sensitivity have such large welfare consequences. Moreover, there is a large literature that
focuses on the effects of uncertainty in climate sensitivity on climate policy (e.g. Weitzman
2009; Kelly and Kolstad 1999). Thus while our analysis is of necessity a partial treatment

11 To put these numbers in perspective, real US GDP dropped by approximately 5 % (peak to trough) in the
recent recession. Thus high end abatement cost estimates correspond to the cost of a single year of a recession
about twice as bad—the rough equivalent of spending a year back in 1999 in GDP per capita terms. Average
temperatures 6 ◦C higher than today’s are substantially hotter than anything the earth has seen in the last
800,000 years (Jouzel et al. 2007).
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of the full uncertainty around climate policy, it has the benefit of being rooted in credible
empirical estimates, and allows a like-with-like comparison to the existing literature.

3.1 Dynamic Welfare Functions

The static ambiguity framework described in the previous section has been extended to the
dynamic case in Klibanoff et al. (2009). They obtain a representation of preferences over
time- and state-dependent acts, i.e. contingent plans that map the nodes of a decision tree
into consumption streams. If we let st = (x1, . . . , xt ) ∈ � denote a decision node, where
xτ ∈ Xτ is an observation at time τ and � is the set of all nodes, then a generic plan f maps st

into consumption. Klibanoff et al. (2009) show that preferences over plans that satisfy conse-
quentiality (any decision node is evaluated based only on those nodes that are reachable from
it), dynamic consistency (plans made today are carried out tomorrow), and further axioms
that are similar to those employed in the static representation result, can be represented by a
function V which is recursively defined through the equation,

Vst ( f ) = U ( f (st )) + βφ−1

⎡

⎢
⎣

∫

	

φ

⎛

⎜
⎝

∫

Xt+1

V(st ,xt+1)( f )dπθ (xt+1; st )

⎞

⎟
⎠ dp(θ |st )

⎤

⎥
⎦ , (9)

where θ ∈ 	 indexes the set of alternative probability models, and β ∈ [0, 1] is a discount
factor. The first term is the current payoff of the plan f , while the second term is the continu-
ation value of the plan, which is a nonlinear φ-weighted average over the set of models 	 for
the evolution of the state variables xt . We will use this representation to evaluate exogenous
abatement policies under two simplifying assumptions about learning under ambiguity.

Introducing endogenous learning into the problem leads to an explosion in the dimen-
sionality of the model’s state space in our application. A full dynamic learning model that
stays faithful to the nature of the uncertainty in Fig. 1 would require three levels of uncer-
tainty—random noise in the state equations, parametric uncertainty about the value of climate
sensitivity, and uncertainty over which of the priors in Fig. 1 is correct. Thus as new real-
izations of the noise are observed we would need to update both the parameters of each
distribution for climate sensitivity in the standard Bayesian fashion, as well as the weights on
models, in the manner of Bayesian model averaging (Hoeting et al. 1999). Both the param-
eters of the distributions, and the weights on models, thus become state variables of the
dynamic programming problem, leading to a very high dimensional problem that will not
yield to standard numerical optimal control methods (see for an example of the computational
complexities involved in accounting for learning about climate sensitivity in a much simpler
context Kelly and Kolstad 1999). To avoid these complexities we simply compute welfare
for two sample exogenous learning scenarios—one in which ambiguity resolves after one
time step, and one in which ambiguity persists unchanged for all time. These scenarios are
not intended to be realistic—they are useful precisely because they are unrealistic extremes
which can be thought of as bounding the space of learning scenarios. Since we will also be
fixing the control variables in our numerical analysis, the (time-dependent) distributions of
consumption that will enter our welfare analysis will be completely specified by a choice of
controls and the learning scenario, both of which are exogenously specified.

Suppose that we have M probability distributions πm(S) for climate sensitivity, and that,
given exogenous policy variables, consumption at time t when climate sensitivity is S is given
by ct (S). Then if ambiguity resolves after one time step, the representation in (9) reduces to
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V res = U (c0) + βφ−1

[
∑

m

pmφ

(
T∑

t=1

β t−1
∫

U (ct (S))πm(S)d S

)]

(10)

where pm is again the subjective weight on probability model m, T is the time horizon,
and the superscript on V serves to remind us that ambiguity is immediately resolved under
this welfare function. The structure of the representation is clear—at t = 1 all ambiguity is
resolved, we learn which model is correct, and hence welfare reduces to discounted expected
utility, the argument of φ in the round brackets. At t = 0 however we don’t know which
model is correct, so we must aggregate over the space of models using φ to represent our
aversion to ambiguity, which in addition preserves the distinction between subjective (pm)
and conditionally objective (πm(S)) uncertainty.

