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Abstract

Does the present concern about sustainability raise fundamentally new issues for
economics, or is it dealing with problems already on our agenda? There are two
points that are central to sustainability: a concern for what happens in the long
run, and a respect for the constraints that the natural world places on the dynamics
of human societies and the well-being of their members. Concern for the long-run
has a long and distinguished history in economics, going back to Sidgwick, Ramsey,
Koopmans and others. We have not resolved these issues fully, but they are not new.
Concern for the ecological limitations on society is a matter of specifying properly the
constraints under which society operates. This does not raise fundamentally novel
issues, although the precise specifications of these constraints, which could involve
non-convexities and hysteresis effects, might be challenging. Here I explore optimal
growth paths for economies with various specifications of the intertemporal objectives
and constraints, and ask whether optimal paths are sustainable in a loose and intuitive
sense. The answer is frequently affirmative. I argue that in fact most optimal paths
are sustainable, using the terms “optimal” and “sustainable” in ways that command
general assent.
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1 What is Sustainability?

Two concerns lie at the heart of discussions of sustainability: a concern for the in-
terests of those who will live in the distant future, and a concern for the constraints
imposed on human activity by the ecological and biogeochemical foundations of our
societies. These capture what is common to many definitions of sustainability, the
best known of which is probably the Brundtland report’s comment that “Sustainable
development is development that meets the needs of the present without compromis-
ing the ability of future generations to meet their own needs.” I have argued elsewhere
that “best known” and “best” are not the same, and that this definition raises more
questions than it answers,! though it does emphasize clearly the intertemporal welfare
issue. Other definitions are more precise, requiring for example that utility levels be
non-decreasing over time,? or that resource stocks be non-decreasing, or that capital
stocks in total (including natural capital) be non-decreasing.> All of these formula-
tions are attempting to ensure adequate welfare for future generations either directly
by bounding this below or indirectly by bounding below the stocks instrumental in
providing future welfare.

Do we need new concepts and models to talk intelligently about these issues, or
are they already captured by existing economics? Although the potential for this has
not been fully realized, it is possible to model these issues within the existing corpus
of economics. Certainly a concern for the very long run raises old questions, dating
back to Sidgwick and Ramsey [17]. Even if we have not answered these questions
fully, we have discussed them at length. Likewise we may not yet have modeled well
the constraints imposed by our society’s biogeochemical infrastructure, but doing so
probably raises no totally new theoretical issues. Focussing on these raises questions
about how we specify the technological constraints under which society operates,
whether these involve nonlinearities, non-convexities, irreversibilities, etc. There is
room for plenty of new work here, especially on non-convexities and irreversibilities,
but these are not new questions. In fact both of the issues defining sustainability -
long-run welfare and constraints on growth - are also at the heart of another area
of economics, optimal growth theory. Ramsey’s classic work initiated this field and
placed the issue of balancing the welfares of present and future squarely on the agenda:
indeed Ramsey’s comment that “Discounting future utilities is ethically indefensible
and arises purely from a weakness of the imagination” states a position that most
environmentalists would agree with, were they aware of it.

Here I explore what we know about the trade-off between present and future

18]
2Pezzey [14] and for a review see Asheim et al. [1]
3For a review see Smulders [19].




and about the specification of the resource constraints under which the economy
operates, and relate the ideas emerging from sustainability to those from optimal
growth. Specifically I ask “Are sustainable paths optimal?” and “Are optimal paths
sustainable?”

I explore different approaches to the present-future trade-off, those due to Ramsey,
von Weiziicker [22], Koopmans [11], Rawls [16], and others. I do this in the context of
various specifications of constraints on the economy, constraints posed by exhaustible
resources, renewable resources, resources that are a source of utility to consumers,
resources used in production, etc. To see the overall picture, think of a table, with
the rows representing different specifications of the present-future trade-off, and the
columns representing different ways of specifying the constraints on the economy. The
entries in this table are all the different ways of pairing objectives and constraints
and defining optimal resource use.

Pure depletion enewable resources Resources and capital Etc.

Discounted utilitarian Hotelling 31 es Dasgupta and Heal 74

Rawlsian eee es Solow 74

Overtaking

Stock-dependent utility Krautkracmer 85, Heal 98 Krautkracmer 85, Heal 98

In the rest of the paper I explore selected entries from this table, as a way of en-
quiring into the sustainability-optimality relationship. Beginning with the simplest
case, Hotelling’s 1931 model, I progress through different specifications of preferences
and constraints. A clear picture emerges, indicating that optimal paths are sustain-
able, provided that preferences and constraints reflect fully what we know about
human society’s dependence on environmental systems.? This proviso is crucial: if
earlier generations of optimal growth models did not produce sustainable paths, it
was largely because they did not reflect this dependence.® Different long-run welfare
functions give different degrees of sustainability, but no reasonable definition of op-
timal choice would lead to the destruction of society’s natural resource base. So it
seems safe to assert that optimal paths are usually sustainable, using the terms “op-
timal” and “sustainable” in ways that command general assent. Sustainable paths,
however, may not be optimal.

