Discussion of

What You Match Does Matter: The Effects of Data on DSGE Estimation

by Pablo Guerron-Quintana

Marc Giannoni
Columbia University, NBER and CEPR

Workshop on Methods and Applications for DSGE Models
Federal Reserve Bank of Cleveland
October 12, 2007
What does the paper do?

- DSGE Model (CEE, SW, DSSW, JP,…)

 Model: \(S_t = A(\theta) S_{t-1} + B(\theta) \varepsilon_t \)

 Selected endog. var.: \(F_t = C(\theta) S_t \)

 Observation equ.: \(X_t = F_t + \varepsilon_t \)

- Estimation:
 - Most recent papers use 7-9 observable series \((X_t) \)
 - One for each concept: Y, C, I, L, W/P, \(\pi \), R
 - Here: systematically suppress one variable \((X_{it}, F_{it}, \varepsilon_{it}) \) at a time and re-estimate

- Goal: Characterize impact of indicators \(X_t \) for estimation
 - on structural parameters \(\theta \) (median and dispersion)
 - on responses of model variables \((S_t, F_t) \) to structural shocks \(\varepsilon_t \)
Paper’s findings

• Choice of observable series \((X_t) \) plays an important role
 1. Absence of indicators of \(R, \pi, W/P \) affects importantly estimated persistence
 • Habit: \(0.7 < h < 0.97 \)
 • Coeff on \(R(t-1) \) in Taylor rule: \(0.06 < \rho_r < 0.87 \)

 2. Several parameters are robust to choice of variables
 • Steady-state values of \(\pi, L, \) growth rate, \(\beta \)

 3. Variance of parameter estimates affected
 • Excluding labor or investment greatly increases uncertainty of parameter estimates

 4. Estimates of shocks strongly affected
 • Related to Justiniano-Primiceri-Tambalotti (2006)

 5. IRFs strongly affected by choice of series
 • Without interest rate in estimation \(\Rightarrow \) strong deflation follows monetary expansion
My Comments

• Very nice paper
 – Useful systematic analysis of role of data series used in estimation

• Important message
 – Be careful not to omit relevant information in estimating model!

• Rest of my discussion
 – A few minor quibbles
 – Implications of results
 – Intuition for choice of number of series
 – Conclusion
Quibble 1: Some parameters are “robust to exclusion of observable variables”

• Guess which?

Table 1: Priors Densities for Structural Parameters

<table>
<thead>
<tr>
<th>σ_m</th>
<th>σ^g_L</th>
<th>σ^g_K</th>
<th>σ^c_L</th>
<th>b</th>
<th>ξ_w</th>
<th>ξ_p</th>
<th>γ</th>
<th>ρ_R</th>
<th>ϕ_π</th>
</tr>
</thead>
<tbody>
<tr>
<td>IG [2.1]</td>
<td>IG [2.1]</td>
<td>IG [2.1]</td>
<td>IG [4.2]</td>
<td>B</td>
<td>B [0.6,0.1]</td>
<td>B [0.6,0.1]</td>
<td>B [1.0,1.1]</td>
<td>B [0.75,0.1]</td>
<td>B [1.60,0.3]</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>κ</td>
<td>S_{U^c}</td>
<td>g_L</td>
<td>π</td>
<td>L</td>
<td>ζ</td>
<td>ζ_w</td>
<td>κ_a</td>
<td>β</td>
</tr>
<tr>
<td>G [0.12,0.1]</td>
<td>N [3.1]</td>
<td>N [1.3,0.3]</td>
<td>N [1.01,0.003]</td>
<td>N [1.01,0.002]</td>
<td>N [5289.3]</td>
<td>N [6.7,1]</td>
<td>N [6.7,1]</td>
<td>N [0.5,0.1]</td>
<td>B [0.99,0.002]</td>
</tr>
<tr>
<td>ρ_{gL}</td>
<td>ρ_{gK}</td>
<td>ρ_{U^c}</td>
<td>g_K</td>
<td>σ_{out}</td>
<td>σ_{cons}</td>
<td>σ_{invest}</td>
<td>σ_{labor}</td>
<td>σ_{wage}</td>
<td>σ_{inflat}</td>
</tr>
<tr>
<td>B [0.5,0.15]</td>
<td>B [0.5,0.15]</td>
<td>B [0.5,0.15]</td>
<td>N [1.01,0.003]</td>
<td>IG</td>
<td>IG</td>
<td>IG</td>
<td>IG</td>
<td>IG</td>
<td>IG</td>
</tr>
</tbody>
</table>

Notes: $IG\sim$Inverse Gamma, $B\sim$Beta, $N\sim$Normal, $G\sim$Gamma

Mean and Standard Deviation in square brackets

• Very tight priors?
• Sounds more like an assumption than a result
Quibble 2 (smiS): Trend?