When ambiguity persists for all time the nonlinear recursive structure of the welfare func-
tion in (9) must be preserved at all time steps to reflect the presence of ambiguity. Unlike
the resolved ambiguity case, the ambiguity preference φ always operates on the continuation
value in this case, as it is always ambiguous. Examining the representation, and imposing
constant exogenous distributions over S at all times, we find that in this case welfare can be
calculated using the following recurrence relations:

ṼT +1 = 0 (11)

Ṽ j−1 = φ−1

(
∑

m

pmφ

(∫
U (c j−1(S))πm(S)d S + β Ṽ j

))

, j = T + 1 . . . 1 (12)

V per = U (c0) + β Ṽ1 (13)

where the superscript on V reminds us that ambiguity persists under this welfare function.
Note that we evaluate welfare in this case by starting in the terminal period and stepping
forward to the first period, as the recursion in (9) requires. The recursive structure of this
welfare function, and the fact that expectations are taken with respect to the same set of
distributions {πm(S)}m=1...M at all times, reflects the persistence of ambiguity.

It will be convenient in what follows to have a means of representing the welfare dif-
ference between two policies in consumption units, since this makes welfare changes for
different preferences directly comparable. Because we must potentially deal with non-mar-
ginal changes in welfare (because very high climate sensitivities could lead to very large
damages), the measure we will use in order to convert welfare changes into consumption
units is the Stationary Equivalent12 (SE) (Weitzman 1976). The SE of a welfare function V
is defined as the value of per capita consumption c(V ) which, when held constant over time,
gives rise to welfare equivalent to V . Thus we define c(V ) through

∑

t=0

β t PtU (c(V )) = V, (14)

where Pt is the population at time t . Define the fractional change in the SE induced by an
abatement policy, relative to a business as usual (hereafter BAU) baseline, as �. A sim-
ple calculation shows that when U is of the constant relative risk aversion (CRRA) form
[see (17) below], � is given by:

12 Stern (2007) makes use of a ‘balanced growth equivalent’. Relative changes in the balanced growth equiv-
alent are identical to those for the stationary equivalent when the utility function is iso-elastic, as in our
simulations below.
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� := c(VAB AT E ) − c(VB AU )

c(VB AU )
=

(
VAB AT E

VB AU

) 1
1−η − 1, (15)

where η is the elasticity of marginal utility, and AB AT E denotes a generic abatement policy.
All the results that follow use � to represent welfare differences between policies.

3.2 Application to the DICE Model

To make the discussion concrete, we will now use the DICE model (Nordhaus 2008) to
analyze the empirical effect of ambiguity on the welfare analysis of climate policy, focusing
on ambiguity over climate sensitivity. DICE is a well known integrated assessment model of
the connections between economic activity and climate change. A standard Ramsey-Cass-
Koopmans growth model with aggregate capital and labour inputs is linked to climate change
through emissions of greenhouse gases, which cause global warming and, with a lag, reduce
output by means of a reduced-form ‘damage function’ (more on this later). This damage func-
tion incorporates assumptions about adaptation to climate change, which can reduce output
losses, leaving the representative agent with the choice of how much to invest in emissions
abatement, as well, of course, as how much to save for investment in the composite capital
good. The model includes many economic and climate parameters, all of which are at least to
some extent uncertain. However for the reasons discussed above we will focus our attention
on the climate sensitivity parameter, and how the ambiguity in this parameter represented in
Fig. 1 affects the welfare benefits of abatement over a business as usual policy.

If we denote climate sensitivity by S, the exogenous savings rate by σ(t), and exogenous
abatement effort by a(t), then we view DICE as the following function:

DICE (S; σ(t), a(t)) = ct (S), (16)

where ct (S) is an S-dependent stream of consumption per capita.13 We can compute this
function for a variety of values of S, holding σ(t) and a(t) constant, to see how the consump-
tion stream depends on climate sensitivity. Specifying exogenous distributions for S at each
point in time, and using the function ct (S), we thus induce an ambiguous set of distributions
over consumption in each time period.

In our empirical results below, we pick specific exogenous values for the controls σ(t)
and a(t). For simplicity, we assume that the savings rate σ(t) is a constant 22 %, the default
value in DICE. Abatement effort is represented in DICE by the emissions control rate, a
number between 0 and 1, which controls the emissions intensity of gross economic output
(i.e. before climate damages are incurred). When the control rate is a(t), a fraction 1−a(t) of
gross output contributes to emissions. Our two scenarios for the control rate are a ‘Business
as usual’ scenario, and a scenario that limits the atmospheric concentration of CO2 to twice
its pre-industrial level (560 parts per million, hereafter referred to as the 2 CO2 scenario).14

The 2CO2 abatement scenario has been prominent in recent international negotiations about

13 Explicitly, ct (S) = (1 − σ(t)) ∗ Yt /Pt , where Yt is output, which is determined by previous savings and
abatement decisions and the value of S, and Pt is the exogenous population size.
14 Note that the control rates associated with the abatement scenario are designed so that they achieve the
specified stabilization targets in an idealized run of DICE in which damages are zero for concentrations below
the stabilization target, and rise sharply to very high values above the target. This is the method used by
Nordhaus (2008) to generate controls that achieve a given stabilization target, however it should be born in
mind that these controls will not in general achieve this target when they are used as inputs to DICE for
alternative damage functions, or values of S. Since all we require for our purposes is a plausible choice of
controls, we need not concern ourselves too much with whether they achieve a given stabilization target.
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Fig. 3 Emissions control rates for our sample abatement scenarios

climate policy. The emissions control rates corresponding to our two scenarios are depicted
in Fig. 3. They are each taken from Nordhaus (2008).

