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1 Introduction

In Q4 2021 US federal debt is 123% of US GDP. In some developed European and Asian

countries it is even higher. What is a maximum sustainable government debt-to-GDP ratio?

Under a good policy, how long will it take for the US debt to GDP ratio to attain that

maximum? How costly is it for a government to service its debt and how does that depend

on its current debt-GDP ratio? Should a government plan to borrow more when, as in the

US today, interest rates on government debt are lower than prospective GDP growth rates?

Under an optimal policy, how much will US tax rates have to rise over time in order to

finance the $29.6 trillion dollar debt outstanding as of Q4 2021?1

To answer such questions, we construct a tractable stochastic continuous-time model

of taxes and government debt that adds three features to a deterministic model of Barro

(1979). We retain a key assumption of Barro (1979) that deadweight losses from distortionary

taxes are convex in tax revenue and homogeneous of degree one in output and tax revenue.

The debt-GDP ratio b emerges as a state variable. A government optimally smooths the

household’s tax burdens over time by equating the marginal cost of taxing the household with

the marginal benefit of using tax proceeds to service government debt. While in Barro (1979)

a government solves a discounted deadweight loss minimization problem, the structure of our

model impels us instead to ask a government to maximize a risk-adjusted present value of

total cashflow payoffs to the household.2

In addition to being set within an explicitly stochastic environment, the three features

appearing in our model but not in Barro (1979) include options for the government to default

on its debt as in Eaton and Gersovitz (1981), complete financial spanning and risk premia,

and a government that is impatient relative to the representative household that is paying

taxes to the government as in Aguiar and Amador (2021) and DeMarzo, He, and Tourre

(2021).3 We show how our no-commitment-to-repay assumption shapes a government’s

equilibrium debt capacity.4 Upon default, the government’s debt balance drops to zero,

1The numbers quoted here are from Fred at https://fred.stlouisfed.org.
2In Barro (1979), the household’s value maximization problem is equivalent to the tax distortion cost

minimization problem because the government full commits to repay its debt and output is exogenous.
Therefore, the solution in Barro (1979) is indeed welfare maximizing. However, in our model, we have to
work with the value maximization problem as the government’s limited commitment to repay its debt causes
output to be endogenous. We cannot simply follow Barro (1979) to solve the distortion cost minimization
problem.

3While there is no default in equilibrium in our model, the default option induces a limited-commitment
constraint. Outcomes in our model differ from Eaton and Gersovitz (1981). Aguiar and Amador (2021)
present sovereign debt models with limited commitment.

4Our model shares an emphasis on the effects of financial constraints on sovereign finance with Bolton
(2016), Bolton and Huang (2018), and Rebelo, Wang, and Yang (2021).
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output decreases, and the government permanently loses access to the debt market, with the

consequence that thereafter it must set the primary government surplus to zero each period

and also face a more adverse tax distortion function.5 As in Thomas and Worrall (1988),

Worrall (1990), and Kehoe and Levine (1993), adverse continuation values consequent upon

default deter a borrower from reneging on its debt while bounding from above its sustainable

debt.6

Continuous time facilitates a sharp characterization of debt limits and debt dynamics.7

Two conditions allow us to characterize the maximally sustainable risk-free debt-to-GDP

ratio b: 1.) the government’s indifference condition between defaulting and servicing its debt

induced by its limited commitment and 2.) a zero-drift condition for the debt-GDP ratio b

at debt capacity b, which boils down to an equivalent perpetual (Gordon) growth valuation

formula at a steady state b.8 We find that the quantitative effect of the limited-commitment

constraint is substantial. Only by incorporating this limited-commitment constraint, can

we generate a debt-GDP capacity b in a plausible range of 150-300%. If we withdraw our

limited-commitment debt-market participation constraint, our model becomes a stochastic

version of Barro’s that shares his commitment-to-repay assumption. That version of the

model predicts debt capacity that we think is implausibly high, in the range of 10-15 times

GDP.

Our second amendment relative to Barro (1979) is that we assume that government debt

bears a risk premium that reflects the correlation between a country’s GDP growth rate and

an aggregate stock market return. In the spirit of arrangements proposed by Shiller (1994),

we assume that the government trades assets that allow it to insure itself against risk in GDP

growth rates. We take as exogenous a stochastic discount factor (SDF) process implied in

Black and Scholes (1973) and Merton (1973), a process that we assume is not affected by

5Our main qualitative results are robust to the detailed specification of punishments for default. The
key is that default is costly and hence the government faces a consequence from default. The costly default
supports a debt capacity. Otherwise, optimal debt capacity would be zero as shown by Bulow and Rogoff
(1989).

6Our model shares some of the structure of the simple villager-money-lender model that Ljungqvist and
Sargent (2023, ch. 22) use to introduce some of the ideas in the closed economy model of Kocherlakota (1996)
that builds on and reinterprets Thomas and Worrall (1988).

7DeMarzo, He, and Tourre (2021) construct a continuous-time sovereign-debt model that generates equi-
librium debt ratcheting. Rebelo, Wang, and Yang (2021) construct a continuous-time sovereign-debt model
in which a country’s degree of financial development, defined as how easily it can issue debt denominated
in domestic currency in international capital markets, generates “debt intolerance” in the sense of Rogoff,
Reinhart, and Savastano (2003).

8The zero-drift condition at b is an equilibrium argument based on local changes. The Gordon growth
model at the steady state is a forward-looking present value calculation argument for the determination of
b. They are equivalent. A non-zero drift of b at b would be inconsistent with the notion of debt capacity.
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the government’s tax and borrowing policy.9 Our use of a SDF brings insights about how

government debt is evaluated in complete markets settings in ways also studied empirically

by Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019).

Two important implications of our complete-market SDF formulation are that 1.) the

optimal debt-GDP ratio b process evolves deterministically and 2.) the risk premium has a

first-order effect on the dynamics of the debt-GDP ratio b. Both implications follow from the

government’s incentive to reduce the household’s tax burdens. Thus, to smooth taxes over

time and across states, it is optimal to make the b process deterministic – this follows from

applying Jensen’s inequality to the first-order condition for the tax rate. With complete

financial spanning, it is feasible to make contributions to the volatility of b from both the

systematic and idiosyncratic risks be zero; optimal risk management policies do indeed set

them both to zero. Finally, while it is costless to hedge idiosyncratic risk, the government

has to pay a risk premium to hedge the systematic risk component of its GDP shock by

trading in markets for GDP growth rate instruments like those described by Shiller (1994).10

Dynamics of the debt-GDP ratio b under optimal policies is deterministic and driven by

four forces. In addition to 1.) the primary deficit, 2.) interest payments, and 3.) GDP

growth, our model also features a fourth: hedging costs. We summarize the equilibrium

debt-GDP process b under optimality as follows:

change of b “ primary deficit` interest rate (r) ˆ b ´ growth (g) ˆ b` hedging cost. (1)

The first term on the right side of (1) is the scaled primary deficit, the difference between

government spending and tax revenues, divided by contemporaneous GDP. The second term

is the (scaled) interest payment, which equals b multiplied by the risk-free rate r. The third

term describes debt reduction due to growth, which equals b multiplied by the expected

GDP growth rate. These widely acknowledged three terms are discussed, for example, by

Blanchard (2019) and Mehrotra and Sergeyev (2021). In addition to those three terms,

our model contains a fourth terms because it is optimal for the government to hedge its

GDP process in a way that makes b evolve deterministically. The associated hedging cost,

the fourth term in (1), equals b multiplied by the risk premium of a risky asset whose

cash flow process is the same as the GDP process. Jiang, Lustig, Van Nieuwerburgh, and

Xiaolan (2020) put related risk-pricing formulas to work to value government debt. See Barro

9The SDF process that we use is the endogenous SDF that emerges from the equilibrium asset-pricing
model of Lucas (1978).

10States in which the stock market return is high are also ones in which investors’ marginal utility (equiv-
alently the SDF) is low. That is why the SDF and the market return are negatively correlated.
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(2020), Van Wijnbergen, Olijslagers, and de Vette (2020), Aguiar, Amador, and Arellano

(2021), Mian, Straub, and Sufi (2021), and Reis (2021) for more about ‘r ´ g’ and debt

sustainability.

A third amendment relative to Barro (1979) is that our government is impatient as in

Aguiar and Amador (2021). By impatience, we mean that a government’s discount rate

exceeds the interest rate. With impatience, our model generates a backloaded tax schedule

so that the optimal tax rate on output increases over time. This makes fiscal deficits scaled

by GDP decrease over time and eventually turn into fiscal surpluses. The debt-GDP ratio

moves towards a steady state in which it attains its maximally sustainable level b. When

it is sufficiently impatient, a government with a sufficiently low level of debt immediately

increases its b to an optimal target level b ą 0 in which the government’s marginal cost

of servicing debt equals one.11 Thus, optimal debt-GDP dynamics reside in three disjoint

regions:12 1.) a lumpy debt issuance and payout region in which b ă b; 2.) a default region

in which debt is unsustainable (b ą b); and 3.) the interior region in which b P rb, bs.

An optimum is described by 1.) a first-order nonlinear ordinary differential equation

(ODE) for the government’s (scaled) value ppbq; 2.) a first-order condition for the optimal

smooth tax rate τpbq; 3.) a zero-drift condition and the indifference condition between de-

faulting and not that characterize the steady state where debt is at the maximally sustainable

level b; 4.) value-matching and smooth-pasting conditions that characterize the lumpy debt

issuance and payout boundary b. The upper debt-capacity boundary b is an absorbing state

and the lower lumpy debt issuance boundary b is a reflecting barrier. These two are very

different types of boundaries that reflect different economic mechanisms for the government’s

maximally sustainable debt and its optimal policy for lumpy payouts to the household.13

The government’s marginal cost of servicing debt ´p1pbq ě 1 measures how much the

government’s value decreases in the absolute value when the government debt-GDP ratio

increases by one unit. This marginal cost of debt servicing appears in both the first-order

11To construct an optimal fiscal plan, our government uses both singular control (lumpy debt issuance and
payout to the household) and convex control (tax smoothing). The US government’s 2020 and 2021 covid
stimulus checks and related transfers might be interpreted as examples of such payouts financed by lumpy
debt issuances.

12The lumpy debt issuance and payout region and the default region are only possible at time 0. If starting
in the lumpy debt issuance and payout region where b ă b, the government increases its debt so that its b
instantly equals b after time 0 and then the b process is dictated by the law of motion in the interior region.
If starting in the default region where b ą b, the government immediately defaults and sets taxes to its
expenditure so that its primary deficit is zero at all time.

13Our baseline model is amenable to extensions that will allow additional sources of randomness not
included in the baseline model – e.g., a Markov process for the government expenditures/GDP ratio rather
than the fixed ratio in the baseline model.
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condition for the optimal tax rate and an equation restricting the government’s optimal value

function.

We use a calibrated version of our model to approximate how long it will take for the

US to exhaust its debt capacity. Such calculations help sort through current debates about

debt sustainability. We show that the time to reach debt capacity critically depends both

on a government’s impatience and on the prevailing interest rate.14 Holding a government’s

impatience fixed, the lower is the interest rate, the higher is a government’s debt capacity.

So in an economy in which the interest rate on government debt is low, a government taxes

less and borrows more now, making the debt-GDP ratio increases at a faster rate. In this

situation, a direct debt-capacity effect dominates an indirect (debt-GDP ratio) drift effect

so that it takes longer time to reach its debt capacity. Such logic underlies an argument that

a government should borrow more when debt is cheap, e.g., Blanchard (2019).

However, if we hold a government’s discount rate fixed, a lower interest rate also makes a

government more impatient – impatience introduces a wedge between the discount rate and

the interest rate. In a quantitative exercise in Section 7, we show that a government reaches

its debt capacity faster in a lower interest rate environment. This is because when a gov-

ernment is sufficiently impatient the indirect drift effect dominates the direct debt capacity

effect. Cheaper debt (a lower interest rate) causes an impatient government to accelerate its

borrowing and consequently exhaust its debt capacity sooner. These comparative dynamic

analyses with respect to impatience and interest rate highlight roles that key structural

parameters play in shaping policy responses.

By deploying a continuous-time contracting framework like that used by DeMarzo and

Sannikov (2006) and Sannikov (2008), we show how to formulate the government’s optimal

debt management problem as a dual problem for a planner facing a government that has

default opportunities.15 In the dual problem, the key state variable is the government’s

promised value and the well-diversified planner maximizes the present value of the cash

flows subject to optimally managing the government’s promised value.

Related Literature. By taking a stochastic discount factor process as exogenous, our

model contrasts with the Lucas and Stokey (1983) model in which a government’s tax and

borrowing strategy affects the stochastic discount factor process, motivating the government

to manipulate equilibrium prices of its debts. Like Lucas and Stokey (1983), we assume

14Bohn (1998) described measures that the US took in response to the accumulation of debt during the
1970s and 1980s that are broadly consistent with dynamics prescribed by our model.

15Ai and Li (2015) and Bolton, Wang, and Yang (2019) construct recursive contracts to cope with limited-
commitment problems in corporate finance.
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complete financial markets that allow the government to make its debt fully state contin-

gent. By staying within the Barro tradition of an exogenous SDF process,16 we remove the

dynamic inconsistencies that arise from the price-manipulation motives central to models

in the Lucas-Stokey tradition. Thus, we focus on implications of limited commitment for

debt capacity and debt dynamics. Our model blends key building blocks from Lucas and

Stokey (1983) (complete state-contingent debt) and Barro (1979) (tax distortion costs) in a

tractable continuous-time framework with an exogenously specified SDF along lines of Black

and Scholes (1973), Merton (1973), and Harrison and Kreps (1979).

