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Abstract

We estimate a model of damage to corporate earnings from COVID-19. A pandemic
decreases earnings due to costly mitigation and lower growth rates. The arrival of a
vaccine, modeled as a Poisson process, reverts earnings to normal. We fit our model
to timely measures of expected damage given by revisions of industry-level consensus
earnings forecasts. In mid-May 2020, a vaccine is expected to return earnings to normal
in one year. Levered and face-to-face industries will benefit the most from a vaccine. We
then extend our framework to account for time-varying vaccine arrival rates. August
2020 forecasts imply a return to normal in six months, consistent with good news on
the effectiveness of multiple vaccines announced in November 2020.
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1 Introduction

We estimate a model of damage to corporate earnings from the COVID-19 pandemic. The

unexpected arrival of a pandemic results in a downward jump of earnings for a typical

corporation due to costly mitigation by both customers and firms.1 Damage depends on

when an effective vaccine (or other medical interventions such as therapeutics) is expected

to arrive. When the vaccine arrives, these costs no longer need to be paid and there is an

upward jump in earnings. Growth rates during a pandemic are lower than historical growth

rate forecasts before the arrival of COVID-19 due the adverse direct effects of infections.

Our model—a parsimonious version of Hong, Wang, and Yang (2020)—boils down to a

regime-switching model of earnings with just a few parameters: vaccine arrival rate, jump

in earnings (both on pandemic impact and reflation upon vaccine arrival), and differential

growth rates across normal (or non-pandemic) versus pandemic regimes.

We fit our model to timely measures of expected damage to corporate earnings given by

revisions of industry-level consensus earnings forecasts.2 Broadly, the vaccine arrival rate

moderates the persistence of the COVID-19 shock to earnings. To the extent an effective

vaccine is expected to arrive quickly, the shock should be mostly felt in short-term as opposed

to medium-term or long-term earnings forecasts. Hence, we can infer from the revision of

forecasts at different horizons the parameters of the earnings process taking into account

the effects of COVID-19. Our estimation methodology allows for potential heterogeneity in

damages across industries, such as technology firms even benefitting from the need for social

distancing.

We associate a medical intervention which returns the economy to normal as being a

vaccine since the bulk of the government funding in the US and Europe have been for

its development. According to Bloomberg News article “Trump administration dips into

1Andersen, Hansen, Johannesen, and Sheridan (2020) and Farboodi, Jarosch, and Shimer (2020) point
to the importance of voluntary mitigation by households who stop consuming and firms who incur costs
protecting their workforce even in advance of government-imposed lockdowns.

2The only caveat is that stock-level forecasts might be biased due to conflicts of interest (Michaely and
Womack (1999), Hong and Kubik (2003)). But Landier and Thesmar (2020) find that May 2020 industry-level
earnings forecast revisions following COVID-19 explain stock price performance across industries, suggesting
that bias is not a concern when it comes to COVID-19.

1



protective gear, CDC funds to fund vaccine push” (September 23, 2020), the Warp Speed

budget is as large as $18 billion and almost all of it allocated to vaccine developments

(Moderna, Sanofi, GSK, Pfizer, Novavax, J&J and AstraZeneca) and only a small amount

toward therapeutics (Regeneron’s antibody cocktail). Nonetheless, our regime-switching

model can be applied to other countries where it might be the arrival of therapeutics or

testing that return these countries to normal. For instance, rigorous testing has played a

bigger role in Asian countries. Another medical scenario that returns the economy to normal

is herd immunity. But this possibility does not seem likely given limited evidence on the

length of individual immunity.

Our contribution is to develop a methodology to infer key structural parameters affecting

cumulative damage to corporate earnings from COVID-19. Our estimates naturally address

several related questions of interest to policy makers and practitioners. First, when will

a vaccine return the economy to normal? This issue has received significant attention in

consulting reports and mass media. But a systematic method to generate quantitative

estimates does not yet exist. Second, which industries will benefit most from a vaccine?

Only the question of which industries have been the most damaged has received attention

thus far. Third, what accounts for damage to corporate earnings — jumps in earnings due to

costly mitigation versus the growth rate effect in a pandemic regime due to the unexpected

course of the pandemic?

We show that our method is a useful complement to surveys that attempt to answer

these questions.3 While analysts are not directly responsible for issuing vaccine forecasts,

they are highly incentivized when it comes to making earnings forecasts. And their forecasts

ought to integrate not only scientific evidence on the development of effective vaccines but

also logistical issues surrounding their distribution as well as macroeconomic consequences,

i.e. whether consumers and firms return to normal.