Since we have no means of objectively discriminating between the 20 alternative proba-
bility models in Fig. 1, we will invoke the principle of insufficient reason and assume equal
subjective weight pm = 1/M on each of them.15 We choose U and φ both to be isoelastic
functions (constant relative risk and ambiguity aversion respectively):

U (c) = c1−η

1 − η
, η 
= 1 (17)

φ(U ) =
{

U 1−ξ

1−ξ
η < 1

−(−U )1+ξ

1+ξ
η > 1

, (18)

where η (ξ ) is the coefficient of relative risk (ambiguity) aversion. Note that since φ operates
on utility, which is measured in different units to consumption and will usually be estimated
over a quite different range of absolute values, larger values of ξ are considered plausible,
compared with η. Gollier and Gierlinger (2008) calibrated the above model to the experi-
mental results reported in Camerer (1999) and found ξ ∈ [5, 10] to be plausible values for
the coefficient of relative ambiguity aversion. We will take the upper estimate of ξ = 10 as
our representative case of an ambiguity-averse decision maker, but will conduct sensitivity
analysis for a wider range of values where this is illuminating. See Ju and Miao (2012), for a
more detailed discussion of calibration of parameters for a related preference representation.

Aside from performing sensitivity analysis over the two preference parameters η and ξ ,
we will also investigate how the effects of ambiguity interact with two other components
of the model: the utility discount rate (also known as the pure rate of time preference), and
the damage function. We consider two values for the utility discount rate—0.1 and 1.5 %

15 Other choices for the weights pm , which may reflect partial quantifications of model dependence and model
performance, are of course possible. Current scientific techniques for achieving this are however tentative. See
e.g. Knutti et al. (2010), Knutti (2010) for discussion.
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per year. The lower value is justified on ethical grounds, and represents recent viewpoints
by, for example, Stern (2008), Dasgupta (2008), and Heal (2009). The higher value is advo-
cated by Nordhaus (2008). For the purposes of this paper we remain agnostic about which of
these is more appropriate for welfare analysis of climate change, and investigate the effect
of scientific ambiguity in both cases. The damage function in DICE has the form,

�DI C E (T ) = 1

1 + α1T + α2T 2 , (19)

where T is the increase in global mean temperature above the pre-industrial level, and α1

and α2 are coefficients. The damage from warming as a fraction of GDP is 1 − �DI C E (t),
which with the default calibration of α1 = 0 and α2 = 0.0028, gives damages of 1.7 %
of GDP for 2.5 ◦C warming and 6.5 % for 5 ◦C warming. An increase in the global mean
temperature of 5 ◦C over the pre-industrial level is greater than the difference in temperature
between the present day and the peak of the last ice age, the Last Glacial Maximum, and is
thus expected to lead to biophysical changes of an unprecedented magnitude (in the context
of human experience), occurring at an unprecedented rate (even in the context of geological
history). Because of this, the scientific community is essentially reduced to speculation about
the consequences of around 5 ◦C warming or more. The usual approach to calibrating the
damage function is to make an estimate of the output loss accompanying 2.5 ◦C warming or
thereabouts, and then to extrapolate to higher temperatures based on an assumed functional
form that is essentially unsupported by data of any sort.

A number of scholars, including Weitzman (2012), consider predicted damages of 6.5 % of
GDP given 5 ◦C warming to be remarkably low, and suggest that the damage function should
be revisited (see also Ackerman et al. 2010). We thus also consider the damage function
advocated in Weitzman (2012), and replace (19) with a damage function which replicates
the DICE damage function’s behaviour at better understood, lower temperatures, but which
exhibits rapidly increasing damages for higher temperatures:

�W E I T Z (T ) = 1

1 + (α̃1T )2 + (α̃2T )γ
, (20)

where α̃1 = 0.049, α̃2 = 0.16 and γ = 6.75. Like the function in (19), this choice gives
damages of 1.7 % of GDP for 2.5 ◦C warming and still only 5.1 % of GDP for 3.5 ◦C warming,
before increasing sharply to give damages of 9 % of GDP for 4 ◦C warming, 25 % for 5 ◦C
warming, and so on. Our results below display the welfare effects of ambiguity in all four
combinations of assumptions about the discount rate and damage function: low discount rate
+ DICE damages, high discount rate + DICE damages, low discount rate + WEITZ damages,
and high discount rate + WEITZ damages.