What are the implications of this conclusion? Sustainability, it seems, is not a
separate goal from optimality: rather optimality is a refined form of sustainability.
Instead of proselytizing about sustainability as a social goal, perhaps environmental
economists should work to refine the concept of optimality generally used and en-
sure that it incorporates an understanding of human dependence on environmental
systems.

4 As summarized for example in Daily [3] or Heal [9).

5That sustainable paths are not optimal is sufficiently obvious taht it doe snot require formal
proof. Sustainable paths are not required by their definitions to meet first order conditions for
intertemporal efficiency.



2 The Hotelling Model

Consider first the simplest and most classical formulation of the problem of the op-
timal management of a natural resource. This formulation assumes the resource to
be exhaustible and simplifies the analytical framework by neglecting two issues im-
portant in understanding sustainability: placing adequate value on the long-run and
recognizing all sources of value from environmental assets. However it does recognize,
albeit in a rather basic way, the constraints imposed by an exhaustible resource on
consumption patterns. It provides analytical building blocks which become founda-
tions for some of the subsequent structures.

One could think of this as a model of the depletion of an oil or gas reserve.
These are finite in amount, non-renewable and of no value other than as inputs to
production. In spite of its limitations, this formulation, introduced by Hotelling
[10] in 1931, is instructive. It shows clearly the forces at work in the widely-used
discounted utilitarian approach, provides a simple framework for the presentation of
mathematical techniques which are central to the later work, and is a building block
in the construction of more general and satisfactory frameworks. It tells a story
which recurs as a subplot in the more complex dramas which capture more of our
real concerns.

The problem in this framework is that of choosing the time-pattern of use of
the exhaustible resource so as to maximize the integral of the discounted utilities
obtained from consumption of the resource, subject of course to a constraint that
the total amount of the resource used over time should not exceed the initial stock:
symbolically, the problem is

max/ u(cy) e7Odt s.t. / cdt < s (1)
0 0

Here u (¢;) is a utility function which is assumed throughout to be increasing, strictly
concave and twice continuously differentiable, so that the first derivative is positive
and the second negative. u' and u” denote the first and second derivatives of u
respectively. Problem (1) is a classical problem in physics, called an isoperimetric
problem: it arises when we seek to minimize the energy in a hanging string of fixed
length. We make the mathematics of this problem slightly easier if we replace the
integral constraint fooo cdt < sg by a differential equation equating the rate of change
of the remaining stock to the consumption rate, and add an inequality requiring the
remaining stock to be non-negative:

max/ u(cy) e %t s.t. s, >0 and § = —¢, (2)
0

where of course s; = sg — fot crdf. A dot over a variable is always used to denote its
time derivative. Problems (1) and (2) are fully equivalent.



We solve this by introducing the Hamiltonian
H=u(c¢)e™™ = Ne ¢ (3)

where ); is an adjoint variable or shadow price, and then maximizing the Hamiltonian
H with respect to ¢;, giving

u () =MNVEtie >0 (4)

In addition, the first order conditions for a solution to (1) or (2) require that the
present value of the adjoint variable or shadow price changes over time at a rate
given by the negative of the derivative of the Hamiltonian with respect to the stock:%

d oOH
= () —6t _
dt ( € ) 8875
so that .
A —6M =0, ie. A = Aoe (5)

Equation (5) is know as the “Hotelling Rule”. It tells us that the present value of
the shadow price of the resource has to be the same at all dates at which a positive
amount is consumed. Of course, (4) tells us that the derivative of utility with respect
to consumption, or marginal utility, has to equal the shadow price, and so marginal
utility also has to grow at the discount rate and also be constant in present value
terms. This aspect of the result is very intuitive: consumption has to be spread over
the possible dates so that its incremental contribution to utility, in present value
terms, (i.e., its contribution to the maximand) is the same at all dates. This is the
usual result that we spread a fixed factor between uses (dates, in this case) so that
the incremental contribution that it makes is the same in all. When this condition
is satisfied, no small variation in the time pattern of consumption will lead to an
increase in the maximand.

What are the implications of this for consumption paths? To start with, consider
a simple case. Let u (¢;) = log¢;. Then (4) and (5) imply that
Cc = coe_ét
i.e., consumption falls exponentially at the discount rate. Nothing is conserved or
sustained for ever, and the present and future are treated very unequally. The ratio

g—; of initial consumption ¢y to consumption at date t, ¢;, decreases exponentially

with time: & = e~®. The inequality between generations increases exponentially

over time.

