MEASURING THE IMPACTS OF TEACHERS I:
EVALUATING BIAS IN TEACHER VALUE-ADDED ESTIMATES

Raj Chetty
John N. Friedman
Jonah E. Rockoff

Working Paper 19423
http://www.nber.org/papers/w19423

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
September 2013

John Friedman is currently on leave from Harvard, working at the National Economic Council. This work was completed before he began that position and does not represent the views of the NEC. We are indebted to Gary Chamberlain, Michal Kolesar, and Jesse Rothstein for many valuable discussions. We also thank Joseph Altonji, Josh Angrist, David Card, David Deming, Caroline Hoxby, Guido Imbens, Brian Jacob, Thomas Kane, Lawrence Katz, Adam Looney, Phil Oreopoulos, Douglas Staiger, Danny Yagan, anonymous referees, the editor, and numerous seminar participants for helpful comments. This paper is the first of two companion papers on teacher quality. The results in the two papers were previously combined in NBER Working Paper No. 17699, entitled "The Long-Term Impacts of Teachers: Teacher Value-Added and Student Outcomes in Adulthood." All results based on tax data contained in this paper were originally reported in an IRS Statistics of Income white paper (Chetty, Friedman, and Rockoff 2011a). Sarah Abraham, Alex Bell, Peter Ganong, Sarah Griffis, Jessica Laird, Shelby Lin, Alex Olssen, Heather Sarsons, Michael Stepner, and Evan Storms provided outstanding research assistance. Financial support from the Lab for Economic Applications and Policy at Harvard and the National Science Foundation is gratefully acknowledged. Publicly available portions of the analysis code are posted at: http://obs.rc.fas.harvard.edu/chetty/va_bias_code.zip. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2013 by Raj Chetty, John N. Friedman, and Jonah E. Rockoff. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

Are teachers' impacts on students' test scores ("value-added") a good measure of their quality? One reason this question has sparked debate is disagreement about whether value-added (VA) measures provide unbiased estimates of teachers' causal impacts on student achievement. We test for bias in VA using previously unobserved parent characteristics and a quasi-experimental design based on changes in teaching staff. Using school district and tax records for more than one million children, we find that VA models which control for a student's prior test scores exhibit little bias in forecasting teachers' impacts on student achievement. Although teachers have substantial impacts, differences in teacher quality account for a small fraction of achievement gaps across demographic groups, as more than 85% of the variation in teacher VA is within rather than between schools.
1 Introduction

How can we measure and improve the quality of teaching in primary schools? One prominent but controversial method is to evaluate teachers based on their impacts on their students’ test scores, commonly termed the “value-added” (VA) approach. School districts from Washington D.C. to Los Angeles have begun to calculate VA measures and use them to evaluate teachers. Advocates argue that selecting teachers on the basis of their VA can generate substantial gains in achievement (e.g., Gordon, Kane, and Staiger 2006, Hanushek 2009), while critics contend that VA measures are poor proxies for teacher quality (e.g., Baker et al. 2010, Corcoran 2010). The debate about teacher VA stems primarily from two questions. First, do the differences in test-score gains across teachers measured by VA capture causal impacts of teachers or are they biased by student sorting? Second, do teachers who raise test scores improve their students’ outcomes in adulthood or are they simply better at teaching to the test?

This paper addresses the first of these two questions. Prior work has reached conflicting conclusions about the degree of bias in VA estimates (Kane and Staiger 2008, Rothstein 2010, Kane et al. 2013). Resolving this debate is critical for policy because biased VA measures may incorrectly reward or penalize teachers based on the mix of students they get.

We develop new methods to estimate the degree of bias in VA estimates and implement these methods empirically using information from two administrative databases. The first is a dataset on test scores and teacher assignments in grades 3-8 from a large urban school district in the U.S. These data cover more than 2.5 million students and 18 million tests for math and English (reading) spanning 1989-2009. The second is selected data from United States tax records spanning 1996-2011. These data contain information on parent characteristics such as household income, retirement savings, and mother’s age at child’s birth. We match 90% of the observations in the school district data to the tax data.

We begin our analysis by estimating VA for each teacher in our data. We model the estimation of teacher VA as a forecasting problem. We form the best linear predictor of test score gains for students of a given teacher based on the scores of students in other classrooms taught by that teacher. Value-added models of teacher quality were pioneered by Hanushek (1971) and Murnane (1975). More recent examples include Rockoff (2004), Rivkin, Hanushek, and Kain (2005), Aaronson, Barrow, and Sander (2007), and Kane and Staiger (2008).

We address the second question in our companion paper (Chetty, Friedman, and Rockoff 2013). There are also other important concerns about VA. Most importantly, as with other measures of labor productivity, the signal in value-added measures may be degraded by behavioral responses if high-stakes incentives are put in place (Barlevy and Neal 2012).
teacher. To separate the teacher’s impact from (observable) student selection, we control for various pre-determined student characteristics, such as prior test scores and demographic variables, when constructing this forecast. We consider a variety of control vectors to determine which controls play the largest role in reducing selection bias. Importantly, the controls we consider all come from the school district data and are similar to those used in prior work (e.g., McCaffrey et al. 2004, Kane and Staiger 2008, Kane, Rockoff, and Staiger 2008, Jacob, Lefgren and Sims 2010, Goldhaber and Theobald 2013). Hence, the models we estimate here can be replicated using data already available to school districts.

We deviate from existing VA models in one important respect. Existing models assume that each teacher’s quality is fixed over time and thus place equal weight on test scores in all classes taught by the teacher when forecasting. In practice, we find that test scores from more recent classes are a better predictor of current teacher quality, implying that teacher effects drift over time. Such drift may occur because of transitory fluctuations in teaching quality or changes in the types of classes a teacher is assigned. It is especially important to account for drift in our setting because we use a much longer panel (up to 18 years) to estimate and forecast teacher quality than prior studies.\footnote{Goldhaber and Hansen (2010, 2013) also observe that the correlation of single-year VA estimates decreases with longer time lags. Here, we account for such drift in the estimation of VA itself.}

We account for drift by estimating the autocovariance of scores across classrooms taught by a given teacher non-parametrically and using the estimated autocovariance vector to form the best linear predictor. Intuitively, prior studies estimate VA by regressing scores in year t on average scores across prior years, thereby imposing the assumption that the coefficients on all the lags are equal. In contrast, we permit the coefficients to vary non-parametrically across different lags. Our VA model implies that a 1 standard deviation improvement in teacher VA raises normalized test scores by approximately 0.14 in math and 0.1 in English, slightly larger than the estimates in prior studies that do not account for drift.

With these value-added estimates in hand, we turn to the central question of the paper: are the VA measures we construct “unbiased” predictors of teacher quality? To answer this question, we first formalize two notions of bias that have been discussed in the prior literature. To define the first measure, suppose we randomly assign a group of students to teachers and compare mean test scores across classrooms, as in Kane and Staiger (2008). Let λ denote the mean test score impact of being randomly assigned to a teacher who is rated one unit higher in VA based on prior data. We define the degree of “forecast bias” in a VA model as $B = 1 - \lambda$ and say that it is “forecast
unbiased” if $B = 0$. An alternative definition, which we term “teacher-level bias,” asks whether the VA estimate for a given teacher converges to her true quality as estimation error vanishes, as in Rothstein (2009). While both notions are of interest, we focus on forecast bias because it is directly relevant for our goal of evaluating the mean impacts of policies that change the value-added of teaching staff.

We develop two methods to estimate the degree of forecast bias in VA estimates. The first approach evaluates the degree of selection on observable characteristics excluded from the VA model. We implement this test using parent characteristics such as family income from the tax records, which are unavailable to school districts and thus omitted from VA models. These parent characteristics are well suited to testing for bias because they are strong predictors of test scores even conditional on the school district data used to estimate the VA model. We estimate the forecast bias that arises from omitting parent characteristics by predicting student test scores based on parent characteristics and regressing the predicted scores on teacher VA. For our baseline VA model – which controls for a rich set of prior student, class, and school level scores and demographics – we find that forecast bias from omitting parent characteristics is at most 0.3% at the top of the 95% confidence interval. Using a similar approach, we find that forecast bias from omitting twice-lagged scores from the VA model is at most 2.6%.

While these results indicate that forecast bias due to sorting on certain observable predictors of student achievement is minimal, bias due to other unobservable characteristics could still be substantial. To obtain a more definitive estimate of forecast bias that accounts for unobservables, we turn to a second approach. We develop a quasi-experimental analog of the ideal randomized experiment one would use to estimate forecast bias that exploits teacher turnover for identification. To understand the quasi-experimental design, suppose a high-VA 4th grade teacher moves from school A to another school in 1995. Because of this staff change, students entering grade 4 in school A in 1995 will have lower quality teachers on average than those in the prior cohort. If VA estimates have predictive content, we would expect 4th grade test score gains for the 1995 cohort to be lower on average than the previous cohort. In practice, we find sharp breaks in test scores using event studies of such teacher arrivals and departures at the school-grade-cohort level. Building on this idea, we estimate the degree of forecast bias by comparing changes in average test scores across consecutive cohorts of children within a school to changes in the mean value-added of the teaching staff.4 We find that the forecasted changes in mean scores closely match observed changes

4This research design is related to recent studies of teacher turnover (e.g., Rivkin, Hanushek, and Kain 2005,
in mean scores. The point estimate of forecast bias in our preferred specification is 2.6% and is not statistically distinguishable from 0. The upper bound on the 95% confidence interval for the degree of bias is 9.1%.

The quasi-experimental design rests on the identification assumption that high-frequency teacher turnover within school-grade cells is uncorrelated with student and school characteristics. This assumption is plausible insofar as parents are unlikely to immediately switch their children to a different school simply because a single teacher leaves or arrives. Moreover, we show that changes in mean teacher quality in a given subject (e.g., math) are uncorrelated with both prior scores in that subject and contemporaneous scores in the other subject (e.g., English), supporting the validity of the research design.

Although it rests on stronger identifying assumptions than a randomized experiment, our quasi-experimental approach has two practical advantages. First, it can be implemented with existing school district administrative records, and thus provides a simple, low cost technique for school districts and education researchers to validate their own value-added models. As value-added becomes a part of high-stakes teacher evaluation systems, researchers and policymakers will have to evaluate bias on an ongoing basis, and our quasi-experimental methodology provides a simple tool for doing so. Second, our quasi-experimental approach yields more precise estimates of the degree of bias than prior experiments (Kane and Staiger 2008, Kane et al. 2013).

Based on the findings from the two methods, we conclude that forecast bias in VA estimates is minimal when we use a rich control vector similar to that employed by Kane, Rockoff, and Staiger (2008). We investigate which of the controls is most important to account for student sorting by estimating several commonly used value-added specifications and calculating forecast bias using our quasi-experimental approach. We find that simply controlling for a student’s own lagged test scores generates a point estimate of forecast bias of 5% that is not significantly different from 0. In contrast, models that omit lagged test score controls generate forecast bias exceeding 40%. We conclude that most of the sorting of students to teachers that is relevant for future test achievement is captured by prior test scores. This result is reassuring for the application of VA models because virtually all value-added models proposed to date condition on prior scores.

Finally, having isolated teachers’ causal effects, we analyze whether the quality of teaching

Jackson and Bruegmann 2009, Ronfeldt et al. 2011), but is the first direct test of whether the VA of teachers who enter or exit affects mean test scores across cohorts. We discuss how our approach differs from this earlier work in Section 6.1.

5 Stata code to implement this technique is available at http://obs.rc.fas.harvard.edu/chetty/va_bias_code.zip
differs systematically across schools and students.\(^6\) We find that more than 85% of the variance in teacher VA is within rather than between schools. Better performing students get better teachers in subsequent grades: students who score 1 SD higher in the previous grade have teachers whose VA is 0.01 units higher. Similarly, students from higher income families have slightly better teachers on average. However, there is no correlation between parent income and teacher VA conditional on lagged test scores, consistent with our results on bias. The differences in teacher quality we document explain a small share of the achievement gap between high- and low-SES students. We estimate that the correlation between parent income and 8th grade test scores is amplified by at most 3% because of differences in teacher quality from grades K-8. This is not because teachers are unimportant – one could close most of the achievement gap by assigning highly effective teachers to low-SES students – but rather because teacher VA does not differ substantially across schools in the district we study.

As we discuss in greater detail below, our results reconcile the findings of experimental studies (Kane and Staiger 2008; Kane et al. 2013) with Rothstein’s (2010) findings on bias in VA estimates. We replicate Rothstein’s finding that there is small but statistically significant grouping of students on lagged test score gains and show that this particular source of selection results in minimal forecast bias. Based on his findings, Rothstein warns quite appropriately that selection on unobservables could potentially generate substantial bias. We directly evaluate the degree of forecast bias due to unobservables using a quasi-experimental analog of Kane and Staiger’s (2008) experimental analysis. Like Kane and Staiger, we find no evidence of forecast bias due to unobservables. Hence, we conclude that VA estimates which control for prior test scores exhibit little bias despite the grouping of students on lagged gains documented by Rothstein.

The paper is organized as follows. In Section 2, we formalize how we construct VA estimates and define concepts of bias in VA estimates. Section 3 describes the data sources and provides summary statistics. We construct teacher VA estimates in Section 4. Sections 5 and 6 present estimates of forecast bias for our baseline VA model using the two methods described above. Section 7 compares the forecast bias of alternative VA models. Section 8 documents the variation in teacher quality across schools and students. Section 9 concludes.

\(^6\)Unlike some prior studies of VA, we obtain a “global ranking” of all teachers in the school district by constructing test score residuals using within-teacher variation in the control variables. This allows us to compare teacher quality across schools and students with different characteristics. We discuss this issue in greater detail in Section 2.
2 Statistical Framework and Methods

In this section, we develop an estimator for teacher VA and formally define two notions of bias in VA estimates. We begin by setting up a simple static model of test scores.

2.1 Model

School principals assign student \(i \) in school year \(t \) to a classroom \(c = c(i,t) \) based on observed and unobserved determinants of student achievement. Principals then assign a teacher \(j \) to each classroom \(c \) based on classroom characteristics. For simplicity, assume that each teacher teaches one class per year, as in elementary schools.

Let \(j = j(c(i,t)) \) denote student \(i \)'s teacher in year \(t \). Let \(\mu_{jt} \) represent teacher \(j \)'s "value-added" in year \(t \), i.e. the impact of teacher \(j \) on test scores. We scale teacher VA so that the average teacher has value-added \(\mu_{jt} = 0 \) and the effect of a 1 unit increase in teacher VA on end-of-year test scores is 1. The parameter \(\mu_{jt} \) represents the causal impact of changing the teacher of class \(c \) from a teacher of average quality (\(\mu_{jt} = 0 \)) to a teacher with quality \(\mu_{jt} \). This reduced-form treatment effect combines various structural parameters in a model of the education production function (e.g., Todd and Wolpin 2003). For instance, students assigned to a better teacher may get less help on their homework from parents. Although \(\mu_{jt} \) is not a structural primitive, it is sufficient to answer certain policy-relevant questions. In particular, the ultimate test score impacts of switching a child to a higher VA teacher or retaining specific teachers on the basis of their VA both depend upon \(\mu_{jt} \).

Student \(i \)'s test score in year \(t \), \(A_{it}^* \), is given by

(1) \[A_{it}^* = \beta X_{it} + \nu_{it} \]

(2) \[\nu_{it} = \mu_{jt} + \theta_c + \varepsilon_{it} \]

Here, \(X_{it} \) denotes observable determinants of student achievement, such as lagged test scores, peer scores, and family characteristics. We decompose the error term \(\nu_{it} \) into three components: teacher value-added \(\mu_{jt} \), exogenous class shocks \(\theta_c \), and idiosyncratic student-level variation \(\varepsilon_{it} \). Let \(\varepsilon_{it} = \theta_c + \varepsilon_{it} \) denote the unobserved error in scores unrelated to teacher quality. We distinguish teacher effects from \(\varepsilon_{it} \) by observing teachers over many school years. Because students and teachers are not randomly assigned to classrooms, \(X_{it} \) and \(\varepsilon_{it} \) may be correlated with \(\mu_{jt} \). Accounting for such selection is the key challenge in obtaining unbiased estimates of \(\mu_{jt} \).
The model in (1) assumes that teacher value-added \(\mu_{jt} \) is fixed across students, ruling out the possibility that teacher value-added depends upon the characteristics of the students assigned to the teacher (e.g., high vs. low achieving students, 4th vs. 5th graders, etc.). However, it permits teacher quality to fluctuate stochastically over time. We do not place any restrictions on the stochastic processes that \(\mu_{jt} \) and \(\varepsilon_{it} \) follow except for the following assumption.

Assumption 1 [Stationarity] Teacher value-added and student achievement follow a stationary process:

\[
E[\mu_{jt}|t] = E[\varepsilon_{it}|t] = 0, \quad Cov(\mu_{jt}, \mu_{j,t+s}) = \sigma_{\mu\mu}, \quad \text{and} \quad Cov(\varepsilon_{it}, \varepsilon_{i,t+s}) = \sigma_{\varepsilon\varepsilon} \quad \text{for all } t
\]

Assumption 1 requires that (1) mean teacher quality does not vary across calendar years and (2) the correlation of teacher quality, class shocks, and student shocks across any pair of years depends only on the amount of time that elapses between those years. This assumption simplifies the estimation of teacher VA by reducing the number of parameters to be estimated. Note that the variance of teacher effects, \(\sigma^2_\mu = Var(\mu_{jt}) \), is constant across periods under stationarity.

2.2 Estimating Teacher Value-Added

We are interested in predicting each teacher’s value-added in year \(t \) (\(\mu_{jt} \)) given observational data on teacher assignments and test scores in previous years for a panel of students. Let \(\bar{\mu}_{j}^{-t} \) denote the vector of past values of value-added. Since \(\mu_{jt} - E[\mu_{jt} | \bar{\mu}_{j}^{-t}] \) represents an unforecastable component of realized teacher value-added in year \(t \), our target is to estimate \(\tilde{\mu}_{jt} = E[\mu_{jt} | \bar{\mu}_{j}^{-t}] \), the teacher’s “expected value-added” in year \(t \).