As a base set of results, Fig. 4 plots �, the percentage change in the stationary equiv-
alent under the 2CO2 abatement strategy relative to business as usual, as a function of the
coefficient of relative ambiguity aversion (ξ ), at η = 2.16

The figure shows that � increases as ξ increases. For the relatively flat DICE damages,
� increases approximately linearly with ξ over the domain in the figure, and ambiguity aver-
sion has a small effect on the magnitude of the welfare differences between the 2CO2 and
BAU policies. For the steeper WEITZ damages however, there is a clear nonlinear dependence
between � and ξ , and the magnitude of the ambiguity effect is much larger. For example if
the discount rate is 0.1 %, setting ξ = 10 gives rise to about a 45 % difference between the
2CO2 and BAU policies, as opposed to only 20 % at ξ = 0.

16 η = 2 is advocated in, for example, Nordhaus (2008), Weitzman (2007).

123



36 A. Millner et al.

Figure 5 considers the relative importance of ambiguity preferences compared with two
other important preferences, both represented by the elasticity of marginal utility (η). η plays
two roles in the standard discounted utilitarian welfare function—it encodes both risk prefer-
ences and preferences for consumption smoothing over time.17 While these two preferences
can be disentangled (e.g.Kreps and Porteus 1978; Traeger 2009), the standard formulation,
and almost all applied work in climate change economics, treats them with a single parameter.
We thus investigate the dependence of welfare differences on η and ξ concurrently in Fig. 5,
which plots � as a function of η for ξ = 0 and ξ = 10.

The figure shows that for the flat DICE damages, the effect of ξ on welfare is much smaller
than that of η. � is much more sensitive to changes in η, represented by the vertical variation
in the curves in the two left panels, than it is to changes in the value of ξ , represented by the
difference between the black ambiguity neutral curve (ξ = 0) and the blue and red ambiguity
averse curves (ξ = 10). The differences between ambiguity neutrality and ambiguity aver-
sion are so small relative to the effect of η that all three curves lie nearly on top of one another
in this case. The situation is however radically different under the steeper WEITZ damage
function. In this case the difference between the ambiguity neutral (black) and ambiguity
averse (blue and red) curves is comparable in magnitude to the effect of a change in η on
welfare. Thus regardless of the value of the discount rate, accounting for ambiguity aversion
is just as important as accounting for risk aversion and consumption smoothing under the
WEITZ damage function, and has a negligible effect under the DICE damage function.

3.3 Discussion of Results

In this section we discuss the qualitative features of our main simulation results in Figs. 4 and
5, show how they can be understood in terms of simple intuition, and how they are related to
theoretical work on the social discount rate under ambiguity.

At the coarsest level there are two relevant differences between the BAU and 2CO2 pol-
icies that are important for understanding the effect of ambiguity aversion on their welfare
differences in Fig. 4—the level of average consumption under each policy, and the ambiguity
in the distribution of future consumption under each policy. It is vital to understand that both
these quantities determine the ranking of policies—for example, one would not prefer a pol-
icy with a very low level of future consumption that all models agree upon to a policy with a
high, but ambiguous, level of future consumption unless one had a very extreme aversion to
ambiguity. The difference between the average level of consumption in the 2CO2 and BAU
policies is represented by the point ξ = 0 in Fig. 4. The fact that � is positive at ξ = 0 under
all discount rates and damage functions shows that the 2CO2 policy is welfare improving,
even in the absence of ambiguity aversion. Now it is also the case that the 2CO2 policy has
less exposure to scientific ambiguity than the BAU policy. This is obvious, as the higher are
emissions, the more CO2 concentrations change, the more temperature rises (mediated by
the climate sensitivity parameter), and the more consumption falls (mediated by the damage
function). Thus ambiguity in climate sensitivity translates directly into ambiguity in future
consumption. Since high emissions policies have a greater share of consumption that is deter-
mined by the climate components of the model, ambiguity in those components translates into
more ambiguity in consumption than would arise under a more stringent abatement policy.
The fact that the 2CO2 policy has both higher average consumption, and is less ambiguous
than the BAU policy, means that we must observe a monotonically increasing dependence of

17 The elasticity of inter temporal substitution is just 1/η in the discounted utilitarian framework with an
iso-elastic utility function.
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Fig. 4 Percentage change in SE of abatement relative to BAU for the 2 CO2 (560 ppm) abatement pathway,
as a function of the coefficient of relative ambiguity aversion (ξ ). Estimates based on the assumption that
ambiguity resolves after one 30 year time step are plotted in red, while estimates based on the assumption that
ambiguity is perfectly persistent are plotted in blue. η = 2 in these simulations. Note the change of scale in
the vertical axes. (Color figure online)

� on ξ—preference reversals are only possible if one policy has a low average consumption
level but is not very ambiguous, while the other has a high average consumption level but is
ambiguous.