6These are standard techniques from control theory or from calculus of variations. An intuitive
exposition of these techniques can be found in Heal [6] and a more comprehensive treatment in
Seirstad and Sydaeter [18].



In the general case, we have from (4) and (5) that
U’ (¢) & = 6u' (¢y)

so that

Qloe
>

- ©

where n = —cu” (¢;) /u' (¢;) > 0 and is the elasticity of marginal utility of consump-
tion: it is also a measure of risk aversion and of the curvature of the function u (c).
So we have the following general result:

Proposition 1 If the utility function u has a constant elasticity of marginal utility,

then consumption on an optimal path which solves (1) falls over time at a rate that

is linear in the discount rate, with the constant of proportionality being the inverse of
)

the elasticity of marginal utility: ¢, = coe” n".

Again, we have inequality in the treatment of present and future: this can be
reduced by reducing the discount rate, to give a flatter consumption profile, but the
ratio of present to future consumption still grows exponentially. And setting the
discount rate equal to zero is not a solution to the problem, for in that case (6) tells
us that consumption should be constant over time, and the only feasible constant
consumption level is zero. For § = 0, the problem (1) has no solution.” This is an
example of the unsettling paradoxes to which a zero discount rate gives rise - see Heal

).

2.1 Conclusions from the Hotelling model

To summarize, the Hotelling model of optimal depletion of an exhaustible resource
leaves little room for any sensible discussions of sustainability. The set of possible
paths is very limited: consumption must go to zero, and as consumption is the only
source of welfare, the economy must ultimately collapse. In the next section we
see that a relatively small change, acknowledging an explicit value for the resource
stock, alters everything. It makes the problem qualitatively different. We still work
with an exhaustible resource, so that the set of feasible paths is unaltered, but the
valuation of the remaining stock alters optimal use patterns radically and introduces
real substance into the discussion of sustainability. Making the resource renewable,
which is the theme of section 4, takes this process even further. Another strategy
for making the model richer is to allow for the accumulation of capital, which can
to some degree substitute for the resource. This is the approach that was taken
initially by Dasgupta and Heal [4][5], who showed that positive consumption levels
may be sustained for ever even with an exhaustible resource, provided that there is
considerable scope for substitution of produced capital for the resource.

"For a detailed discussion of this case, see Heal [6] and Dasgupta and Heal [5].
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3 Valuing a Depletable Stock

Next we recognize more explicitly the mechanisms through which environmental as-
sets contribute to economic well-being. First we change the pure depletion problem
by adding the remaining stock of the resource as an argument of the utility function,
so that we now recognize explicitly that the stock of the resource may be a source of
value.

Examples of environmental resources for which this would be appropriate include
biodiversity, which in the sense of the range of species or some measure of their
variation, is a depletable asset: once it is reduced through extinction, it can never
be restored to its original value. And clearly the stock of biodiversity is a source of
many services.

Another example is a forest, which yields a flow of wood for consumption as well
as recreational facilities and carbon sequestration services, removing C'Oy from the
atmosphere. Forest are of course usually renewable rather than depletable, but a
tropical hardwood forest may to a first approximation be thought of as depletable.
Other examples are a landscape, which can be farmed to yield a flow of output or
enjoyed as a stock, or the atmosphere which can be used to yield a flow of services as
a sink for pollution or enjoyed as a stock of clean air.?

The basic problem is now

max/ u (¢, St) e dt s.t. s, > 0and §, = —¢, (7)
0

where the only alteration from the previous section is in the inclusion of the stock
as an argument of the utility function, leading to qualitatively different conclusions.
Now, in contrast to the previous case, it may be optimal to preserve some of the
resource stock indefinitely. How much is sensitive to the precise specification of the
objective, and we investigate several alternatives.

3.1 Utilitarian Optimal Paths

In the case of problem (7) the Hamiltonian is
H=u(c,s) e % — N

and maximization with respect to consumption ¢; gives the same result as before,
namely that the derivative of utility with respect to consumption must be greater
than or equal to the shadow price of the resource:

Ue (Ct,St) S )\t;: )\t if Cy > 0

8This framework was introduced by Krautkraemer [12], and developed further by him in [13].



where u, = % etc. However, the condition describing the movement of the shadow

price over time is different, and now a solution has to satisfy

S\t — 6)\75 = —Ug (Ct, St)

For simplicity now consider the case when the utility function is additively sepa-
rable:

u (e, 8¢) = ug (¢) + ug (8t)

where as always the u functions are increasing, strictly concave and twice continu-
ously differentiable. Separability implies that the marginal utility of consumption is
independent of the level of the remaining stock, and vice versa: in other words, the
valuation of each source of utility is independent of the level of the other. Then,
letting a prime denote the derivative of a function of one variable with respect to its
argument, the conditions for optimality become:

Ull (Ct) < )\t, = )\t if ¢ > 0.
. (8)

)\t — 5)\15 = —UIQ (St)

In the previous case, the shadow price of the resource grew indefinitely: now in
contrast there may be a solution at which ¢, s; and )\; are constant. Note that if
consumption is constant, it must of course be zero: this is the only feasible constant
consumption. And note that if the shadow price is constant, then 6\ = u (s;). So
at a stationary solution of the first order conditions (8)

Uy (87)
uy (0)

where s* is the constant value of the remaining resource stock.