We develop an estimator for \(\tilde{\mu}_{jt} \) based on mean test scores in prior classes taught by teacher \(j \). Our approach closely parallels existing estimators for value-added (e.g., Kane and Staiger 2008), except that it accounts for drift in teacher quality over time. To simplify exposition, we derive the estimator for the case in which data on prior test scores is available for \(T \) years for all teachers, where all classes have \(n \) students, and where each teacher teaches one class per year. In Appendix A, we provide a step-by-step guide to implementation (along with corresponding Stata code) that accounts for differences in class size, multiple classrooms per year, and other technical issues that arise in practice.

7One could interpret \(\theta_c \) as value-added which is specific to a particular class-teacher match, but this component is not identified separately from other class-level shocks.

8To maximize statistical power, we use data from all other years – both in the past and future – to predict VA in year \(t \) in our empirical implementation. To simplify exposition, in this section we derive an estimator for the case of predicting VA based only on prior data.
We construct our estimator in three steps. First, we regress test scores A^*_t on X_{it} and compute test score residuals adjusting for observables. Next, we estimate the best linear predictor of mean test score residuals in classrooms in year t based on mean test score residuals in prior years, using a technique analogous to an OLS regression. Finally, we use the coefficients of the best linear predictor to predict each teacher’s expected VA in year t. We now describe these steps formally.

Let the residual student test score after removing the effect of observable characteristics be denoted by

(4) $$A_{it} = A^*_{it} - \beta X_{it} = \mu_{jt} + \varepsilon_{it}.$$

We estimate β using variation across students taught by the same teacher using an OLS regression of the form

(5) $$A^*_{it} = \alpha_j + \beta X_{it}$$

where α_j is a teacher fixed effect. Our approach of estimating β using within teacher variation differs from prior studies, which typically use both within- and between-teacher variation to estimate β (e.g., Kane and Staiger 2008, Kane, Rockoff, and Staiger 2008, Jacob, Lefgren and Sims 2010). If teacher VA is correlated with X_{it}, estimates of β in a specification without teacher fixed effects overstate the impact of the X’s because part of the teacher effect is attributed to the covariates.9

For example, suppose X includes school fixed effects. Estimating β without teacher fixed effects would attribute all the test score differences across schools to the school fixed effects, leaving mean teacher quality normalized to be the same across all schools. With school fixed effects, estimating β within teacher requires a set of teachers to teach in multiple schools, as in Mansfield (2013). These switchers allow us to identify the school fixed effects independent of teacher effects and obtain a cardinal global ranking of teachers across schools.

Let $\bar{A}_{jt} = \frac{1}{n} \sum_{i \in \{i : j(t) = j\}} A_{it}$ denote the mean residual test score in the class teacher j teaches in year t. Let \bar{A}_{j}^{-t} denote the vector of mean residual scores prior to year t in classes taught by teacher j. Our estimator for teacher j’s VA in year t is $\bar{\mu}_{jt} = \mathbb{E}^*[\bar{A}_{jt} | \bar{A}_{j}^{-t}]$, the best linear

9Teacher fixed effects account for correlation between X_{it} and mean teacher VA. If X_{it} is correlated with fluctuations in teacher VA across years due to drift, then one may still understate teachers’ effects even with fixed effects. We show in Table 6 below that dropping teacher fixed effects when estimating (5) yields VA estimates that have a correlation of 0.98 with our baseline estimates because most of the variation in X_{it} is within classrooms. Since sorting to teachers based on their average impacts turns out to be quantitatively unimportant in practice, sorting based on fluctuations in those impacts is likely to have negligible effects on VA estimates.
predictor of \bar{A}_{jt} based on prior scores:

$$\hat{\mu}_{jt} = \sum_{s=1}^{t-1} \psi_s \bar{A}_{js}.$$

We choose the vector of coefficients $\psi = \{\psi_1, ..., \psi_{t-1}\}$ to minimize the mean-squared error of the forecasts of test scores:

$$(6) \quad \psi = \arg \min_{\{\psi_1, ..., \psi_{t-1}\}} \sum_j \left(\bar{A}_{jt} - \sum_{s=1}^{t-1} \psi_s \bar{A}_{js} \right)^2$$

The resulting coefficients ψ are equivalent to those obtained from an OLS regression of \bar{A}_{jt} on $\bar{A}_{j,-t}$. In particular, $\psi = \Sigma_A^{-1} \gamma$ where $\gamma = (\text{Cov}(\bar{A}_{jt}, \bar{A}_{jt}^{-1}), ..., \text{Cov}(\bar{A}_{jt}, \bar{A}_{jt,t-1}))$ is the vector of auto-covariances of mean test scores for classes taught by a given teacher and Σ_A is the variance-covariance (VCV) matrix of $\bar{A}_{j,-t}$. The diagonal elements of Σ_A are the variance of mean class scores σ_A^2. The off-diagonal elements are the covariance of mean test scores of different classes taught by a given teacher $\text{Cov}(\bar{A}_{jt}, \bar{A}_{j,t-s})$. Note that $\text{Cov}(\bar{A}_{jt}, \bar{A}_{j,t-s}) = \sigma_{As}$ depends only on the time lag s between the two periods under the stationarity assumption in (3).

Finally, using the estimates of ψ, we predict expected VA for teacher j in period t as

$$(7) \quad \hat{\mu}_{jt} = \psi^T \bar{A}_{j,-t}.$$

Special Cases. The formula for $\hat{\mu}_{jt}$ in (7) nests two special cases that help build intuition for the general case. First, consider predicting a teacher’s impact in year t using data from only the previous year $t-1$. In this case, $\gamma = \sigma_{A,1} \text{ and } \Sigma_A^{-1} = \frac{1}{\sigma_A^2}$. Hence, ψ simplifies to $\frac{\sigma_{A,1}}{\sigma_A^2}$ and

$$(8) \quad \hat{\mu}_{jt} = \psi \bar{A}_{j,t-1}.$$

The shrinkage factor ψ in this equation incorporates two forces that determine ψ in the general case. First, because past test scores are a noisy signal of teacher quality, the VA estimate is shrunk toward the sample mean ($\mu_{jt} = 0$) to reduce mean-squared error. Second, because teacher quality drifts over time, the predicted effect differs from past performance. For instance, if teacher quality follows a mean-reverting process, past test scores are further shrunk toward the mean to reduce the influence of transitory shocks to teacher quality.

Second, consider the case where teacher quality is fixed over time and the student and class level errors are i.i.d. This is the case considered by most prior studies of value-added. Here, $\text{Cov}(\bar{A}_{jt}, \bar{A}_{j,t-s}) = \text{Cov}(\mu_j, \mu_{j,t}) = \sigma_\mu^2$ for all $s \neq t$ and $\sigma_A^2 = \sigma_\mu^2 + \sigma_\beta^2 + \sigma_\varepsilon^2/n$. In this case, (7)
simplifies to

\[
\hat{\mu}_{jt} = \hat{\mu}_j = A^{-t}_j = \frac{\sigma^2_{\mu}}{\sigma^2_{\mu} + (\sigma^2_\theta + \sigma^2_\epsilon/n)/T}
\]

where \(A^{-t}_j \) is the mean test score in classes taught by teacher \(j \) in years other than \(t \) and \(\psi = \frac{\sigma^2_\epsilon}{\sigma^2_{\mu} + (\sigma^2_\theta + \sigma^2_\epsilon/n)/T} \) is the “reliability” of the VA estimate. This formula coincides with equation 5 in Kane and Staiger (2008) in the case with constant class size. Here, the signal to noise ratio \(\psi \) does not vary across years because teacher performance in any year is equally predictive of performance in year \(t \). Because years are interchangeable, VA depends purely on mean test scores over prior years, again shrunk toward the sample mean to reduce mean-squared error.\(^{10}\)

Importantly, \(\hat{\mu}_{jt} = \mathbb{E}^* \left[\hat{\mu}_{jt} \mid \hat{A}_{jt}^{-t} \right] \) simply represents the best forecast of the future test scores of students assigned to teacher \(j \) in observational data. This forecast does not necessarily reflect the causal effect of teacher \(j \) on students’ scores, \(\mathbb{E} \left[\mu_{jt} \mid \hat{A}_{jt}^{-t} \right] \), because part of the test-score forecast could be driven by systematic sorting of students to teachers. We now turn to evaluating the degree to which \(\hat{\mu}_{jt} \) measures a teacher’s causal impact.

2.3 Definitions of Bias

Suppose that a principal randomly assigns students to teachers in year \(t \) instead of following his usual assignment rule. Let \(\hat{\mu}_{jt} \) denote the estimate of expected value-added for teacher \(j \) from observational data in other years as constructed above. We define two notions of bias in VA estimates based on this experiment in year \(t \).

Forecast Bias. One intuitive definition of bias is to ask whether one accurately predicts differences in the mean test scores of students who are randomly assigned to teachers with different VA estimates. Consider an OLS regression of residual test scores on \(\hat{\mu}_{jt} \) in the randomized cohort of students, as in Kane and Staiger (2008):

\[
A_{it} = \alpha + \lambda \hat{\mu}_{jt} + \chi_{it}
\]

Because \(\mathbb{E} \left[\varepsilon_{it} \mid \hat{\mu}_{jt} \right] = 0 \) under random assignment, the regression coefficient \(\lambda \) measures the rela-

\(^{10}\)Kane and Staiger (2008) derive (9) using an Empirical Bayes approach instead of a best linear predictor. If teacher VA, class shocks, and student errors follow independent Normal distributions, the posterior mean of \(\mu_{jt} \) coincides with (9). Analogously, (7) can be interpreted as the posterior expectation of \(\mu_{jt} \) when teacher VA follows a multivariate Normal distribution whose variance-covariance matrix controls the drift process.
tionship between true teacher effects μ_{jt} and estimated teacher effects $\hat{\mu}_{jt}$:

$$
\lambda = \frac{\text{Cov} \left(A_{it}, \hat{\mu}_{jt} \right)}{\text{Var} \left(\mu_{jt} \right)} = \frac{\text{Cov} \left(\mu_{jt}, \hat{\mu}_{jt} \right)}{\text{Var} \left(\mu_{jt} \right)}.
$$

We define a notion of bias in VA estimates based on this regression coefficient as follows.

Definition 1. The amount of forecast bias in a VA estimator $\hat{\mu}_{jt}$ is $B \left(\hat{\mu}_{jt} \right) = 1 - \lambda$.

Forecast unbiasedness is of interest because a policy that increases teacher quality by $\Delta \hat{\mu}_{jt}$ raises student test score achievement by $(1 - B) \Delta \hat{\mu}_{jt}$ units. If $B = 0$, $\hat{\mu}_{jt}$ provides an unbiased forecast of teacher quality in the sense that an improvement in estimated VA $\Delta \hat{\mu}_{jt}$ has the same causal impact on test scores as an increase in true teacher quality $\Delta \mu_{jt}$ of the same magnitude.

Teacher-Level Bias. An alternative definition of bias concerns the error in the VA estimate at the teacher level.11 Let $H \left(\hat{\mu}_{jt} \right) = \lim_{\text{Var} \left(\varepsilon_{it} \right) \to 0} \hat{\mu}_{jt}$ denote the value to which the VA estimate for teacher j in year t converges as noise due to student and class shocks vanishes in prior periods. The asymptotic bias in the estimate of teacher j’s VA in year t as estimation error vanishes is

$$
\omega_{jt} = H \left(\hat{\mu}_{jt} \right) - \hat{\mu}_{jt},
$$

where $\hat{\mu}_{jt} = \mathbb{E} \left[\mu_{jt} \mid \overline{\mu_j}^{-t} \right]$ denotes teacher j’s expected value-added in year t, integrating over the distribution of unforecastable innovations in period t. We define a second notion of bias in VA estimates based on ω_{jt} as follows.

Definition 2. Value-added estimates are unbiased at the teacher-level if $\text{Var} \left(\omega_{jt} \right) = 0$.

In principle, one can identify the magnitude of teacher-level bias $\text{Var} \left(\omega_{jt} \right)$ from the covariance of forecast errors for a given teacher across classrooms. Suppose we randomly assign a classroom to each teacher in year t. Let \bar{A}_{jt}^1 denote mean test scores for students of teacher j in this experiment. Now suppose we repeat the experiment, taking an independent draw from the stochastic processes governing teacher and student quality.12 Let \bar{A}_{jt}^2 denote mean test scores for students of teacher j in this second experiment. The covariance of forecast errors within-teacher across classrooms is

$$
\text{Cov} \left(A_{jt}^1 - H \left(\hat{\mu}_{jt} \right), A_{jt}^2 - H \left(\hat{\mu}_{jt} \right) \right) = \text{Cov} \left(\mu_{jt} - H \left(\hat{\mu}_{jt} \right), \hat{\mu}_{jt} - H \left(\hat{\mu}_{jt} \right) \right) = \text{Var} \left(\omega_{jt} \right)
$$

11 We thank Jesse Rothstein for drawing our attention to the distinction between these two definitions of bias. Rothstein (2009) discusses teacher-level bias in the case without drift, where teacher-level bias can be defined as $\text{Var} \left(\lim_{t \to \infty} \hat{\mu}_{jt} - \mu_{jt} \right)$. With drift, we require different asymptotics because additional information from prior years does not eliminate estimation error in expected VA.

12 In particular, we require that both the student level errors ε_{jt} and the unforecasted innovation in teacher quality due to drift $\mu_{jt} - \mathbb{E} \left[\mu_{jt} \mid \overline{\mu_j}^{-t} \right]$ are independent across the two experiments.
Intuitively, the degree of teacher-level bias is determined by the extent to which we systematically mispredict a given teacher’s performance when students are randomly assigned to her when VA is estimated without sampling error.

Forecast vs. Teacher-Level Bias. Teacher-level unbiasedness is a stronger requirement than forecast unbiasedness of the asymptotic VA estimate \(B(H(\hat{\mu}_{jt})) = 0 \). To see this, observe that by definition

\[
1 - B(H(\hat{\mu}_{jt})) = \frac{\text{Cov}(A_{jt}, H(\hat{\mu}_{jt}))}{\text{Var}(H(\hat{\mu}_{jt}))}
\]

\[
= \frac{\text{Var}(\hat{\mu}_{jt}) + \text{Cov}(\hat{\mu}_{jt}, \omega_{jt})}{\text{Var}(\hat{\mu}_{jt}) + \text{Var}(\omega_{jt}) - 2\text{Cov}(\hat{\mu}_{jt}, \omega_{jt})}
\]

where the second step follows because \(\text{Cov}(A_{jt} - \hat{\mu}_{jt}, H(\hat{\mu}_{jt})) = 0 \) under random assignment in year \(t \). Hence,

\[
B(H(\hat{\mu}_{jt})) = 0 \iff \text{Var}(\omega_{jt}) + \text{Cov}(\hat{\mu}_{jt}, \omega_{jt}) = 0.
\]

It follows that \(\text{Var}(\omega_{jt}) = 0 \Rightarrow B(H(\hat{\mu}_{jt})) = 0 \), but the converse need not hold.\(^{13}\) In particular, if \(\text{Cov}(\hat{\mu}_{jt}, \omega_{jt}) < 0 \), VA estimates could be biased at the teacher level even if forecasts based on VA are accurate on average. Intuitively, if the teacher-level bias is negatively correlated with true value-added, then the covariance of VA estimates with true scores is reduced, but the variance of VA estimates also falls. If the two forces cancel out, VA estimates could exhibit no forecast bias even if they are biased at the teacher level.

Estimating the degree of forecast bias is simpler than teacher-level bias for two reasons. First, estimating \(B \) requires random (or quasi-random) assignment of one classroom of students per teacher, whereas estimating \(\text{Var}(\omega_{jt}) \) requires random assignment of students to two classrooms per teacher. Second, and more importantly, forecast bias can be directly estimated using finite-sample estimates of \(\hat{\mu}_{jt} \) without any additional inputs. In contrast, estimating teacher-level bias requires accounting for the impacts of estimation error on \(\hat{\mu}_{jt} \) to construct the limit \(H(\hat{\mu}_{jt}) \), which is a non-trivial problem.\(^{14}\)

\(^{13}\)Teacher-level unbiasedness implies forecast unbiasedness of the asymptotic teacher VA estimate \(H(\hat{\mu}_{jt}) \). It does not guarantee that the finite sample \(\hat{\mu}_{jt} \) produced by the same value-added model is forecast unbiased, as the degree of forecast bias will in general vary with estimation error.

\(^{14}\)If one were to implement (13) using a finite-sample estimate \(\hat{\mu}_{jt} \) rather than \(H(\hat{\mu}_{jt}) \), the resulting covariance of forecast errors would be positive even if \(\text{Var}(\omega_{jt}) = 0 \) for two reasons. First, estimation error in \(\hat{\mu}_{jt} \) mechanically induces correlation in forecast errors. This problem can be resolved by using two samples to obtain two independent estimates of \(\hat{\mu}_{jt} \). Second, \(\hat{\mu}_{jt} \) is shrunk toward zero relative to true expected VA \(\mu_{jt} \), as shown in (9). This produces correlated forecast errors even with independent estimates of \(\hat{\mu}_{jt} \). One must account for the covariance due to this latter effect to identify \(\text{Var}(\omega_{jt}) \).
The appropriate definition of bias depends upon the policy question one seeks to answer. Forecast bias is relevant for evaluating the mean impact of changes in the value-added of teaching staff. Conditional on B, teacher-level bias $Var(\omega_{jt})$ does not have any bearing on the expected gains from replacing a teacher with lower estimated VA with a teacher with higher $\hat{\mu}_{jt}$. Moreover, we show in our second paper that forecast unbiasedness is precisely the condition needed to identify the mean long-term impacts of improving teachers’ test-score VA using existing VA estimates. Teacher-level bias is relevant for determining whether a value-added model treats all teachers equitably. If $Var(\omega_{jt}) > 0$, some teachers could be systematically overrated relative to others even though forecasts based on VA estimates are correct on average. Because our goal is to identify the mean impacts of improving teacher VA, we focus on estimating forecast bias in this paper and defer estimation of teacher-level bias to future research.

3 Data

We draw information from two databases: administrative school district records and federal income tax records. This section describes the two data sources and the structure of the linked analysis dataset and then provides descriptive statistics.

3.1 School District Data

We obtain information on students, including enrollment history, test scores, and teacher assignments from the administrative records of a large urban school district. These data span the school years 1988-1989 through 2008-2009 and cover roughly 2.5 million children in grades 3-8. For simplicity, we refer below to school years by the year in which the spring term occurs (e.g., the school year 1988-1989 is 1989).