To begin with, we derive a tractable expectations formula that relates earnings forecast

revisions from just before the pandemic arrival to just after its arrival to these underlying

3An example is a survey from Good Judgment on “When will enough doses of FDA-approved COVID-19
vaccine(s) to inoculate 25 million people be distributed in the US?”.
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parameters and several independent variables. Our baseline model follows the literature on

the arrival of vaccines in assuming a time-homogeneous Poisson process (Arnold, Galloway,

McNicholas, and O’Hallahan (2011), Lee, Norman, Assi, Chen, Bailey, Rajgopal, Brown,

Wiringa, and Burke (2010), Ball and Sirl (2018)). Our main dependent variable is the

revision of earnings forecasts after the arrival date of COVID-19 in the US, which we take

to be February 20, 2020. To reduce measurement error, we work with industry portfolios by

value-weighing median forecasts for stocks at the GICS 8-digit industry classification. To

be conservative and to allow forecasts to be fully revised, we use May 2020 as our forecast

date.4

The main independent variables from our theory are the horizon of the earnings forecasts

and the earnings growth rates in the non-pandemic and pandemic regimes. The horizon of

earnings forecasts is straightforward to measure. For our baseline specifications, we pool

together both industry FY1 (nearest fiscal year-end), FY2, FY3, FY4 and FY5 (farthest

fiscal year-end) forecasts made in May of 2020. We measure the growth rate in the non-

pandemic regime using analysts’ growth rate forecasts on January of 2020 and also aggregate

these to the industry level. That is, our specification assumes that growth rates return to

non-pandemic levels after the arrival of a vaccine.

The growth rates in the pandemic regime are latent and can vary across industries.

For the sake of parsimony, we model these latent pandemic growth rates as a multiple of

non-pandemic growth rates. Moreover, the jump in earnings can potentially depend on

industry characteristics. For these characteristics, we focus on leverage of the firms in an

industry and the exposure of an industry to face-to-face interactions either with customers

or other employees. We map face-to-face exposure measures based on occupational surveys

(Montenovo, Jiang, Rojas, Schmutte, Simon, Weinberg, and Wing (2020)) to the industry

level by using occupation shares for each industry. We take these industry characteristics

as given and do not model the relationship between labor and financing frictions (see, e.g.

Whited (2019)). Our model can be estimated using non-linear OLS and standard errors

4There is naturally a lag in analyst revisions and we only begin to see some revisions starting in April
and then most of the forecasts have been revised by May of 2020.
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calculated using the bootstrap method.

First, we have the following findings regarding the vaccine arrival rate. Using forecast

revisions in May 2020, we estimate that vaccine arrival rate is 0.999 with a 95% bootstrap

CI [0.45,1.64]. Our estimates should be interpreted as not when a vaccine is approved but

when the vaccine has been successfully adopted and the economy returns to normal. These

estimates imply that the vaccine is expected in 1 year (or 1/0.999) with a 95% bootstrap

confident interval of between 0.61 and 2.22 years.

To see how we estimate these parameters, consider the plot in Figure 3 of consensus

earnings forecasts issued in the middle of May 2020 deflated by the consensus earnings

forecasts before COVID-19 in the middle of January 2020. We can see that the FY1 forecast

within twelve months before forecast end are significantly revised down, 54% on average

across the 130 8-digit GICS industries in our sample. This is consistent with a significant

negative jump on average in our model. But we can also see that the FY2 forecasts farther

out are not nearly as impacted. If an effective vaccine is expected to arrive far out in

the future, then analyst revisions will be large for both near term (FY1) and longer term

forecasts (FY2, FY3, FY4 and FY5) — that is, there is effectively a permanent downward

jump in earnings followed by a different pandemic regime growth rate than the one in the

non-pandemic regime.

In contrast, if analysts expect a vaccine in a year, then the FY2 forecasts will be revised

down much less in comparison to FY1. The only other way potentially to reconcile the data is

to have the pandemic growth rates be counterfactually much higher than the non-pandemic

growth rates. But in fact our estimate is for a lower pandemic growth rate. In other words,

the anticipated reflation of earnings conditioned on a vaccine arrival will make it appear that

growth rates in the pandemic regime, when comparing FY1 versus longer-term forecasts (e.g.