This equation has a simple interpretation: it requires that the slope of an indif-
ference curve in the s — ¢ plane, the ratio of the marginal utilities of the stock and
flow, equal (or exceed) the discount rate. If we rewrite it as u) (0) = u} (s*) /8, we
can see another interpretation. Consider postponing an increment of consumption Ac
indefinitely. The loss of utility is the derivative of utility with respect to consump-
tion times the drop in consumption, u} (0) Ac. The gain from an increased stock,
which continues indefinitely, is the present value of the stream of incremental utilities
accruing from an increased stock.

6 <

, with equality if ¢, > 0. 9)

/ uy (%) Acexp[—6t]dt = Acul, (s*) /6
0

Equality of the incremental gains and losses implies (9), which can thus be interpreted
as saying that the extra utility of an increment of consumption must equal the present
value of the stream of incremental utility resulting from an increase in the stock. This
is all very natural and straightforward.
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Figure 1:

The stationary configuration for this model is shown in figure 1: the constant level
of the stock is one at which the derivative of utility with respect to the stock (the
slope of the curve us) equals the slope of uy, the utility-of-consumption function, at
the origin, times the discount rate 6.

Figure 2 shows the dynamics of an optimal policy, which involve depleting the
resource stock by consuming it until it is run down to s*, and then stopping con-
sumption and preserving the stock for ever. The optimal policy is described by the
two differential equations

ul (c0) ¢ — 6uy (c)) = —uh(sy) (10)

S = —C

whose phase portrait is shown in figure 2. To understand this portrait, note that S
is always non-positive, so that the system moves to the left or is stationary. ¢ is zero
on the curve éu) (¢;) = ub (s;), and is negative to the right of this and positive to the
left. There is a stationary solution to the equations (10) at the point ¢ = 0, s = s*.
It is straightforward to verify that this stationary solution is approached from initial
points on a one dimensional stable manifold, as shown in figure 2: this is shown
by linearizing the systems (10) in a neighborhood of the stationary solution, and
observing that the matrix of the linearized system has real eigenvalues, one positive
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Figure 3.2: the dynamics of alternative solutions to the depletion problem.

Figure 2:

and one negative. The linearization is

1" 2 1o
u;ullu + 5([“1] U Uy ) —u;’
T\o 11\ 2 "
(uy) (“1 ) Uy
-1 0

and it follows that the signs of the eigenvalues are opposite as the determinant is
negative.

There is an important difference between the solution to the present problem, and
that to the classic Hotelling problem. In the present framework a positive stock may
be preserved for ever on an optimal path: exactly how much depends on the discount
rate and on the utility functions, but this is a qualitative difference between the two
problems. So the concept of “sustainability” seems to have some relevance in the
context of this solution.

When will it be optimal in this context to preserve a positive stock level for
ever? This depends on the behavior of the utility function as the consumption level
goes to zero. If the marginal utility of consumption goes to infinity as consumption
goes to zero, as is often assumed, then equation (9) has no solution and there is no
stationary state. This is the case with a Cobb-Douglas function, or with a separable
utility function in which wu; (¢) has a constant elasticity of marginal utility. In any
of these cases, the indifference curves in the ¢ — s plane do not cross the horizontal
axis, but asymptote towards it. These are cases in which the flow from the resources
is in some sense “essential.” There is no substitute for it and it cannot be allowed to

10



fall to zero. It is natural that in these cases no stock will be preserved. It is however
counterintuitive that we preserve the stock when there is a substitute for the flow that
it produces. Note that whether there is a substitute for the stock - i.e. the behavior
of u4 (0) - is not important in determining whether a positive stock remains. We can
summarize this as follows:

Proposition 2 Consider an optimal solution to problem (7) when the utility function
is additively separable, u(c,s) = wuy(c) + uz(s). A sufficient condition for this to
involve the preservation of a positive stock for ever is that the marginal utility of
consumption at zero is finite, u} (0) < oo, and that there exists a finite stock level s*,
the optimal stationary stock, such that v} (0)6 = uf (s*). In this case, if the initial
stock sg > s*, then total consumption over time will equal sqg — s*: if so < sx, then
consumption will always be zero and the entire stock will be conserved on an optimal
path. If on the other hand the marginal utility of consumption at ¢ = 0 s infinite,
then it will not be optimal to conserve any positive stock level indefinitely.