Test Scores. The data include approximately 18 million test scores. Test scores are available for English language arts and math for students in grades 3-8 in every year from the spring of 1989 to 2009, with the exception of 7th grade English scores in 2002.\footnote{We also have data on math and English test scores in grade 2 from 1991-1994, which we use only when evaluating sorting on lagged test score gains. Because these observations constitute a very small fraction of our sample, excluding them has little impact on our results.}

The testing regime varies over the 20 years we study. In the early and mid 1990s, all tests were specific to the district. Starting at the end of the 1990s, the tests in grades 4 and 8 were administered as part of a statewide testing system, and all tests in grades 3-8 became statewide in 2006 as required under the No Child Left Behind law. All tests were administered in late April.
or May during the early and mid 1990s, and students were typically tested in all grades on the same day throughout the district. Statewide testing dates varied to a greater extent, and were sometimes given earlier in the school year (e.g., February) during the latter years of our data.

Because of this variation in testing regimes, we follow prior work by normalizing the official scale scores from each exam to have mean zero and standard deviation one by year and grade. The within-grade variation in achievement in the district we examine is comparable to the within-grade variation nationwide, so our results can be compared to estimates from other samples.16 We also estimate models that account for the variation in test dates below to ensure that our conclusions are not sensitive to this variation.

\textit{Demographics.} The dataset contains information on ethnicity, gender, age, receipt of special education services, and limited English proficiency for the school years 1989 through 2009. The database used to code special education services and limited English proficiency changed in 1999, creating a break in these series that we account for in our analysis by interacting these two measures with a post-1999 indicator. Information on free and reduced price lunch is available starting in school year 1999. These missing data issues are not a serious problem in practice because our estimates of forecast bias are insensitive to excluding demographic characteristics from the VA model entirely.

\textit{Teachers.} The dataset links students in grades 3-8 to classrooms and teachers from 1991 through 2009.17 This information is derived from a data management system which was phased in over the early 1990s, so not all schools are included in the first few years of our sample. In addition, data on course teachers for middle and junior high school students—who, unlike students in elementary schools, are assigned different teachers for math and English—are more limited. Course teacher data are unavailable prior to the school year 1994, then grow in coverage to roughly 60\% by school year 1998 and 85\% by 2003. Even in the most recent years of the data, roughly 15 percent of the district’s students in grades 6 to 8 are not linked to math and English teachers because some middle and junior high schools still do not report course teacher data.

The missing teacher links raise two potential concerns. First, our estimates (especially for...
grades 6-8) apply to a subset of schools with more complete information reporting systems and thus may not be representative of the district as a whole. Reassuringly, we find that these schools do not differ significantly from the sample as a whole on test scores and other observables. Second, and more importantly, missing data could generate biased estimates. We evaluate the impacts of missing data in Table 5 below and show that our conclusions remain very similar in a subsample of school-grade-subject cells with no missing data.

Sample Restrictions. Starting from the raw dataset, we make a series of restrictions that parallel those in prior work to obtain our primary school district sample. First, because our estimates of teacher value-added always condition on prior test scores, we restrict our sample to grades 4-8, where prior test scores are available. Second, we exclude the 6% of observations in classrooms where more than 25 percent of students are receiving special education services, as these classrooms may be taught by multiple teachers or have other special teaching arrangements. We also drop the 2% of observations where the student is listed as receiving instruction at home, in a hospital, or in a school serving solely disabled students. Third, we drop classrooms with less than 10 students or more than 50 students as well as teachers linked with more than 200 students in a single grade, because such students are likely to be mis-linked to classrooms or teachers (0.5% of observations). Finally, when a teacher is linked to students in multiple schools during the same year, which occurs for 0.3% of observations, we use only the links for the school where the teacher is listed as working according to human resources records and set the teacher as missing in the other schools.

3.2 Tax Data

We obtain information on parent characteristics from U.S. federal income tax returns spanning 1996-2011.\(^\text{18}\) The school district records were linked to the tax data using an algorithm based on standard identifiers (date of birth, state of birth, gender, and names) described in Appendix B, after which individual identifiers were removed to protect confidentiality. 88.6% of the students and 89.8% of student-subject-year observations in the sample used to estimate value-added were matched to the tax data. Students were then linked to parents based on the earliest 1040 form filed between tax years 1996 and 2011 on which the student was claimed as a dependent. We identify parents for 97.6% of the observations in the analysis dataset conditional on being matched to the tax data.\(^\text{19}\)

\(^{18}\)Here and in what follows, the year refers to the tax year, i.e. the calendar year in which income is earned. In most cases, tax returns for tax year \(t\) are filed during the calendar year \(t + 1\).

\(^{19}\)The remaining students are likely to have parents who did not file tax returns in the early years of the sample when they could have claimed their child as a dependent, making it impossible to link the children to their parents.
In this paper, we use the tax data to obtain information on five time-invariant parent characteristics, defined as follows. We define parental household income as mean Adjusted Gross Income (capped at $117,000, the 95th percentile in our sample) between 2005 and 2007 for the primary filer who first claimed the child.20 For years in which parents did not file a tax return, they are assigned an income of 0. We measure income in 2010 dollars, adjusting for inflation using the Consumer Price Index.

We define marital status, home ownership, and 401(k) saving as indicators for whether the first primary filer who claims the child ever files a joint tax return, makes a mortgage interest payment (based on data from 1040's for filers and 1099's for non-filers), or makes a 401(k) contribution (based on data from W-2's) between 2005 and 2007.

We define mother's age at child's birth using data from Social Security Administration records on birth dates for parents and children. For single parents, we define the mother's age at child's birth using the age of the filer who first claimed the child, who is typically the mother but is sometimes the father or another relative.21 When a child cannot be matched to a parent, we define all parental characteristics as zero, and we always include a dummy for missing parents in regressions that include parent characteristics.

3.3 Summary Statistics

The linked school district and tax record analysis dataset has one row per student per subject (math or English) per school year, as illustrated in Appendix Table 1. Each observation in the analysis dataset contains the student’s test score in the relevant subject test, demographic information, teacher assignment, and time-invariant parent characteristics. We organize the data in this format so that each row contains information on a treatment by a single teacher conditional on pre-determined characteristics. We account for the fact that each student appears multiple times in the dataset by clustering standard errors as described in Section 4.

After imposing the sample restrictions described above, the linked dataset contains 10.7 million student-year-subject observations. We use this “core sample” of 10.7 million observations to con-

\footnotesize
Note that this definition of parents is based on who claims the child as a dependent, and thus may not reflect the biological parent of the child.

\footnotesize
20Because the children in our sample vary in age by over 25 years whereas the tax data start only in 1996, we cannot measure parent characteristics at the same age for all children. For simplicity, we instead measure parent characteristics at a fixed time. Measuring parent income at other points in time yields very similar results (not reported).

\footnotesize
21We set the mother’s age at child’s birth to missing for 78,007 observations in which the implied mother’s age at birth based on the claiming parent’s date of birth is below 13 or above 65, or where the date of birth is missing entirely from SSA records.
struct quasi-experimental estimates of forecast bias, which do not require any additional controls.
9.1 million records in the core sample have information on teacher assignment and 7.6 million have
information on teachers, lagged test scores, and the other controls needed to estimate our baseline
VA model.

Table 1 reports summary statistics for the 7.6 million observation sample used to estimate value-
added. Note that the summary statistics are student-school year-subject means and thus weight
students who are in the district for a longer period of time more heavily, as does our empirical
analysis. There are 1.37 million students in this sample and each student has 5.6 subject-school
year observations on average.

The mean test score in the sample used to estimate VA is positive and has a standard deviation
below 1 because we normalize the test scores in the full population that includes students in special
education classrooms and schools (who typically have lower test scores). The mean age at which
students are observed is 11.4 years. 80% of students are eligible for free or reduced price lunches.
1.7% of the observations are for students who are repeating the current grade.

For students whom we match to parents, mean parent household income is $40,800, while
the median is $31,700. Though our sample includes more low income households than would a
nationally representative sample, it still includes a substantial number of higher income households,
allowing us to analyze the impacts of teachers across a broad range of the income distribution. The
standard deviation of parent income is $34,300, with 10% of parents earning more than $100,000.

4 Value-Added Estimates

We estimate teacher VA using the methodology in Section 2.2 in three steps: (1) construct student
test score residuals, (2) estimate the autocovariance of scores across classes taught by a given
teacher, and (3) predict VA for each teacher in each year using test score data from other years.

Test Score Residuals. We construct test score residuals A_{it} by estimating separate models for
each subject (math and English) in elementary and middle schools. Within each of these four
groups, we estimate test score residuals by regressing raw standardized test scores A_{it}^* on a vector
of covariates X_{it} with teacher fixed effects, as in (5). In our baseline analysis, we use a control
vector X_{it} similar to that used by Kane, Rockoff, and Staiger (2008). In particular, we control for
prior test scores using a cubic polynomial in prior-year scores in math and a cubic in prior-year
scores in English. We interact these cubics with the student’s grade level to permit flexibility
in the persistence of test scores as students age. We also control for the following student level
characteristics: ethnicity, gender, age, lagged suspensions and absences, and indicators for grade repetition, special education, and limited English. We also include the following class-level controls: (1) class size and class-type indicators (honors, remedial), (2) cubics in class and school-grade means of prior-year test scores in math and English each interacted with grade, (3) class and school-year means of all the individual covariates X_{it}, and (4) grade and year dummies. Importantly, the control vector consists entirely of variables from the school district dataset. We adopt this approach because our goal is to assess properties of typical value-added models that are estimated without access to information available in tax data.

Auto-Covariance Vector. Next, we estimate the auto-covariance of mean test score residuals across classes taught in different years by a given teacher. We estimate four separate autocovariance vectors, one for each subject in elementary and middle schools. Exploiting the stationarity assumption in (3), we use all available classrooms with a time span of s years between them to estimate $\sigma_{As} = \text{Cov}(\bar{A}_{jt}, \bar{A}_{jt-s})$, weighting by the total number of students in each pair of classes. In middle school, where teachers teach multiple classes per year, we estimate σ_{As} after collapsing the data to the teacher-year level by calculating precision-weighted means across the classrooms as described in Appendix A.

Figure 1 plots the autocorrelation vector $\{r_s\} = \left\{ \frac{\sigma_{As}}{\sigma_A} \right\}_{s=1}^{10}$ for each subject and school level; the values underlying this figure along with the associated covariances are reported in Panel A of Table 2. If one were using data only from year s, the VA estimate for teacher j in year t would simply be $\hat{\mu}_{jt} = r_s A_{jt-s}$, since $r_s = \frac{\sigma_{As}}{\sigma_A}$, as shown in (8). Hence, r_s represents the “reliability” of mean class test scores for predicting teacher quality s years later. The reliability of VA estimates decays over time: more recent test scores are better predictors of current teacher performance. In elementary school, reliability declines from $r_1 = 0.43$ in the first year to $r_7 = 0.25$ in math after seven years, and remains roughly stable for $s > 7$. In English, reliability falls from $r_1 = 0.30$ to $r_7 = 0.15$ over the same horizon and again stabilizes for $s > 7$. Decay in reliability is steeper in middle school, especially in later periods: $r_1 = 0.48$ and $r_7 = 0.20$ in math, while $r_1 = 0.23$ and $r_7 = 0.06$ in English. The stability of r_s in the long run combined with the decay over a period of 5-7 years implies that teacher quality consists of a permanent component coupled with a transitory component that exhibits persistent fluctuations, e.g. due to variation in teaching assignments, curriculum, or skill (Goldhaber and Hansen 2010, Jackson 2010).

22 To avoid estimating VA based on very few observations, we follow Kane, Rockoff, and Staiger (2008) and exclude classrooms that have fewer than 7 observations with test scores and lagged scores (2% of observations).

23 Prior studies, which do not account for drift, typically estimate reliability as the correlation between mean scores
In middle school, we can also estimate the within-year covariance of test score residuals σ_{A0} because teachers teach multiple classes per year. This within-year covariance corresponds to the variance of teacher effects under the assumption that class and student level shocks are i.i.d.. The standard deviation of teacher effects, $\sigma_\mu = \sqrt{\sigma_{A0}}$, is 0.098 in English and 0.134 in math in middle school, as shown in Table 2, Panel B.\(^{24}\) In elementary school, σ_{A0} is unidentified because teachers teach only one class per year. Conceptually, we cannot distinguish the variance of idiosyncratic class shocks from the unforecasted innovations in teacher effects when teachers teach only one class per year. Recognizing that $\sigma_{A0} \geq \sigma_{A1}$, we can obtain a lower bound on σ_μ of $\sqrt{\sigma_{A1}}$. This bound implies that σ_μ is at least 0.113 in English and at least 0.149 in math in elementary school (second-to-last row of Panel B of Table 2). To obtain a rough point estimate, we fit a quadratic function to the log of the first seven covariances within each subject in elementary school (listed in Table 2, Panel A) and extrapolate to 0 to estimate σ_{A0}. This method yields estimates of σ_μ of 0.124 in English and 0.163 in math, as shown in the final row of Table 2, Panel B.\(^{25}\) The point estimates are close to the lower bounds because the rate of drift across one year is small. Note that our estimates of the standard deviations of teacher effects are slightly larger than those in prior studies (e.g., Kane, Rockoff, and Staiger 2008, Chetty, Friedman, and Rockoff 2011b) because the earlier estimates were attenuated by drift.

Prediction of VA. We use the estimated autocovariance vectors in Table 2 to predict teacher VA. Since there is no trend in reliability after 7 periods and because the precision of the estimates falls beyond that point, we fix reliability $r_s = r_7$ for $s > 7$ in all subject and school levels when estimating VA.\(^{26}\) We predict each teacher’s VA in each year t using test score residuals from all other years (both in the past and the future) except year t. For example, when predicting teachers’ effects on student outcomes in year $t = 1995$ ($\hat{\mu}_{j,1995}$), we estimate value-added based on all years of the sample excluding 1995. We construct these estimates using the formula in (7) with an adjustment for the variation in the number of students per class and the number of classes per year for a random pair of classes in different years (e.g., Kane and Staiger 2008, Chetty, Friedman, and Rockoff 2011b). That method yields an estimate of the mean value of r_s over the years available in the dataset. A recent summary (McCaffrey et al. 2009) finds reliability in the range of 0.2–0.5 for elementary school and 0.3–0.7 for middle school teachers, consistent with the estimates in Figure 1.

\(^{24}\)As is standard in the literature, in this paper we scale value-added in units of student test scores, i.e., a 1 unit increase in value-added refers to a (hypothetical) teacher whose VA is predicted to raise student test scores by 1 SD. \(^{25}\)Applying the same quadratic extrapolation to the middle school data yields estimates of σ_μ of 0.134 in math and 0.079 in English. These estimates are fairly close to the true values estimated from the within-year covariance, supporting the extrapolation in elementary school. \(^{26}\)We have evaluated the robustness of our results to changing this cutoff to $s = 10$ and find no detectable change in our estimates. This is because the correlation between these new VA estimates and our baseline estimates is greater than 0.999.
Our VA estimates are leave-year-out (jackknife) measures of teacher quality, similar to those in Jacob, Lefgren and Sims (2010) but with an adjustment for drift. Leave-year-out measures are natural from a forecasting perspective: one cannot include data from year t in constructing a VA estimate if the goal is to evaluate its ability to forecast outcomes in year t. Because our primary goal is to evaluate forecasts based on VA, we only construct VA estimates for teachers who teach in two or more years between 1991 and 2009. We cannot evaluate whether a VA estimate is biased predictor of teacher quality for teachers whom we only see in one year because at least one more year is necessary to measure forecast errors. Among the classrooms with the requisite controls to estimate value-added (e.g., lagged test scores), we are unable to predict teacher VA for 9% of student-subject-year observations because their teachers are observed in the data for only one year.

The empirical distributions of our teacher VA estimates are plotted in Appendix Figure 1. The standard deviation of $\hat{\mu}_{jt}$ is 0.116 in math and 0.080 in English in elementary school; the corresponding SD’s are 0.092 and 0.042 in middle school. The standard deviations are smaller than the true SD of teacher effects because the best linear predictor shrinks VA estimates toward the sample mean to minimize mean-squared-error.

Out-of-Sample Forecasts. Under the stationarity assumption in (3), an OLS regression of A_{it} on $\hat{\mu}_{jt} - \hat{\mu}_{jt}$ – the best-linear predictor of A_{it} – should yield a coefficient of 1 by construction. We evaluate whether this is the case in Column 1 of Table 3, which reports estimates from a univariate OLS regression of test score residuals A_{it} on $\hat{\mu}_{jt}$ in the sample used to estimate the VA model. We include fixed effects for subject (math vs. English) by school-level (elementary vs. middle) in this and all subsequent regressions to obtain a pooled regression coefficient across the four cells that is

\(^{27}\) Regressing student outcomes on teacher VA without using a leave-out mean effectively introduces the same estimation errors on both the left and right hand side of the regression, yielding biased estimates of teachers’ causal impacts. This is the reason that Rothstein (2010) finds that “fifth grade teachers whose students have above average fourth grade gains have systematically lower estimated value-added than teachers whose students underperformed in the prior year.” Students who had unusually high fourth grade gains due to idiosyncratic, non-persistent factors (e.g., measurement error) will tend to have lower than expected fifth grade gains, making their fifth grade teacher have a lower VA estimate.

\(^{28}\) A leave-year out estimate is not necessary if one simply seeks to measure teacher effects without evaluating their out-of-sample properties (e.g., Rockoff 2004, Kane, Rockoff, and Staiger 2008). However, with drift, one must still specify the year in which one is measuring teacher quality, as “teacher quality” is no longer a constant.

\(^{29}\) Average test scores in the first year for teachers who leave after one year are approximately 0.026 SD lower than mean first-year scores of those who stay for more years. Hence, the mean first-year performance of the subset of teachers in our sample is only 0.0026 SD higher than mean first-year performance in the population, suggesting that our estimates of forecast bias are likely to be representative of teacher effects in the full population.
based purely on variation within the subject-by-school-level cells. The dependent variables in this and subsequent regressions have a correlated error structure because students within a classroom face common class-level shocks and because our analysis dataset contains repeat observations on students in different grades. One natural way to account for these two sources of correlated errors is to cluster standard errors by both student and classroom (Cameron, Gelbach, and Miller 2011). Unfortunately, implementing two-way clustering on a dataset with 6 million observations was infeasible due to computational constraints at the Internal Revenue Service. We instead cluster standard errors at the school-by-cohort level in all specifications, which adjusts for correlated errors across classrooms and repeat student observations within a school.