Bohn (1990) studies the role of hedging with financial instruments in shaping optimal

fiscal policy of a risk-neutral government in a stochastic reformulation of Barro (1979). A

difference between our paper and Bohn (1990) is that hedging costs play a key role in

debt-GDP dynamics in our model. Bohn (1995) was among the first researchers to value

government debt with an SDF like that of Lucas (1978). We extend Bohn’s insights by

incorporating effects of default opportunities on debt dynamics and sustainability. Jiang,

Lustig, Van Nieuwerburgh, and Xiaolan (2019) analyze how the covariance between an in-

tertemporal marginal rate of substitution and a primary government surplus ought to affect

the value of government debt. Brunnermeier, Merkel, and Sannikov (2022) develop a model

of safe assets with a negative beta in an incomplete-markets setting and analyze implications

for debt sustainability. Reis (2021) studies debt capacity in a related model with a bubble

on government debt. D’Erasmo, Mendoza, and Zhang (2016) review the literature on gov-

ernment debt sustainability. Abel, Mankiw, Summers, and Zeckhauser (1989) and Abel and

Panageas (2022) analyze maximum budget-feasible government debt in overlapping genera-

tions models with perpetually zero primary budget surpluses.

We call it a p theory of taxes and government debt because a key outcome in our model

is a marginal cost of servicing debt ´p1pbq and also because we can invoke an analogy with

a q theory of investment. The convex tax distortion cost inherited from Barro (1979) in

our model serves as a counterpart to the convex capital adjustment cost in the q theory

of investment, e.g., Hayashi (1982). In q theory, marginal q (marginal value of capital)

equals the marginal cost of investing. In our p theory, the marginal cost of taxing equals

marginal cost of servicing government debt, ´p1pbq. In a q theory, a firm’s asset is productive

capital that generates a cash flow. In our p theory, government debt is both “backward” and

“forward looking”: it cumulates past primary government deficits and has to be serviced

from prospective primary surpluses. Marginal q exceeds one in q theory because it is costly

16Because the Barro (1979) model is deterministic, his SDF is an exponential function that decays at the
risk-free rate per unit of time.
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to adjust productive capital, while the marginal cost of servicing debt, ´p1pbq, exceeds one in

our p theory because the prospective taxes that service government are distortionary. Thus,

it is useful to watch our model enlist features and unleash forces that resemble ones appearing

in the q-theories of costly capital stock adjustment of Lucas and Prescott (1971), Hayashi

(1982), and Abel and Eberly (1994). Tax distortions in our model affect asset valuations

and act in ways similar to the costs of capital adjustment in the q theories.

2 The Setting

Time t P r0,`8q is continuous. A government maximizes the net present value of the

household’s payoffs while financing a stream of exogenous stochastic government spending

by levying taxes, issuing and servicing risk-free debt, and hedging risk in prospective GDP

growth rates. We generalize Barro (1979) along the following three aspects. First, we

introduce both idiosyncratic and systematic shocks that allow us to analyze how risks affect

taxation and debt management. Second, in the spirit of Thomas and Worrall (1988), Worrall

(1990), Kehoe and Levine (1993), Kocherlakota (1996), Alvarez and Jermann (2000), and

Chien and Lustig (2010), our decision maker – the government – cannot commit and is free

at each instant to default; that constrains its ability to borrow and induces an endogenous

debt capacity. Third, we assume that the government is impatient.

We describe two interrelated “regimes”. In a “normal” regime, the government services

its debt obligations and chooses how much to tax. At every instant, the government can

default on its debt, with the consequence that it enters a “default” regime from which it can

never leave.

2.1 Output, Government Spending, and Taxation

After describing GDP, government spending, and taxation in the normal regime, we’ll de-

scribe them in the default regime.

2.1.1 Output, Government Spending, and Taxation in the Normal Regime

Output Process. GDP tYt; t ě 0u is exogenous and follows a geometric Brownian motion

(GBM) process

dYt
Yt

“ gdt` σY dZYt , (2)
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where ZYt is a standard Brownian motion under the physical measure P, g is the expected

GDP growth rate, σY ą 0 is the growth volatility, and Y0 ą 0 is the known initial value of

Yt.

GDP Yt is subject to both idiosyncratic shocks that bear no risk premium, and systematic

shocks that bear a risk premium. Let the standard Brownian motion Zht represent the

idiosyncratic shock and the standard Brownian motion Zmt represent the systemic shock

under a physical measure P, respectively. We also refer to the systematic shock dZmt as the

market shock.17 Without loss of generality, we can decompose the output shock dZYt over

dt under the physical measure P as

dZYt “
a

1´ ρ2 dZht ` ρ dZmt , (3)

where ρ is the constant correlation coefficient between the output shock dZYt and the ag-

gregate (market) shock dZmt . For convenience, we also equivalently write the output process

tYt; t ě 0u given in (2) as

dYt
Yt

“ gdt`
`

ψhdZht ` ψmdZmt
˘

, (4)

where ψm and ψh are the systematic and idiosyncratic volatility parameters given by

ψm “ ρσY and ψh “
a

1´ ρ2 σY , (5)

respectively. Expressions (4)-(5) for tYt; t ě 0u are convenient for analyzing distinct roles of

systematic and idiosyncratic shocks.

Government Spending and Debt. Let tΓt; t ě 0u denote the government spending

process that is exogenous and does not bring utils to the household. For tractability, we

assume that Γt depends on contemporaneous output Yt in the normal regime as

Γt “ γtYt , (6)

where γt is exogenous. For expositional simplicity, we set γt “ γ P r0, 1s so that government

spending is proportional to GDP in the normal regime. The government finances its spending

Γt with taxes and debts.

17For mnemonic purposes, we use superscript m to refer to the market shock and the superscript h to refer
to the hedgeable idiosyncratic shock.
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Debt and Taxes. Let tBt; t ě 0u denote the government’s debt balance and tTt; t ě 0u

denote the tax revenue process, respectively. As in Barro (1979), we assume that taxes are

distortionary. Let Ct “ CpTt, Ytq denote the deadweight loss in units of consumption goods

when the government collects tax revenue Tt and GDP is Yt in the normal regime. Following

Barro (1979), we assume that the deadweight loss function, CpTt, Ytq, is homogeneous in

output Yt and tax revenue Tt of degree one:

Ct “ CpTt, Ytq “ cpτtqYt , (7)

where τt “ Tt{Yt is the (average) tax rate on output. As in Barro (1979), we assume that

the scaled deadweight loss, cpτq, is increasing, convex, and smooth.

As the tax revenue at any time t cannot exceed the contemporaneous net output, Yt´Γt,

we require Tt ď τ Yt, which is equivalent to the following constraint on the tax rate τt:

τt ď τ , (8)

where τ is a maximal politically feasible tax rate on GDP Yt in the normal regime. Keynes

(1923, pp.56–62) inferred limits on a country’s debt-GDP ratio partly from an upper bound

like τ based on political considerations.

2.1.2 Output, Government Spending, and Taxation in the Default Regime

Defaulting causes an output loss that proxies for associated disruptions in economic activity.

Let pYt denote GDP in the default regime and let TD denote an endogenous time when the

government defaults. Following Aguiar and Gopinath (2006) and Rebelo, Wang, and Yang

(2021), we assume that upon defaulting, the government completely reneges on its debt, GDP

immediately drops from YTD´ “ limsÒTD´ Ys, the pre-default GDP level, to pYTD “ αYTD´ ,

and the economy permanently enters the default regime.18

In this regime (t ě TD), the government cannot issue debt at all (Bt “ 0) and output pYt

follows the same GBM process (4) as in the normal regime. Therefore,

pYt “ αYt , t ě TD , (9)

where α P p0, 1q is a constant.19 So output in the default regime equals an α fraction of Yt

18To ease exposition we assume that the economy upon default never exits from the default regime. We
can relax this assumption and allow the economy to return to the normal regime.

19Hébert and Schreger (2017) provide supporting empirical evidence.
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given in (2), where tYt; t ě 0u would have been GDP had the economy permanently stayed

in the normal regime.

Let pTt denote tax revenue in the default regime. Since the government has no debt in

the default regime, it has to finance its spending period by period according to

pTt “ Γt “ γtYt , t ě TD . (10)

Note that government spending tΓt; t ě 0u is exogenous and solely depends on the exogenous

tYt; t ě 0u process given in (2) regardless of the government’s default decision.

As in the normal regime, taxation is distortionary in the default regime. Let pCt “
pCppTt, pYtq denote the deadweight loss in the default regime, when the government collects tax

revenue pTt and output is pYt. We assume that pCppTt, pYtq is also homogeneous of degree one in

tax revenue pTt and output pYt:

pCt “ pCppTt, pYtq “ pcppτtqpYt , (11)

where pτt “ pTt{pYt is the tax rate in the default regime. We assume that pcppτq is increasing,

convex, and smooth.

Deadweight loss functions in the two regimes are connected as

pcp ¨ q “ κ cp ¨ q . (12)

The parameter κ ą 1 measures how much more costly taxation is in the default regime than

in the normal regime.

As in the normal regime, we require pTt ď τ pYt, which is equivalent to the following

constraint on the tax rate pτt in the default regime:

pτt ď τ , t ě TD , (13)

where τ is the same maximum politically feasible tax rate described above.

In sum, while the government enjoys debt relief via default, it has to bear three costs if

defaulting on its debt: 1.) a loss of output (as pYt “ αYt ă Yt); 2.) a worse deadweight loss

function than it faced in the normal regime (κ ą 1); and 3.) the loss of the option to use

tax smoothing over time because it must balance its budget period by period.

Next, we introduce financial markets. In answering the question “what is the govern-

ment’s maximally sustainable debt,” we grant the government access to a complete set of

11



financial securities subject only to the participation constraint associated with the default

option. Equivalently, we assume that the government can dynamically trade a complete set

of Arrow securities subject to limited commitment in the normal regime (before defaulting).20

Thus, in terms of financial markets, we follow Lucas and Stokey (1983).

2.2 Financial Markets

In the normal regime, the government has the following investment and financing oppor-

tunities: p1q it can insure its idiosyncratic risk through actuarially fairly priced hedging

contracts; p2q it can invest in the market portfolio; and p3q it can issue debt in the interna-

tional market. We assume that debt that matures instantaneously and is continuously rolled

over. However, because markets are dynamically complete, outcomes would not changes if

we were to include longer term government debt too.

Idiosyncratic Risk Hedging Asset. We assume that there is a perfectly competitive

market in a financial asset that is perfectly correlated with the idiosyncratic diffusive shock

Zht . An investor who holds one unit of this asset at time t receives no up-front payment,

since there is no risk premium for bearing idiosyncratic risk, and receives a gain or loss equal

to dZht “
`

Zht`dt ´ Zht
˘

at time t`dt. We normalize the volatility parameter of this hedging

contract to be one. We denote the government’s holdings of this idiosyncratic risk hedging

asset at time t by ´Πh
t , which implies that the government’s idiosyncratic risk exposure in

levels is ´Πh
t dZht over dt.

Stock Market Portfolio and Equivalent Stock Market Futures Contract. In-

vestors, the household, and the government can manage their exposures to the aggregate

shock by investing in financial assets whose returns are solely driven by the aggregate shock.

A natural example is the stock market portfolio. As in Merton (1971) and Black and Scholes

(1973), we assume that the stock market return, which we denote by dRt over dt, is inde-

pendently and identically distributed (i.i.d) with the drift parameter µm and the volatility

parameter σm under the physical measure P:21

dRt “ µmdt` σmdZmt , (14)

20Our argument builds on the dynamic replicating portfolio argument used in Black and Scholes (1973)
and Harrison and Kreps (1979) under complete markets with full commitment.

21This widely used geometric Brownian motion process for stock price is fully consistent with the asset
pricing model of Lucas (1978). We can generalize our model to allow for disasters/jumps as in Barro (2006).
All our insights will remain valid.
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where Zmt is a standard Brownian motion under the physical measure P.

We can rewrite the return process (14) as dRt “ rdt ` σmd rZmt , where η is the Sharpe

ratio of the market portfolio

η “
µm ´ r

σm
(15)

and rZmt represents the risk-adjusted aggregate shock22

d rZmt “ ηdt` dZmt . (16)

We interpret d rZmt “ ηdt` dZmt as the payoff on a unit of the futures contract on the stock

market (an example of a one-step-ahead Arrow security.) The value of this futures contract

on the stock market with payoff (16) is zero (Cox, Ingersoll, and Ross, 1981). Thus, a risk-

averse investor requires a payment of ηdt to bear a unit of the aggregate shock dZmt . Once

we add the drift payoff ηdt with the aggregate shock exposure dZmt , the investor is indifferent

between investing in this futures contract and not participating, implying that the value of

the futures contract is zero.

As for the idiosyncratic risk hedging position, we denote the government’s holdings of

this stock market futures contract at time t by ´Πm
t , which implies that the government’s

systematic risk exposure in levels is ´Πm
t pηdt ` dZmt q over dt. A government or citizen

could just as well have used the stock market portfolio rather than stock futures to manage

aggregate shocks because financial market risk spanning is complete. We choose tje futures

contract in order to preserve the expositional symmetry in our treatment of idiosyncratic

risk and systematic risk management.