3.2 The Green Golden Rule

A second difference arising from the inclusion of the stock as a source of utility
comes when we ask the question: “Which configuration of the economy gives the
maximum sustainable utility level?”, a question motivated by the “golden rule of
economic growth” introduced in the 1960s by Phelps [15], and by our present interest
in sustainability. In the Hotelling formulation, there is no interesting answer to this
question: the only utility level maintainable for ever is that associated with zero
consumption. In the present model, however, the question is quite interesting, as
there are many utility levels that can be maintained for ever. Clearly in the very long
run no positive consumption level can be maintained and utility must be derived from
the stock only. So the answer to the question “Which configuration of the economy
gives the maximum sustainable utility level?” must be “the utility level associated
with the initial stock (the biggest stock ever) and zero consumption.” Formally, in
finding the maximum utility that can be sustained indefinitely we are maximizing
u (0,s) where s < sg, and the solution is clearly to preserve the entire stock and
never consume anything. This is the solution that has been called the green golden
rule [2]: it is the path which of all feasible paths gives the highest value of the long
run level of utility”. It can be formalized as the solution to

max  limu (¢, s¢)
feasible paths t—oo

Formally,

9This is formalized as the maximum limiting utility value. However, other formalizations are in
principle possible: for example, as the maximum of the lim sup of the utility values. The differences
between alternatives become of significance only when positive limit sets of feasible trajectories may
be limit cycles or other more complex attractors.
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Proposition 3 The maximum sustainable utility level is attained by conserving the
entire initial stock.

This point is illustrated in figure 2.

3.3 The Rawlsian Optimum

An alternative approach to sustainability is using the Rawlsian definition of justice
between generations. In the case of the current model, the green golden rule happens
to be the path which is optimal in the Rawlsian sense, i.e., which maximizes the
welfare of the generation which is least well off. It is easy to see this point. On
any path which involves positive consumption, the utility level is eventually non-
increasing over time. So the least-well-off generation is the “last” generation: in fact
there is no “last” generation, so more accurately the lowest welfare level is the limiting
welfare level. But this is maximized by the green golden rule, which maximizes the
sustainable, and so the limiting, welfare level over all feasible paths.

This coincidence of welfare criteria does not occur in all models, and in particular
does not occur in the model of a renewable resource considered in the next section. In
that model, the least well off generation may be the first, not the last. Nevertheless
non-renewable environmental resources valued both as stocks as flows are probably
sufficiently important that the present model has real relevance as an ideal type, so
that the coincidence of criteria is a significant result.

3.4 Overtaking

In an attempt to avoid the problems of zero discount rates, and yet give equal weight
to present and future, von Weizicker [22] introduced the overtaking criterion:

Definition 4 A path ¢! is said to weakly overtake a path ¢ if there exists a time T*
such that for all T > T*, we have

T T
/u(ctl)dtZ/ u(cf)dt
0 0
1

ct is said to strictly overtake c* if the inequality is strict.

This is an ingenious approach: it replaces infinite integrals by finite ones, and says
that one path is better than another if from some date on cumulative utility on that
path is greater. This is a relationship that can be checked even if both cumulative
utility totals go to infinity as T' — oo, so this approach does to some degree extend the
applicability of an approach based on a zero discount rate. The overtaking criterion
ranks paths with different limiting utility values according to those limiting values [8].
Consequently the overtaking optimal path is the green golden rule, the path along
which nothing is consumed and the entire initial stock is maintained intact.

12



The argument is as follows. First recall that the limiting utility value on any path
isu (0, s') where s is the limiting resource stock. Provided that zero consumption
does not incur an infinite utility penalty, we maximize this value by having as the
limiting stock, the initial resource stock. The program which consumes nothing has
the largest limiting utility value and so overtakes any other program. The overtaking
optimum is also the Rawlsian optimum and the green golden rule. It is furthermore
the only solution with non-decreasing utility levels. This is a remarkable coincidence
of views. Note that with these three criteria complete conservation of the initial stock
is optimal, whatever the size of the initial stock. Nothing in these arguments depends
on the size of the initial stock. In some ways this is surprising: intuitively, one might
feel that whether to conserve or not should depend on the size of the initial stock.
This is true of the discounted utilitarian solution.

3.5 Summary

Explicit recognition of the resource stock as a source of utility gives substance to the
concept of sustainability. Now there is a purpose to conservation, and indeed full
conservation emerges optimal for several objectives. Optimality and sustainability
overlap and perhaps even coincide: even discounted utilitarianism may recommend
the conservation of a substantial stock ad infinitum.