The point estimate of the coefficient on $\hat{\mu}_{jt}$ is 0.998, with a standard error of 0.006. The confidence interval spans [0.986, 1.010] and we cannot reject the hypothesis that the coefficient on $\hat{\mu}_{jt}$ equals 1. Figure 2a plots the relationship between A_{it} and $\hat{\mu}_{jt}$ non-parametrically. We construct this binned scatter plot by dividing the VA estimates $\hat{\mu}_{jt}$ into twenty equal-size groups (vintiles) and plotting the mean value of A_{it} in each bin. The conditional expectation function is almost perfectly linear: teacher VA has a 1-1 relationship with test score residuals throughout the distribution. Note that this binned scatter plot provides a non-parametric representation of the conditional expectation function but does not show the underlying variance in the individual-level data. The regression coefficient and standard error reported in this and all subsequent figures are estimated on the micro data, with standard errors clustered by school-cohort as described above.

The relationship between $\hat{\mu}_{jt}$ and students’ test scores in Figure 2a could reflect either the causal impact of teachers on achievement or persistent differences in student characteristics across teachers. For instance, $\hat{\mu}_{jt}$ may forecast students’ test scores in other years simply because some teachers are always assigned students with higher income parents. In the next two sections, we estimate the degree to which the relationship in Figure 2a reflects teachers’ causal effects vs. bias due to student sorting.

30By construction, test score residuals have mean 0 in all four cells. The VA estimates are also centered near 0, with slight deviations because of imbalances in weights. Thus, in practice, including these fixed effects has little or no impact on the estimates. Nevertheless, we always include them to ensure that our estimates in subsamples are identified from within subject by school-year variation. Note that the estimates we report equal what one would obtain by running separate regressions within the four subject-by-school-level cells and taking weighted means of the coefficients.

31In the working paper version (Chetty, Friedman, and Rockoff 2011b), we evaluated the robustness of our results to alternative forms of clustering in Appendix Table 7. We found that school-cohort clustering yields more conservative confidence intervals than the more computationally intensive techniques.

32In this and all subsequent scatter plots, we first demean the x and y variables within subject by school level groups to isolate variation within these cells, as in the regressions.
5 Estimating Bias Using Observable Characteristics

We defined forecast bias in Section 2.3 under the assumption that students were randomly assigned to teachers in the forecast year \(t \). School districts typically cannot randomly assign students to teachers simply to evaluate VA models. As a practical alternative, we develop methods of estimating forecast bias using observational data, i.e., when the school follows the same (non-random) assignment rule for teachers and students in the forecast period \(t \) as in previous periods.

In this section, we estimate forecast bias by measuring the degree of selection using observable characteristics that were excluded from the VA model. We first derive an estimator for forecast bias and then implement it using data on parent characteristics and lagged test score gains.

5.1 Methodology

To begin, note that because \(\hat{\mu}_{jt} \) is the best linear predictor of test scores \(A_{it} \) based on past information on the teacher,

\[
\frac{\text{Cov} (A_{it}, \hat{\mu}_{jt})}{\text{Var} (\hat{\mu}_{jt})} = \frac{\text{Cov} (\mu_{jt}, \hat{\mu}_{jt}) + \text{Cov} (\varepsilon_{it}, \hat{\mu}_{jt})}{\text{Var} (\hat{\mu}_{jt})} = 1.
\]

It follows that

\[
B (\hat{\mu}_{jt}) = \frac{\text{Cov} (\varepsilon_{it}, \hat{\mu}_{jt})}{\text{Var} (\hat{\mu}_{jt})}.
\]

Intuitively, the degree of forecast bias can be quantified by the extent to which students are sorted to teachers based on unobserved determinants of achievement \(\varepsilon_{it} \). A simple but important implication of (14) is that VA estimates can be forecast-unbiased even if children with certain characteristics (e.g., those with higher ability) are systematically assigned to certain teachers. Forecast unbiasedness only requires that the observable characteristics \(X_{it} \) are sufficiently rich that any remaining unobserved heterogeneity in test scores \(\varepsilon_{it} \) is balanced across teachers with different VA estimates.

Equation (14) implies that one way to estimate \(B \) is to evaluate the correlation between the error in student scores \(\varepsilon_{it} \) and teacher VA estimates directly. We cannot observe \(\varepsilon_{it} \), but we can obtain information on components of \(\varepsilon_{it} \) using variables that predict student test score residuals \(A_{it} \), such as parent income. Let \(P_{it}^* \) denote a vector of such characteristics and \(P_{it} \) denote the residuals obtained after regressing the elements of \(P_{it}^* \) on the baseline controls \(X_{it} \). Decompose the error in score residuals \(\varepsilon_{it} = \rho P_{it} + \varepsilon'_{it} \) into the component that projects onto \(P_{it} \) and the remaining (unobservable) error \(\varepsilon'_{it} \). To gauge forecast bias using \(P \), we make the following assumption of
Assumption 2 [Selection on Excluded Observables] Students are sorted to teachers purely on excluded observables P:

$$E[\varepsilon_{it} | j] = E[\varepsilon_{it}]$$

Under this assumption, $B = \frac{Cov(\rho P_{it}, \tilde{\mu}_{jt})}{Var(\tilde{\mu}_{jt})}$. As in (5), we estimate the coefficient vector ρ using an OLS regression of A_{it} on P_{it} with teacher fixed effects:

$$A_{it} = \alpha_j + \rho P_{it}$$

This leads to the feasible estimator

$$B_p = \frac{Cov(A_{it}^p, \tilde{\mu}_{jt})}{Var(\tilde{\mu}_{jt})}$$

where $A_{it}^p = \tilde{\rho} P_{it}$ is estimated using (15). Importantly, B_p provides a point estimate of forecast bias under the assumption that selection occurs purely on the basis of the excluded characteristics P. Hence, a small value of B_p should be viewed as a necessary but not sufficient condition for forecast unbiasedness.

5.2 Results

We apply the method above to estimate forecast bias using two variables that are excluded from standard VA models: parent characteristics and lagged test score gains.

Parent Characteristics. We define a vector of parent characteristics P_{it} that consists of the following variables: mother’s age at child’s birth, indicators for parent’s 401(k) contributions and home ownership, and an indicator for the parent marital status interacted with a quartic in parent household income.33 We construct residual parent characteristics P_{it} by regressing each element of P_{it} on the baseline control vector X_{it} and teacher fixed effects, as in (5). We then regress A_{it} on P_{it}, again including teacher fixed effects, and calculate predicted values $A_{it}^p = \tilde{\rho} P_{it}$. We fit separate models for each subject and school level (elementary and middle) as above when constructing the residuals P_{it} and predicted test scores A_{it}^p.

In Column 2 of Table 3, we regress A_{it}^p on $\tilde{\mu}_{jt}$, including subject-by-school-level fixed effects as

33We code the parent characteristics as 0 for the 12.3% of students whom we are unable to match to a parent either because we could not match the student to the tax data (10.1%) or because we could not find a parent for a matched student (2.2%). We include indicators for missing parent data in both cases. We also code mother’s age at child’s birth as 0 for observations where we match parents but do not have valid data on the parent’s age, and include an indicator for such cases.
above. This regression yields an estimate of forecast bias due to selection on \(P_{it} \), as shown in (16). The coefficient in this regression is \(B_p = 0.002 \), i.e. the degree of forecast bias due to selection on parent characteristics is 0.2%. The upper bound on the 95% confidence interval for \(B_p \) is 0.25%.

Figure 2b presents a non-parametric analog of this linear regression. It plots \(A_{p_{it}} \) vs. teacher VA \(\hat{\mu}_{jt} \) using a binned scatter on the same scale as in Figure 2a. The relationship between predicted scores and teacher VA is nearly flat throughout the distribution.

Another intuitive way to assess the degree of selection on parent characteristics – which corresponds to familiar methods of assessing omitted variable bias – is to control for \(P_{it} \) when estimating the impact of \(\hat{\mu}_{jt} \) on test scores, as in Kane and Staiger (2008, Table 6). To implement this approach using within-teacher variation to construct residuals, we first regress raw test scores \(A_{it} \) on the baseline control vector used in the VA model \(X_{it} \), parent characteristics \(P_{it} \), and teacher fixed effects, as in (5). Again, we fit a separate model for each subject and school level (elementary and middle). We then regress the residuals from this regression (adding back the teacher fixed effects) on \(\hat{\mu}_{jt} \), including subject-by-school-level fixed effects as in Column 1. Column 3 of Table 3 shows that the coefficient on VA falls to 0.996 after controlling for parent characteristics. The difference between the point estimates in Columns 1 and 3 is 0.002. This difference coincides exactly with our estimate of \(B_p \) in Column 2 because \(A_{p_{it}} \) is simply the difference between test score residuals with and without controlling for parent characteristics.

The magnitude of forecast bias due to selection on parent characteristics is statistically significant but quantitatively very small for two reasons. First, a large fraction of the variation in test scores that project onto parent characteristics is captured by lagged test scores and other controls in the school district data. The standard deviation of class-average predicted score residuals based on parent characteristics is 0.014. Intuitively, students from high income families have higher test scores not just in the current grade but in previous grades as well, and thus previous scores capture a large portion of the variation in family income. However, because lagged test scores are noisy measures of latent ability, parent characteristics still have significant predictive power for test scores even conditional on \(X_{it} \). The F-statistic on the parent characteristics in the regression of test score residuals \(A_{it} \) on \(P_{it} \) is 84, when run at the classroom level (which is the variation relevant for detecting class-level sorting to teachers). This leads to the second reason that forecast bias is so small: the remaining variation in parent characteristics after conditioning on \(X_{it} \) is essentially unrelated to teacher VA. The correlation between \(A_{p_{it}} \) and \(\hat{\mu}_{jt} \) is 0.014. If this correlation were 1 instead, the bias due to sorting on parent characteristics would be 0.149. This shows that there
is substantial scope to detect sorting of students to teachers based on parent characteristics even conditional on the school district controls. Such sorting turns out to be quite small in magnitude in practice, leading to minimal forecast bias.

Importantly, the small degree of bias from sorting on parent characteristics does not imply that students from higher vs. lower socioeconomic status families get teachers of the same quality. The finding is that controlling for the observables available in school district databases is adequate to account for sorting of students to teachers based on parent characteristics. We return to this issue in Section 8 below and show that unconditionally, students from higher income families do have higher VA teachers on average, but this correlation vanishes once we control for lagged test scores.

Prior Test Scores. Another natural set of variables to evaluate bias is prior test scores (Rothstein 2010). Value-added models typically control for \(A_{i,t-1} \), but one can evaluate sorting on \(A_{i,t-2} \) (or, equivalently, on lagged gains, \(A_{i,t-1} - A_{i,t-2} \)). The question here is effectively whether controlling for additional lags substantially affects VA estimates once one controls for \(A_{i,t-1} \). For this analysis, we restrict attention to the subsample of students with data on both lagged and twice-lagged scores, essentially dropping 4th grade from our sample. We re-estimate VA \(\tilde{\mu}_{jt} \) on this sample to obtain VA estimates on exactly the sample used to evaluate bias.

We assess forecast bias due to sorting on lagged score gains using the same approach as with parent characteristics. Column 4 of Table 3 replicates Column 2, using predicted score residuals based on \(A_{i,t-2} \), which we denote by \(A_{it} \), as the dependent variable. The coefficient on \(\tilde{\mu}_{jt} \) is 0.022, with a standard error of 0.002. The upper bound on the 95% confidence interval for forecast bias due to twice lagged scores is 0.026. Figure 2c plots predicted scores based on twice-lagged scores (\(A_{it} \)) against teacher VA, following the same methodology used to construct Figure 2b. Consistent with the regression estimates, there is a slight upward-sloping relationship between VA and \(A_{it} \) that is small relative to the relationship between VA and test score residuals in year \(t \).

Forecast bias due to omitting \(A_{i,t-2} \) is small for the same two reasons as with parent characteristics. The baseline control vector \(X_{it} \) captures much of the variation in \(A_{i,t-2} \): the variation in class-average predicted score residuals based on \(A_{i,t-2} \) is 0.048. The remaining variation in \(A_{i,t-2} \) is not strongly related to teacher VA: the correlation between \(A_{i,t-2} \) and \(\tilde{\mu}_{jt} \) is 0.037. If this correlation were 1, forecast bias would be 0.601, again implying that sorting on lagged gains is quite minimal relative to what it could be.

We conclude that selection on two important predictors of test scores excluded from standard VA models – parent characteristics and lagged test score gains – generates negligible forecast bias.
in our baseline VA estimates.

6 Estimating Bias Using Teacher Switching Quasi-Experiments

The evidence in Section 5 does not rule out the possibility that students are sorted to teachers based on unobservable characteristics orthogonal to parent characteristics and lagged score gains. The ideal method to assess bias due to unobservables would be to randomly assign teachers to classrooms and estimate the relationship between test scores and VA estimates (from pre-existing observational data) under random assignment. Kane and Staiger (2008) and Kane et al. (2013) implement such experiments. The point estimates from these experiments indicate little forecast bias, but the 95% confidence intervals are consistent with a large amount of bias (e.g., up to 50% in some cases) because of constraints on sample size and compliance. Moreover, because the experiments included only a small subset of teachers and schools within the participating school districts, the external validity of the findings is debated (Rothstein 2010).

Motivated by these limitations, we develop a quasi-experimental method of estimating forecast bias that exploits naturally occurring teacher turnover in lieu of an experiment. Our approach yields more precise estimates of the degree of bias on a representative sample of a school district’s student population. The cost of our approach is that it relies on stronger identification assumptions, which we describe and evaluate in detail below.

6.1 Methodology

Adjacent cohorts of students within a school are frequently exposed to different teachers. In our core sample, 30.1% of teachers switch to a different grade within the same school the following year, 6.1% of teachers switch to a different school within the same district, and another 5.8% switch out of the district entirely.\footnote{Although teachers switch grades frequently, only 4.5% of students have the same teacher for two consecutive years.} We exploit this teacher turnover to obtain a quasi-experimental estimate of forecast bias.

To understand our research design, consider a school with three 4th grade classrooms. Suppose one of the teachers leaves the school in 1995 and is replaced by a teacher whose VA estimate in math is 0.3 higher. Assume that the distribution of unobserved determinants of scores ε_t does not change between 1994 and 1995. If $B = 0$, this change in teaching staff should raise average 4th grade math scores in the school by $0.3/3 = 0.1$. More generally, we can estimate B by comparing
the change in mean scores across cohorts to the change in mean VA driven by teacher turnover provided that student quality is stable over time.35

To formalize this idea, let $\hat{\mu}_{jt}^{(t,t-1)}$ denote the VA estimate for teacher j in year t constructed as above using data from all years except $t - 1$ and t. Similarly, let $\hat{\mu}_{jt-1}^{(t,t-1)}$ denote the VA estimate for teacher j in year $t - 1$ based on data from all years except $t - 1$ and t. Let Q_{sgt} denote the (student-weighted) mean of $\hat{\mu}_{jt}^{(t,t-1)}$ across teachers in school s in grade g. We define the change in mean teacher value-added from year t to year t in grade g in school s as $\Delta Q_{sgt} = Q_{sgt} - Q_{sgt,t-1}$. Note that by leaving out both years t and $t - 1$ when estimating VA, we ensure that the variation in ΔQ_{sgt} is driven purely by changes in the teaching staff and not by changes in VA estimates.36 This leave-out technique is analogous to using data outside year t to evaluate the properties of VA forecasts in year t. Here, we leave out two years to eliminate any correlation between changes in mean test scores across cohorts t and $t - 1$ and estimation error in ΔQ_{sgt}.37

Let A_{sgt} denote the mean value of A_{it} for students in school s in grade g in year t and define the change in mean student score residual as $\Delta A_{sgt} = A_{sgt} - A_{sgt,t-1}$. We estimate the degree of forecast bias B by regressing changes in mean test scores across cohorts on changes in mean teacher value-added:

\begin{equation}
\Delta A_{sgt} = a + b \Delta Q_{sgt} + \Delta \chi_{sgt}
\end{equation}

The coefficient in (17) identifies the degree of forecast bias $B = 1 - \lambda$ as defined in (10) under the following identification assumption.

Assumption 3 [Teacher Switching as a Quasi-Experiment] Changes in teacher quality across cohorts within a school-grade are orthogonal to changes in other determinants of student scores $\Delta \chi_{sgt}$ across cohorts:

\begin{equation}
Cov(\Delta Q_{sgt}, \Delta \chi_{sgt}) = 0.
\end{equation}

Under Assumption 3, the regression coefficient in (17) measures the degree of forecast bias in VA

35 By analyzing student outcomes at the school-grade-subject level, we do not exploit information on classroom assignment, thus overcoming the non-random assignment of students across classrooms.

36 Part of the variation in $\Delta \mu_{sgt}$ comes from drift. Even for a given teacher, predicted VA will change because our forecast of VA varies across years. Because the degree of drift is small across a single year, drift accounts for 5.5\% of the variance in $\Delta \mu_{sgt}$. As a result, isolating the variation due purely to teacher switching using an instrumental variables specification yields very similar results (not reported).

37 Formally, not using a two-year leave out would immediately violate Assumption 3 below, because unobserved determinants of scores ε_{sgt} or $\varepsilon_{sgt,t-1}$ would appear directly in ΔQ_{sgt}.
estimates: $b = \lambda = 1 - B(\tilde{\mu}_{jt}^{(t,t-1)})$.38 Intuitively, (17) is a quasi-experimental analog of the regression in (10) used to define forecast bias in experimental data, differencing and averaging across cohorts.

Assumption 3 could potentially be violated by endogenous student or teacher sorting. In practice, student sorting at an annual frequency is minimal because of the costs of changing schools. During the period we study, most students would have to move to a different neighborhood to switch schools, which families would be unlikely to do simply because a single teacher leaves or enters a given grade. While endogenous teacher sorting is plausible over long horizons, the sharp changes we analyze are likely driven by idiosyncratic shocks such as changes in staffing needs, maternity leaves, or the relocation of spouses. Hence, we believe that (18) is a plausible assumption at high frequencies in our data and we present evidence supporting this assumption below.