FY2 or FY3), are unrealistically high.

Second, highly levered and face-to-face industries experience greater damage in the form

of jumps in earnings following COVID-19 and hence are also expected to be the biggest

beneficiaries of a vaccine when earnings reflate more for these sectors. Although leverage

and face-to-face scores at the industry level are highly correlated (0.4), leverage is the most
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significant in our specifications. Moreover, we find that industry leverage that nets out cor-

porate cash and liquid investments performs slightly better than our baseline gross leverage

measure in explaining pandemic damage to corporate earnings. Our baseline face-to-face

scores (Montenovo, Jiang, Rojas, Schmutte, Simon, Weinberg, and Wing (2020)) include

interactions with both employees and customers. We also consider face-to-face scores meant

to capture just interactions with customers such as in Blinder (2009). But these scores per-

form worse in explaining pandemic damage than our baseline overall face-to-face interaction

measure.

Third, pandemic growth rates are estimated to be lower than the non-pandemic growth

rates, especially for levered industries. However, our confidence interval for this attribution is

much wider than for our vaccine arrival or jump estimates.5 Growth rates during a pandemic

being lower on average points to the value of mitigation for corporate earnings even in the

absence of health considerations (as modeled in Hong, Wang, and Yang (2020)).

One way to show that our model explains analyst earnings forecast revisions is to present

a placebo exercise whereby we conduct exactly the same empirical analysis but using data

from 2019. As we expect, we estimate that the arrival rate of a vaccine is zero (or a vaccine

is expected to arrive in an infinite number of years) using this placebo sample. And the

estimates for the jump and growth rates do not yield significant results.

We then extend our model to account for vaccine news, which then allows us to draw

inferences using the June, July, and August 2020 forecasts (the latest data we have available

on IBES). To this end, we develop a vaccine model in which the vaccine arrives after two

jumps. We can interpret the two jumps as stages in the vaccine development process. The

first stage is the news arrival stage. For instance, the first stage corresponds to basic analysis

on whether COVID-19 is a difficult virus to find a vaccine such as HIV or an easy one. The

second stage is the actual development of the particular treatment. After the end of the first

stage, news arrives, which can be either good or bad. In either case, investors become better

5One reason perhaps is that mitigation government policies to stabilize the economy (see, e.g., Elenev,
Landvoigt, and Van Nieuwerburgh (2020)) — growth rates would no doubt be worst absent these other
interventions.
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informed about the rate at which effective vaccines arrive.

Then using our May 2020 estimates for the jump in earnings and latent growth rates, we

re-estimate the vaccine arrival rate using subsequent forecasts. Differences in arrival rates

from our baseline May 2020 estimates represent news. The arrival rates estimated in June

and July are identical to those estimated in May. However, the August 2020 forecasts imply

a higher vaccine arrival rate: a vaccine is expected in six months, or the Spring of 2021.

In other words, our model’s estimates indicate that there was good news on vaccines in the

late summer, consistent with qualitative narratives in the stock market.6 In other words,

analysts’ expectations imply that the vaccines expected to be widely distribute by the Spring

of 2021, which would then be collectively a silver bullet for corporate earnings. Our estimates

are also consistent with news on Pfizer, Moderna and AstraZeneca vaccine effectiveness in

November 2020, though it remains to be seen if the vaccines are indeed widely distributed

by the Spring of 2021 and if the economy will return to normal then.

Our paper proceeds as follows. We review the related literature in Section 2. We present

our model of earnings in Section 3. Section 4 describes the dataset and main variables.

Estimates of our baseline model are presented in Section 5. We extend the model to account

for vaccine news in Section 6. We conclude in Section 7.

2 Related Literature

Our analysis is related to Landier and Thesmar (2020) who document that industry-level

forecast revisions explain stock price movements. Our contribution is to model the determi-

nants of these analyst revisions. Our analysis also complements Gormsen and Koijen (2020),

who use dividend strips to back out the negative impact of COVID-19 on dividend growth.

Our finding of a quick arrival of a vaccine that returns earnings to normal is consistent with

Giglio, Maggiori, Stroebel, and Utkus (2020), who surveyed retail investors and found that

the average investor became more pessimistic about the short-run performance of both the

stock market and the economy after COVID-19, even as their corresponding long-run ex-

6See for instance MarketWatch article on August 24, 2020 entitled “COVID-19 vaccine hopes are driving
the stock-market rally — here’s how much”.
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pectations remained unchanged. Our results suggest that analysts view gloomier scenarios

outlined by the Federal Reserve Board or in academic work on long-term scarring as unlikely.