Now consider the differences between the effect of ambiguity on welfare under the two
damage functions in Fig. 4—i.e. compare the left hand to the right hand panels. Because dam-
ages are small for low temperatures under both damage functions, it is really the variation
in the tails of the sensitivity distributions that is important for understanding the difference
between the effect of ambiguity under these two damage functions. Variations in the dis-
tributions at low values of S translate into very small variations in consumption because at
these values of S even the BAU policy does not achieve much warming. Variations in the
tails of the distribution are quantitatively important however both because at high values of S
large temperature changes are attained, and because the welfare effects of these temperature
changes are magnified by the damage function. Now for the flat DICE damage function even
the variation in the tails of the distributions for S does not affect consumption much—this
gives rise to the approximately linear dependence of � on ξ in this case. One can think of this
case as a first order Taylor approximation of the welfare function about ξ = 0 which holds
well over the values of ξ considered in Fig. 4 because the inter-model spread in predicted
future consumption is small. For the steep WEITZ damages however, the damage function
amplifies the spread in the tails of the sensitivity distributions into substantial spreads in future
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Fig. 5 Percentage change in SE of the 2 CO2 abatement pathway relative to BAU, as a function of the
coefficient of relative risk aversion (η). The black line plots the relationship when the coefficient of relative
ambiguity aversion ξ = 0, while the blue and red lines plot the relationship when ξ = 10 for persistent and
immediately resolved ambiguity respectively. (Color figure online)

consumption distributions—these are in turn amplified into large differences in expected util-
ity by the sharp curvature of the utility function at low consumption values (Weitzman 2009).
Thus in this case a linear approximation to the welfare function fails, and the nonlinear depen-
dence of � on ξ is revealed. Notice that for the WEITZ damages � asymptotes to a constant
value—this occurs since as ξ increases more and more weight is placed on models with low
expected utility,18 until for very large ξ these models dominate the welfare evaluation entirely
and � reflects the welfare difference between the worst model under each policy.

In order to understand the qualitative features of Fig. 5 we contrast it with the expression
for the certainty-equivalent social discount rate (ρ) under ambiguity aversion, derived in
Traeger (2009) and Gollier and Gierlinger (2008). These derivations assume isoelastic forms
for u and φ, and that consumption grows at an uncertain rate g which is normally distributed
g ∼ N (θ, σ ), where the mean growth rate θ is itself uncertain and distributed according to
a second-order subjective probability distribution, θ ∼ N (μ, σ0). It can then be shown that

ρ = δ + ημ − η2

2
(σ 2 + σ 2

0 ) − ξ |1 − η2|σ
2
0

2
, (21)

18 For the resolved ambiguity welfare function, this is the model with the lowest discounted expected utility.
The persistent ambiguity welfare function however picks out the model with the lowest expect utility at each
point in time.
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where δ is the utility discount rate. The first two terms in this expression are familiar from the
standard Ramsey formula for the social discount rate under certainty, and capture pure time
preference and inter-temporal substitution effects respectively. The third term is the standard
correction due to risk aversion and the uncertainty in the growth rate (note that the variance of
the growth rate is the variance of the composite distribution that arises from the combination
of uncertainty about g and θ ). The final term is a new addition due to ambiguity aversion.

Since differences in the expected utilities of abatement and BAU pathways only manifest
significantly in the distant future (when damages are large), it is intuitive that the social
discount rate may play a useful role in explaining our results. If ρ is large, we expect welfare
differences between abatement and BAU policies to be small. Similarly, those values of η

for which ρ is highly sensitive to ξ are also likely to be the values of η for which we see a
significant effect of ambiguity aversion on the welfare difference measure �. Although the
assumptions about the first- and second-order uncertainty on consumption growth rates used
to derive (21) do not map exactly onto our empirical application, the expression nevertheless
provides useful qualitative insights.

Focus first on the results for the DICE damage function, depicted in the left panels of Fig. 5.
Empirically, we find that for our simulations with the DICE damage function, μ � σ > σ0

at each point in time. Neither growth rates, nor their variances, are constant in our simula-
tions, with effective annual growth rates tending to fall from approximately 2 to 1 % over
our 200-year simulation horizon. However the ratio of inter- and intra-model growth rate
variances to the mean growth rate is smaller than 10−6 for every time step for the DICE
damage function. With η of order 1, and ξ of order 10, it is clear that the last two terms in the
expression for the discount rate are thus negligible, and all of the discounting work is done by
the pure rate of time preference δ and the consumption smoothing term ημ. As we increase
η the discount rate thus increases monotonically (the quadratic terms are negligible), and the
benefits of the 2CO2 abatement policy are monotonically discounted away. This is clearly
reflected in the figure, which shows a strong monotonic decrease in the welfare benefits of
abatement as η increases. The fact that μ � σ0 also explains why we observe such a small
difference between the ambiguity neutral and ambiguity averse curves for the DICE damage
function. The inter-model variation in the consumption distribution is simply too small to
compete with the strong inter-temporal substitution effects.