Note that if observable characteristics X_{it} are also orthogonal to changes in teacher quality across cohorts (i.e., satisfy Assumption 3), we can implement (17) simply by regressing the change in raw test scores ΔA_{sgt} on ΔQ_{sgt}. If the quasi-experiment is a good approximation to a true experiment, one would expect the controls to be balanced across cohorts as well. We therefore begin by analyzing changes in raw test scores ΔA_{sgt} across cohorts and then confirm that changes in control variables across cohorts are uncorrelated with ΔQ_{sgt}. Because we do not need controls, in this section we use the core sample described in Section 3.3 rather than the subset of observations that have lagged scores and the other controls needed to estimate the VA model.

Our research design is related to recent work analyzing the impacts of teacher turnover on student achievement, but is the first to use turnover to validate VA models directly. Rivkin, Hanushek, and Kain (2005) identify the variance of teacher effects from differences in variances of test score gains across schools with low vs. high teacher turnover. We identify the impacts of teachers from first moments – the relationship between changes in mean scores across cohorts and mean teacher value-added – rather than second moments.39 Jackson and Bruegmann (2009) analyze whether the VA of teachers who enter or exit affects the test scores of other teachers’ students in their school-grade cell, but do not compare changes in mean test scores by cohort to the predictions of VA models.40

38To be precise, $1 - b$ is the degree of forecast bias in the leave-two-year-out VA estimate $B(\tilde{\mu}_{jt}^{(t,t-1)})$.

39Rivkin, Hanushek, and Kain are unable to implement the teacher switcher design we develop here because they do not have class assignment data and thus cannot estimate each teacher’s individual effect μ_j, which is necessary to construct the school-grade-cohort level mean of teacher quality.

40The peer effects documented by Jackson and Bruegmann could in principle affect our validation of VA using the switcher design. However, peer learning effects are likely to be smaller with teacher exits than entry, provided that knowledge does not deteriorate very rapidly. We find that teacher entry and exit yield broadly similar results,
6.2 Event Studies

To illustrate our research design, we begin with event studies of scores around the entry and exit of high and low VA teachers in Figure 3. Let year 0 denote the school year that a teacher enters or exits a school-grade-subject cell and define all other school years relative to that year (e.g., if the teacher enters in 1995, year 1992 is -3 and year 1997 is +2). We define an entry event as the arrival of a teacher who did not teach in that school-grade-subject cell for the three preceding years; analogously, we define an exit event as the departure of a teacher who does not return to the same school-grade-subject cell for at least three years. To obtain a balanced sample, we analyze events for which we have data on average test scores at the school-grade-subject level for at least three years before and three years after the event.41

We define a teacher as “high VA” if her estimated VA in the year of entry is in the top 5% of the distribution of all entrants in her subject. Analogously, a “low VA” teacher has an estimated VA in the year of exit in the bottom 5% of the distribution of those who exit in her subject.42 We estimate VA for each teacher in the year of entry or exit using only data outside the six-year window used for the event studies.43 Because VA is measured with error, some teachers who are classified as “high VA” are those who had very good students by chance. Thus, if one were to define a “high VA” teacher as one whose students scored highly within the event window, one would spuriously find a relationship between test scores and the entry of such a teacher even if she had no causal impact on student performance.

Figure 3a plots the impact of the entry of a high-VA teacher on mean test scores. The solid series plots school-grade-subject-year means of test scores in the three years before and after a high-VA teacher enters the school-grade-subject cell. The dashed line in Figure 3a plots test scores in the previous school year (i.e., the previous grade) for the same cohorts of students. We include year fixed effects to eliminate any secular trends.44 To facilitate interpretation of the scale, we normalize both current and previous scores to 0 in the first year of the event study. We do not

41 In school-grade-subject cells with multiple events (e.g., entries in both 1995 and 1999), we include all such events by stacking the data and using the three years before and after each event.

42 In cases where multiple teachers enter or exit at the same time, we use the teachers’ mean VA to decide whether the event falls in the top or bottom 5% of the relevant VA distribution.

43 More precisely, we estimate VA for each teacher in each year excluding a five year window (two years prior, the current year, and two years post). Coupled with our definitions of entry and exit – which require that the teacher not be present in the school-grade-subject cell for 3 years before or after the event – this ensures that we do not use any data from the relevant cell between event years -3 and +2 to compute teacher VA.

44 We remove year effects in this and all other event study graphs by regressing mean test scores on year dummies and plotting the residuals.
condition on any other covariates in this figure: each point simply shows average test scores for
different cohorts of students within a school-grade-subject cell adjusted for year effects.

When a high-VA teacher arrives, end-of-year test scores in the subject and grade taught by that
teacher rise immediately. But test scores in the prior grade remain stable, as one would expect:
the entry of a high-VA teacher in grade 5 should have no impact on the same cohort’s 4th grade test
scores. The stability of prior test scores supports the identification assumption in (18) that school
quality and student attributes are not changing sharply around the entry of a high-VA teacher.45

The mean test score in the grade in which the high VA teacher enters rises by 0.042 from year
-1 to 0, while the mean lagged test score changes by 0.008. Hence, the entry of a high VA teacher
increases mean test score gains by 0.035. The null hypothesis that this change is 0 is rejected
with \(p < 0.001 \), with standard errors clustered by school-cohort as above. More importantly, the
magnitude of the increase in mean test score gains is very similar to the change in mean teacher
VA in the school-grade-subject cell of 0.042.46 The hypothesis that the observed impact on mean
score gains equals the increase in mean VA is not rejected \((p = 0.34) \), consistent with the view that
VA measures are forecast unbiased.

The remaining panels of Figure 3 repeat the event study in Panel A for other types of arrivals
and departures. Figure 3b examines current and lagged test scores around the departure of a high-
VA teacher. In this figure, we normalize both current and lagged mean scores to 0 in the final year
of the event study to facilitate interpretation. There is a smooth negative trend in both current
and lagged scores, suggesting that high-VA teachers leave schools with declining scores. However,
scores in the grade taught by the teacher drop sharply relative to prior scores in the event year,
showing that the departure of the high value-added teacher lowers the achievement of subsequent
cohorts of students. Figures 3c and 3d analyze the arrival and departure of low VA teachers. Test
scores in the grade taught by the teacher fall sharply relative to prior scores when low VA teachers
enter a school-grade cell and rise sharply when low VA teachers leave.

In every case, the change in test score gains is significantly different from 0 with \(p < 0.01 \) but
is not significantly different from what one would forecast based on the change in mean teacher
VA. Together, these event studies provide direct evidence that deselecting low VA teachers and
retaining high-VA teachers improves the academic achievement of students.

45 We also find that class size does not change significantly around the entry and exit events we study.
46 When computing this change in mean VA, we weight teachers by the number of students they teach. For teachers
who do not have any VA measures from classrooms outside the leave-out window, we impute VA as 0 (the sample
mean). We discuss the robustness of our results to imputation below.
6.3 Estimates of Forecast Bias

The event studies focus on the tails of the teacher VA distribution and thus exploit only a small fraction of the variation arising from teacher turnover in the data. We now exploit all the variation in teacher quality across cohorts due to teaching staff changes to obtain a broader and more precise estimate of forecast bias. To do so, we first estimate VA for each teacher using data excluding a given pair of adjacent years, \(t - 1 \) and \(t \). We then calculate the change in mean teacher VA for each school-grade-subject-year cell and define \(\Delta Q_{sgt} \) as mean teacher VA in year \(t \) minus mean teacher VA in year \(t - 1 \), as described in Section 6.1.

Figure 4a plots the changes in mean raw test scores across cohorts \(\Delta A_{sgt}^* \) against changes in mean teacher value-added \(\Delta Q_{sgt} \), weighting by the number of students in each cell. As in the event studies, we include year fixed effects so that the estimate is identified purely from differential changes in teacher value-added across school-grade-subject cells over time. For comparability with the estimates in Table 2, we restrict the sample to the subsample of classrooms with non-missing teacher value-added estimates. Changes in the quality of the teaching staff strongly predict changes in test scores across consecutive cohorts of students in a school-grade-subject cell. The estimated coefficient on \(\Delta Q_{sgt} \) is 0.974, with a standard error of 0.033 (Table 4, Column 1). The implied forecast bias of 2.6% is our preferred estimate of forecast bias. This estimate is not statistically distinguishable from 0 – i.e., we cannot reject forecast unbiasedness of VA measures – and the upper bound of the 95% confidence interval for forecast bias is 9.1%.

The conclusion that VA measures exhibit little forecast bias rests on the validity of the identification assumption underlying our quasi-experimental design in (18). One natural concern is that improvements in teacher quality may be correlated with other improvements in a school – such as better resources in other dimensions – that also contribute to test score gains and thus lead us to underestimate forecast bias. To address this concern, Column 2 of Table 4 replicates the baseline specification in Column 1 including school by year fixed effects instead of just year effects. In this specification, the only source of identifying variation comes from differential changes in teacher quality across subjects and grades within a school in a given year. The coefficient on \(\Delta Q_{sgt} \) remains virtually unchanged relative to the baseline estimate that pools all sources of variation. Column 3 further accounts for secular trends in subject- or grade-specific quality by controlling for the change in mean teacher VA in the prior and subsequent year as well as cubics in the change in prior-year mean own-subject and other-subject scores across cohorts. Including these variables
has little impact on the coefficient. This result shows that sharp annual changes in teacher quality relative to trend in specific grades and subjects lead to nearly 1-for-1 changes in test score gains, consistent with the event studies in Figure 3.

We further evaluate (18) using a series of placebo tests. Column 4 of Table 4 replicates the specification in Column 2, replacing the change in actual scores with the change in predicted scores based on parent characteristics. The predicted score is based on an OLS regression of A_{it} on the five parent characteristics P_{it}, used in Section 5, with no other control variables. The estimated effect of predicted test scores is not significantly different from 0, and the upper bound on the 95% confidence interval is 0.013. Figure 4b presents a binned scatter plot corresponding to this regression. There is little relationship between changes in mean teacher VA and mean predicted scores throughout the distribution. These results support the assumption that changes in the quality of the teaching staff are unrelated to changes in student quality at an annual level.

Next, we use contemporaneous test scores in the other subject (math or English) to evaluate changes in student quality. In this placebo test, it is important to distinguish between elementary and middle schools. In middle school, students have different teachers for math and English. Therefore, if (18) holds, we would expect changes in mean math teacher VA to have little impact on English test scores, holding fixed the quality of English teachers.\footnote{If math teacher quality directly affects English scores (or vice versa), one will obtain a positive coefficient in this regression even if (18) holds. Hence, this test is a sufficient but not necessary condition for (18).} We test this hypothesis in Column 5 of Table 4 by regressing changes in mean scores on ΔQ_{sgt} in both the same subject and the other subject. The estimated effect on test scores in the other subject is 0.038 and is not statistically distinguishable from 0 ($p = 0.64$).

Figure 5a presents a non-parametric analog of this regression by plotting changes in mean test scores across cohorts vs. changes in mean teacher VA in the other subject. To partial out the effect of changes in mean teacher VA in the same subject in this figure, we regress both the x and y variables on changes in mean teacher VA in the own subject and compute residuals. We then bin the x-axis residuals into 20 equal sized groups (vintiles) and plot the mean of the y residuals within each bin. Consistent with the regression estimate, there is no relationship between changes in teacher VA and scores in the other subject throughout the distribution. We view this result as strong evidence supporting (18), as it is unlikely that changes in student-level unobservables ε_{sgt} would have no impact on scores in the other subject.

In elementary school, students have one teacher for both math and English. Because elementary
school teachers’ math and English VA are highly correlated ($r = 0.6$) and because VA is measured with error, changes in teacher VA in one subject have signal content for teaching quality in the other subject. Therefore, in elementary school, we should expect mean teacher VA to have non-zero effects on scores in the other subject. Figure 5b replicates Figure 5a for elementary school and shows that this is indeed the case. A 1 unit improvement in mean teacher VA raises scores in the other subject by 0.237 (Column 6 of Table 4). As one would expect, the coefficient on VA in the other subject is much smaller than 1.

Together, these tests imply that any violation of (18) would have to be driven by selection on unobserved determinants of test scores that (1) are uncorrelated with parent characteristics, (2) are unrelated to prior test scores and test scores in the other subject for the affected students, and (3) occur differentially across grades within a school at an annual frequency. We believe that such selection is implausible given the information available to teachers and students and the constraints they face in sorting across schools at high frequencies.

6.4 Additional Robustness Checks

In Table 5, we further assess the robustness of our quasi-experimental estimates to alternative specifications and sample selection criteria. Our preceding specifications pool all sources of variation in teacher quality – including switches across grades, between schools, and out of the district. While all of these sources of variation are plausibly orthogonal to changes in student quality at an annual frequency, one may argue that the decision to leave a school entirely is least likely to be correlated with annual fluctuations in student quality within a school. In Column 1 of Table 5, we isolate the variation in teacher quality due to switches out of a school. We instrument for the change in mean teacher value added ΔQ_{sbt} with the fraction of students in the prior cohort taught by teachers who leave the school, multiplied by the mean VA among school-leavers (with the instrument defined as 0 for cells with no school-leavers).\footnote{For example, suppose the previous cohort had four equally sized classrooms, one taught by a school-leaver with $\bar{\rho}_{jt}^{(t,t-1)} = 0.2$. The value of our instrument would be $0.25 \cdot 0.2 = 0.05$. This is the expected loss in mean VA across cohorts due to school-leavers. The first stage coefficient on this variable is -0.97 (t-statistic = -53).} We include year fixed effects in this specification, as in Column 1 of Table 4. This specification yields a coefficient on ΔQ_{sbt} of 1.045, very similar to our baseline estimate of 0.974.

The preceding estimates all use the subsample of students for whom we have estimates of teacher VA. While this corresponds directly to the sample used to estimate VA, restricting the sample to classrooms with non-missing VA estimates could lead to violations of the identification assumption...
in (18) because we do not use the entire school-grade-subject cohort for identification. To evaluate the importance of bias due to missing data within cohorts, we replicate the baseline specification (Column 1 of Table 4) using all students in our dataset in Column 2 of Table 5. We impute teacher VA as the sample mean (0) for the 16% of observations for whom we have no leave-two-year-out VA estimate, either because we have no teacher information or because the teacher taught for only those two years in the district. The coefficient on ΔQ_{sgt} with this imputation procedure in the full sample is 0.877, which is lower than our baseline estimate of 0.974. This is to be expected because the imputation of teacher VA generates measurement error in average teaching quality, leading to attenuation bias. For example, if a highly effective teacher enters the district for only a single year, so that we are not able to calculate VA from other years of data, our imputation procedure will treat this teacher as being average, leading to measurement error in mean VA in the school-grade-subject cell.

To assess whether measurement error due to imputation is responsible for the smaller coefficient, we restrict the sample to school-grade-subject-year cells in which the fraction of observations with imputed teacher VA estimates is less than 25% in both the current and preceding year. Unlike the sample restrictions imposed in Table 4, restrictions at the school-grade-subject level cannot generate violations of (18) due to selection bias because we exclude entire cohorts rather than individual classrooms. In this subsample, the fraction of observations with non-missing teacher VA information is 94%. Accordingly, the coefficient on ΔQ_{sgt} rises to 0.952, as shown in Column 3 of Table 5. In Column 4, we further restrict the sample to school-grade-subject-year cells with no missing teacher VA observations in the current and preceding year. In this sample, we obtain an estimate on ΔQ_{sgt} of 0.990, implying forecast bias of 1.0%. We conclude based on these quasi-experimental results that there is little or no forecast bias in our baseline VA estimates.

7 Comparing Bias Across VA Models

Our preceding analysis evaluates bias in a value-added specification that includes a very rich set of school district controls. Which of these controls are most important in obtaining unbiased estimates of VA? This section explores this question and explains how our findings reconcile the debate in prior work about bias in VA models.

49To take an extreme example, suppose teacher information is reported for only one of 5 classrooms in a given school-grade-subject cell. In this case, comparisons of mean scores across students in two cohorts with non-missing teacher information is equivalent to comparing mean scores across a single classroom in two different years. This could violate the identifying assumption of our quasi-experimental design if assignment to classrooms is non-random.
Table 6 reports estimates of bias for various VA models. Each row considers a different VA specification. Column 1 reports correlations between the VA estimates obtained from each model and the baseline estimates. Column 2 reports estimates of forecast bias using our preferred quasi-experimental specification (Column 1 of Table 4), using all students for whom we have teacher VA estimates.

The first row of the table replicates our baseline VA model above as a reference. For comparability, we estimate all the remaining models on the same sample of observations used in this row.

In row 2, we follow the traditional approach used in prior work of constructing student test-score residuals by regressing raw scores A_{it} on controls X_{it} in a specification without teacher fixed-effects, unlike in (5). As discussed in Section 6.4, this method exploits variation both within and across teachers to identify the coefficients on the control vector and thus can understate teacher effects by over-attributing test score growth to covariates if there is sorting. In practice, this turns out to be a minor concern: VA estimates constructed from test score residuals that are identified using the traditional approach have a correlation of 0.979 with our baseline VA estimates. Correspondingly, they exhibit forecast bias of 2.2%, very similar to our baseline model. This is because sorting is relatively minimal in practice and most of the variation in the controls X_{it} is within rather than between teachers.

As noted above, the testing regimes vary across our 20 year sample. City-level tests were given in April or May while state-level tests were generally administered earlier, sometimes in February. We evaluate whether this variation in testing regimes affects VA estimates by interacting the cubics in student-level prior test scores with indicators for having the prior-year test administered in February. We find that permitting different coefficients on the February state-level tests has little impact: the correlation with the baseline VA estimates is 0.998 and forecast bias remains low at 2.6%, as shown in row 3.

The remaining rows of the table strip out elements of the baseline control vector to determine which controls matter most for forecast bias. In row 4, we include only the controls that are based on prior-year test scores: cubic polynomials in student, classroom, and school-grade math and English scores interacted with grade level. These VA estimates remain highly correlated with the baseline estimates and continue to exhibit relatively small and statistically insignificant forecast bias of 3.8%.