We focus on face-to-face and leverage characteristics of industries because a number of

papers (see, e.g., Pagano, Wagner, and Zechner (2020), Ramelli and Wagner (2020), Alfaro,

Chari, Greenland, and Schott (2020), Ding, Levine, Lin, and Xie (2020), Hassan, Hollander,

van Lent, and Tahoun (2020)) find that the immediate impact of COVID-19 for stock prices

was more negative for firms in these types of industries.7 Our findings are qualitatively similar

to these papers in terms of the heterogeneous initial impact of COVID-19 across different

industries. Our estimates, however, are obtained with the restriction that the initial jump is

reversed when the vaccine arrives. Hence, we can interpret these estimates as implying that

levered and face-to-face industries would benefit the most from a vaccine arrival.

Our model allows us to simultaneously infer not just the vaccine arrival rate but also

disentangle jumps in earnings due to mitigation from the growth rate effect in a pandemic

regime. The initial jump in earnings corresponds to costly mitigation measures (e.g. social

distancing) meant to keep the virus at bay. When a vaccine arrives, there is then a reversal

of this jump. But a lower growth rate in the pandemic regime subsequent to the downward

jump in earnings (i.e. should a vaccine not arrive yet) would be indicative of negative direct

effects associated with a pandemic.

Finally, in our empirical work, we focus on earnings forecasts made by security analysts,

even though our estimation method can be applied to macroeconomic forecasts such as

GDP to the extent macroeconomic aggregates and stock market earnings are correlated.

After all, models of the impact of COVID-19 on the broader economy more generally such

as in Eichenbaum, Rebelo, and Trabandt (2020) follow a similar logic.

3 Model

We propose a parsimonious version of Hong, Wang, and Yang (2020). We assume that the

economy can be in one of the two regimes: the normal (or non-pandemic) and pandemic

7Related measures utilize additional O*NET questions to measure telework felxibility (Favilukis, Lin,
Sharifkhani, and Zhao (2020)).
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regimes. The economy starts in the normal regime. At stochastic time t0, it unexpectedly

enters into the pandemic regime. Afterwards, the pandemic becomes extinct and the economy

returns back to the normal regime when a successful vaccine is developed at time τ , which

occurs with probability λ per unit of time.

3.1 Normal Regime

We let Ŷt denote the earning process of the asset in the normal regime. We assume that Ŷt

follows a commonly used geometric Brownian motion process:

dŶt

Ŷt−
= ĝdt+ ρφ dBt +

√
1− ρ2 φ dWt , (1)

where Bt is the standard Brownian motion driving the “business-as-usual” aggregate risk and

Wt is the standard Brownian motion driving the idiosyncratic earnings risk. By construction,

Bt and Wt are orthogonal. In equation (1), ĝ is the expected earnings growth (drift) and

φ is the volatility of earnings growth, which includes the aggregate component ρφ and the

idiosyncratic component
√

1− ρ2 φ. That is, ρ is the correlation coefficient between the

aggregate shock Bt and the asset’s earnings. For simplicity, we let ĝ, φ, and ρ all be constant.

3.2 Pandemic Regime

Next, we specify the impact of the unexpected pandemic arrival and the anticipated stochastic

vaccine arrival. Let Yt denote the asset’s earnings process during the pandemic regime. Once

in the pandemic regime (t0 < t < τ), the asset’s earnings process Yt follows:

dYt
Yt−

= gdt+ v dZt + ρφ dBt +
√

1− ρ2 φ dWt + (en − 1) dJt , (2)

where Jt is a pure jump process and dJt = 1 if and only if the vaccine arrives.

There are four terms in equation (2). First, earnings will jump discretely by a fraction

(en − 1) at the moment of the vaccine arrival, i.e., when dJt = 1. This is to capture earnings

reflation once the vaccine returns the economy to normal. (Absent vaccine arrival, dJt = 0).

Second, the pandemic arrival changes the expected earnings growth rate from ĝ to g (leaving

aside the effect of vaccine arrival.) Third, the pandemic shock dZt directly causes additional
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earnings growth volatility, v. Finally, as in the normal regime, earnings is subject to the

business-as-usual aggregate shock dBt and idiosyncratic shock dWt with volatility ρφ and√
1− ρ2 φ, respectively. All shocks are orthogonal to each other.8 For simplicity, we let n

be constant and keep ĝ, φ, and ρ the same as in the normal regime.