Stochastic Discount Factor. To ease exposition, we have set up our model with only

one source of aggregate shock, Zmt , which drives the stock market portfolio.23 Using the

standard no-arbitrage argument for complete-markets economies, we obtain the following

unique stochastic discount factor (SDF), which we denote by Mt:

dMt

Mt

“ ´rdt´ ηdZmt , M0 “ 1 . (17)

No arbitrage requires that the drift of dMt{Mt equals ´r. Additionally, in our one-factor

model, the volatility of dMt{Mt equals ´η, where η “ pµm ´ rq{σm is the market price of

22In Appendix B, we show that rZmt is a standard Brownian motion under the risk-neutral measure rP. The

drift of the price of the stock futures contract is zero under rP (Duffie, 2001).
23We can generalize our model to allow for a richer model for aggregate risk.

13



risk, which is also the Sharpe ratio for the market portfolio (Duffie, 2001).

Next, we describe the government’s budget constraint and optimization problem.

2.3 Government Budget and Objective

Budget Constraints. At t “ 0, given the initial debt level (B0), the government has the

following budget constraint:

B0 ` E0

ż TD

0

MtdUt ď E0

ż TD

0

Mt pTt ´ Γtq dt , (18)

where tUt; t ě 0u is the undiscounted (cumulative) debt issuances and dUt is the net debt

issuance over dt.24 The right side of (18) is the present value of the government’s primary

surplus pTt ´ Γtq. The left side of (18) is the sum of the initial debt level B0 and the present

value of all future state-contingent debt issuances dUt. When calculating present values, we

use the SDF Mt to discount payoffs for risk and remoteness in time. Inequality (18) states

that the present value of all debt issued until the default time TD cannot exceed the present

value of the primary government surplus.

Flow Payoffs to the Household Let 1D
t be an indicator function that equals one in the

default regime when t ě TD and zero in the normal regime when t ă TD. In the default

regime (1D
t “ 1), the government has no debt and the household continuously receives

payments at the rate of ppYt ´ ppTt ` pCtqq where pTt “ Γt. In the normal regime (1D
t “ 0),

the household continuously receives payments at the rate pYt ´ pTt ` Ctqq, which equals the

difference between GDP Yt and the total taxation cost pTt ` Ctq. The household may also

occasionally receive a lumpy payment dUt if the government issues debt dUt and distributes

the proceeds. As we show later, this lumpy payment can occur under an optimal government

plan when the household is impatient.

In sum, the household receives flow payments from three sources: 1.) lumpy payments to

the household financed by debt issuance dUt in the normal regime; 2.) recurrent payments

in the normal regime pYt ´ pTt ` Ctqq; and 3.) recurrent payments in the default regime

ppYt ´ ppTt ` pCtqq.

Intertemporal Discounting and Risk Premium Specifications. Let pζ ` rq denote

the rate at which the household discounts future payoffs. We assume that the household

24Technically, tUt; t ě 0u is a singular control process. As we will show, at an optimum Ut is non-decreasing.
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values risk in the same way as investors and hence use the same market price η for the

aggregate risk.25 As a result, when ζ “ 0, the government and the market are equally

patient. In this case, the household and investors use the same SDF Mt to value their

respective payoffs. However, when the household is impatient (ζ ą 0), a common assumption

in the sovereign debt literature (e.g., Aguiar and Gopinath, 2006), the government front loads

consumption and tilts debt repayments towards the future generations.

In sum, for intertemporal discounting and risk specifications, we use e´ζtMt as the effec-

tive SDF for the household to value their risky payoffs, which differs from the SDF Mt price

investors use to price payoffs. In Appendix B, we provide additional technical details.

Government Objective. Combining our assumptions about flow payoffs and the effective

SDF for the household, we obtain the expression for the government’s objective:

E0

ż 8

0

e´ζtMt

´

dUt ` pYt ´ pTt ` Ctqq
`

1´ 1D
t

˘

dt` rpYt ´ ppTt ` pCtqs1
D
t dt

¯

, (19)

where ζ ě 0 measures the household’s impatience. The government chooses debt issuance

(dUt), tax rates (τt and pτt), and idiosyncratic and systematic risk hedging demands (Πh
t and

Πm
t ) to maximize (19) subject to budget constraint (18), constraint (8) on the tax rate τ

in the normal regime, and constraint (13) on pτ in the default regime. Availability of full

financial spanning and inefficiency of default means that government debt is risk free and

the government chooses never to default. Optimal risk-free debt capacity Bt is part of an

optimal plan.

Let Pt “ P pBt, Ytq denote the government’s time-t value function.26 Let Vt “ V pBt, Ytq

denote the sum of debt value Bt and the government’s value P pBt, Ytq:

Vt “ V pBt, Ytq “ P pBt, Ytq `Bt . (20)

To obtain an optimal policy in the normal regime, we need the government’s value function

in the default regime, since the government’s value function after a default affects the govern-

ment’s value and optimal decisions before it ever defaults. Since government debt is always

zero in the default regime, the government’s value function in that regime only depends on

contemporaneous GDP pYt “ αYt; we denote this value function pP ppYtq. Because default is

25Technically speaking, the household and the investors use the same Radon-Nikodym derivative that
links the physical measure P to the risk-neutral measure rP (Duffie, 2001). Because of complete markets, this
Radon-Nikodym derivative is unique.

26The value function Pt “ P pBt, Ytq is analogous to the levered “equity” value for a firm.
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costly, the government wants to manage its state-contingent debt dynamics to avoid default.

That gives rise to the following participation constraint:

P pBt, Ytq ě pP ppYtq . (21)

Before deducing an optimal government plan, we temporarily shut down all three of our

frictions in order to recover a manifold of tax-debt profiles that support the same optimal

plan, in the spirit of the Ricardian equivalence logic of Barro (1974).

3 Ricardian Equivalence

To uncover Ricardian equivalence, we turn off three frictions by 1.) setting ζ “ 0; 2.)

endowing the government with the ability to commit always to repay its debt by setting

TD “ 8 and equivalently 1D
t “ 0 at all t; and 3.) removing deadweight losses by setting

Ct “ 0 for all t. Simplifying (19), we write the household’s value as

P0 “ E0

ż 8

0

Mt rdUt ` pYt ´ Ttq dts , (22)

subject to the following simplified budget constraint:

B0 ` E0

ż 8

0

MtdUt ď E0

ż 8

0

Mt pTt ´ Γtq dt . (23)

Combining (22) and (23), the latter of which binds due to local non-satiation, yields

P0 `B0 “ E0

ż 8

0

Mt pYt ´ Γtq dt . (24)

Expression (24) states that the total value V FB
0 “ P0 ` B0 is independent of policies

tUt, Tt; t ě 0u, an assertion of Ricardian equivalence. We use superscript FB for the to-

tal value V to denote the value attained when none of our three frictions is active.

In the spirit of Shiller (1994), consider a financial asset whose cash flow is almost surely

equals net output tYt ´ Γt; t ě 0u process. The value of this financial asset equals the right

side of (24). Let rV and ξ denote this asset’s expected return and risk premium, respectively.

The unique SDF (17) implies that the CAPM holds for this asset:

rV “ r ` ξ “ β ˆ pµm ´ rq , (25)
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where β “ ρσY {σm is the coefficient of regressing this asset’s return on the market portfolio

return. Equivalently, we can write this asset’s risk premium ξ as follows:

ξ “ ψmη “ ρσY η . (26)

Since tax and debt policies are irrelevant here, the total value V FB
t “ Pt`Bt under Ricardian

equivalence equals the value of this financial asset:

V FB
0 “ E0

ż 8

0

Mt pYt ´ Γtq dt “
1´ γ

rV ´ g
Y0 . (27)

For the integral above to converge, we require the expected return rV to be larger than the

GDP growth rate g:

rV ą g . (28)

We can rewrite budget constraint (18) in terms of rV as

B0 ď E0

„
ż 8

0

Mt pTt ´ Γtq dt´

ż 8

0

MtdUt



“ E0

„
ż 8

0

e´rV t ppTt ´ Γtq dt´ dUtq



. (29)

Although debt is risk free, it is backed by a stochastic stream of primary surpluses. That

explains the presence of risk premium ξ and the use of rV to discount the primary surplus

in (29).

In the next section, we provide a stochastic formulation of Barro (1979).

4 Stochastic Version of Barro (1979)

Our stochastic Barro model only has one friction: tax distortions/deadweight losses as in

Barro (1979). We turn off the other two frictions in our baseline model of Section 2 by 1.)

setting ζ “ 0 and 2.) imposing full commitment by setting TD “ 8 and equivalently setting

1D
t “ 0 at all t. The government chooses a policy to maximize

E0

ż 8

0

Mt rdUt ` pYt ´ pTt ` Ctqq dts , (30)

subject to the same budget constraint as (23) from our section 3 Ricardian equivalence

setting and the constraint for the tax rate (8).

Substituting budget constraint (23), which binds under optimality, into the objective
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function (30), we obtain the following expression for the value of the government:

E0

ż 8

0

Mt pYt ´ Γt ´ Ctq dt´B0 . (31)

Maximizing (31) is equivalent to minimizing the present value of deadweight losses, E0

ş8

0
MtCtdt,

by choosing tTt; t ě 0u subject to the constraint of honoring its outstanding debt B0, which

satisfies (23) with equality. That equivalence was Barro’s justification for recasting the gov-

ernment’s value maximization problem as a deadweight loss minimization problem. However,

an analogous equivalence does not prevail in our model with its limited commitment; a gov-

ernment’s option to default contributes endogenous distortion costs. For this reason, unlike

Barro we have to work with a value-maximization problem rather than a cost-minimization

problem.

It is useful to scale variables by contemporaneous GDP. Let bt denote a debt-GDP ratio:

bt “
Bt

Yt
. (32)

Similarly, let

ppbtq “
P pBt, Ytq

Yt
and vpbtq “

V pBt, Ytq

Yt
“ ppbtq ` bt . (33)

Next, we summarize an optimal plan for our stochastic formulation of Barro (1979).

Proposition 4.1. Stochastic Barro (1979) Model. Assuming ζ “ 0 and government

commitment to service its debt, the optimal debt-GDP ratio bt is constant over time, i.e.,

bt “ b0 for all t; the optimal tax rate τt is constant over time and depends only on b0:

τpbtq “ τpb0q “ prV ´ gqb0 ` γ . (34)

The government’s scaled value function, fpbtq, is also constant over time and given by

ppbtq “ ppb0q “
1´ τpb0q ´ cpτpb0qq

rV ´ g
. (35)

Any initial debt level b0 satisfying b0 ď b
˚

is sustainable, where b
˚

is the maximally sustainable

debt-output ratio given by:

b
˚
“

τ ´ γ

rV ´ g
. (36)

We relegate a proof of Proposition 4.1 to Appendix A. In our stochastic Barro economy,
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the initial condition is the steady state, since bt “ b0 and ppbtq “ ppb0q. Therefore, the

present value of the (scaled) primary surplus τpbtq ´ γ equals the (scaled) debt bt at all t:

τpbtq ´ γ

rV ´ g
“ bt “ b0 . (37)

Notice that the discount rate that appears in present value equation (37) is rV and not the

risk-free rate r. The optimal tax rate τpbtq also satisfies the following first-order condition:

1` c1pτpbtqq “ ´p
1
pbtq . (38)

The government optimally equates the marginal cost 1 ` c1pτpbtqq of taxing the household

with the marginal benefit ´p1pbtq ą 0 of reducing debt. This is a version of Barro’s tax

smoothing recommendation.

Were it to be given an option to choose its initial debt level, a government would optimally

set b0 “ 0 because doing so maximizes vpb0q “ ppb0q ` b0. Using (38), we obtain v1pb0q “

p1pb0q ` 1 “ ´c1pτpb0qq ď 0. Therefore, b0 “ 0, which follows from the assumption that

cp ¨ q is increasing and convex. The intuition is that issuing lumpy debt yields no benefit but

induces distortionary debt servicing costs.

Next we show that when the government has the option to default as it does in our Section

2 model, equivalence between the government’s value maximization and cost minimization

problem no longer holds .

5 Optimal Government Plan

We formulate the optimum problem of our section 2 government as a dynamic program.

5.1 Normal Regime

First, we introduce the government’s dynamic debt and risk management problem. Then we

characterize the government’s decisions in interior and lumpy payout regions.

5.1.1 Dynamic State-Contingent Debt Management

When managing its debt dynamics, the government also actively engages in idiosyncratic

and systematic risk management by choosing Πh
t and Πm

t . The value of government debt Bt
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evolves as follows:

dBt “ prBt ` pΓt ´ Ttqq dt` dUt ´ Πh
t dZht ´ Πm

t pηdt` dZmt q . (39)

The first term on the right side of (39) is government savings where Γt ´ Tt is the primary

deficit and rBt is the interest payment. The second term dUt is the government’s lumpy

debt issuance. The third and fourth terms are gains or losses from government holdings of

the idiosyncratic risk-hedging asset and stock market futures, respectively.

By trading an idiosyncratic risk hedging asset and stock market futures, the government

makes its debt state-contingent. Its optimal use of these risk management tools shapes the

government’s debt capacity and also ensures that government debt ends up being risk-free

at all time and across all states. While government debt is risk free, equation (39) shows

that the quantity of debt is stochastic.