Now consider the results of our simulations with the WEITZ damage function, depicted
in the right panels of Fig. 5. These results are strikingly different. First, notice from the scale
of the vertical axis that � is in general significantly larger, as we would have expected given
the much greater damages at high temperatures that the abatement policy avoids under this
damage function. Second, and most importantly, notice that � is now much more sensitive
to ξ . Indeed, the difference between the ambiguity neutral and ambiguity averse curves is now
easy to see, with the gap between abatement and BAU policies widening substantially once
ambiguity aversion is accounted for. While �ξ=0 and �ξ=10 necessarily coincide at η = 1
[as we can see by consulting expression (21)], the ambiguity effect is large for most other
values of η, and in particular, increases when η rises above unity. We can again explain this
result by recourse to the expression for the social discount rate in (21). With high damages,
the intra- and, critically, inter-model variance in consumption growth is now much larger in
relation to mean consumption growth.19 Thus the third and fourth terms in (21) are larger
and work against the positive first and second terms more effectively, causing ρ to decline

19 In the twenty-second century, the ratios of inter- and intra-model spreads in consumption growth to mean
consumption growth increase by 1–2 orders of magnitude for the WEITZ damage function relative to their
values for the DICE damage function.
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significantly relative to its value for the DICE damage function. This gives rise to an ambi-
guity effect that can be very large for the higher values of η. The non-monotonic dependence
of � on η is also explained by (21). Notice that the inter-temporal substitution terms in the
discount rate are linear in η, while the risk and ambiguity terms are quadratic in η. For η < 1,
a small increase in η increases the linear terms more than it decreases the quadratic terms,
thus increasing the discount rate and leading to a decline in �. For η > 1 however a small
increase in η decreases the quadratic terms more than it increases the linear terms and thus �

starts to bend upwards if the uncertainty terms are sufficiently large.20 Clearly the ambiguity
effect also gets more weight in the welfare computation when η > 1, thus explaining the
large divergence between the ambiguity averse and ambiguity neutral curves at high values
of η.

4 Conclusions

This paper aimed to provide insight into how ambiguous knowledge, and aversion to ambi-
guity, affect the welfare analysis of climate change abatement policy. We have argued that
our knowledge of the climate system is not of sufficient quality to be described by a unique
probability distribution—there are many competing models of the response of climate to
greenhouse gas emissions, and at present we do not have an objective means of discerning
between them. Neglecting this model uncertainty is not a defensible strategy, as arbitrarily
singling out one model for special treatment, or weighting the models and treating the result
as if it were the output of a single objective model, fundamentally misrepresents the nature of
our uncertainty. While some form of weighting procedure is likely to be unavoidable if one
is to exploit the information in the model set, we would like to have a decision framework
that recognizes the epistemic difference between conditionally objective model probabili-
ties and arbitrarily chosen subjective weights on models, and, more generally, allows us to
reflect a rational preference for policies with less ambiguous consequences. We have investi-
gated one such framework—the smooth ambiguity model—which is easy to implement and
interpret—two attractive features when it comes to policy applications.

Our analytical work in the static case developed intuition for the new effects that ambigu-
ity aversion introduces into decision making. In particular, we derived sufficient conditions
that enable us to determine how an increase in ambiguity aversion affects optimal policy
choice without making any parametric assumptions. These conditions show the mechanism
behind the new effects ambiguity aversion introduces—policies are pushed in the direction of
decreasing spread in the set of expected utilities. Under the conditions of our proposition we
need to know only very general qualitative information about how model expected utilities
are ranked and depend on policy variables, but in general further parametric assumptions
would be necessary to ascertain the effect of ambiguity aversion. Nevertheless we argued
that these insights are relevant to understanding how ambiguity aversion might affect climate
policy choice at a highly stylized level. Exposure to scientific and impacts ambiguity is high
for high emissions policies, and exposure to cost ambiguity is high for low emissions poli-
cies, however the quantitative magnitude of these effects is likely to be very different, with
scientific and impacts ambiguity giving rise to much greater variations in the distribution
of future consumption than cost ambiguity. Thus, at a very coarse level, it would seem that
accounting for ambiguity aversion is likely to push us towards more aggressive abatement
policies.

20 This follows trivially from the fact that d
dη

η = 1, d
dη

η2

2 = η.
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In our dynamic application we attempted to answer the following questions: Is the ambi-
guity effect likely to be empirically important, and how does it compare to the effect of
other preference parameters on welfare calculations? To investigate these questions we per-
formed welfare calculations that account for scientific ambiguity, represented by 20 published
estimates of the probability distribution for climate sensitivity. We showed that the relative
welfare benefits of an abatement policy that stabilizes CO2 concentrations at twice their
preindustrial level over a business as usual policy increase as ambiguity aversion increases.
This is a small effect if damages are flat, and a large and quantitatively important effect if
damages are steep at high temperatures. Moreover, when damages are steep, the effects of
ambiguity aversion are comparable in magnitude to the effects of the preferences encoded by
the elasticity of marginal utility—risk aversion and inter-temporal consumption smoothing.
This is true regardless of the value of the utility discount rate. Neglecting ambiguity thus runs
the risk of understating, perhaps drastically, the welfare benefits of abatement.