4 Renewable Resources

Now we add further to the structure of the model, this time in the specification of
the constraints and the dynamics of the resource. We assume the resource to be
renewable, i.e., to have self-regenerating properties. The resource has a dynamic, a
life, of its own. We model the interaction between this dynamic and the time path
of its use by humans. Animals, fish and forests fall into this category. In fact, any
ecosystem is of this type, and many of our most important natural resources are
best seen as entire ecosystems rather than as individual species or subsystems. For
example, soil is a renewable resource with a dynamic of its own, which interacts with
the patterns of use by humans. Even for individual species such as whales or owls,
one should ideally think of the validity and the dynamics of the entire ecosystem of
which they are a part.

We shall see that the renewable nature of the resource makes a dramatic difference
to the nature of optimal solutions. Now the future may actually be better treated
than the present along an optimal path: if the initial resource stock is low, the optimal
policy requires that consumption, stock and utility all rise monotonically over time.
The point is that because the resource is renewable, both stocks and flows can be
built up over time provided that consumption is less than the rate of regeneration.

In this reformulation, the maximand remains exactly as before: primarily the
discounted integral of utilities from consumption and from the existence of a stock,

13



fooou (c,s) e~%dt, although as before some alternatives will be reviewed. However,
the constraints are changed. We assume that the dynamics of the renewable resource
are described by

S =r (st) — ¢ (11)

Here r is the natural growth rate of the resource, assumed to depend only on its
current stock. This describes its growth without human intervention. More complex
models are of course possible, in which several such systems interact: a well-known
example is the predator-prey system. In general, r is a concave function which attains
a maximum at a finite value of s. This formulation has a long and classical history,
which is reviewed in Dasgupta and Heal [5]. In the field of population biology, r (s;) is
often taken to be quadratic, in which case an unexploited population (i.e., ¢; = 0Vt)
grows logistically. Here we assume that r (0) = 0, that there exists a positive stock
level 5 at which r (5) = 0, and that r (s) is strictly concave and twice continuously
differentiable.

Probably the weakest part of this specification, is the ecological dynamic. As
noted above, most ecosystems are considerably more complex than suggested by the
adjustment equation (11). In most cases they consist of many linked elements each
with its own interacting dynamics. It is possible that under some conditions the
simple representation used here can be thought of as an aggregate representation of
the ecological system as a whole, with the variable s; not the stock of an individual
type but an aggregate measure such as biomass: this is a topic for further research.
It is also true, fortunately, that the general qualitative conclusions which we reach,
do not depend very sensitively on the precise specification of the ecological system.

The overall problem can now be specified as

maX/ w(c,s)e %dt sit. §, = r(s;) — ¢, So given. (12)
0

The Hamiltonian in this case is
H =u(e, st) e 4 N\ e [r(s¢) — ¢

Maximization with respect to consumption gives as usual the equality of the marginal
utility of consumption to the shadow price:

Ue (Ctvst) =N

and the rate of change of the shadow price is determined by

d
p ()\te_‘%) = — [us (ci,80) e + M= (st)]
A solution to the problem is characterized by
Ull (Ct) = )\t
st =1(s5) — ¢ (13)

>\t — 5)\ = —UIQ (St) — )\tT/ (St)
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which in fact reduce to the equations of the solution to the previous problem if 7 (s)
is identically zero. In studying these equations, we first analyze their stationary
solution, and then examine the dynamics of this system away from the stationary
solution.

4.1 Stationary Solutions

At a stationary solution, s is constant so that r(s;) = ¢;: in addition the shadow
price is constant so that

ouy (er) = uy (s¢) +uy (cr) 17 (s¢)
Hence:

Proposition 5 A stationary solution to (13) satisfies

)=c
=6—1"(s) } (14)

The first equation in (14) just tells us that a stationary solution must lie on the
curve on which consumption of the resource equals its renewal rate: this is obviously
a prerequisite for a stationary stock. The second gives us a relationship between the
slope of an indifference curve in the ¢ — s plane and the slope of the renewal function
at a stationary solution: the indifference curve cuts the renewal function from above.
Such a configuration is shown as the utilitarian stationary solution in figure 7. This
reduces to the earlier result that the slope of an indifference curve should equal the
discount rate if v’ (s) = 0Vs, i.e., if the resource is non-renewable.

There is a straightforward intuitive interpretation to the second equation in (14).
This interpretation is exactly analogous to that given for the corresponding equation
(9) of the previous section. Consider reducing consumption by an amount Ac and
increasing the stock by the same amount. The welfare loss is Acu) : there is a gain
from increasing the stock of Acub, which continues for ever. But in addition the
changed stock leads to a different stationary consumption level, in the amount Acr’.
Both of these effects—the changed stock and the changed stationary consumption—
continue for ever and so we have to take their present values by dividing by the
discount rate. Hence at an optimum

us(st
wy (et

~

Act; = Acluly +7'uy) /6

which reduces to the second equation in (14).1° So (14) is a very natural and intuitive
characterization of optimality.