Let Bt denote the government’s endogenous debt capacity (the maximally sustainable

debt level), to be determined in Section 5.2. We show later that the government’s optimal

(lumpy) debt issuance policy tdUtu is characterized by an endogenous debt threshold level,

Bt, below which it issues and makes a payout to the household (dUt ą 0).

Next, we characterize the optimal policies and value function for the interior region

(Bt P rBt, Bts).

5.1.2 Interior Region (Bt ď B ď Bt)

In this region, the government relies exclusively on risk hedging strategies and taxation to

manage its state-contingent debt dynamics. It abstains from making lumpy payouts to the

household financed from a lumpy debt issuances, so dUt “ 0.

Dynamic Programming. The government chooses tax revenue T , idiosyncratic-risk hedg-

ing demand Πh, and the systematic risk hedging demand Πm to maximize the value function

P pB, Y q by solving the following Hamilton-Jacobi-Bellman (HJB) equation:

pζ ` rqP pB, Y q “ max
T ďτY,Πh,Πm

pY ´ T ´ CpT , Y qq ` rrB ` Γ´ T sPBpB, Y q

`
pΠhq2 ` pΠmq2

2
PBBpB, Y q ` pg ´ ρησY qY PY pB, Y q

`
σ2
Y Y

2

2
PY Y pB, Y q ´

`

ψhΠ
h
` ψmΠm

˘

Y PBY pB, Y q .(40)

The first term on the right side of (40), pY ´ T ´ CpT , Y qq, is the net flow payment to
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the household. The second and third terms are the drift and diffusion volatility effects of

increasing debt B on P pB, Y q. The fourth and fifth terms reflect the drift and volatility

effects of GDP, Y , on P pB, Y q. The sixth term captures the effect of the intertemporal

idiosyncratic and systematic risk hedging demands on P pB, Y q.

First-Order Conditions. Tax revenue T satisfies the FOC:

1` CT pT , Y q “ ´PBpB, Y q . (41)

It equates the marginal cost of taxing the household, 1`CT pT , Y q, with the marginal benefit

of using taxes to reduce debt, ´PBpB, Y q ą 0.

As in Merton (1971), systematic risk intertemporal hedging demand Πm satisfies:

Πm
“ ψm

Y PBY pB, Y q

PBBpB, Y q
. (42)

Similarly, the FOC for the intertemporal diffusion risk hedging demand is

Πh
“ ψh

Y PBY pB, Y q

PBBpB, Y q
. (43)

The cross partial derivative PBY shapes the government’s idiosyncratic and systematic risk

intertemporal hedging demands in equations (42) and (43). Note the symmetry between

(42) and (43).

We can use the FOCs (41), (42), and (43) to represent the HJB equation (40) as

pζ ` rqP pB, Y q “ max
T ďτY

Y ´ T ´ CpT , Y q ` rrB ` Γ´ T sPBpB, Y q ` rgY PY pB, Y q ,

`
σ2
Y Y

2

2
PY Y pB, Y q ´

σ2Y 2

2

P 2
BY pB, Y q

PBBpB, Y q
, (44)

where rg “ g ´ ρησY is a risk-adjusted growth rate. 27 We can verify that the government’s

value function P pB, Y q is homogeneous of degree one in B and Y . Consequently the following

expression holds:28

PY Y pB, Y q “
P 2
BY pB, Y q

PBBpB, Y q
. (45)

27Technically, it is the growth rate under the risk-neutral measure rP.
28Using the homogeneity property P pB, Y q “ ppbqY , we obtain PB “ f 1pbq, PBB “ p2pbq{Y, PY “

ppbq ´ p1pbqb, PY Y “ p2pbqbB{Y 2 “ p2pbqb2{Y , and PBY “ ´p
2pbqb{Y . Therefore, we can verify PBBPY Y “

pp2pbqb{Y q2 “ P 2
BY .
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Using (45) to simplify (44), we obtain the following first-order partial differential equation:

pζ ` rqP pB, Y q “ max
T ďτY

pY ´ T ´ CpT , Y qq ` prB ` Γ´ T qPB ` pg ´ ρησY qY PY . (46)

The first term on the right side of (46) is the flow payoff to the household. The second term

captures the effect of fiscal deficit prB ` Γ´ T q on its value function P pB, Y q and the last

term describes the risk-adjusted growth effect of Y on the government’s value. Optimality

implies that the sum of these three terms equals pζ ` rqP pB, Y q, the government’s value

P pB, Y q multiplied by its discount rate pζ ` rq. Full financial spanning allows the the

government optimally to hedge so that its debt is risk free, so there are no diffusion terms

(no PBB, no PY Y , and no PBY ) in (46). Systematic volatility of output growth ψm appears

in the last term because it influences the government’s value via the standard discount rate

channel as in CAPM.

Next, we turn to the region (0 ď Bt ă Btq, where the government issues a lumpy amount

of debt and pay out to the household .

5.1.3 Lumpy Debt Issuance and Payout Region (0 ď Bt ă Bt)

In this region the debt-output ratio bt “ Bt{Yt is so low that it is optimal for the government

immediately to issue debt and pay out the proceeds to the household . The optimal lumpy

debt-issue and payout policy for a given Bt is

dUt “ max tBt ´Bt, 0u . (47)

Equation (47) implies the following value-matching condition when Bt ă Bt:

P pBt, Ytq “ P pBt, Ytq ` pBt ´Btq . (48)

Rewriting (48) and using the definitions V pBt, Ytq “ P pBt, Ytq`Bt and V pBt, Ytq “ P pBt, Ytq`

Bt, we find that V pBt, Ytq “ V pBt, Ytq, so that sums of the government’s value and debt

value are equated before and after new debt issuances.

The government optimally chooses a new debt level Bt ě 0 (or equivalently the new debt

issuance dUt) to solve:

max
Bě0

V pBt, Ytq “ P pBt, Ytq `Bt . (49)
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If the optimal Bt is interior (i.e., if Bt ą 0), it satisfies the FOC:

PBpBt, Ytq “ ´1 equivalently VBpBt, Ytq “ 0 . (50)

Otherwise, the government issues no lumpy debt and Bt “ 0.

5.2 Debt Capacity Bt and Default Regime (Bt ą Bt)

Here we characterize the value function in the default regime where Bt ą Bt and determine

debt capacity Bt.

5.2.1 Default Regime (Bt ą Bt)

When government debt Bt exceeds debt capacity Bt, the government defaults and enters

the (permanently) absorbing default regime.29 The government’s value function P pBt, Ytq at

Bt ą Bt satisfies

P pBt, Ytq “ pP ppYtq , (51)

where pYt “ αYt and pP ppY q is the government’s value in the default regime given by

pζ ` rq pP ppY q “
´

pY ´ Γ´ pCpΓ, pY q
¯

` pg ´ ρησY qpY pP 1ppY q `
σ2
Y
pY 2

2
pP 2ppY q . (52)

The first term on the right side of (52) gives the net flow payment received by the household

in the default regime. Since the government can neither borrow nor lend in this regime, its

spending equals tax income, Tt “ Γt.) The second and third terms capture the impact of

the risk-adjusted drift and volatility of output on the government’s value function pP ppY q,

respectively. The default regime is absorbing. Here for t ě TD, output equals pYt “ αYt, and

there is no debt (Bt “ 0). Let ppt “ pP ppYtq{pYt. Later we’ll show that ppt “ pp, a constant. To

ensure that the value function in the default regime is non-negative, we impose:30

1´ γ{α ´ κcpγ{αq ě 0 . (53)

29We can generalize our model to allow for the possibility where the government has a probability to exit
the default regime and return to the normal regime.

30The value function in the default regime is non-negative if and only if the condition pY ´Γ´ pCpΓ, pY q ě 0

holds, which is equivalent to the condition given in (53) after we use the homogeneity property and pYt “ αYt.
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5.2.2 Debt Capacity B

What is the maximal level of debt that the government can issue without provoking default?

We refer to this debt level, denoted by Bt, as the government’s debt capacity. To characterize

Bt, we must respect two constraints: 1.) the government’s incentive to renege on its debt,

which gives rise to a limited-commitment constraint; and 2.) the “Keynesian” tax constraint

τ ď τ , where τ is the maximal rate at which the government can tax the household to

support its debt repayment (again see Keynes (1923, pp.56–62).) Two outcomes are possible,

depending on which one of these two constraints binds. If the government’s default incentive

is strong, the limited-commitment constraint binds at its debt capacity. If the government

has limited power to tax output (i.e., when the maximally feasible tax rate on output, τ , is

relatively low), the tax constraint τ ď τ binds at debt capacity.

When Limited-commitment Constraint Binds at Bt. When the government is in-

different between making its debt payments and defaulting, it has reached its debt capacity,

Bt, and the following value-matching condition prevails:

P pBt, Ytq “ pP ppYtq , (54)

where pYt “ αYt´ and pP ppYtq satisfies (52). Here we obtain the government’s risk-free debt

limit (capacity) by adapting to our setting an off-an-optimal-path default consequence in the

spirit of Worrall (1990) and Kehoe and Levine (1993).31

When Tax Constraint T pB, Y q ď τY Binds at Bt. When the government has limited

power to tax output (i.e., when τ is not high), the tax constraint τt ď τ binds at debt

capacity:

T pBt, Ytq “ τYt . (55)

In sum, either (54) or (55) holds at debt capacity Bt. Because Bt is a free boundary,

we require one more condition to pins down its value. We supply this condition in the next

subsection after describing some simplifications.

31Our approach is similar to but different from Bolton, Wang, and Yang (2019) and Rebelo, Wang, and
Yang (2021) who incorporate the limited-commitment constraints into corporate finance and international
finance in their continuous-time models.
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5.3 Exploiting the Homogeneity Property

We take the debt-output ratio b as state variable. Let dut “ dUt{Yt be the scaled lumpy

debt issuance and bt “ Bt{Yt be the maximally feasible debt-GDP ratio.

Optimal Tax Rate τpbq. Substituting P pB, Y q “ ppbqY into FOC (41) for tax revenue

T , we obtain the following simplified FOC for the tax rate τpbq:32

1` c1pτpbqq “ ´p1pbq . (56)

Since c2p ¨ q ą 0, we can invert the marginal tax distortion cost function c1p ¨ q to obtain the

unique tax rate τpbq for a given b.

Debt-GDP (bt) Dynamics in the Interior Region: b P rb, bs. When the debt-GDP

ratio is not too low, i.e., b ě b, where b is endogenous, the government makes no lumpy

payments to the household : dut “ 0, because the marginal benefit of financing an immediate

payout to the household is smaller than the marginal cost (including deadweight losses) of

financing debt. Using Ito’s Lemma, we can show that in this interior region bt evolves

deterministically at the rate

9bt ” µbt “ µbpbtq “ γ ´ τpbtq
looomooon

primary deficit

` r ˆ bt
loomoon

interest payment

´ g ˆ bt
loomoon

growth

` ξ ˆ bt
loomoon

hedging cost

. (57)

The first term on the right side of (57) is the scaled primary fiscal deficit γ´τpbq, also known

as the scaled net-of-interest fiscal deficit. The second term is the interest cost of servicing

debt. The sum of these two terms is the scaled fiscal deficit, gross of interest payments.

The third term is a debt-GDP ratio reduction effect due to output growth. The last term

captures the hedging cost due to the risk premium payment, a new term also included by

Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) in a different setting. This new term

arises because current debt Bt is backed by future stochastic primary surpluses that are

discounted at rV , the sum of the risk-free rate r and the risk premium ξ defined in (26).

Endogenous Debt-GDP Ratio Limit b and the Steady State. How do we pin down

debt capacity b? We set the drift for the debt-GDP ratio bt to zero: 9bt “ 0 at b according to

the following logic. To be consistent with the notion that b is debt capacity b cannot exceed

32This condition holds regardless of whether the tax constraint (8) binds or not. The reason is that the
tax constraint may only bind at b. Tax smoothing implies that the FOC (56) holds also at the boundary b.

25



b, which implies µbpbq ď 0. Additionally, with ζ ě r, the government weakly has incentives

at the margin to postpone tax burdens, which suggests µbpbq ě 0. These two inequalities

jointly imply that the drift of b at debt capacity is zero: µbpbq “ 0.

Substituting this µbpbq “ 0 condition for bt into (57) yields

b “
τpbq ´ γ

rV ´ g
. (58)

Equation (58) asserts that at the maximal sustainable debt-GDP ratio b equals the present

value of the primary deficit pτpbq ´ γq evaluated at discount rate rV “ r ` ξ. This is

the appropriate discount rate because the optimal primary deficit is risky and bears a risk

premium of ξ. Condition (58) is condition that in Section 5.2 we promised to deliver to pin

down the endogenous debt-GDP capacity b.

Next, we characterize the government’s lumpy debt issuance and payout decisions.

Scaled Lumpy Debt Issuance Boundary b and Payout Policy dut. We can use the

homogeneity property to simplify (49) and verify that the lumpy debt boundary b solves

max
bě0

vpbq “ ppbq ` b . (59)

If the optimal b is interior (i.e., b ą 0), the cost of debt issuance must be zero at b: v1pbq “ 0.

