Discussion of Deb, Li, and Mukherjee (2012):

Relational Contracts with Subjective Peer Evaluations

Marina Halac

Columbia University
The paper

Objective
- Study optimal use of peer evaluations to provide incentives to team

Strategy
- Relational contracting model with two agents
 - Agents have private signals of others’ performance — how should use?

Conclusion
- Peer evaluations used if relational incentives weak and signals good
 - Evaluation affects only others’ pay, and only if worst report and output
Agent’s effort generates nonverifiable output for principal
Agent’s effort generates nonverifiable output for principal

Principal can incentivize with informal bonus — self-enforcing if

\[\text{Value of bonus today} \leq \text{Future discounted value of relationship (over outside option)} \]
Agent’s effort generates nonverifiable output for principal.

Principal can incentivize with informal bonus — self-enforcing if:

Value of bonus today ≤ Future discounted value of relationship
(over outside option)

Given other parameters, relational incentives if δ large enough.
Add Public Peer Evaluations

- Two agents, each receives private signal of other’s effort
- Suppose first agents report signals publicly → verifiable reports
Add Public Peer Evaluations

- Two agents, each receives private signal of other’s effort
- Suppose first agents report signals publicly → verifiable reports
- Must incentive truthful reporting: report has no effect on my pay
Add Public Peer Evaluations

- Two agents, each receives private signal of other’s effort
- Suppose first agents report signals publicly \rightarrow verifiable reports
- Must incentive truthful reporting: report has no effect on my pay
- Signals allow incentive provision even if static setting
 \Rightarrow Valuable relationship for all discount factors
 \Rightarrow Also allows to enforce relational bonus

Discount factor

Relational incentives + peer evaluations
Add Private Peer Evaluations

- Suppose now agents report signals privately
Add Private Peer Evaluations

- Suppose now agents report signals privately
- Problem: Must incentivize truthful reporting by principal too
Add Private Peer Evaluations

- Suppose now agents report signals privately

- Problem: Must incentivize truthful reporting by principal too

- Solution: Surplus destruction to make principal indifferent (Levin 2003, MacLeod 2003)
Add Private Peer Evaluations

- Suppose now agents report signals privately
- Problem: Must incentivize truthful reporting by principal too
- Solution: Surplus destruction to make principal indifferent (Levin 2003, MacLeod 2003)
- Signals improve information but at a cost
 ⇒ Wage compression (MacLeod 2003 but with multiple agents)
Add Private Peer Evaluations

- Suppose now agents report signals privately
- Problem: Must incentivize truthful reporting by principal too
- Solution: Surplus destruction to make principal indifferent (Levin 2003, MacLeod 2003)
- Signals improve information but at a cost
 \[\Rightarrow \text{Wage compression} \] (MacLeod 2003 but with multiple agents)
 \[\Rightarrow \text{Use signals only if good enough (i.e., would use in static setting) and relational incentives weak} \]

\[\begin{align*}
\text{Discount factor} & \quad \text{Relational incentives + peer evaluations} & \quad \text{Relational incentives} \\
0 & \quad \text{OR} & \quad \text{No incentives} \\
\delta^* & & 1
\end{align*} \]
My comments: Nice insights, relevant implications

- Relevant setting with very nice insights and important implications
 - E.g., consistent with evidence cited in Harvard Business Review cases

- Interaction between peer evaluations and relational incentives

- Answer why, when, and how

- Realistic environment where peer evaluations private
 - Implies more constraints to keep track of!

- Nice comparative statics on when peer evaluations are used
 - Can test empirically
My comments: What are the essential components?

- Many ingredients — more benchmarks would be useful

- Many intuitions unchanged; interesting to compare

- What happens if, in large team, reports are anonymous but public?

- Present as team incentives, but is team needed?

- Have signals provided by peer; what if exogenous private signals?
My comments: What are the essential components?

- Many ingredients — more benchmarks would be useful
- Present as team incentives, but is team needed?
My comments: What are the essential components?

- Many ingredients — more benchmarks would be useful
- Present as team incentives, but is team needed?
- Have signals provided by peer; what if exogenous private signals?
 - Many intuitions unchanged; interesting to compare
My comments: What are the essential components?

- Many ingredients — more benchmarks would be useful
- Present as team incentives, but is team needed?
- Have signals provided by peer; what if exogenous private signals?
 - Many intuitions unchanged; interesting to compare
- Private peer reports motivated by real-world practices
 - What happens if, in large team, reports are anonymous but public?
My comments: Peer evaluations in dynamic context

- Ability to commit to pool \Rightarrow Peer evaluation problem becomes static
My comments: Peer evaluations in dynamic context

- Ability to commit to pool \Rightarrow Peer evaluation problem becomes static
- Can endogenize surplus destruction to make problem dynamic?
 \rightarrow Surplus destruction as conflict in relationship
 - Higher relationship value \Rightarrow can destroy more surplus
My comments: Correlated signals

- Pay independent of my report even if signals correlated
 - But not if correlation depends on effort → use to detect shirking
My comments: Correlated signals

- Pay independent of my report even if signals correlated
 - But not if correlation depends on effort → use to detect shirking

- Study perfect correlation with prob θ, no correlation with prob $1 - \theta$
My comments: Correlated signals

- Pay independent of my report even if signals correlated
 - But not if correlation depends on effort → use to detect shirking
- Study perfect correlation with prob θ, no correlation with prob $1 - \theta$
- Would be interesting to extend to more general information structures
Thank you!