0T am grateful to Jim Wilen for this interpretation.
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4.2 Dynamic Behavior

What are the dynamics of this system outside of a stationary solution? These are
also shown in figure 7. They are derived by noting the following facts:

1.

beneath the curve r (s) = ¢, s is rising as consumption is less than the growth
of the resource.

. above the curve r (s) = ¢, s is falling as consumption is greater than the growth

of the resource.

. on the curve r (s) = ¢, s is constant.

. from (13), the rate of change of ¢ is given by

uf (¢)¢ =y () [§ =1 ()] — iy (s)

The first term here is negative for small s and vice versa: the second is negative
and large for small s and negative and small for large s. Hence c is rising for
small s and vice versa: its rate of change is zero precisely when the rate of
change of the shadow price is zero, which is on a line containing the stationary
solution. The slope of this line is given by

Oc  ujr’ +uy
Js  uf (6—1r")
The numerator is negative: the denominator is likewise if 6 > 7/, in which case

the slope of the ¢ = 0 line is positive at least in a neighborhood of the stationary
solution.

by linearizing the system

around the stationary solution, one can show that this solution is a saddle point.!!
This shows that the utilitarian stationary solution (14) is a saddlepoint locally if
it involves a stationary stock in excess of that giving the maximum sustainable yield.
This is certainly the case for § small enough. Hence the dynamics of paths satisfying
the necessary conditions for optimality are as shown in figure 7, and we can establish:

' This is also true for small stocks for which > § > 0, and in other cases. To simplify the
linearization I have taken the third derivative of u; to be zero, or at least small relative to the
square of the second derivative.
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Proposition 6 For small enough discount rates, optimal paths for the problem (12)
tend to the stationary solution (14). They do so along a path satisfying the first order
conditions (13), and follow one of the two branches of the stable path in figure 7
leading to the stationary solution. Given any initial value of the stock sy, there is a
corresponding value of co which will place the system on one of the stable branches
leading to the stationary solution. The position of the stationary solution depends on
the discount rate, and moves to higher values of the stationary stock as this decreases.
As & — 0, the stationary solution tends to a point satisfying uy/u}y = r', which
means in geometric terms that an indifference curve of u (c, s) is tangent to the curve
c=r(s) given by the graph of the renewal function.

The renewable nature of the resource has clearly made a dramatic difference to
the nature of optimal solutions. Now the future may actually be better treated
than the present: if the initial resource stock is low, the optimal policy requires that
consumption, stock and utility all rise monotonically over time. The point is that
because the resource is renewable, both stocks and flows can be built up over time
provided that consumption is less than the rate of regeneration, i.e., the system is
inside the curve given by the graph of the renewal function r(s).

In practice, unfortunately, many renewable resources are being consumed at a
rate greatly in excess of their rates of regeneration: in terms of figure 7, the current
consumption rate ¢; is much greater than r (s;). So taking advantage of the regener-
ation possibilities of these resources would in many cases require sharp limitation of
current consumption. Fisheries are a widely-publicized example: another is tropical
hardwoods and tropical forests in general. Soil is a more subtle example: there are
processes which renew soil, so that even if it suffers a certain amount of erosion or of
depletion of its valuable components, it can be replaced. But in many cases human
use of soils is depleting them at rates far in excess of their replenishment rates.

4.3 The Green Golden Rule

We can use the renewable framework to ask a question that we asked before: what
is the maximum sustainable utility level? There is a simple answer.

First, note that a sustainable utility level must be associated with a sustainable
configuration of the economy, i.e., with sustainable values of consumption and of the
stock. But these are precisely the values that satisfy the equation

et =1 (s)

for these are the values which are feasible and at which the stock and the consumption
levels are constant. Hence in figure 7, we are looking for values which lie on the curve
¢t = 1(s¢). Of these values, we need the one which lies on the highest indifference
curve of the utility function wu (c, s): this point of tangency is shown in the figure. At
this point, the slope of an indifference curve equals that of the renewal function, so

18



that the marginal rate of substitution between stock and flow equals the marginal
rate of transformation along the curve r(s). Hence:

Proposition 7 The mazimum sustainable utility level (the green golden rule) satis-

fies  (s)
/ ) =T (875)

1 (e

£

<

Recall from (14) that as the discount rate goes to zero, the stationary solution to
the utilitarian case tends to such a point.

Note also that any path which approaches the tangency of an indifference curve
with the reproduction function, is optimal according to the criterion of achieving
the maximum sustainable utility. In other words, this criterion of optimality only
determines the limiting behavior of the economy: it does not determine how the limit
is approached. This clearly is a weakness: of the many paths which approach the
green golden rule, some will accumulate far more utility than others. One would like
to know which of these is the best, or indeed whether there is such a best. We return
to this later.