Otherwise, the government issues no lumpy debt and b “ 0, as v1pbq ă 0. Thus, an optimal

lumpy debt issuance policy satisfies

dut “ maxtb´ bt, 0u. (60)

Conditions characterizing optimal upper and lower boundaries embody distinct economic

forces. The lower boundary b is about optimal lumpy debt issuance and payout, which is

characterized by value-matching and smooth-pasting conditions. The upper boundary b is

absorbing and can only be reached from the left where b ă b. That b is absorbing and can

be reached only from the left certifies it as the maximally sustainable level of debt per unit

of GDP.

If at t “ 0 initial government debt is zero and if an optimal b ą 0, a government

immediately issues debt and uses the proceeds to finance a lumpy immediate payment dU0 “

bY0 to the household.33 Afterwards, the government’s b equals the optimal target level b and

33When the optimal b is strictly positive (b ą 0), there is no deadweight cost of debt and the marginal
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remains inside rb, bs until it reaches the maximally sustainable debt capacity b.

5.4 Optimal Fiscal Plan

The following proposition describes an optimal tax and debt plan.

Theorem 5.1. Under the rV ą g restriction (28), κ ą 1, α ď 1, and the condition 1´γ{α´

κcpγ{αq ě 0 given in (53), the scaled value function in the normal regime, ppbq, satisfies the

first-order nonlinear differential equation:

rζ ` prV ´ gqs ppbq “ 1´ τpbq ´ cpτpbqq ` rprV ´ gqb` γ ´ τpbqs p
1
pbq , (61)

subject to the debt-sustainability condition (58) and one of the following two conditions for

the scaled debt capacity b:

ppbq “ αpp , when the tax rate constraint (8) does not bind ; (62)

τpbq “ τ , when the tax rate constraint (8) binds . (63)

The scaled value in the default regime, pp, is

pp “
1´ γ{α ´ κcpγ{αq

ζ ` prV ´ gq
. (64)

The lumpy debt issuance boundary b is given by (59), and the optimal lumpy debt issuance

policy, dut, is given by (60). The optimal tax rate policy τpbq is given by (56) and the

debt-output ratio tbtu evolves deterministically at the rate of 9bt given by (57).

Next, we report an optimal plan in closed-form for the special case with no impatience

(ζ “ 0).

Lemma 5.2. When ζ “ 0, bt “ b0 and the optimal tax rate τpbtq is linear in bt for all t:

τpbtq “ τpb0q “ prV ´ gqb0 ` γ . The scaled value function in the normal regime, ppbq, is

constant and given by

ppbtq “ ppb0q “
1´ τpb0q ´ cpτpb0qq

rV ´ g
. (65)

The scaled value under autarky, pp , is pp “ 1´γ{α´κcpγ{αq
rV ´g

ą 0 . There is no lumpy debt-issuance

and hence b “ 0. The scaled debt capacity is given by b “ p´1pα pfq, when the tax constraint

cost of servicing debt, ´p1pbq, equals one. This outcome differs from the zero fiscal cost of debt asserted in
Blanchard (2019) and Sims (2022). “Debt is cheap” statements like ones in those two papers apply when
b ă b. Here the government has not borrowed enough and should increase its debt-GDP ratio to b ą 0.
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(8) does not bind. Otherwise, b “ τ´γ
rV ´g

. Combining the two cases, we obtain the following

expression for b:

b “ min

"

p´1
pαppq,

τ ´ γ

rV ´ g

*

. (66)

Thus, with ζ “ 0, an optimal plan entails complete tax smoothing result as in Barro

(1979). However, unlike the full-commitment to repay assumption of Barro (1979), our

model contains an endogenous debt capacity. This turns out to be important quantitatively.

Later we offer calculations with calibrated parameter values that show that debt capacity is

much smaller in our model than it would be in Barro (1979) . Further, because our model

contains shocks to GDP growth rates, debt-GDP ratio dynamics and debt capacity depend

on a risk premium. Moreover, the debt balance, Bt, is volatile and non-stationary since

Bt “ b0Yt; Bt follows the same geometric Brownian motion process (2) as Yt.

6 Dual Formulation

A government’s dynamic debt management problem is equivalent to a planner’s dynamic

resource allocation problem.

6.1 Planner’s Value and the Household’s Promised Value

Consider a long-term resource allocation (contracting) problem between a planner and the

household. The output process tYt; t ě 0u given in (2) is publicly observable and verifiable.

The government spending process tΓt; t ě 0u is exogenous.

Optimal Contracting Problem. The contract specifies a tax revenue process tTt; t ě 0u

that implies a smooth flow payment (Yt ´ Tt ´ Ct) to the household, and a cumulative

payment process to the household tJt; t ě 0u. Optimal policies, tTt; t ě 0u and tJt; t ě 0u,

depend on an entire history of both idiosyncratic and systematic shocks tZht ,Zmt ; t ě 0u.

The maximum feasible tax rate that the planner can impose on the output process is τYt for

all t ě 0, i.e., Tt ď τYt, the same as the constraint (8) that appeared in our primal dynamic

debt management problem.

The planner maximizes the risk-adjusted present value of pTs ´ Γsq ds´dJs, the difference

between the government’s primary surplus (pTs ´ Γsq ds) and its distribution to the household
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(dJs), at time 0. Let Ft denote the planner’s value function at time t:

Ft “ max Et

«

ż TD

t

Ms

Mt

rpTs ´ Γsq ds´ dJss

ff

. (67)

We adopt the assumption of Green (1987), Phelan and Townsend (1991), and Atkeson (1991)

that the planner is risk-neutral or has access to complete insurance markets. To accomplish

this we use the same unique SDF M given in (17), as the one in our primal debt management

problem. We assume that there is zero continuation value for the planner after TD. This

assumption corresponds to our earlier assumption of no debt recovery upon default in the

debt management problem.

Despite the rich history dependence of optimal policies, we can formulate the planner’s

optimization problem as a time consistent and recursive one using the household’s promised

value, denoted by tWt; t ě 0u, as the key state variable.34

Household’s Promised Value tWt; t ě 0u. The household’s promised value at time t,

Wt, equals the present value of all future payments:

Wt “ Et
ż 8

t

e´ζps´tq
Ms

Mt

´

dJs ` pYs ´ pTs ` Csqq
`

1´ 1D
s

˘

ds` rpYs ´ ppTs ` pCsqs1
D
s ds

¯

. (68)

Using the Martingale Representation Theorem, without loss of generality, we can represent

the dynamics of tWt; t ě 0u as:

dWt “ rpζ ` rqWt ´ pYt ´ Tt ´ Ctq ´ ηΦm
t s dt´ dJt ´ Φh

t dZht ´ Φm
t dZmt . (69)

The planner chooses tΦh
t ; t ě 0u and tΦm

t ; t ě 0u, exposures of the household’s promised

value tWt; t ě 0u to idiosyncratic and systematic risks exposures, respectively.

As in our debt management problem, the planner and the household have diversified

away risks, so we use the same risk adjustments, ones that are consistent with the SDF (M
given in (17), to evaluate the risk premia for both of them. Note that the discount rate ζ

for the household exceeds the risk-free rate r.

The planner’s problem is subject to the limited-commitment constraint that the house-

hold faces at t ě 0. Let W t “ W pYtq denote the threshold for the household’s promised value

34See DeMarzo and Sannikov (2006) and Sannikov (2008) for pioneering work on continuous-time recursive
contracting formulations. See Ai and Li (2015) and Bolton, Wang, and Yang (2019) for continuous-time
recursive formulations of contracting problems with limited commitment in Corporate Finance.
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at which the household is indifferent between defaulting and not defaulting on government

debt. This incentive induces the following limited-commitment constraint at all t:

Wt ě W pYtq, t ě 0 . (70)

Next, we turn to the planner’s choice of a lumpy payout to the household and the associ-

ated upper boundary for W . There is a cost of deferring payments to the household because

it is impatient (ζ ě 0) and has a higher discount rate than the planner. Deferring payments

to the household increases Wt, which relaxes the limited-commitment constraint and reduces

the marginal cost of servicing debt. This trade-off suggests an endogenous threshold level,

W t “ W pYtq, above which it is optimal for the planner to make a payment to the household

and to defer payments otherwise. Therefore, we set

dJt “ maxtWt ´W pYtq, 0u . (71)

Let F pWt, Ytq denote the planner’s value function that solves the optimization problem

(67). In the payout region where Wt ą W pYtq,

F pWt, Ytq “ F pW pYtq, Ytq ´
`

Wt ´W pYtq
˘

, (72)

and the threshold level W solves

max
W

F pW,Y q `W . (73)

In the interior region where W P rW,W s, the planner optimally sets dJt “ 0 and the

value function F pW,Y q satisfies the HJB equation:

rF pW,Y q “ max
T ,Φh,Φm

pT ´ Γq ` ppζ ` rqW ´ pY ´ T ´ CpT , Y qqqFW ` pg ´ ρησY qY FY

`
σ2
Y Y

2FY Y
2

`
ppΦhq2 ` pΦmq2qFWW

2
´
`

ψhΦ
h
` ψmΦm

˘

Y FWY . (74)

See Appendix C for details.
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6.2 Planner’s Optimal Value Function

Using the homogeneity property, we can simplify the planner’s problem to a one-dimensional

problem. Let wt “ Wt{Yt denote the scaled household’s value and let

F pWt, Ytq “ fpwtq ¨ Yt . (75)

Let wt “ W t{Yt denote the scaled upper boundary of w. We can show that wt is constant

so that we can drop the time subscript.

The scaled optimal lumpy payout to the household for wt, djt “ dJt{Yt, at any t is

djt “ maxtwt ´ wt, 0u. (76)

Interior Region: wt P rw,ws. Here there is no lumpy payout: djt “ 0. Let θt “ θpwtq “

Tt{Yt denote the optimal tax rate. Substituting (75) into (74) and simplifying yields the

following implicit equation for θpwq:

1` c1pθpwqq “ ´1{f 1pwq. (77)

Using the optimal tax policy (77) and the optimal hedging strategies, (C.32) and (C.33), we

obtain the following deterministic dynamics for the scaled promised value wt:

9wt ” µwt “ µwpwtq “ pζ ` rV ´ gqwt ´ p1´ θt ´ cpθtqq . (78)

Substituting F pWt, Ytq “ fpwtq ¨ Yt from (75) and the optimal policy functions (77), (C.32),

and (C.33) for θpwq, φhpwq, and φmpwq, respectively, into the HJB equation (74), we obtain

the following first-order nonlinear differential equation for the planner’s scaled value fpwq:

prV ´ gqfpwq “ τpwq ´ γ ` rpζ ` rV ´ gqw ´ p1´ θpwq ´ cpθpwqqqs f
1
pwq . (79)

Lumpy-payout Region: w ą w. Here the planner’s value function is fpwq “ fpwq`w´

w. The upper boundary w is constant and solves

max
w

fpwq ` w . (80)

Default Regime and Limited-commitment Constraint. The government has the op-

tion to renege on its debt at any t. Upon default, debt is zero, output drops to pYt “ αYt,
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and the household has to pay for government spending period by period (Tt “ Γt). The

government’s (the household’s) value in the default regime, xW ppYtq, is

xW ppYtq “ E
ż 8

t

e´ζps´tq
Ms

Mt

´

pYs ´ Γs ´ pCpΓs, pYsq
¯

dt . (81)

The limited-commitment constraint requires that the lower boundary of Wt in the interior

region, W pYtq, is greater than or equal to the value function in the default regime xW ppYtq:

Wt ě W pYtq ě xW ppYtq . (82)

The inequalityW pYtq ě xW ppYtq holds with equality when the tax constraint (8) is not binding.

Otherwise, the tax constraint (8) pins down the lower boundary W pYtq.

Let pwt “ xW ppYtq{pYt. Using the homogeneity property and solving (81), we obtain:

pw “
1´ γ{α ´ κcpγ{αq

ζ ` rV ´ g
. (83)

Then the scaled promised outside value w is

w “ α pw , when the tax constraint (8) does not bind. (84)

Otherwise, (8) binds at the boundary and w is the root of the following equation:

θpwq “ τ . (85)

To ensure that w ě w, using the same reasoning as in our primal formulation, we obtain

the following zero-drift condition for w at w:

µwpwq “ pζ ` rV ´ gqw ´ p1´ θpwq ´ cpθpwqqq “ 0. (86)

The following theorem describes the optimal contract.

Theorem 6.1. Under the rV ą g condition given in (28), κ ą 1, α ď 1, and the condition

1´ γ{α ´ κcpγ{αq ě 0 given in (53), the scaled value function in the normal regime, fpwq,

satisfies the first-order nonlinear differential equation:

prV ´ gqfpwq “ τpwq ´ γ ` rpζ ` rV ´ gqw ´ p1´ θpwq ´ cpθpwqqqs f
1
pwq , (87)
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subject to the zero-drift condition (86) and one of the following two conditions for the scaled

promised outside value w:

w “ α pw , when the tax constraint (8) does not bind ; (88)

θpwq “ τ , when the tax constraint (8) binds . (89)

The scaled value in the default regime, pw, is given by

pw “
1´ γ{α ´ κcpγ{αq

ζ ` prV ´ gq
. (90)

The lumpy-payout boundary w is given by (80), and the optimal lumpy-payout policy, djt,

is given by (76). The optimal tax rate policy θpwq is given by (77) and the scaled promised

value twtu evolves deterministically at the rate of 9wt described by (78).