While scientific uncertainty is only one channel through which the effects of ambiguity
may be transmitted, it is the only one for which credible empirical quantifications of ambigu-
ity exist, and thus the only one amenable to meaningful formal modeling at this time. Future
work that accounts for ambiguity in impacts and abatement costs when empirical estimates
become available will doubtless change the magnitude of our results, however we would
be surprised if they change their direction, as the welfare effects of ambiguity in the dam-
age function (which favor strong abatement) will likely dwarf the effects of cost ambiguity
(which favors weak abatement). If anything, given the strong ambiguity effect we observe
when damages are steep, it seems likely that a comprehensive account of ambiguity in all the
model components will give rise to even larger ‘ambiguity premia’ than we have observed
in our simulations.

There are some next steps that would be desirable extensions of our work. Fully opti-
mizing stochastic control models with endogenous learning are likely to be computationally
out of reach for some time, at least if we wish to stay true to the large number of distribu-
tions in Fig. 1.21 As is so common in modeling, there is a stark trade-off between feasibility
and fidelity to the data. Nevertheless, more limited empirical applications that focus on a
smaller set of distributions may yield qualitatively useful insights about how learning and
ambiguity interact in the determination of optimal policy choices. More robust calibrations
of the smooth ambiguity model would also be desirable, and are currently being pursued in
the experimental literature. When it comes to policy implications however, best practice will
always be to present results for a reasonable range of preference parameters, reducing the
importance of precise calibrations.

At a more fundamental level, there are some features of the smooth ambiguity model
that one might wish to extend. While the separation between ambiguity preferences and
ambiguous beliefs that the representation achieves is a desirable property, it may not always
be justified. The very general representation obtained in Schmeidler (1989) provides an
alternative, but suffers from problems of its own.22 In addition, we have assumed that our
model’s state-space accurately describes the evolution of the climate-economy system, i.e.
that there are no ‘surprises’. This seems a strong assumption, given known inadequacies

21 See the working papers by Lemoine and Traeger (2012), Cai et al. (2012) for the current computational
state of the art, which permits endogenous learning in models with 3–5 state variables. For comparison,
even a simplified representation of endogenous learning about the set of distributions in Fig. 1 would require
2 × 20 + 19 = 59 informational state variables.
22 These include the fact that the representation theorem depends on an explicit ‘uncertainty aversion’ axiom.
One would hope that such a behavioural constraint would be an optional special case of the representation
(much as risk aversion is in expected utility theory), rather than a primitive requirement.
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in our understanding of the climate system, not to mention economic aberrations. Decision
theories that account for these deficiencies in our understanding have been proposed (e.g.
Gilboa and Schmeidler 1995), although it is as yet unclear whether they can be usefully
applied in the climate change context.

Reflective normative work should feel no shame in pursuing these leads, and challenging
the privileged place that expected utility theory currently occupies. Our work suggests that
this is no mere academic exercise. The decision tools we employ have as strong an effect on
policy recommendations as the empirical inputs to our models. It is surely vital to make sure
that the tools fit the task.

Appendix: Proof of Proposition 2

Start with our general objective function:

V (a) =
∑

m

pmφ(EUm(a)) (22)

where EUm(a) is the expected utility in model m when abatement is a, and m indexes the
set of models M. To prove the result, begin by considering an ordered set of functions fλ
indexed by λ ∈ R such that when λ2 > λ1 we have that fλ2 = r ◦ fλ1 for some increasing
and concave function r , and define fλ0 to be the identity function.

The first order condition for the problem (2) when ambiguity preferences are given by
fλ ◦ φ is:

V ′
λ(a) :=

∑

m

pm f ′
λ(φ(EUm))φ′(EUm)

d EUm(a)

da
= 0, (23)

Note that ambiguity preferences fλ ◦ φ are always more ambiguity averse than φ when
λ > λ0, by definition. Let a0 be the solution of V ′

λ0
(a0) = 0, i.e. the solution to the opti-

mization problem when ambiguity preferences are given by φ. Now notice that d2 EUm
da2 < 0

implies that d2V
da2 < 0.23 The concavity of V (a) implies that, if we can find conditions

under which V ′
λ(a0) > 0 for any λ > λ0, then the solution of V ′

λ(aλ) = 0 must satisfy
aλ > a0. Thus our strategy will be to show that the premises of the proposition imply that
V ′

λ0
(a0) = 0 ⇒ V ′

λ(a0) ≥ 0 when λ > λ0.
We will make use of two lemmas to establish the result:

Lemma 1 Define Ka(m, λ) := f ′
λ(φ(EUm(a)))φ′(EUm(a)). Ka(m, λ) is log-supermodu-

lar (log-submodular) when the sequence (EUm(a))m∈M is decreasing (increasing) in m,
for any value of a.