More generally in Hong, Wang, and Yang (2020), the growth rate g and earnings volatility

v in the pandemic regime depend on the optimally mitigated infections in the economy.

For simplicity, we model these parameters as constants with particular emphasis that g is

expected to be less than ĝ due to the adverse direct effect of the pandemic.

3.3 Transition from Normal to Pandemic Regime

In Hong, Wang, and Yang (2020), the arrival of COVID-19 triggers optimal mitigation in

the form of foregone earnings. There is both a fixed and variable cost to mitigation that

have to be paid out of earnings each period there is a pandemic. This unexpected but

optimal corporate mitigation spending decreases its earnings. That is, as the COVID-19

shock unexpectedly hits at t0, the earnings drops by a fixed fraction δ:

Yt0 = Yt0−e
−δ. (3)

And at the moment of vaccine arrival, the earnings instantaneously increases by a fraction

n from the pre-arrival time since mitigation costs no longer need to be paid as shown in

equation (2):

Yτ = enYτ− . (4)

We further set δ = n. That is, the percentage of earnings increase at the moment of vaccine

arrival τ is equal to the percentage of earnings decrease at the moment of pandemic arrival

time t0. Consider the counter-factual case that helps us understand the mechanism: If

λ → ∞, we have τ− = t0. For this case, earnings is not impacted at all by the jumps as

Yτ = enYτ− = enYt0 = ene−nYt0− = Yt0−.

8The vaccine arrival process Jt is independent of [Wt,Bt,Zt]
>, which is a 3×1 standard Brownian motion.
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3.4 Linking Earnings Forecasts to Pandemics Damage Model

We can now relate earnings forecasts to our model. Recall that τ denotes the stochastic

vaccine arrival time. Assuming that the consensus analyst forecast is being generated by our

model, we have for t in the pandemic regime:

1

Yt
Et[Ys] =

∫ s

t

λe−λ(τ−t)eg(τ−t)eneĝ(s−τ)dτ + e−λ(s−t)eg(s−t) (5)

=
λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
en + e(g−λ)(s−t) . (6)

Recall that ĝ is the pre-COVID long-term growth (LTG) rate and g is the constant growth

conditional on being in the COVID-19 regime. As we assume that there are only two

regimes, normal and pandemic, the non-pandemic regime growth rate is the same as the

post-pandemic regime growth rate. In a later section, we extend this formula to allow for

these two rates to differ.

The first term of equation (5) is conditioned on a vaccine arriving in the interval between

t and s. Inside the first term, the density of the stochastic vaccine arrival time τ is λe−λ(τ−t).

Before the vaccine arrives (from t to τ) the cumulative (gross) growth is eg(τ−t). After the

vaccine arrives at τ in this interval (t, s), there is reflation of earnings by a multiple of en,

i.e., Yτ = enYτ−, and during the subsequent sub-period (τ, s), earnings growth reverts to the

pre-COVID LTG rate ĝ, which gives the cumulative (gross) growth is eĝ(s−τ) from τ to s.

As a result, for a given τ ∈ (t, s), Et[Ys] = Yte
g(τ−t)eneĝ(s−τ), which explains why the

first term is the contribution to Et[Ys]/Yt conditional on τ ∈ (t, s). The probability that a

vaccine does not arrive in (t, s) is e−λ(s−t). If this is the case, the growth rate in (t, s) is g.

Therefore, the second term gives the contribution to Et[Ys]/Yt conditional on τ > s. Adding

the two terms together gives Et[Ys]/Yt for any t in the pandemic regime.

Below in Figure 1, we provide a simulated path of earnings going through the non-

pandemic, during-pandemic, and non-pandemic regimes. The plot starts with earnings at

0.98 at t = −2. The (continuously compounded) growth rate in the non-pandemic regime

is set at ĝ = 8% per annum. The pandemic unexpectedly arrives at time t = t0 = 0, at

which point earnings jumps downward from the magenta dot Yt0− = 1.492 to the red solid
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Figure 1: Earnings Path and Expectation Calculations

The parameter values are: n = δ = 0.4, ĝ = 0.08, g = .85 × ĝ = 0.068, and λ = 1.1. Parameter
values are annualized whenever applicable. Y−2 = 0.98. At time t = 0, earnings jumps from
Yt− = 1.492 to Yt = 1. And at time t = 1.5, earnings jumps from Yt− = 1.120 to Yt = 1.672.

dot Yt0 = 1 — which we have parameterized as a δ = 40% drop. At t = τ = 1.5, the vaccine

arrives, earnings Yt jumps upward by n = δ = 40% from Yτ− = 1.120 (the red open dot) to

Yτ = 1.672 (the black solid dot).