6.3 Equivalence of Primal and Dual Taxes and Debts

The government’s dynamic state-contingent debt management problem (the primal) and

the planner’s problem (the dual) yield identical outcomes with probability one. The state

variable in the primal government debt management problem (scaled debt, b) equals the

value function (scaled planner’s value, fpwq) in the dual planner’s problem. By symmetry,

the state variable in the dual planner’s problem (promised value for the household, w)

equals the value function (investors’ value, ppbq) in the primal government debt management

problem. Thus, the following two equations hold:

b “ fpwq and w “ ppbq. (91)

Together these equations imply f ˝ ppbq “ b. The composition of pp ¨q from the primal debt

management problem with fp ¨q from the dual planner’s problem equals an identity function.

Table 1 summarizes the one-to-one mapping for state variables, value functions, policy rules

in the two problems.
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Table 1: Comparison of Primal and Dual Optimization Problems

Primal Dual

Debt Management Planner’s Allocation

A. State variables b w

Drift 9bt given in (57) 9wt given in (78)

Admissible region b P rb, bs w P rw,ws

B. Value function ppbq fpwq

Interior region ODE given in (61) ODE given in (79)

C. Policy rules

Lumpy payouts du given in (60) dj given in (76)

Payout boundaries b given in (59) w given in (80)

Tax rates τpbq given in (56) θpwq given in (77)

D. Limited commitment

Boundary condition µbpbq “ 0 µwpwq “ 0

Default value pp given in (64) pw given in (83)

Non-binding-tax-constraint case ppbq “ αpp w “ α pw

Binding-tax-constraint case τpbq “ τ θpwq “ τ

7 Quantitative Analysis

To prepare the way for some quantitative illustrations of some of our model’s salient prop-

erties, we first describe how we set key parameters.

7.1 Parameters

We set the mean and volatility of output growth to g “ 3% and σY “ 5% per annum in

line with the estimates in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2020). We set the

annual risk-free rate r to 1%, the risk premium ξ to 4%, and the government spending/output

ratio to γ “ 20%, in line with the estimates in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan

(2019). We set the parameter that governs output loss after default to 5% by choosing

α “ 0.95 (see Hébert and Schreger (2017) and Rebelo, Wang, and Yang (2021)). We set

the upper bound for the maximum politically feasible tax rate τ at 50%.35 As benchmarks,

Denmark has the highest average tax-output ratio: 46.3% and the average tax rate in OECD

countries is 33.8%. We calibrated Ξ “ tζ, κ, ϕu from the US debt data from 2000 to 2020

(see Appendix D). The impatience parameter is ζ “ 0.1% per annum.

35In the 1920’s, Keynes had guessed .25 for this parameter.
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Table 2: Parameter Values. This table summarizes the parameter values for our baseline
quantitative analysis. Whenever applicable, parameter values are continuously compounded
and annualized.

Parameter Symbol Value

A. Calibration inputs

risk-free rate r 1%

risk premium ξ 4%

average output growth rate g 3%

output growth volatility σY 5%

government spending to output ratio γ 20%

output recovery in the default regime α 0.95

B. Calibration outputs

impatience ζ 0.1%

tax deadweight loss ϕ 2.9

default deadweight loss κ 1.2

We follow Barro (1979) in using a quadratic deadweight loss function:

cpτq “
ϕ

2
τ 2 , (92)

where the parameter ϕ ą 0 measures the deadweight cost caused by distortionary taxes.

We calibrated tax distortion parameter at ϕ “ 2.9. We assumed that the deadweight loss

function (holding the tax rate on output fixed, τ “ pτ) increases from cp ¨ q to pcp ¨ q “ κcp ¨ q

by 20% if the government defaults: κ “ 1.2. Table 2 summarizes parameter values deployed

in our baseline quantitative analysis.

7.2 Government Value and Endogenous Debt Capacity

Figure 1 plots the government’s value ppbq, the marginal cost of debt ´p1pbq, the optimal tax

policy τpbq, and the debt-GDP ratio drift µbpbq. The higher debt b, the more constrained is

the government, and thus ppbq decreases (panel A). Debt capacity is b “ 1.99, which means

that the government’s maximal debt capacity B is 199% of output Y . The government’s

value ppbq decreases with debt-GDP ratio b and equals ppbq “ 32.2 when the government

reaches its debt capacity (b “ 1.99). Panel B shows that the marginal cost of debt ´p1pbq

increases with b and reaches the maximum value of ´p1p1.99q “ 1.69 at b “ b “ 1.99. Thus,

the net social marginal cost of debt is 1.69 dollars at the debt limit. This number reflects

tax distortion costs and the government’s option to default on its debt. At the current
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Figure 1: Government’s Value ppbq, Marginal Cost of (Servicing) Debt ´p1pbq,
Optimal Tax Rate τpbq, and Drift of Debt-GDP Ratio µbpbq. Debt capacity is b “ 1.99
and there is no lumpy debt issuance: b “ 0. Parameter value are reported in Table 2.

US debt-output ratio (1.08), the marginal cost of servicing debt is about ´p1p1.08q “ 1.58

dollars.

As ´p1pbq increases with b, the optimal tax rate τpbq also increases and reaches its max-

imum value τpbq “ 0.24 at the debt limit b “ 1.99 (panel C). At the current debt-output

ratio (1.08), the optimal tax rate on output is about τp1.08q “ 20%.

Note that 9bt, the rate at which the debt-GDP ratio increases, decreases with the level

of bt. As b increases, both the marginal cost of servicing debt ´p1pbq and the tax rate

τpbq increase. As a result, the debt-GDP ratio increases at a slower rate (i.e., 9bt decreases)

until it eventually reaches zero at debt capacity: µbpbq “ 0 (panel D). This is because the

government cannot exceed its debt limit. Finally, because the marginal cost of servicing debt

´p1p0q “ 1.51, the government does not want to issue lumpy debt.

Figure 2 shows that limited commitment significantly reduces the government’s debt

capacity (compare the solid blue with the dashed red lines). To isolate the effect of limited-

commitment, we set ζ “ 0 in our baseline model. Notice that for all levels of b up to b “ 1.99,
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Figure 2: Value of Commitment and Ricardian Equivalence. For all three cases in
this figure, there is no impatience (ζ “ 0). All other parameter value are reported in Table
2. In the stochastic Barro (full-commitment) model, debt capacity is b “ 15 with τ “ 0.5.
In our limited-commitment model, debt capacity is b “ 1.99. Under Ricardian equivalence,
an outcome prevails at which vpbq “ vFB “ 40 and v1pbq “ 0.

the optimal government plan in our limited-commitment model coincides with that for our

stochastic version of a Barro model, which assumes commitment and ζ “ 0); here b “ 1.99

is debt capacity in our limited-commitment model. A notable result from this figure is that

the government’s debt capacity is reduced by 87% from b “ 15 in the stochastic Barro model

to 1.99 in our model.36 This 87% reduction of debt capacity is attributable solely to the

government having the option to default in our model.

Figure 2 also shows how taxes are distortionary. An undistorted outcome is attained un-

der the special section 3 version of our model that we used to deliver a Ricardian equivalence

outcome. In our model, the total scaled value in this case is vFB “ p1 ´ γq{prV ´ gq “ 40.

Under Ricardian equivalence, tax and debt policies are irrelevant and therefore the marginal

deadweight cost of debt, ´v1pbq “ 0, is zero for all admissible levels of b (panel B). The

36The government’s debt capacity for the stochastic Barro model equals b
˚
“

τ´γ
rV ´g

“ 0.5´0.2
5%´3% “ 15.
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gap between the solid blue line (the vpbq solution for the stochastic Barro model) and the

horizontal Ricardian (dotted black) line vpbq “ vFB “ 40 increases with b. In the special

section 4 stochastic Barro (1979) version of our model, the marginal deadweight cost of debt

increases with b and reaches ´v1pbq “ 1.45 at its debt limit b “ 15. To sustain such a high

level of debt, the government has to tax output at the very distortionary 50%: τpbq “ 0.5.

7.3 Comparative Dynamics
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Figure 3: Effects of Impatience ζ. All parameter values other than ζ are reported in
Table 2.

Effects of Impatience ζ. The parameter ζ measures the degree of the government’s

impatience. A higher ζ indicates more impatience. It introduces a wedge in first-order

conditions that has quantitatively important effects on taxes and value functions. Figure 3

compares outcomes in our baseline (ζ “ 0.1%) case with those from a ζ “ 4% case in which

the government is much more impatient.

As ζ increases from 0.1% to 4%, the total value ppbq decreases by about two thirds at

all admissible levels of b (panel A.) This outcome emerges mostly from a typical discounting
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channel. More interesting to us is that both the marginal cost of debt (´p1pbq) and the

optimal tax rate (τpbq) decrease substantially for most values of b (panels B and C). This

happens because it is much less costly for the government to defer taxation. As a result, the

marginal cost of debt (´p1pbq) at b “ 0.42 is one when ζ “ 4% but equals 1.54 dollars in our

baseline ζ “ 0.1% case. The optimal tax rate (τpbq) at b “ 0.42 is zero when ζ “ 4% but

equals 18% in our baseline ζ “ 0.1% case.

For both cases, as b increases, the tax rate τpbq and the marginal cost of debt increase

until debt has reached debt capacity b “ 1.99. While increasing ζ does not change the

government’s debt capacity, it does substantially increases the drift of the debt-GDP ratio

µbpbq, which in turn changes the time it takes for a government to reach its debt capacity,

as we describe in Section 7.4.
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Figure 4: Effects of Interest Rate r. All parameter values other than r are reported in
Table 2.

Effects of Risk-free Rate r. Figure 4 compares outcomes in our baseline (r “ 1%) case

with those in an r “ 0.5% case. When r decreases across economies from 1% to 0.5%, a

government’s debt capacity b increases substantially from 1.99 to 2.66. Importantly, both
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the marginal cost of debt ´p1pbq and the tax rate τpbq decrease substantially for the lower r

economy. Because interest payments are smaller, debt burden is smaller and tax distortions

are also smaller. As a result, a government is more willing to borrow causing the drift of the

debt-GDP ratio µbpbq to increase as r falls for all levels of b (panel D).
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Figure 5: Effects of Risk Premium ξ. All parameter values other than ξ are reported in
Table 2.

Effects of Risk Premium ξ. Figure 5 compares outcome under our baseline (ξ “ 4%)

case with those of a ξ “ 3% case. When across economies ξ decreases from 4% to 3%, a

government’s debt capacity b doubles from 1.99 to 3.99. Importantly, both the marginal

cost of debt ´p1pbq and the tax rate τpbq decrease markedly as the risk premium ξ falls.

Because systematic risk management costs are smaller, the debt burden and tax distortions

are smaller. As a result, a government is more willing to borrow causing the drift of the

debt-GDP ratio 9bt “ µbpbq to increase as risk premium falls for all levels of b (panel D).

Effects of Output Growth Rate g. Figure 6 compares outcomes under our baseline

(g “ 3%) case with those from a g “ 2% economy. When the growth rate across economies
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Figure 6: Effect of Average Output Gtrowth Rate g. All parameter values other
than g are reported in Table 2.

decreases from 3% to 2%, a government’s debt capacity b decreases by about one third

from 1.99 to 1.33. The marginal cost of debt ´p1pbq and the tax rate τpbq both increase

substantially as the growth rate falls from 3% to 2%. With slower growth, a government is

less willing to borrow against the future, causing drift of the debt-GDP ratio 9bt “ µbpbq to

fall for all levels of b (panel D). That government response has important implications about

the time it takes for a government to reach its debt limit.

Effects of Tax Distortion Cost ϕ. The parameter ϕ governs tax distortions in the

deadweight loss function cp ¨ q. Figure 7 compares outcomes under our baseline (ϕ “ 2.9) case

with those from a ϕ “ 4 case. When ϕ increases from 2.9 to 4, a government’s debt capacity

b decreases a little from 1.99 to 1.89 and a government’s value function ppbq decreases. The

marginal cost of debt ´p1pbq and the tax rate τpbq both increase. When taxes are more

distortionary, a government is less willing to borrow against the future, causing drift of the

debt-GDP ratio 9bt “ µbpbq to fall at all levels of b (panel D).
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Figure 7: Effect of Tax Distortion Cost ϕ. All parameter values other than ϕ are
reported in Table 2.

Effects of of Default Costs: (Increasing Tax Distortion Costs κ ą 1). The pa-

rameter κ measures how much more distortionary taxes are in the default regime than in

the service-debt regime. Figure 8 compares outcomes under our baseline (κ “ 1.2) case

with those under a κ “ 1.5 case. When across economies κ increases from 1.2 to 1.5, a

government’s debt capacity b increases from 1.99 to 2.53 and a government’s value function

ppbq increases slightly. The marginal cost of debt ´p1pbq and the tax rate τpbq both decrease.

That is because when default is more costly, a government is more willing to repay debt,

allowing it to borrow more. As κ increases across economies, the drift of the debt-GDP ratio
9bt “ µbpbtq is higher for all levels of b (panel D).

Effects of Default Costs: Output Loss p1´αq. The parameter α measures the recovery

of output in the default regime. Figure 9 compares outcomes under our baseline (α “ 0.95)

case with those under an α “ 0.9 case. When across economies output loss p1´αq increases

from 5% to 10%, a government’s debt capacity b increases markedly from 1.99 to 3.55,

but a government’s value function ppbq increases only slightly. The marginal cost of debt
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Figure 8: Effects of Default Costs: (Increasing Tax Distortion Costs κ ą 1). All
parameter values other than κ are reported in Table 2.