In row 5, we further reduce the controls to include only the student-level prior math and
English test scores. Forecast bias is 4.8%, somewhat higher than with our much richer baseline control vector. Nevertheless, even with this very parsimonious control vector, we do not reject the hypothesis that the VA estimates are forecast unbiased. In row 6, we control only for prior test scores in the same subject using a cubic polynomial. Forecast bias rises to 10.2% in this specification, showing that prior test scores in the other subject are useful in accounting for sorting.

In row 7, we control for all variables in the baseline model except those based on prior test scores. Here, the degree of forecast bias jumps sharply to 45.4%. Finally, row 8 estimates VA without any controls at all, i.e., using raw mean test scores by teacher. These VA estimates are very poorly correlated with the other VA measures and are biased by nearly 66%.

The main lesson of this analysis is that controlling for prior student-level test scores is the key to obtaining VA estimates that provide unbiased forecasts of teachers’ causal impacts. Additional controls further reduce bias, but the vast majority of sorting is accounted for by lagged student-level test scores. One intuitive explanation for this finding is that classroom assignments in this large school district are made primarily on the basis of prior-year scores. The remaining unobserved factors used to sort students to teachers have little predictive power for future achievement conditional on lagged scores. Of course, all of these conclusions depend upon the class and teacher assignment rules a school district uses. Replicating Table 6 using data from other school districts would be very valuable to understand the generality of these results.

Relationship to Prior Work. Our finding that VA measures that control for lagged scores exhibit little forecast bias helps reconcile the conflicting results of prior work, including Kane and Staiger (2008), Rothstein (2009, 2010), Koedel and Betts (2011), Kinsler (2012), Goldhaber and Chaplin (2012), and Kane et al. (2013). Rothstein (2010) reports two important results, both of which we replicate in our data. First, there is significant grouping of students into classrooms based on twice-lagged scores (lagged gains), even conditional on once-lagged scores (Rothstein 2010, Table 4). Second, this grouping on lagged gains generates minimal bias in VA estimates: controlling for twice-lagged scores does not have a significant effect on VA estimates (Rothstein 2010, Table 6; Kane and Staiger 2008, Table 6).⁵⁰ The results of our tests in Table 3 are consistent with Rothstein’s conclusions. Therefore, the literature is in agreement that VA measures do not suffer

⁵⁰ An interesting question is how Rothstein’s two findings are consistent with each other. There are two explanations for this pattern. First, the degree of grouping that Rothstein finds on \(A_{ig,t-2} \) has small effects on residual test score gains because the correlation between \(A_{ig,t-2} \) and \(A_{ig,t-1} \) conditional on \(A_{ig,t-1} \) is relatively small. Second, if the component of \(A_{ig,t-2} \) on which there is grouping is not the same as the component that is correlated with \(A_{i,t} \), VA estimates may be completely unaffected by grouping on \(A_{i,t-2} \). For both reasons, one cannot infer from grouping on \(A_{i,t-2} \) that VA estimates are significantly biased by selection on \(A_{i,t-2} \). See Goldhaber and Chaplin (2012) for further discussion of these and related issues.
from substantial bias due to selection on lagged score gains.

Rothstein quite appropriately emphasizes that his findings raise serious concerns about the potential for bias due to selection on unobservable student characteristics.51 Kane and Staiger’s (2008) and Kane et al.’s (2013) point estimates from randomized experiments suggest that selection on unobservables is relatively small. Our quasi-experimental tests based on teaching staff changes confirm that the bias due to selection on unobservables turns out to be negligible with greater precision in a more representative sample. In future work, it may be useful to explore why the grouping on lagged gains documented by Rothstein is not associated with significant selection on unobservables in practice. However, the findings in this paper and prior work are sufficient to conclude that standard estimates of teacher VA can provide accurate forecasts of teachers’ average impacts on students’ test scores.

8 Differences in Teacher Quality Across Schools and Students

Having developed what appears to be an unbiased measure of teacher quality, it is interesting to understand how teacher quality varies across environments. Are high VA teachers systematically assigned to certain schools or types of students? Do differences in teacher quality contribute to gaps in achievement across schools and students from different backgrounds?

We are able to answer these questions in this paper because our method of constructing student test score residuals in (5) only exploits within-teacher variation. Prior studies that estimate VA typically construct test score residuals using both between- and within-teacher variation and thus do not necessarily obtain a global ranking. For example, suppose schools with higher SES students have better teachers. By residualizing test scores with respect to student SES before computing teacher VA, one would attribute the differences in outcomes across these schools to differences in student SES rather than teacher quality. As a result, one only obtains a relative ranking of teachers conditional on student SES and cannot compare teacher quality across students with different characteristics. Using within-teacher variation to estimate the coefficients on the control vector X_{it} resolves this problem and yields a global ranking of teachers across the school district.

\textit{Differences in Teacher Quality Across Schools.} We begin by calculating how much of the variation across schools in test scores in grade 8, the final grade in our data, can be attributed to differences in teacher quality up to that point. The standard deviation of mean test scores

\footnote{To be clear, this was the original lesson from Rothstein (2010). In personal correspondence, Rothstein notes that his findings are “neither necessary nor sufficient for there to be bias in a VA estimate” and that “if the selection is just on observables, the bias is too small to matter. The worrying scenario is selection on unobservables.”}
across schools in 8th grade (pooling math and English) is 0.417 in the sample used to estimate the baseline VA model. To calculate what this standard deviation would be if teacher quality were equated across all schools, we must take a stance on how teachers’ impacts cumulate over time. In our companion paper, we estimate that 1 unit improvement in teacher VA in a given grade raises achievement by approximately 0.53 units after 1 year, 0.36 after 2 years, and stabilizes at approximately 0.25 after 3 years. Under the assumption that teacher effects are additive across years, these estimates of fade-out imply that a 1 unit improvement in teacher quality in all grades K-8 would raise 8th grade test scores by 3.4 units. Let \(A_{i,g=8}^* \) denote student \(i \)'s observed score in grade 8 and \(A'_{i,g=8} \) what his score would have been if he had teachers of average quality (\(\mu_j = 0 \)) from grades K-8. We estimate \(A'_{i,g=8} = A_{i,g=8}^* - 3.4 \times \overline{VA}_i \), where \(\overline{VA}_i \) denotes the mean VA of teachers that student \(i \) had over the sample.\(^{52}\) The resulting standard deviation of mean adjusted scores \(\overline{VA}_i \) across schools is 0.387.\(^{53}\) Hence, differences in teacher quality account for only \(1 - \frac{0.387}{0.417} = 7\% \) of the test score differences in 8th grade scores between schools. This finding is consistent with the results of Mansfield (2012), who concludes that teacher quality explains a small share of differences in student outcomes across schools by estimating the structural primitives of an education production function.

The fact that teacher quality explains a small share of the variation in achievement across schools does not imply that improving teacher quality in low-performing schools would have little impact on achievement gaps. The key point is not that teachers do not matter but rather that the quality of teachers is similar across schools in the current environment. The standard deviation of teacher effects within schools is 0.085, compared with 0.034 between schools. This implies that between-school differences account for less than 15% of the total variance in teacher quality.

If one were to systematically attract high VA teachers to low performing schools, one could close a substantial portion of the achievement gap. As an illustration, suppose that we reassigned existing teachers across schools such that the best teachers went to the school with the lowest average student scores, the next-best teachers went to the next-worst schools, and so on. Formally, a school with mean scores at the \(p \)th percentile would receive teachers from the \(1 - p \)th percentile.\(^{54}\)

\(^{52}\) We cannot simply use mean teacher VA in student \(i \)'s school for this calculation because students attend different elementary and middle schools.

\(^{53}\) This calculation should be viewed as a rough approximation for two reasons. First, we can only measure teacher quality in grades 4-8, and so we assume that each student’s average teacher quality in these 5 grades is the same as his average teacher quality in grades K-3. Second, because we are missing teacher quality in some grades for many students, we multiply \(\overline{VA}_i \) by 3.4 rather than accounting for the impact of actual VA in each grade separately.

\(^{54}\) Schools differ in size, making this reallocation slightly more complicated in practice. If the school with the lowest average scores had \(C_1 \) classrooms, one would allocate the best \(C_1 \) teachers to that school. The school with the next lowest average scores (with \(C_2 \) classrooms) would receive the next best \(C_2 \) teachers, and so on.

38
Pooling across the four subject-by-school-year cells, the mean SD of the VA estimates $\hat{\mu}_{jt}$ shown in Appendix Figure 1 is 0.083. Hence, the reassignment of the teachers with the highest VA estimates to the lowest-performing schools would reduce the across-school standard deviation of 8th grade test scores by $3.4 \times 0.083/0.387 = 73\%$ relative to the case with no differences in teacher quality across schools.

Differences in Teacher Quality by Student Characteristics. Next, we assess sorting of students to teachers based on observable characteristics. Table 7 reports estimates from OLS regressions of our baseline VA estimates $\hat{\mu}_{jt}$ on various observables, with standard errors clustered at the teacher level to account for correlated errors in the assignment process of classrooms to teachers.

We begin in Column 1 by regressing $\hat{\mu}_{jt}$ on lagged test scores $A_{i,t-1}^s$. Better students are assigned slightly better teachers: students who score 1 unit higher in the previous grade get a teacher whose VA is 0.0078 better on average. Such sorting could occur either because of the assignment mechanism that principals use or because high quality teachers tend to sort towards better performing students (Hanushek et al. 2004, Jackson 2009). Whatever the mechanism, the tracking of better students to better teachers magnifies gaps in achievement, although the magnitude of this amplification effect is small relative to other determinants of the variance in student achievement.

Column 2 shows that special education students are assigned teachers with 0.002 lower VA on average. Again, this effect is statistically different from zero, but is quantitatively small. Relative to other students with similar prior test scores, special education students receive slightly higher VA teachers (not reported).

In Column 3, we regress $\hat{\mu}_{jt}$ on parent income. A $10,000 (0.3 SD) increase in parent income raises teacher VA by 0.00054, with the null hypothesis of 0 correlation rejected with $p < 0.0001$. Consistent with the preceding findings, this correlation explains a small share of the gap in achievement by family income. In our data, a $10,000 increase in parental income is associated with a 0.065 SD increase in 8th grade test scores. Hence, only $\frac{3.4 \times 0.00054}{0.065} = 3\%$ of the income-score gradient can be attributed to differences in teacher quality from grades K-8. Once again, however, a sequence of good teachers can close a significant portion of the achievement gap. If teacher quality for low income students were improved by 0.1 units in all grades from K-8, 8th grade scores would rise by 0.34, enough to offset more than a $50,000 difference in family income.

Column 3 shows that there is an *unconditional* correlation between teacher VA and parent income. Column 4 demonstrates that controlling for a student’s lagged test score entirely eliminates
the correlation between teacher VA and parent income. The fact that the relationship between parent income and teacher VA runs through lagged test scores explains why we found that VA estimates are unbiased even though better teachers get higher income students.

Column 5 analyzes the correlation between teacher VA and ethnicity. Mean teacher quality is no different on average across minority (Hispanic or Black) vs. non-minority students. However, 71.6% of students are minorities in the district we study. It is possible that in populations with lower minority share one would find greater sorting on this dimension.

Finally, Columns 6 and 7 analyze the relationship between teacher value-added and school-level demographics. One might expect that sorting across schools based on parental income or ethnicity is stronger than within-schools. In practice, however, the relationship between mean parent income in a school and teacher quality remains quite small (Column 6) and there is no relationship between fraction minority and school quality.

In sum, we find that higher SES and better-performing students are typically tracked to slightly better teachers, but the degree of sorting explains a small share of the achievement gaps documented in prior work. Together with other evidence on achievement gaps at very young ages (Fryer and Levitt 2004, Heckman 2006), these findings support the view that existing achievement gaps are largely driven by factors other than teacher quality. Nevertheless, a sequence of good teachers can significantly raise test scores and thus primary school is not too late to close achievement gaps.

9 Conclusion

The main lesson of this study is that value-added models that control for a student’s prior-year test scores provide accurate forecasts of teachers’ mean impacts on student achievement. This result shows that existing test score data can help identify teachers who substantially improve student achievement. Teachers’ impacts are substantial and improving teacher quality could raise the performance of low-scoring students significantly. However, differences in teacher quality are not the primary reason that high SES students currently do much better than their low SES peers, because most of the variation in teacher value-added is within schools and is unrelated to student demographics.

From a methodological perspective, our analysis demonstrates that teacher turnover provides a source of quasi-experimental variation that can be used to validate metrics for teacher performance and personnel evaluation. Any school district can easily apply the techniques here to evaluate its own VA models. In future work, it would be valuable to develop richer measures of teacher quality
that go beyond mean test score impacts. For example, it would be useful to develop VA measures at various percentiles of the test score distribution and for specific demographic subgroups. Are some teachers better with certain subgroups – e.g., boys vs. girls, high achievers vs. low achievers, or students learning English as a second language? One can also use teacher turnover to validate other measures of teacher quality, such as principal evaluations or ex-ante credentials. When a teacher with good evaluations switches into a school, do outcomes improve? More broadly, the tools developed here could be applied to assess the accuracy of personnel evaluation metrics in a variety of professions beyond teaching.

In this paper, we established that value-added measures can successfully identify which teachers have the greatest ability to raise students’ test scores. One cannot conclude from this result that teacher VA is a good measure of teacher “quality,” however, as test scores are not the ultimate outcome of interest. Do high VA teachers also improve students’ long-term outcomes, or are they simply better at teaching to the test? We turn to this question in the next paper in this volume.
References

Online Appendix A: Value-Added Estimation Methods

In this appendix, we provide a step-by-step guide to implementing our method of estimating VA in the presence of drift. In practice, we cannot follow exactly the method described in Section 2.2 because data availability varies across teachers. For instance, there are different numbers of students per class and teachers have a different number of past and future classes from which to construct value-added in any given year. We calculate value-added in three steps, separately for each subject (math and English) and school level (elementary and middle).

Step 1 [Residualization of Test Scores]: We begin by residualizing student scores A_{it}^* with respect to controls X_{it} by running an OLS regression with teacher fixed effects of the form $A_{it}^* = \alpha_j + \beta X_{it}$ and constructing residuals $A_{it} = A_{it}^* - \hat{\beta} X_{it}$.

Step 2 [Estimation of Variance Components]: Next, we estimate the individual-level variance of residual test scores, $\sigma^2_\varepsilon = Var(\varepsilon_{it})$, as $\hat{\sigma}^2_\varepsilon = MSE \times \left(\frac{N-1}{N-K-C+1} \right)$ where MSE is the variance of the within-classroom deviations of A_{it}, N is the total number of students, C is the total number of classrooms, and K is the number of control variables in the X_{it} control vector. The scaling term is required to correct the degrees of freedom for the fact that we have already estimated K parameters to form the residual A_{it}. We also estimate $Var(A_{it})$, the total variance of A_{it}, again accounting for the prior estimation of $\hat{\beta}$ when calculating the degrees of freedom correction.

At this point, we collapse the data to the classroom-level by constructing the average residualized score \bar{A}_{ct} for each classroom c and proceed to use class-level means for the remaining steps. In middle school, teachers teach more than one class per year. We handle such cases by collapsing the data to the teacher-year level. We do so by constructing precision-weighted averages of classroom-average scores within a teacher-year. The weight for classroom c in year t is $h_{ct} = \frac{1}{\hat{\sigma}^2_\theta + \frac{\hat{\sigma}^2_\varepsilon}{n_{ct}}}$ where $\hat{\sigma}^2_\theta$ is an estimate of the class-level variance component and n_{ct} denotes the number of students in the classroom. We construct this estimate as $\hat{\sigma}^2_\theta = Var(A_{it}) - \hat{\sigma}^2_\varepsilon - \hat{\sigma}^2_{A0}$, where $\hat{\sigma}_{A0}$ is our estimate of the within-teacher-year between-class covariance in average scores, reflecting the teacher-level component of the variance. To simplify computation, we follow Kane and Staiger (2008) and randomly sort classrooms within each teacher-year cell; we then estimate the covariance $\hat{\sigma}_{A0}$ based on the covariance of the test scores of adjacent classrooms in each teacher-year cell, weighting each pair of classrooms by the sum of students taught.

We next estimate the covariances between mean scores across years within teacher, denoted $\hat{\sigma}_{As}$, in both elementary and middle schools. We allow a separate covariance for each possible time lag $s \in \{1, 2, \ldots\}$ denoting the separation between the two years in which the classes were taught. We weight each teacher-year pair by the sum of students taught. We set all covariances for lags greater than 7 equal to the estimated covariance for the 7th lag.
Step 3: [Construction of VA Estimates] In this step, we use the parameter estimates to construct a VA estimate for each teacher j in each year t that she appears in the data. Denote by \overrightarrow{A}_{jt} the vector of all teacher-year-mean scores used in a given value-added prediction. Let N_{jt} denote the length of this vector, so that we are using N_{jt} other years to project scores in year t. We construct the best linear predictor of teacher quality in year t as

$$\tilde{\mu}_{jt} = \left(\Sigma_{A_{jt}}^{-1} \gamma_{jt} \right)^t \overrightarrow{A}_{jt}$$

where γ_{jt} is a $N_{jt} \times 1$ vector and $\Sigma_{A_{jt}}$ is a $N_{jt} \times N_{jt}$ matrix. We denote the weights on scores \overrightarrow{A}_{jt} by $\psi_{jt} = \Sigma_{A_{jt}}^{-1} \gamma_{jt}$. If the mth and nth element of the scores vector \overrightarrow{A}_{jt} are A_{js} and $A_{js'}$, the mth element of the diagonal of $\Sigma_{A_{jt}}$ in middle school is

$$[\Sigma_{A_{jt}}]_{mm} = \hat{\sigma}_0 + \frac{1}{\sum_{c \in \{c|j(c) = j\}} h_{cs}}$$

where the denominator of the second term is the sum of precisions for the classes taught by a teacher in year s, which is the precision of the teacher-year mean in year s. In elementary school, where teachers teach one class per year, we cannot estimate $\hat{\sigma}_0$ but we can estimate $\hat{\sigma}_0 + \hat{\sigma}_0^2 = Var(A_{it}) - \hat{\sigma}_e^2$. Here, the mth element of the diagonal of $\Sigma_{A_{jt}}$ is

$$[\Sigma_{A_{jt}}]_{mm} = (\hat{\sigma}_0 + \hat{\sigma}_0^2) + \frac{\hat{\sigma}_e^2}{n_{ct}}$$

In both elementary and middle school, the mnth off-diagonal element of $\Sigma_{A_{jt}}$ is

$$[\Sigma_{A_{jt}}]_{mn} = \hat{\sigma}_{A_{js-s'}}$$

and the mth element of γ_{jt} is

$$[\gamma_{jt}]_m = \hat{\sigma}_{A_{js-t}}.$$

Because the distribution of other years in which data are available varies both across teachers j and across the years t within a teacher, both the matrix $\Sigma_{A_{jt}}$ and the vector γ_{jt} will vary across j and t. We therefore construct these elements separately for each teacher-year in the data. Note that we can use this algorithm even if data on test scores for teacher j’s students are missing in year t, since those data are not required to estimate $\tilde{\mu}_{jt}$.