4.4 The Rawlsian Solution

In the non-renewable context, we noted the coincidence of the Rawlsian optimum
with the Green Golden Rule. In the present case things do not always fit together
so neatly. Consider the initial stock level s; in figure 7: the utilitarian optimum
from this is to follow the path that leads to the saddle point. In this case, as noted,
consumption, stock and utility are all increasing. So the generation which is least
well of, is the first generation, not the last, as it was in the non-renewable case. What
is the Rawlsian solution in the present model, with initial stock s;? It is easy to
verify that this involves setting ¢ = r (s1) for ever: this gives a constant utility level,
and gives the highest utility level for the first generation compatible with subsequent
levels being no lower. This remains true for any initial stock no greater than that
associated with the Green Golden Rule: for larger initial stocks, the Green Golden
Rule is a Rawlsian optimum and in this case we do still have the coincidence noted
in the previous chapter. Formally,

Proposition 8 For an wnitial resource stock si less than or equal to that associated
with the Green Golden Rule, the Rawlsian optimum involves setting ¢ = r(sy) for
ever. For sy greater than the green golden rule stock, the Green Golden Rule is a
Rawlsian optimum.

4.5 Overtaking

What does the overtaking criterion imply in the case of renewable resources?
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First note that by quite standard arguments, an optimal path must satisfy the
utilitarian first order conditions for optimality with the discount rate equal to zero:

= A

=~

u

! !

7
—Uy — UyT

P )

= r(s)—c

e

These conditions have as their saddle-point stable stationary solution the green golden
rule.

Second, note that all paths satisfying the above first order conditions have well-
defined limiting utility values.

Finally, note that the green golden rule is the highest possible limiting utility value,
so that the path satisfying the above conditions and approaching the green golden
rule overtakes any other path satisfying the same first order conditions. Overall, then,
it is clear an overtaking optimal path follows the utilitarian first order conditions with
a zero discount rate to the green golden rule.

5 Equal Treatment Over Finite Horizons

Much of our ethical and moral intuition is grounded in the consideration of finite
horizons. Life on earth will certainly be of finite duration, although it is difficult
to determine its final date. It is therefore important to determine whether the phe-
nomena we have been discussing are an artifact of infinite horizons, or have a clear
relationship to approaches which seem reasonable in the context of finite horizons.

This section will show that these phenomena can be seen as an extension to
infinite horizons of the properties of optimal solutions for an intuitively appealing
criterion for finite horizons, the criterion which values all generations equally. This
we call the “finite equal treatment” criterion. Indeed, for a general class of dynamic
optimization problems, we will see that as the finite horizon increases, the optimal
solutions of equal treatment finite horizon problems spend an increasing amount of
time progressively closer to the green golden rule. We refer to this property as a
“turnpike” property.

Definition 9 The equal treatment problem for horizon T is:

max fOTU (ct, 8¢) dt } (15)

s.t. S =1(s)) — ¢, So given.
Its solution is called the equal treatment optimum over 7' generations.

Theorem 10 The green golden rule is the “turnpike” of finite horizon problems (15)
in which each generation s treated equally. This means that as the number of gener-
ations T increases, the equal treatment optima for T' generations spend some of their
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time increasingly close to the green golden rule, and by the optima according to the
overtaking criterion. Formally: the distance'® between the equal treatment optimal
path for horizon T and the green golden rule g* goes to zero as T goes to infinity.

6 Conclusion

From a review of paths of resource use that are optimal for a variety of models, we see
that many optimal paths are sustainable. That is, they involve maintaining at least a
part of the initial resource stock intact for ever. In fact it is only the simple Hotelling
model that does not produce sustainable paths, but this reflect the technology of

12 As a measure of the distance between the path and the point g* I use the Hausdorf distance,
the shortest distance between a point on the path and the point g*. Denoting the Hausdorf distance
between points « and y by HD(x,y), and the optimal path for horizon T" by {Opt. T}, we have

HD({Opt.T},g%) = {nolin " |z, g*|| where ||z, y]| is the Euclidean distance between x and y.
x€{Opt.
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the problem rather than a conflict between optimality and sustainability. With more
environmentally appropriate preferences, even this specification of the technology can
give optimal paths that are sustainable, and indeed maintain the entire initial stock
intact. In the case of renewable resources, most possible optimal paths are sustainable
in the sense of maintaining the resource base and indeed growing it. Some asymptote
to the maximum possible utility level, the green golden rule, and are sustainable in a
very strong sense: others settle at a lower utility level, but are still sustainable. The
green golden rule occupies a strategic position in the analysis, in that most paths will
move towards it or remain near it for long periods. My initial assertion that optimal
paths are sustainable, provided that the preferences and constraints reflect fully what
we know human dependence on environmental systems, seems well documented.
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