´p1pbq and the tax rate τpbq both decrease. This is because when default is more costly, the

government is more willing to repay debt and hence is able to borrow more. Finally, the

drift of the debt-GDP ratio 9bt “ µbpbtq is higher as we increase output loss p1 ´ αq for all

levels of b (panel D).

Our comparative static results with respect to p1´αq and κ are similar because increasing

p1 ´ αq directionally has the same effect as increasing κ. Both make default more costly,

which in turn improves incentives to repay and therefore debt capacity.

Effects of Government Spending-GDP Ratio γ. The parameter γ measures a gov-

ernment spending as a fraction of output. Figure 10 compares outcomes under our baseline

(γ “ 0.2) case with those under a γ “ 0.25 case. When across economies government spend-

ing γ increases from 0.2 to 0.25, a government’s debt capacity b increases slightly from 1.99

to 2.07, but the government’s value function ppbq decreases markedly. The marginal cost

of debt ´p1pbq and the tax rate τpbq both increase substantially. That is because when the

government spending fraction is higher, a government’s value in the default regime becomes
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Figure 9: Effect of Default Costs: Output Recovery α. All parameter values other
than α are reported in Table 2.

lower. Hence, a government is more willing to tax more in order to repay its debt. The

enables it to borrow more. For all levels of b, the drift of the debt-GDP ratio 9bt “ µbpbtq is

higher when the government spending fraction γ is higher (panel D).

7.4 Time to Reach Debt Capacity

Our model asserts that a government’s debt-output ratio bt evolves deterministically at rate
9bt “ µbpbtq described by (57). For a given initial b0, the time it takes for the government to

reach its debt capacity b is

ż b

b0

dbt
9bt
“

ż b

b0

1

prV ´ gqbt ` γ ´ τpbtq
dbt. (93)

Figure 11 shows that as governments become more impatient across economies (i.e., as ζ

increases), the time it takes for the government to exhaust its debt capacity decreases. Even

for seemingly small increase of impatience, effects of impatience are large In our calculation,
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Figure 11: Time to Reach Debt Capacity as a Function of Impatience ζ. All other
parameter values are reported in Table 2. The initial the debt-GDP ratio is b0 “ 108.1%
and debt capacity is 199%.

starting from the current US debt level of b “ 108%, it will takes about 68 years to reach the

debt limit in 2088 if ζ “ 0.1%, but it would takes less than 20 years to reach the debt limit

in 2039 if impatience were to increases to ζ “ 1%. If we interpret populism as impatience,
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these comparative dynamics are consistent with a commonly held view that debt capacity

is smaller for a populist government.
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Figure 12: Time to Reach Debt Capacity as a Function of Interest Rate r. For
both panels, the initial b is b0 “ 108.1%. In panel A, the impatience parameter is fixed at
ζ “ 0.1%. In panel B, the discount rate is fixed at ζ ` r “ 1.1%. All other parameter values
are reported in Table 2.

Figure 12 plots time it takes for the government to reach its debt capacity as a function

of interest rate r. First recall that when facing a lower interest rate, a forward-looking gov-

ernment can finance its debt repayment with a lower tax rate τpbq, which is less distortionary

(a lower marginal cost of debt, ´p1pbq). As a result, debt is more sustainable, which means a

larger debt capacity b, but the debt-GDP ratio also drifts upward at a faster rate 9bt, ceteris

paribus. Holding impatience ζ fixed, we see that it takes longer to reach the steady state

and exhaust its debt capacity if interest rate is lower (panel A). This is because the debt

capacity force is stronger than the drift effect. Across economies, the level of the interest

rate has big consequences. With our parameter settings, starting from the current US debt

level of b “ 108%, it takes about 90 years to reach the debt limit in 2110 if r “ 0.5%, but

takes about 68 years to reach the debt limit in 2088 if r “ 1%. This pattern is in line with

reasoning of Blanchard (2019) and Furman and Summers (2020).

We now perform a distinct calculation that holds a government’s discount rate should

be fixed even though we alter the interest rate. Under such an assumption, we hold a

government’s discount rate pζ ` rq fixed and plot time to reach debt capacity as a function

of r in panel B of Figure 12. Evidently, it takes less time to reach steady-state debt capacity

if interest rate is lower. This is because the drift effect (due to a corresponding increase in

impatience ζ) becomes much stronger than the debt capacity effect. For a fixed value of

ζ ` r “ 1.1%, starting from the current US debt level of b “ 108%, it would take about 33
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years to reach the debt limit in 2053 if r “ 0.5%; but if r “ 1%, it would take about 68 years

to reach the debt limit in 2088.

A key takeaway from the two panels of Figure 12 is that time to reach the steady-state

debt capacity crucially depends on both how impatient the government is and the level of

interest rate.

7.5 Quantitative Debt-GDP Ratio Dynamics

Next, we analyze the predicted debt-GDP ratio dynamics using our calibrated parameter

values. Since we are interested in both the maximum sustainable debt b at yhr optimal

steady state and transition dynamics towards b, we assume that s government can completely

hedge its exposures to risks, with the consequence that dynamics of the debt-GDP ratio are

deterministic. We have designed our model parsimoniously in a way that can capture a

long-run trend and the steady state of debt dynamics.

Panel A of Figure 13 plots the implied debt-GDP ratio dynamics from 2000 to 2020 using

parameters from our baseline calibration.37 Our model (the blue solid line) does a good job

of approximating the trend of debt-GDP ratio dynamics tbtu over this 20-year period in the

US (the black dashed line). Panels B, C, and D of Figure 13 plot the predicted debt-output

ratio tbtu processes starting from 2021 until the government exhausts its debt capacity and

reaches the steady state for various scenarios where we change interest rate r, growth rate

g, and risk premium ξ.

Panel B shows that the government can be expected to reach its debt capacity (b “ 1.99)

in 2088 if r “ 1% as we noted earlier. The debt-GDP ratio gradually builds up until

reaching the steady state where b “ 1.99 (the solid blue line.) But if the interest rate were

unexpectedly and permanently decrease to r “ 0.5%, the debt-GDP ratio would increase at

a much faster rate, so that a steady state b “ 2.66 (the dotted red line) would be reached in

2110.

Panel C shows that if a government’s growth rate permanently drops to 2% from 3%, the

government will reach its reduced debt capacity (b “ 1.33 from 1.99) in 2050. This result

confirms the intuition that economic growth is a key source of servicing debt.

Panel D shows that if the risk premium ξ were unexpectedly and permanently to drop

to 3% from 4%, the government’s debt capacity would then increase to b “ 3.98 from 1.99;

it would take almost 110 years to exhaust its debt limit around 2140. This result shows

37Recall that our calibration procedure did not target the debt-GDP ratio leverage dynamics that we plot,
which only conditions on the initial condition. Our calibration procedure minimizes the sum of the squared
of the difference between one-step-ahead model-predicted bt and the realized bt.
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Figure 13: Predicting Debt-GDP Ratio Dynamics for a Few Scenarios. The US
debt-output ratios in 2000 and 2020 are 57.5% and 108.1%, respectively. For all model-
predicted b processes in panels B, C, and D, the left-end points of the horizontal lines are
the corresponding levels of debt capacity b.

that the risk premium ξ has a very large quantitative effect on both debt capacity and on

transition dynamics to a steady state.

8 Concluding Remarks and Extensions

To construct streamlined formulas that allow us to isolate salient forces that determine

optimal fiscal policy, debt capacity, and debt dynamics, we purposefully chose to work with

a complete-markets limited-commitment model with only one aggregate shock (i.e., the stock

market). We have neglected other sources of aggregate risks that governments face including

stochastic interest rates, a stochastic government spending-GDP ratio γ, and market prices

of risk (Jiang, Lustig, Van Nieuwerburgh, and Xiaolan, 2019). We can extend our model to

include such risks by making γ, the risk-free rate r, or GDP growth g an n-state Markov
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process. The mathematical structure of such an extended model closely remains tractable.

That extended model has richer dynamics of debt, debt capacity, and taxes and can be used

to study various long-run risks that confront a government.
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Appendices

A Stochastic Barro Model (Section 4)

In this appendix, we compute an optimal fiscal policy for the Section 4 model, which is a

stochastic formulation of Barro (1979). This model is a special case of our general model

formulation with full commitment and no impatience (ζ “ 0). We characterize the govern-

ment’s value function and show that the government’s tax policies are time consistent.

To solve the government’s optimization problem given by (30) subject to the budget

constraint (18), we introduce the following Lagrangian L

L “ max
Tt,Ut;tě0

E0

ż 8

0

Mt rdUt ` pYt ´ pTt ` Ctqq dts

`λ

„

E0

ż 8

0

Mt pTt ´ Γtq dt´ E0

ż 8

0

MtdUt ´B0´



, (A.1)

where λ is the Lagrangian multiplier for the government’s budget constraint (18).

The first order condition for the optimal tax rate at time t is given by

1` CT pT , Y q “ λ . (A.2)

Using the homogeneity property of the tax deadweight cost function (7) to simplify the FOC

(A.2), we obtain c1pτ˚t q “ λ ´ 1 for the optimal tax rate τ˚t at any time t. Since λ is a

constant, the optimal tax rate τ˚t is constant at all t: τ˚t “ τ˚ for all t, where τ˚ satisfies:

c1pτ˚q “ λ´ 1 . (A.3)

The (strict) convexity of the deadweight loss function c1pτq implies that the Lagrangian

multiplier for the government budget constraint is (strict) larger than one: λ ą 1. Because

tax is distortionary and there is no incentive for the government to front load consumption

(as ζ “ 0), there is no lumpy debt issuance at any time t: dUt “ 0. (Moreover, the optimal

debt target should be zero: b “ 0, if the government were given the option to chooses its

initial debt b0.) We obtain λ by using (A.3): λ “ 1` c1pτ˚q. Next, we determine τ˚.

Because the government’s budget constraint (18) holds with equality (as λ ą 1), the

present value of primary surplus tpτ˚ ´ γqYt; t ě 0u, discounted at the rate of rV , the sum

of the risk-free rate r and risk premium ξ, equals the outstanding debt balance, B0. This
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calculation yields the following explicit equation:38

τ˚ “ b0prV ´ gq ` γ . (A.5)

Substituting (A.3) and dUt “ 0 into the Lagrangian (A.1) and using the homogeneity

property, we obtain the following expression for the value function (also the Lagrangian)

under optimal policies:

ppb0q “ L “
1´ τ˚ ´ cpτ˚q

rV ´ g
, (A.6)

where τ˚ is given in (A.5). As the budget constraint (18) binds, we only need to calculate

the first term in (A.1) under the optimal policies.

Using the tax policy given by (A.5), the government optimally adjusts its debt bal-

ance Bt in lock step with output Yt so that the debt-GDP ratio is constant at all t ě 0:

bt “ b0. The government in the future will follow the same strategy chosen by the time-0

government. Therefore, the government’s optimization problem is time consistent Lucas and

Stokey (1983).

Finally, we discuss the maximally sustainable debt under commitment. Suppose that the

maximal tax burden that the household is willing to tolerate without triggering a revolution,

denoted by T ˚t , is the level at which the household’s value function is zero. Given the

stationarity of our perpetual growth model, the household’s net cash flow payoff in each

period is zero:

Yt ´ T
˚

t ´ CpT
˚

t , Ytq “ 0 . (A.7)

Let B
˚

denote the corresponding largest sustainable debt that the government can cred-

ibly honor. Then, B
˚

satisfies the following equation:

B
˚
“ E0

ż 8

0

Mt

´

T ˚t ´ Γt

¯

dt. (A.8)

The maximally sustainable debt-GDP ratio b
˚

is then given by b
˚
“ pτ˚ ´ γq { prV ´ gq ,

where τ˚ “ T ˚t {Yt solves the equation: 1´ τ ´ cpτq “ 0.

38The present value formula is
τ˚ ´ γ

rV ´ g
“
B0

Y0
” b0 (A.4)

under the condition that the tax policy τ˚ is feasible.
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B Optimal Fiscal Plan for Section 5 model

In this appendix, we describe the optimal plan that appeared in Section 5 for the primal

dynamic debt management problem defined in Section 2.

HJB equation for P pB, Y q. Using Ito’s formula, we obtain the following SDF-adjusted

dynamics for the government’s value function P pBt, Ytq:

dpMtP pBt, Ytqq “MtdP pBt, Ytq ` P pBt, YtqdMt` ă dMt, dP pBt, Ytq ą, (B.9)

where the SDF tMt; t ě 0u is given in (17) and

dP pBt, Ytq “ PBdBt `
PBB

2
ă dBt, dBt ą `PY dYt `

PY Y
2

ă dYt, dYt ą `PBY ă dBt, dYt ą

“

„

pprB ` pΓ´ T qq ´ ΠmηqPB ` gY PY `
σY Y

2PY Y
2



dt

`

«

`

pΠhq2 ` pΠmq2
˘

PBB

2
´ pΠhψh ` ΠmψmqY PBY

ff

dt

´ PBpΠ
hdZht ` ΠmdZmt q ` Y PY pψhdZht ` ψmdZmt q . (B.10)

Note that the process defined by

ż t

0

`

e´ζsMs pYs ´ Ts ´ CpTs, Ysqq ds
˘

` e´ζsMsdUs ` e
´ζtMtP pBt, Ytq

is a martingale under the physical measure P. Therefore, its drift under P is zero:

Et
“

d
`

e´ζtMtP pBt, Ytq
˘‰

` e´ζtMt pYt ´ Tt ´ CpTt, Ytqq “ 0. (B.11)

Note that we have used the result that dUt “ 0 in the interior region. Simplifying (B.11)

gives the HJB equation (40) for the government’s value function P pBt, Ytq.