Online Appendix B: Matching Algorithm

We follow the matching algorithm developed in Chetty et al. (2011) to link the school district data to tax records. The algorithm was designed to match as many records as possible using variables that are not contingent on ex post outcomes. Date of birth, gender, and last name in the tax data are populated by the Social Security Administration using information that is not contingent on ex post outcomes. First name and ZIP code in tax data are contingent on observing some ex post outcome. First name data derive from information returns, which are typically generated after an adult outcome like employment (W-2 forms), college attendance (1098-T forms), or mortgage interest payment (1098 forms). The ZIP code on the claiming parent’s 1040 return is typically from 1996 and is thus contingent on the ex post outcome of the student not having moved far from her elementary school for most students in our analysis sample.

Chetty et al. (2011) show that the match algorithm outlined below yields accurate matches
for approximately 99% of cases in a school district sample that can be matched on social security number. Note that identifiers were used solely for the matching procedure. After the match was completed, the data were de-identified (i.e., individual identifiers such as names were stripped) and the statistical analysis was conducted using the de-identified dataset.

Step 1 [Date of Birth, Gender, Last Name]: We begin by matching each individual from the school-district data to Social Security Administration (SSA) records. We match individuals based on exact date of birth, gender, and the first four characters of last name. We only attempt to match individuals for which the school records include a valid date of birth, gender, and at least one valid last name. SSA records all last names ever associated in their records with a given individual; in addition, there are as many as three last names for each individual from the school files. We keep a potential match if any of these three last names match any of the last names present in the SSA file.

Step 2 [Rule Out on First Name]: We next check the first name (or names) of individuals from the school records against information from W2 and other information forms present in the tax records. Since these files reflect economic activity usually after the completion of school, we use this information in Step 2 only to “rule out” possible matches in order to minimize selection bias. In particular, we disqualify potential matches if none of the first names on the information returns match any of the first names in the school data. As before, we use only the first four characters of a first name. For many potential matches, we find no first name information in the tax information records; at this step we retain these potential matches. After removing potential matches that are mismatched on first name, we isolate students for whom only one potential match remains in the tax records. We declare such cases a match and remove them from the match pool. We classify the match quality (MQ) of matches identified at this stage as $MQ = 1$.

Step 3 [Dependent ZIP code]: For each potential match that remains, we find the household that claimed the individual as a dependent (if the individual was claimed at all) in each year. We then match the location of the claiming household, identified by the 5-digit ZIP code, to the home address ZIP code recorded in the school files. We classify potential matches based on the best ZIP code match across all years using the following tiers: exact match, match within 10 (e.g., 02139 and 02146 would qualify as a match), match within 100, and non-match. We retain potential matches only in the highest available tier of ZIP code match quality. For example, suppose there are 5 potential matches for a given individual, and that there are no exact matches on ZIP code, two matches within 10, two matches within 100, and one non-match. We would retain only the two that matched within 10. After this procedure, we isolate students for whom only one potential match remains in the tax records. We declare such cases a match and remove them from the match pool. We classify the match quality of matches identified at this stage as $MQ = 2$.

Step 4 [Place of Birth]: For each potential match that remains, we match the state of birth from the school records with the state of birth as identified in SSA records. We classify potential matches into three groups: state of birth matches, state of birth does not match but the SSA state is the state where the school district is, and mismatches. Note that we include the second category primarily to account for the immigrants in the school data for whom the recorded place of birth is outside the country. For such children, the SSA state-of-birth corresponds to the state in which they received the social security number, which is often the first state in which they lived after coming to the country. We retain potential matches only in the best available tier of place-of-birth match quality. We then isolate students for whom only one potential match remains in the tax records. We declare such cases a match and remove them from the match pool. We classify the match quality of matches identified at this stage as $MQ = 3$.

Step 5 [Rule In on First Name]: After exhausting other available information, we return to
the first name. In step 2 we retained potential matches that either matched on first name or for which there was no first name available. In this step, we retain only potential matches that match on first name, if such a potential match exists for a given student. We also use information on first name present on 1040 forms filed by potential matches as adults to identify matches at this stage. We then isolate students for whom only one potential match remains in the tax records. We declare such cases a match and remove them from the match pool. We classify the match quality of matches identified at this stage as \(MQ = 4 \).

Step 6 [Fuzzy Date-of-Birth]: In previous work (Chetty et al. 2011), we found that 2-3% of individuals had a reported date of birth that was incorrect. In some cases the date was incorrect only by a few days; in others the month or year was off by one, or the transcriber transposed the month and day. To account for this possibility, we take all individuals for whom no eligible matches remained after step 2. Note that if any potential matches remained after step 2, then we would either settle on a unique best match in the steps that follow or find multiple potential matches even after step 5. We then repeat step 1, matching on gender, first four letters of last name, and fuzzy date-of-birth. We define a fuzzy DOB match as one where the absolute value of the difference between the DOB reported in the SSA and school data was in the set \{1, 2, 3, 4, 5, 9, 10, 18, 27\} in days, the set \{1, 2\} in months, or the set \{1\} in years. We then repeat steps 2 through 5 exactly as above to find additional matches. We classify matches found using this fuzzy-DOB algorithm as \(MQ = 5.X \), where \(X \) is the corresponding \(MQ \) from the non-fuzzy DOB algorithm. For instance, if we find a unique fuzzy-DOB match in step 3 using dependent ZIP codes, then \(MQ = 5.2 \).

The following table shows the distribution of match qualities for all students. We match 88.6% of students and and 89.8% of student-subject observations in the analysis sample used to calculate VA. Unmatched students are split roughly evenly among those for whom we found multiple matches and those for whom we found no match.

<table>
<thead>
<tr>
<th>Match Quality (MQ)</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Match Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>650002</td>
<td>47.55%</td>
<td>47.55%</td>
</tr>
<tr>
<td>2</td>
<td>511363</td>
<td>37.41%</td>
<td>84.95%</td>
</tr>
<tr>
<td>3</td>
<td>24296</td>
<td>1.78%</td>
<td>86.73%</td>
</tr>
<tr>
<td>4</td>
<td>10502</td>
<td>0.77%</td>
<td>87.50%</td>
</tr>
<tr>
<td>5.1</td>
<td>14626</td>
<td>1.07%</td>
<td>88.57%</td>
</tr>
<tr>
<td>5.2</td>
<td>779</td>
<td>0.06%</td>
<td>88.63%</td>
</tr>
<tr>
<td>5.3</td>
<td>96</td>
<td>0.01%</td>
<td>88.63%</td>
</tr>
<tr>
<td>5.4</td>
<td>31</td>
<td>0.01%</td>
<td>88.64%</td>
</tr>
<tr>
<td>Multiple Matches</td>
<td>75010</td>
<td>5.49%</td>
<td></td>
</tr>
<tr>
<td>No Matches</td>
<td>80346</td>
<td>5.88%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1367051</td>
<td>88.64%</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Mean (1)</td>
<td>Std. Dev. (2)</td>
<td>Observations (3)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Student Data:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class size (not student-weighted)</td>
<td>27.3</td>
<td>5.6</td>
<td>391,487</td>
</tr>
<tr>
<td>Number of subject-school years per student</td>
<td>5.6</td>
<td>3.0</td>
<td>1,367,051</td>
</tr>
<tr>
<td>Test score (SD)</td>
<td>0.2</td>
<td>0.9</td>
<td>7,639,288</td>
</tr>
<tr>
<td>Female</td>
<td>50.8%</td>
<td></td>
<td>7,639,288</td>
</tr>
<tr>
<td>Age (years)</td>
<td>11.4</td>
<td>1.5</td>
<td>7,639,288</td>
</tr>
<tr>
<td>Free lunch eligible (1999-2009)</td>
<td>79.6%</td>
<td></td>
<td>5,021,163</td>
</tr>
<tr>
<td>Minority (black or hispanic)</td>
<td>71.6%</td>
<td></td>
<td>7,639,288</td>
</tr>
<tr>
<td>English language learner</td>
<td>4.8%</td>
<td></td>
<td>7,639,288</td>
</tr>
<tr>
<td>Special education</td>
<td>1.9%</td>
<td></td>
<td>7,639,288</td>
</tr>
<tr>
<td>Repeating grade</td>
<td>1.7%</td>
<td></td>
<td>7,639,288</td>
</tr>
<tr>
<td>Matched to parents in tax data</td>
<td>87.7%</td>
<td></td>
<td>7,639,288</td>
</tr>
<tr>
<td>Parent Characteristics:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household income</td>
<td>40,773</td>
<td>34,270</td>
<td>6,695,982</td>
</tr>
<tr>
<td>Owned a house</td>
<td>32.9%</td>
<td></td>
<td>6,695,982</td>
</tr>
<tr>
<td>Contributed to a 401k</td>
<td>30.9%</td>
<td></td>
<td>6,695,982</td>
</tr>
<tr>
<td>Married</td>
<td>42.7%</td>
<td></td>
<td>6,695,982</td>
</tr>
<tr>
<td>Age at child birth</td>
<td>29.2</td>
<td>8.0</td>
<td>6,617,975</td>
</tr>
<tr>
<td>Predicted score</td>
<td>0.17</td>
<td>0.26</td>
<td>7,639,288</td>
</tr>
</tbody>
</table>

Notes: All statistics reported are for the sample used in estimating the baseline value-added model, as described in Section 3.3. This sample includes only students who have non-missing lagged test scores and other requisite controls to estimate the VA model. Student data are from the administrative records of a large urban school district in the U.S. Parent characteristics are measured between 2005-2007 from federal income tax data. All monetary values are expressed in real 2010 dollars. All ages refer to the age of an individual as of December 31 within a given year. Test score is based on standardized scale scores, as described in Section 3.1. Free lunch is an indicator for receiving free or reduced-price lunches. We link students to their parents by finding the earliest 1040 form from 1996-2011 on which the student is claimed as a dependent. Conditional on being matched to the tax data, we are unable to link 2.4% of students to their parents; the summary statistics for parents exclude these observations. Parent income is average adjusted gross income during the tax-years 2005-2007. For parents who do not file, household income is defined as zero. Home ownership is defined as reporting mortgage interest payments on a 1040 or 1099 form in any year between 2005-2007. Contributed to a 401(k) is an indicator for ever contributing to a 401(k) between 2005-2007. Marital status is measured by whether the claiming parent files a joint return at any point between 2005-2007. Parent age at child birth is the difference between the age of the mother (or father if single father) and the student. Predicted score is predicted from a regression of scores on parent characteristics using the estimating equation in Section 5.
Teacher Value-Added Model Parameter Estimates

Panel A: Autocovariance and Autocorrelation Vectors

<table>
<thead>
<tr>
<th>Lag</th>
<th>Elem. School English</th>
<th>Elem. School Math</th>
<th>Middle School English</th>
<th>Middle School Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.013</td>
<td>0.022</td>
<td>0.005</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td>(0.0002)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td></td>
<td>[0.305]</td>
<td>[0.434]</td>
<td>[0.234]</td>
<td>[0.476]</td>
</tr>
<tr>
<td>2</td>
<td>0.011</td>
<td>0.019</td>
<td>0.004</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td>(0.0002)</td>
<td>(0.0003)</td>
</tr>
<tr>
<td></td>
<td>[0.267]</td>
<td>[0.382]</td>
<td>[0.186]</td>
<td>[0.396]</td>
</tr>
<tr>
<td>3</td>
<td>0.009</td>
<td>0.017</td>
<td>0.003</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0004)</td>
<td>(0.0003)</td>
<td>(0.0003)</td>
</tr>
<tr>
<td></td>
<td>[0.223]</td>
<td>[0.334]</td>
<td>[0.156]</td>
<td>[0.339]</td>
</tr>
<tr>
<td>4</td>
<td>0.008</td>
<td>0.015</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
<td>(0.0003)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td></td>
<td>[0.190]</td>
<td>[0.303]</td>
<td>[0.097]</td>
<td>[0.269]</td>
</tr>
<tr>
<td>5</td>
<td>0.008</td>
<td>0.014</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0005)</td>
<td>(0.0004)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td></td>
<td>[0.187]</td>
<td>[0.281]</td>
<td>[0.096]</td>
<td>[0.217]</td>
</tr>
<tr>
<td>6</td>
<td>0.007</td>
<td>0.013</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0006)</td>
<td>(0.0004)</td>
<td>(0.0006)</td>
</tr>
<tr>
<td></td>
<td>[0.163]</td>
<td>[0.265]</td>
<td>[0.084]</td>
<td>[0.221]</td>
</tr>
<tr>
<td>7</td>
<td>0.006</td>
<td>0.013</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0006)</td>
<td>(0.0005)</td>
<td>(0.0006)</td>
</tr>
<tr>
<td></td>
<td>[0.147]</td>
<td>[0.254]</td>
<td>[0.060]</td>
<td>[0.201]</td>
</tr>
<tr>
<td>8</td>
<td>0.006</td>
<td>0.012</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
<td>(0.0007)</td>
<td>(0.0005)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td></td>
<td>[0.147]</td>
<td>[0.241]</td>
<td>[0.030]</td>
<td>[0.210]</td>
</tr>
<tr>
<td>9</td>
<td>0.007</td>
<td>0.013</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0008)</td>
<td>(0.0006)</td>
<td>(0.0008)</td>
</tr>
<tr>
<td></td>
<td>[0.165]</td>
<td>[0.248]</td>
<td>[0.051]</td>
<td>[0.162]</td>
</tr>
<tr>
<td>10</td>
<td>0.007</td>
<td>0.012</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.0008)</td>
<td>(0.0010)</td>
<td>(0.0007)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td></td>
<td>[0.153]</td>
<td>[0.224]</td>
<td>[0.062]</td>
<td>[0.179]</td>
</tr>
</tbody>
</table>

Panel B: Within-Year Variance Components

<table>
<thead>
<tr>
<th></th>
<th>Elem. School English</th>
<th>Elem. School Math</th>
<th>Middle School English</th>
<th>Middle School Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SD</td>
<td>0.537</td>
<td>0.517</td>
<td>0.534</td>
<td>0.499</td>
</tr>
<tr>
<td>Individual Level SD</td>
<td>0.506</td>
<td>0.473</td>
<td>0.513</td>
<td>0.466</td>
</tr>
<tr>
<td>Class+Teacher Level SD</td>
<td>0.117</td>
<td>0.166</td>
<td>0.146</td>
<td>0.178</td>
</tr>
<tr>
<td>Class-Level SD</td>
<td></td>
<td></td>
<td>0.108</td>
<td>0.116</td>
</tr>
<tr>
<td>Teacher SD</td>
<td></td>
<td></td>
<td>0.098</td>
<td>0.134</td>
</tr>
</tbody>
</table>

Notes:
- Panel A reports the estimated autocovariance, the standard error of that covariance estimate clustered at the teacher level (in parentheses), and the autocorrelation (in brackets) of average test score residuals between classrooms taught by the same teacher. We measure these statistics at time lags ranging from one (i.e. two classrooms taught one year apart) to ten years (i.e., two classrooms taught ten years apart), weighting by the sum of the relevant pair of class sizes. Each covariance is estimated separately for English and math and for elementary and middle school classrooms.
- Panel B reports the raw standard deviation of test score residuals and decomposes this variation into components driven by idiosyncratic student-level variation, classroom shocks, and teacher-level variation. The variances in rows 2 and 3 of Panel B sum to that in row 1; the variances in rows 4 and 5 sum to that in row 3. In middle school, we estimate the standard deviation of teacher effects as the square root of the covariance of mean score residuals across a random pair of classrooms within the same year. In elementary schools, we cannot separately identify class-level and teacher-level standard deviations because we observe only one classroom per year. We use the square root of the autocovariance across classrooms at a one year lag to estimate a lower bound on the within-year standard deviation for elementary schools. We also report an estimate of the standard deviation by regressing the log of first seven autocovariances in Panel A on the time lag and time lag squared and extrapolating to 0 to estimate the within-year covariance.
TABLE 3
Estimates of Forecast Bias Using Parent Characteristics and Lagged Scores

<table>
<thead>
<tr>
<th>Dep. Var.:</th>
<th>Score in Year t</th>
<th>Pred. Score using Parent Chars.</th>
<th>Score in Year t</th>
<th>Pred. Score using Year t-2 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher VA</td>
<td>0.998 (0.0057)</td>
<td>0.002 (0.0003)</td>
<td>0.996 (0.0057)</td>
<td>0.022 (0.0019)</td>
</tr>
<tr>
<td>Parent Chars. Controls</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6,942,979</td>
<td>6,942,979</td>
<td>6,942,979</td>
<td>5,096,518</td>
</tr>
</tbody>
</table>

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in parentheses. The regressions are run on the sample used to estimate the baseline VA model, restricted to observations with a non-missing leave-out teacher VA estimate. There is one observation for each student-subject-school year in all regressions. Teacher VA is scaled in units of student test score standard deviations and is estimated using data from classes taught by the same teacher in other years, following the procedure in Sections 2.2 and 4. Teacher VA is estimated using the baseline control vector, which includes: a cubic in lagged own- and cross-subject scores, interacted with the student's grade level; student-level characteristics including ethnicity, gender, age, lagged suspensions and absences, and indicators for grade repetition, special education, and limited English; class size and class-type indicators; cubics in class and school-grade means of lagged own- and cross-subject scores, interacted with grade level; class and school-year means of all the student-level characteristics; and grade and year dummies. In Columns 1 and 3, the dependent variable is the student's test score in a given year and subject. In Column 2, the dependent variable is the predicted value generated from a regression of test score on mother's age at child's birth, indicators for parent's 401(k) contributions and home ownership, and an indicator for the parent's marital status interacted with a quartic in parent household income, after residualizing all variables with respect to the baseline control vector. In Column 4, the dependent variable is the predicted value generated in the same way from twice-lagged test scores. See Section 5.2 for details of the estimating equation for predicted scores.
TABLE 4
Quasi-Experimental Estimates of Forecast Bias