• Model includes 2 trends

• But data seems to have 3 trends (DSSW)

• Model surely misspecified

• Trend likely to play an important role in estimation

• Not clear a priori that provides reasonable estimates for fluctuations around trend
 – Possible solution: estimate by choosing frequency (Schorfheide et al.?)
Quibble 3: Stability over sample?

- Estimate model over 1954-2004

- But stability?
 - E.g., of policy rule around 1980?
 - Debate remains… but I find it difficult not to see a change (e.g. Boivin, 2005, JMCB)
 - Shock volatility?
 - E.g., Justiniano-Primiceri (2007)
Pablo’s proposal:
Estimate with 7-8 series

• Intuition for using **more** variables
 – “Omission of relevant variables [i.e., observable indicators] leads to biased coefficients” (p. 3)
 – Yes! I fully agree

• Pablo’s proposal:
 – 1st best: estimate model with measures of Y, C, I, L, W/P, π, R, Price of investment (but discontinued)
 – So 2nd best: **estimate with remaining series**

• But…This is what SW and many others do!

• So are we done? (2nd best achieved)

• Pablo seems to say “Yes”. His intuition for not using too many series:
 – “we know from regression analysis that adding more observables fictitiously improves model fitting at the cost of estimating more imprecise parameters” (p. 3)
 – No! Regression analogy does not apply here. Why?
Why might 7-8 series not be enough?

Inflation: Which series? CPI or PCE defl?
One proposal: DSGE model in data-rich environment (Boivin-Giannoni, 2006)

- **Model:**
 \[S_t = A(\theta) S_{t-1} + B(\theta) \varepsilon_t \]

- **Selected endog. var.:**
 \[F_t = C(\theta) S_t \]

- But generalize observation equation to:
 \[X_t = \Lambda S_t + e_t \]
 - \(X_t \) = potentially large vector of data series [e.g. \(\Delta \) log(CPI), \(\Delta \) log(PCE defl.)]
 - \(S_t \) = latent state vector (satisfies restrictions imposed by model)
 - \(e_t \) = series-specific component

- **Note:** The more data \(X \), the more the model needs to explain
 - “adding more observables fictitiously improves model fitting at the cost of estimating more imprecise parameters” is **NOT TRUE**
Estimated Inflation:
Properties vary a lot whether 1 or more inflation series are used

Quarterly inflation (demeaned)

A. Meas. Error (as in Sargent, 1989)

B. Multiple infl. indicators

C. Large data set
Large data set
Estimated Inflation:
More precisely estimated with large data set

Meas. Error (as in Sargent, 1989):
Imprecisely estimated; some parameters not identified

Large data set:
Inflation PRECISELY estimated
DSGE model in data-rich environment

- Other results (BG, 2006):
 - Sources of BC fluctuations depend on data set considered
 - E.g., if $\Delta \log(\text{GDP defl.}) = \pi$
 - π largely explained by markup shocks
 - If π is estimated from several indicators
 - Markup shocks less important
 - Parameters estimates affected
Conclusion

• Very nice paper
• Important message
 – Be careful not to omit relevant information in estimating model!

But as Thompson and Thomson say:

“I fully agree, but to be precise… “
Conclusion

• We can (and should) go further!
 – Use multiple indicators (if available) for latent concepts
 – No reason to omit available data if it is informative about model concepts
 – In the same way that:
 • data on inflation is useful to the estimation of inflation persistence,
 • data on interest rates is relevant to the estimation of interest rate rule
 • data on wages is relevant to estimation of wage persistence/stickiness

 ... a large number of macro indicators should be useful for estimation of productivity, beliefs, capital stock....