Proof Consider the log-supermodular case. By definition (see e.g., Gollier 2001, p. 100),
Ka(m, λ) is log-supermodular if for any m H > mL and λH > λL we have that

Ka(m H , λH )

Ka(mL , λH )
≥ Ka(m H , λL )

Ka(mL , λL)
. (24)

23 To see this, differentiate (2) twice to find V ′′(a) = ∑
m pm

[

φ′′(EUm )
(

d EUm
da

)2 + φ′(EUm )
d2 EUm

da2

]

.

Thus since φ′′ < 0 and φ′ > 0, d2 EUm
da2 < 0 implies that V ′′(a) < 0.
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Substituting the definition of Ka(m, λ) into the above inequality we find that it holds iff

f ′
λH

(φ(EUm H ))φ′(EUm H )

f ′
λL

(φ(EUm H ))φ′(EUm H )
≥ f ′

λH
(φ(EUmL ))φ′(EUmL )

f ′
λL

(φ(EUmL ))φ′(EUmL )
(25)

Now since λH > λL there exists an increasing and concave function r such that fλH = r◦ fλL ,
which implies that f ′

λH
= (r ′ ◦ fλL ) f ′

λL
. Substituting this expression for f ′

λH
into the above

inequality and canceling common factors we find that the inequality reduces to

r ′( fλL (φ(EUm H ))) ≥ r ′( fλL (φ(EUmL ))). (26)

Since φ and fλL are increasing, and r ′ is decreasing, a sufficient condition for this inequal-
ity to hold is that EUmL ≥ EUm H . Since the inequality must hold for all mL < m H , this
implies that the sequence {EUm} must be decreasing in m. The log-submodular case follows
analogously. �	
The second lemma is described in detail in Gollier (2001, p. 102):

Lemma 2 Let g(m) be a function that crosses the m-axis singly from below (i.e. ∃m0 such
that, ∀m, (m − m0)g(m) ≥ 0). Consider a positive function K (m, λ). Then the following
condition holds:

Em g(m)K (m, λ1) = 0 ⇒ ∀λ2 > λ1, Em g(m)K (m, λ2) ≥ 0, (27)

if and only if the function K (m, λ) is log-supermodular, where Em is the expectation operator
over m, which is an arbitrarily distributed random variable. The same result obtains if the
function g(m) crosses singly from above, and the function K (m, λ) is log-submodular.

We now combine these two lemmas. Consider the case in which
(

d EUm
da

)

m∈M
is increas-

ing in m, and (EUm)m∈M is decreasing in m. Define

g(m; a0) := d EUm

da

∣
∣
∣
∣
a=a0

. (28)

Evaluating the first order condition (23) at λ = λ0, we have that

∑

m

pmφ′(EUm(a0))
d EUm

da

∣
∣
∣
∣
a=a0

= 0. (29)

Since
(

d EUm
da

)

m∈M
is increasing in m, (29) makes it clear that g(m; a0) crosses the horizon-

tal axis singly from below. This is so since φ′ > 0 means that in order for (29) to be satisfied,

we require some of the terms in the sequence

(
d EUm

da

∣
∣
∣
a=a0

)

m∈M
to be negative, and some

to be positive. Since the sequence is increasing, g(m; a0) must exhibit the single-crossing
property.

Now since {EUm} is decreasing in m by assumption, by Lemma 1 we have that Ka0(m, λ)

is a log-supermodular function. By the definition of g(m; a0) and λ0,
∑

m

pm g(m; a0)Ka0(m, λ0) = V ′
λ0

(a0) = 0. (30)

Now by Lemma 2, the fact that g(m; a0) exhibits the single crossing property, and the fact
that Ka0(m, λ) is log-supermodular, we know that for any λ > λ0,
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∑

m

pm g(m; a0)Ka0(m, λ) = V ′
λ(a0) ≥ 0, (31)

establishing the result.

To complete the proof, notice that when (EUm)m∈M is increasing and

(
d EUm

da

∣
∣
∣
a=a0

)

m∈M
decreasing in m, we can apply the same reasoning and use Lemma 2 in the case of a function
g that crosses singly from above, and a function h that is log-submodular.

Finally, this method of proof is easily extended to the case where the sequences

(EUm)m ∈ M and

(
d EUm

da

∣
∣
∣
a = a0

)

m ∈ M
are comonotonic, in which case ambiguity aversion

has the opposite affect on optimal abatement. To do this, one simply defines g(m; a0) :=
− d EUm

da

∣
∣
∣
a=a0

in the step (28). Under the assumption that both sequences are decreasing in

m for all a, all the following steps of the proof go through unchanged, and we are left with
the conclusion that −V ′

λ0
(a0) = 0 ⇒ −V ′

λ(a0) ≥ 0 when λ > λ0. Thus by the concavity of
V (a), an increase in λ decreases the optimal value of a in this case.
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