We do not repeat the first-order condition (FOC) for the tax rate and other derivations

contained in the main body. Below we provide the details for risk management policies.

Stock market portfolio allocation πm. Let πmt “ Πm
t {Yt denote the scaled stock market

portfolio allocation. Using the homogeneity property, we show that πmt is a function of bt,

which we denote by πmpbtq. Simplifying the FOC given in (42) for Πm, we obtain the
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following expression for πmpbq:

πmpbq “ ´ψmb . (B.12)

Idiosyncratic hedging demand πh. Let πht “ Πh
t {Yt denote the scaled idiosyncratic risk

hedging demand. Similarly, using the homogeneity property, we show that πht is a function

of bt, which we denote by πhpbtq. Simplifying the FOC given in (43) for Πh, we obtain the

following expression for πht “ πhpbtq:

πhpbq “ ´ψhb . (B.13)

Debt-GDP ratio bt dynamics. Applying Ito’s lemma to bt “ Bt{Yt, where Bt is given

in (39) and Yt is given in (2), we obtain

dbt “ µbt dt` dut ` σ
b,h
t dZht ` σ

b,m
t dZmt , (B.14)

where

µbt “ pr ´ gqbt ` γ ´ τt ´ ηπ
m
t `

`

ψhπ
h
t ` ψmπ

m
t ` btσ

2
Y

˘

(B.15)

σb,ht “ ´
`

πht ` ψhbt
˘

(B.16)

σb,mt “ ´pπmt ` ψmbtq . (B.17)

Substituting hedging policies (B.12) and (B.13) into (B.15), we show that the debt-output

ratio, tbtu, evolves deterministically at the rate given by:

9bt “ µbt “ µbpbtq “ prV ´ gqbt ` γ ´ τpbtq (B.18)

where τpbtq is given by (56).

Equivalent formulation of optimization problem under risk-neutral measure rP.

As is standard in macro research, we have formulated the government’s optimization problem

in Section 2 and provided the solution in Section 5 under the physical measure P. We can

equivalently formulate the problem and solve it under the risk-neutral measure rP. Recall that

under the physical measure P, the Brownian motions for idiosyncratic shock and systemic

shock are given by Zht and dZmt , respectively. Because the shock to the market portfolio

is systematic with a constant Sharpe ratio of η, using the standard Black-Merton-Scholes
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dynamic replication argument, we can show that the Brownian motion for systemic shock

under the risk-neutral measure rP, denoted by rZmt , is given by

d rZmt “ dZmt ` ηdt . (B.19)

This equation is also the reason why a well-diversified investor who holds a long position in

the market futures contract demands a positive payment at the rate of ηdt to break even.

This explains the last term in the law of motion (39) for Bt. The Brownian motion for the

idiosyncratic shock under the risk-neutral measure rP is the same as that under the physical

measure P:

d rZht “ dZht , (B.20)

as there is no risk premium.

Using (B.19) amd (B.20) under the risk-neutral measure, we may express the output

process (2) under the risk-neutral measure rP as follows:

dYt
Yt

“ rgdt` σY

´

a

1´ ρ2d rZht ` ρd rZmt
¯

, (B.21)

where rg is the average output growth rate under the risk-neutral measure rP:

rg “ g ´ ρσY η . (B.22)

In the interior region where dUt “ 0, we may equivalently express the government’s

optimization problem under the risk-neutral measure rP as follows:

max
TtďτYt,Πh

t ,Π
m
t

rE0

„
ż 8

0

e´pζ`rqt
´

pYt ´ Tt ´ CpTt, Ytqq1D
t `

´

pYt ´ pTt ´ pCppTt, pYtq
¯

`

1´ 1D
t

˘

¯

dt



,

(B.23)

subject to the government’s tax constraint Tt ď τYt and the budget constraint:

Bt “
rEt

«

ż TD

t

e´rps´tq pTs ´ Γsq ds

ff

. (B.24)

Note that the budget constraint (B.24) is under the risk-neutral measure rP.

Equation (B.24) implies that e´rtBt `
şt

0
e´rs pTs ´ Γsq ds is a martingale under the risk-

neutral measure rP. Using the marginal representation theorem, we can equivalently express
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debt dynamics under the risk-neutral measure rP as:

dBt “ prBt ` pΓt ´ Ttqq dt´ Πh
t σ d

rZht ´ Πm
t σmd

rZmt . (B.25)

Using (B.23), (B.25), and (B.21) in the interior region, we use the following HJB equation

to solve the government’s value functionP pB, Y q:

pζ ` rqP pB, Y q “ max
T ďτY,Πh,Πm

Y ´ T ´ CpT , Y q ` rrB ` Γ´ T sPBpB, Y q

` pg ´ ρησY qY PY pB, Y q `
pΠhq2 ` pΠmq2

2
PBBpB, Y q

`
σ2
Y Y

2

2
PY Y pB, Y q ´

`

ψhΠ
h
` ψmΠm

˘

Y PBY pB, Y q . (B.26)

Limited-commitment-induced boundary condition. We show that under the κ ą 1

and α ď 1 conditions, there exists a strictly positive debt capacity: b ą 0 which satisfies

ppbq ě αpp. When the tax constraint (8) does not bind, there exists a unique b ą 0 where

ppbq “ αpp. The intuition for this result is as follows. The government is always better off

not defaulting. This is because when taxes are more distortionary (κ ą 1) or default causes

output losses (α ď 1), then the government is always better off to avoid default by prudently

managing risk exposures and debt dynamics. Below is a proof.

Equations (61) and (58) imply

ppbq “
1´ τpbq ´ cpτpbqq

ζ ` rV ´ g
, (B.27)

where τpbq “ prV ´ gqb ` γ. Therefore, to prove ppbq ě αpp, where pp is given in (64), is

equivalent to show

1´ τpbq ´ cpτpbqq ě α ´ γ ´ ακcpγ{αq . (B.28)

First, the left side of (B.28) is decreasing b. Second, the left side of (B.28) when b “ 0 equals

1´γ´cpγq, which is strictly larger than the right side of (B.28). Third, the left side of (B.28)

approaches negative infinity as bÑ 8. Therefore, there exists a unique value of b ą 0 where

(B.28) holds with equality. Of course, this solution is interesting when the tax constraint (8)

does not bind. Otherwise, there exists a value of b ą 0 that satisfies (B.28) with inequality.

In this case, the boundary condition at b is determined by the tax constraint (8).
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C Duality

In this appendix, we derive the solution summarized in Section 6 for the dual planner’s

problem and then verify duality between the primal debt management problem and the dual

planner’s problem.

C.1 Planner’s Problem from Section 6

HJB equation for the planner’s value function F pW,Y q. Using Ito’s formula, we

obtain the following SDF-adjusted dynamics for the planner’s value function F pWt, Ytq:

dpMtF pWt, Ytqq “MtdF pWt, Ytq ` F pWt, YtqdMt` ă dMt, dF pWt, Ytq ą, (C.29)

where the SDF Mt is given in (17) and

dF pWt, Ytq “ FWdWt `
FWW

2
ă dWt, dWt ą `FY dYt

`
FY Y

2
ă dYt, dYt ą `FWY ă dWt, dYt ą

“

„

pζWt ´ pYt ´ T ´ Ctq ´ ΦmηqFW ` gY FY `
σY Y

2FY Y
2



dt

`

«

`

pΦhq2 ` pΦmq2
˘

FWW

2
´ pΦhψh ` ΦmψmqY FWY

ff

dt

´ FW pΦ
hdZht ` ΦmdZmt q ` Y FY pψhdZht ` ψmdZmt q . (C.30)

Note that the process defined by

ż t

0

Ms pTs ´ Γtq ds`MsdJs `MtF pWt, Ytq

is a martingale under the physical measure P. Therefore, its drift under P is zero:

Et rd pMtF pWt, Ytqqs `Mt pTt ´ Γtq “ 0. (C.31)

Note that we have used the result that dJt “ 0 in the interior region. Simplifying (C.31)

gives the HJB equation (74) for the government’s value function F pWt, Ytq.

We do not repeat FOC for the tax rate and other derivations contained in the main body.

Below we provide the details for risk management policies.
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Optimal hedging policies. The optimal idiosyncratic and systematic risk hedging de-

mand functions, φhpwtq “ Φh
t {Yt and φmpwtq “ Φm

t {Yt, are respectively given by

φhpwq “
ψhY FWY pW,Y q

FWW pW,Y q
“ ´ψhw and (C.32)

φmpwq “
ψmY FWY pW,Y q

FWW pW,Y q
“ ´ψmw . (C.33)

Household promised value wt dynamics. Applying Ito’s lemma to wt “ Wt{Yt, where

Wt is given in (69) and Yt is given in (2), we obtain:

dwt “ rpζ ` r ` ρησY ´ gqwt ´ p1´ θt ´ cpθtqqsdt` djt

`

”

σ2
Ywtdt`

´

a

1´ ρ2σY φ
h
pwtq ` ρσY φ

m
pwtq

¯

dt
ı

´pφhpwtq `
a

1´ ρ2σYwtqdZht ´ pφmpwtq ` ρσYwtqdZmt , (C.34)

“ µwpwtqdt` djt ` σ
w,h
pwtqdZht ` σw,mpwtqdZmt , (C.35)

where djt “ 0 in the interior region and

µwpwtq “ pζ ` rV ´ gqwt ´ p1´ θt ´ cpθtqq , (C.36)

σw,hpwq “ pφh ` ψhwq “ 0 , (C.37)

σw,mpwq “ pφm ` ψmwq “ 0. (C.38)

Therefore, the wt process evolves deterministically as:

9wt “ pζ ` rV ´ gqwt ´ p1´ θpbtq ´ cpθpbtqqq . (C.39)

Household promised value in default regime: pw. In the default regime, the scaled

promised value pw satisfies the following equation:

pqζ ` rq pw “ 1´ γ{α ´ κcpγ{αq ` pg ´ ρησY q pw , (C.40)

which yields

pw “
1´ γ{α ´ κcpγ{αq

ζ ` rV ´ g
. (C.41)
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C.2 Equivalence of Primal and Dual Problems

The government’s debt management problem (19) is equivalent to the planner’s resource

allocation problem (67) if and only if 1.) the credible debt capacity, BpY q, in the primal

problem equals the planner’s value when the limited-commitment constraint binds, F pW,Y q

in the dual problem: BpY q “ F pW,Y q ; 2.) the lumpy debt-issuance boundary, BpY q, equals

the planner’s value when the planner makes a lumpy payouts, F pW,Y q in the dual problem:

BpY q “ F pW,Y q; 3.) the value function P pB, Y q in the primal problem characterized

by the HJB equation (40) and associated FOCs maps to the value function F pW,Y q in

the dual problem characterized by the HJB equation (74) and associated FOCs as follows:

P pBt, Ytq “ Wt and Bt “ F pWt, Ytq.

Using the homogeneity property, we obtain the following mapping for scaled variables

and value functions:

b “ fpwq and w “ ppbq. (C.42)

Additionally, we have the following results at the boundaries:

b “ fpwq , (C.43)

and

b “ fpwq . (C.44)

Next, we demonstrate the equivalence between the two problems by showing that by

substituting b “ fpwq into the ODE for ppbq, we obtain the ODE for fpwq, and vice versa.

Substituting (C.42) and (C.43) into ODE (61) for fpbq, we obtain the ODE (79) for ppwq.

Substituting (C.42) and (C.43) into the constraint (58) for b and ODE (64) for the default

value pf , we obtain the constraint (86) for w, and ODE (C.40) for the default value w.

Substituting (C.42) and (C.44) into the constraint (59) for b, we obtain constraint (80) for

w. Substituting (C.42) into the optimal tax policy (56) in the government debt problem, we

obtain the optimal tax policy (77) in the dual planner’s problem.

D Calibration

We use the US annual debt-output ratio from 2000 to 2020 to estimate our model. US debt

and GDP data are from FRED provided by St. Louis fed: https://fred.stlouisfed.org.

Let Ξ “ tϕ, ζ, κu . Our model asserts that the government debt-GDP ratio bt grows

deterministically at rate 9bt ” µbpbtq given in (57). To account for measurement errors, we
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introduce a noise term into law of motion (57) for bt and discretize the bt process as follows:

bti`1
“ bti ` µ

b
pbti ; Ξqpti`1 ´ tiq ` εi`1 , i “ 1, 2, ¨ ¨ ¨ , (D.45)

where µbpbti ; Ξq makes explicit the dependence of the drift of b on Ξ and εi`1 is a random

variable that captures the effect of measurement errors. Let hpεi`1q denote the density

function of εi`1:

h
`

bti`1
´ bti ` µ

b
pbti ; Ξqpti`1 ´ tiq

˘

. (D.46)

Let tpbti , i “ 1, ¨ ¨ ¨ , 21u, where ti “ 1999 ` i, denote the annual US debt-to-GDP ratio from

2000 to 2020. Our estimate of Ξ is pΞ where

pΞ “ arg max
Ξ

20
ÿ

i“1

lnh
´

pbti`1
´pbti ` µ

b
ppbti ; Ξq

¯

. (D.47)
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