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Δ Score</th>
<th>Δ Score</th>
<th>Δ Score</th>
<th>Δ Predicted Score</th>
<th>Δ Other Subj. Score</th>
<th>Δ Other Subj. Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Changes in Mean Teacher VA across Cohorts</td>
<td>0.974</td>
<td>0.957</td>
<td>0.950</td>
<td>0.004</td>
<td>0.038</td>
<td>0.237</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.034)</td>
<td>(0.023)</td>
<td>(0.005)</td>
<td>(0.083)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School x Year Fixed Effects</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagged Score Controls</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead and Lag Changes in Teacher VA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other-Subject Change in Mean Teacher VA</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grades</td>
<td>4 to 8</td>
<td>4 to 8</td>
<td>4 to 8</td>
<td>4 to 8</td>
<td>Middle Sch.</td>
<td>Elem. Sch.</td>
</tr>
<tr>
<td>Number of School x Grade x Subject x Year Cells</td>
<td>59,770</td>
<td>59,770</td>
<td>46,577</td>
<td>59,323</td>
<td>13,087</td>
<td>45,646</td>
</tr>
</tbody>
</table>

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in parentheses. The regressions are estimated on a dataset containing school-grade-subject-year means from the core sample described in Section 3.3, excluding classrooms in which we cannot construct the leave-two-year-out VA estimate described below. All regressions are weighted by the number of students in the school-grade-subject-year cell. We calculate changes in mean teacher VA across consecutive cohorts within a school-grade-subject cell as follows. First, we compute teacher VA for each teacher in a school-grade-subject cell in each adjacent pair of school years using information excluding those two years. We then calculate mean VA across all teachers, weighting by the number of students they teach. Finally, we compute the difference in mean teacher VA (year t minus year t-1) to obtain the independent variable. The dependent variables are defined by calculating the change in the mean of the dependent variable (year t minus year t-1) within a school-grade-subject cell. In Columns 1-3, the dependent variable is the change in mean test scores within subject (English or math). In Column 4, it is the change in the predicted score, constructed based on parental characteristics, as described in the notes to Table 3. In Columns 5 and 6, the dependent variable is the change in the score in the other subject (e.g. math scores for English teachers). Column 5 restricts the sample to middle schools, where different teachers teach math and English; Column 6 restricts the sample to elementary schools, where the same teacher teaches the two subjects. Column 1 includes only year fixed effects and no other controls. Columns 2 and 4 include school-by-year fixed effects. In Column 3, we add a cubic in the change in mean lagged scores to the specification in Column 2, as well as controls for the lead and lag change in mean teacher value-added. Columns 5 and 6 control for the change in mean teacher VA in the other subject as well as year fixed effects.
TABLE 5
Quasi-Experimental Estimates of Forecast Bias: Robustness Checks

<table>
<thead>
<tr>
<th>Specification:</th>
<th>Teacher Exit Only</th>
<th>Full Sample</th>
<th><25% Imputed VA</th>
<th>0% Imputed VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>Δ Score</td>
<td>Δ Score</td>
<td>Δ Score</td>
<td>Δ Score</td>
</tr>
<tr>
<td>Changes in Mean Teacher VA across Cohorts</td>
<td>1.045</td>
<td>0.877</td>
<td>0.952</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>(0.107)</td>
<td>(0.026)</td>
<td>(0.032)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Number of School x Grade x Subject x Year Cells</td>
<td>59,770</td>
<td>62,209</td>
<td>38,958</td>
<td>17,859</td>
</tr>
<tr>
<td>Percent of Obs. with Non-Imputed VA</td>
<td>100.0</td>
<td>83.6</td>
<td>93.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Notes: Each column reports coefficients from a regression with standard errors clustered by school-cohort in parentheses. The regressions are estimated on a dataset containing school-grade-subject-year means from the core sample described in Section 3.3. The dependent variable in all specifications is the change in the mean test scores (year t minus year t-1) within a school-grade-subject cell. The independent variable is the change in mean teacher VA across consecutive cohorts within a school-grade-subject cell; see notes to Table 4 for details on the construction of this variable. All regressions are weighted by the number of students in the school-grade-subject-year cell and include year fixed effects. In column 1, we report 2SLS estimates, instrumenting for changes in mean teacher VA with the fraction of students in the prior cohort taught by teachers who leave the school multiplied by the mean-VA among these school-leavers. Columns 2-4 replicate the specification in Column 1 of Table 4, varying the way in which we handle classrooms with missing teacher VA. Column 2 includes all classrooms, imputing the sample mean VA (0) to classrooms with missing teacher VA. Column 3 replicates Column 2, excluding entire school-grade-subject-year cells in which more than 25% of student observations have missing teacher VA. Column 4 restricts to entire school-grade-subject-year cells with no missing teacher VA. The last row reports the percentage of students for whom teacher VA is not imputed in each estimation sample.
TABLE 6
Comparisons of Forecast Bias Across Value-Added Models

<table>
<thead>
<tr>
<th></th>
<th>Correlation with Baseline VA Estimates</th>
<th>Quasi-Experimental Estimate of Bias (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>(1) Baseline</td>
<td>1.000</td>
<td>2.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.34)</td>
</tr>
<tr>
<td>(2) Baseline, no teacher FE</td>
<td>0.979</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.50)</td>
</tr>
<tr>
<td>(3) February test interaction</td>
<td>0.998</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.35)</td>
</tr>
<tr>
<td>(4) Prior test scores</td>
<td>0.962</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.30)</td>
</tr>
<tr>
<td>(5) Student's lagged scores in</td>
<td>0.868</td>
<td>4.83</td>
</tr>
<tr>
<td>both subjects</td>
<td></td>
<td>(3.29)</td>
</tr>
<tr>
<td>(6) Student's lagged score in</td>
<td>0.787</td>
<td>10.25</td>
</tr>
<tr>
<td>same subject only</td>
<td></td>
<td>(3.17)</td>
</tr>
<tr>
<td>(7) Non-score controls</td>
<td>0.662</td>
<td>45.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.26)</td>
</tr>
<tr>
<td>(8) No controls</td>
<td>0.409</td>
<td>65.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.73)</td>
</tr>
</tbody>
</table>

Notes: In this table, we estimate seven alternative VA models and report correlations of the resulting VA estimates with the baseline VA estimates in Column 1. In Column 2, we report quasi-experimental estimates of forecast bias for each model, defined as 1 minus the coefficient in a regression of the cross-cohort change in scores on the cross-cohort change in mean teacher VA. These coefficients are estimated using exactly the specification in Column 1 of Table 4. All the VA models are estimated on a constant sample of students for whom all the variables in the baseline control vector are non-missing. All models are estimated separately by school level and subject; the correlations and estimates of forecast bias pool VA estimates across all groups. Each model only varies the control vector used to estimate student test score residuals in equation (4); the remaining steps of the procedure used to construct VA estimates (described in Appendix A) are the same for all the models. All models include grade and school year fixed effects. Model 1 replicates the baseline model as a reference; see notes to Table 3 for definition of the baseline control vector. The estimated forecast bias for this model coincides with that reported in Column 1 of Table 4. Model 2 uses all of the baseline controls but omits teacher fixed effects when estimating equation (4), so that the coefficients on the controls are identified from both within- and between-teacher variation as in traditional VA specifications. Model 3 replicates the baseline specification, permitting different coefficients on tests given earlier in the school year by interacting prior test scores with indicators for February testing dates. Model 4 includes only student, class and school level test score controls from the baseline control vector. Model 5 includes only student-level test score controls (i.e., a cubic polynomial in prior-year scores in math and English interacted with the student’s grade level). Model 6 includes only a cubic polynomial for prior scores in the own subject. Model 7 removes all controls related to test scores from the baseline specification, leaving only non-score controls at the student, class, and school level (e.g., demographics, free lunch participation, etc.). Model 8 drops all controls (except grade and year fixed effects).
TABLE 7
Differences in Teacher Quality Across Students and Schools

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Teacher Value-Added</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Lagged Test Score</td>
<td>0.0078</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
</tr>
<tr>
<td>Special education student</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.0009)</td>
</tr>
<tr>
<td>Minority (black or hispanic) student</td>
<td>-0.001</td>
</tr>
<tr>
<td>School Mean Parent Income ($10,000s)</td>
<td>0.0010</td>
</tr>
<tr>
<td>School Fraction Minority</td>
<td>0.002</td>
</tr>
<tr>
<td>Observations</td>
<td>6,942,979</td>
</tr>
</tbody>
</table>

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by teacher in parentheses. Teacher VA, which is the dependent variable in all columns, is scaled in units of student test score standard deviations. Teacher VA is estimated using data from classes taught by the same teacher in other years, following the procedure in Sections 2.2 and 4 and using the baseline control vector (see notes to Table 3 for more details). The regressions are run at the student-subject-year level on the sample used to estimate the baseline VA model. Columns 3 and 4 restrict the sample to students whom we are able to link to parents in the tax data. Each specification includes the student-level covariate(s) listed at the left hand side of the table and no additional control variables. See notes to Table 1 for definitions of these independent variables. In Columns 6-7, the independent variable is the school-mean of the independent variables in Columns 3 and 5, respectively. We calculate these means as the unweighted mean across all student-subject-year observations with non-missing data for the relevant variable in each school.
APPENDIX TABLE 1
Structure of Analysis Dataset

<table>
<thead>
<tr>
<th>Student</th>
<th>Subject</th>
<th>Year</th>
<th>Grade</th>
<th>Class</th>
<th>Teacher</th>
<th>Test Score</th>
<th>Matched to Tax Data?</th>
<th>Parent Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>Math</td>
<td>1992</td>
<td>4</td>
<td>1</td>
<td>Jones</td>
<td>0.5</td>
<td>1</td>
<td>$95K</td>
</tr>
<tr>
<td>Bob</td>
<td>English</td>
<td>1992</td>
<td>4</td>
<td>1</td>
<td>Jones</td>
<td>-0.3</td>
<td>1</td>
<td>$95K</td>
</tr>
<tr>
<td>Bob</td>
<td>Math</td>
<td>1993</td>
<td>5</td>
<td>2</td>
<td>Smith</td>
<td>0.9</td>
<td>1</td>
<td>$95K</td>
</tr>
<tr>
<td>Bob</td>
<td>English</td>
<td>1993</td>
<td>5</td>
<td>2</td>
<td>Smith</td>
<td>0.1</td>
<td>1</td>
<td>$95K</td>
</tr>
<tr>
<td>Bob</td>
<td>Math</td>
<td>1994</td>
<td>6</td>
<td>3</td>
<td>Harris</td>
<td>1.5</td>
<td>1</td>
<td>$95K</td>
</tr>
<tr>
<td>Bob</td>
<td>English</td>
<td>1994</td>
<td>6</td>
<td>4</td>
<td>Adams</td>
<td>0.5</td>
<td>1</td>
<td>$95K</td>
</tr>
<tr>
<td>Nancy</td>
<td>Math</td>
<td>2002</td>
<td>3</td>
<td>5</td>
<td>Daniels</td>
<td>0.4</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Nancy</td>
<td>English</td>
<td>2002</td>
<td>3</td>
<td>5</td>
<td>Daniels</td>
<td>0.2</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Nancy</td>
<td>Math</td>
<td>2003</td>
<td>4</td>
<td>6</td>
<td>Jones</td>
<td>-0.1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Nancy</td>
<td>English</td>
<td>2003</td>
<td>4</td>
<td>6</td>
<td>Jones</td>
<td>0.1</td>
<td>0</td>
<td>.</td>
</tr>
</tbody>
</table>

Notes: This table illustrates the structure of the core sample, which combines information from the school district database and the tax data. There is one row for each student-subject-school year. Students who were not linked to the tax data have missing data on parent characteristics. The values in this table are not real data and are for illustrative purposes only.
Notes: These figures show the correlation between mean test-score residuals across classes taught by the same teacher in different years. Panels A and B plot autocorrelation vectors for elementary and middle school. To calculate these vectors, we first residualize test scores using within-teacher variation with respect to our baseline control vector (see notes to Table 3). We then calculate a (precision-weighted) mean test score residual across classrooms for each teacher-year. Finally, we calculate the autocorrelation coefficients as the correlation across years for a given teacher, weighting by the sum of students taught in the two years. See Appendix A for more details on the estimation procedure for these and other parameters of the value-added model.
FIGURE 2
Effects of Teacher Value-Added on Actual and Predicted Scores

Notes: These figures pool all grades and subjects and are constructed using the sample used to estimate the VA model, which has one observation per student-subject-school year. The three panels are binned scatter plots of actual scores, predicted scores based on parent characteristics, and predicted scores based on twice-lagged test scores vs. teacher VA. These plots correspond to the regressions in Columns 1, 2, and 4 of Table 3 and use the same sample restrictions and variable definitions. To construct these binned scatter plots, we first residualize the y-axis variable with respect to the baseline control vector (defined in the notes to Table 3) separately within each subject by school-level cell, using within-teacher variation to estimate the coefficients on the controls as described in Section 2.2. We then divide the VA estimates $\hat{\mu}_{jt}$ into twenty equal-sized groups (vintiles) and plot the means of the y-variable residuals within each bin against the mean value of $\hat{\mu}_{jt}$ within each bin. The solid line shows the best linear fit estimated on the underlying micro data using OLS. The coefficients show the estimated slope of the best-fit line, with standard errors clustered at the school-cohort level reported in parentheses.
FIGURE 3
Impacts of Teacher Entry and Exit on Test Scores

Notes: These figures plot event studies of current scores (solid line) and scores in the previous school year (dashed line) by cohort as teachers enter or leave a school-grade-subject cell in year $t = 0$. Panels A and B analyze the entry and exit of a high-VA teacher (teachers with VA in the top 5% of the distribution); Panels C and D analyze the entry and exit of a low-VA (bottom 5%) teacher. All panels are plotted using the core sample collapsed to school-grade-subject-year means, as described in Section 6.2. To construct each panel, we first identify the set of teachers who entered or exited a school-grade-subject cell and define event time as the school year relative to the year of entry or exit. We then estimate each teacher’s value-added in event year $t = 0$ using data from classes taught excluding event years $t \in [-3, 2]$. In Panel A, we identify the subset of teachers with VA estimates in the top 5% of the distribution among entering teachers. We then plot mean current and lagged scores in the relevant school-grade-subject cell for the event years before and after the entry of such a teacher. Panels B-D are constructed analogously. We demean test scores by school year to eliminate secular time trends and normalize the residual scores to zero at event year $t = -3$ for teacher entry and at event year $t = 2$ for teacher exit. Each panel reports the change in mean score gains (current minus lag scores) from $t = -1$ to $t = 0$ and the change in mean estimated VA. We report p-values from F tests of the hypotheses that the change in score gains from $t = -1$ to $t = 0$ equals the change in mean VA and that the change in score gains equals 0. Mean teacher VA is calculated using a student-weighted average, imputing the sample mean VA (0) for teachers who do not have data outside the $t \in [-3, 2]$ window necessary to compute a leave-out VA estimate.
FIGURE 4
Effects of Changes in Teaching Staff on Scores Across Cohorts

Notes: This figure plots changes in average test scores across cohorts versus changes in average teacher VA across cohorts, generalizing the event study in Figure 3 to include all changes in teaching staff. Panel A is a binned scatterplot of changes in actual scores vs. changes in mean VA, corresponding to the regression in Column 1 of Table 4. Panel B is a binned scatterplot of changes in predicted scores based on parent characteristics vs. changes in mean VA, corresponding to the regression in Column 4 of Table 4. See notes to Table 4 for details on variable definitions and sample restrictions. Both panels are plotted using the core sample collapsed to school-grade-subject-year means, as described in Section 6.3. To construct these binned scatter plots, we first demean both the x- and y-axis variables by school year to eliminate any secular time trends. We then divide the observations into twenty equal-size groups (vingtiles) based on their change in mean VA and plot the means of the y variable within each bin against the mean change in VA within each bin, weighting by the number of students in each school-grade-subject-year cell. The solid line shows the best linear fit estimated on the underlying micro data using a weighted OLS regression as in Table 4. The coefficients show the estimated slope of the best-fit line, with standard errors clustered at the school-cohort level reported in parentheses.
FIGURE 5
Effects of Changes in Teaching Staff on Scores in Other Subject

a) Changes in Other-Subject Scores: Middle Schools

b) Changes in Other-Subject Scores: Elementary Schools

Notes: This figure plots changes in average test scores in the other subject across cohorts versus changes in average teacher VA, controlling for changes in other-subject VA. Panel A restricts the sample to middle schools, corresponding to the regression in Column 5 of Table 4. Panel B restricts the sample to elementary schools, corresponding to the regression in Column 6 of Table 4. See notes to Table 4 for details on variable definitions and sample restrictions. Both panels are plotted using the core sample collapsed to school-grade-subject-year means, as described in Section 6.3. To construct these binned scatter plots, we first regress both the x- and y-axis variables on changes in mean teacher VA in the other subject as well as year fixed effects and compute residuals, weighting by the number of students in each school-grade-subject-year cell. We then divide the x residuals into twenty equal-size groups (vintiles) and plot the means of the y residuals within each bin against the mean of the x residuals within each bin, again weighting by the number of students in each school-grade-subject-year cell. The solid line shows the best linear fit estimated on the underlying micro data using a weighted OLS regression as in Table 4. The coefficients show the estimated slope of the best-fit line, with standard errors clustered at the school-cohort level reported in parentheses.
APPENDIX FIGURE 1
Empirical Distributions of Teacher VA Estimates

Notes: This figure plots kernel densities of the empirical distribution of teacher VA estimates $\hat{\mu}_{jt}$ for each subject (math and English) and school-level (elementary and middle school). The densities are weighted by the number of student test score observations used to construct the teacher VA estimate and are estimated using a bandwidth of 0.01. We also report the standard deviations of these empirical distributions of VA estimates. Note that these standard deviations are smaller than the standard deviation of true teacher effects reported in Table 2 because VA estimates are shrunk toward the mean to account for noise and obtain unbiased forecasts.