We set the vaccine arrival rate at λ = 1.1 per year (with an implied expected arrival

time of around 1/λ = 0.9 years, i.e., Et0(τ − t0) = 0.9) after the unexpected arrival of the

pandemic at t0. The (conditional) growth rate in the pandemic regime, g, is set to be 0.85

times that of the pandemic regime, ĝ, which means g = ĝ × 0.85 = 8%× 8.5% = 6.8%.

In addition to plotting a sample path, we also plot the expected earnings immediately

after the pandemic arrival, E0(Yt) given the value of Y0 = 1 at t = 0 (see the red dashed line).

In contrast, if investors were naive ignoring vaccine arrival and using a constant expected

earnings rate g forever, the expected earnings at t = 0 is then equal to Y0e
gt. The naive
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forecasts of Yt is lower than E0(Yt) due to the assumption that g ≤ ĝ and earnings will jump

by a fraction (en − 1) > 0 upon the vaccine arrival.

The magenta dotted line plots the expected earnings at t = −2 before the pandemic

arrival. As the pandemic is unexpected, we have E−2(Yt) = Y−2e
ĝ(t+2) = Y−2e

0.08×(t+2).

Similarly, the black dash dotted line plots expected earnings Yt immediately after the arrival

of the vaccine at time τ , which is given by Eτ (Yt) = Yτe
ĝ(t−τ). That is, the earnings processes

in the normal regimes (both before the pandemic arrival and after the vaccine arrival) are

the same. Notice that the growth rate in the non-pandemic regime (the dotted black line) is

equal to ĝ, which is larger than the growth rate for the dashed red line (the pandemic regime.)

Notice that the growth rate (anticipating stochastic vaccine arrival) in the pandemic regime

is time-varying and smaller than that in the non-pandemic regime.

Now we calculate the expected earnings from t0−, i.e., the moment that is just prior to

the unexpected COVID-19 arrival time t0. Substituting equation (3), Yt0/Yt0− = e−δ, into

(6) and with δ = n, we obtain9

1

Yt0−
Et0 [Ys] =

Yt0
Yt0−

1

Yt0
Et0 [Ys] =

λ

λ− g + ĝ

[
eĝ(s−t0) − e(g−λ)(s−t0)

]
+ e−ne(g−λ)(s−t0) . (7)

Figure 2 provides another way to understand the evolution of expectations across the

normal and pandemic regimes. In this figure, we examine the effect of the vaccine arrival

rate λ on ln [E0(Yt)/Y0−], the log of forecast revisions between t = 0−, the moment just before

the pandemic arrives, and any time t subsequently. Compared with the counterfactual that

the pandemic did not arrive and the business is then as usual (which means earnings grow at

an expected rate of ĝ indefinitely, the earnings responses are naturally negative, meaning that

E0(Yt) < Y0− e
ĝ t. But because of the anticipated vaccine arrival and the economy eventually

reverts to normal, earnings increase over time and approaches the long-run cumulative growth

for logarithmic earnings, ĝ t = 0.08t (the magenta dash-dotted straight line). For all levels

of λ, the forecast ln [E0(Yt)/Y0−] starts at the initial drop δ = −0.4 at t = 0 and then

increases over time due to anticipated vaccine arrival and eventually approaches the straight

line, ĝ t = 0.08t.

9As COVID-19 is unexpected, we calculate Et0 [Ys] from t0, but divide the forecast by Yt0− for empirical
measurement purposes.
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Figure 2: The Effect of the Vaccine Arrival Rate λ on ln [E0(Yt)/Y0−]

The forecast ln [E0(Yt)/Y0−] starts at −δ = −0.4 at t = 0 and eventually converges to the business-

as-usual scenario, depicted by the straight line ĝ t as t→∞. The higher the value of λ, the faster

the convergence. The parameter values are: n = δ = 0.4, ĝ = 0.08, and g = .85× ĝ = 0.068.

Intuitively, if an effective vaccine is expected to arrive far out in the future (lower λ),

then forecast revisions will be large for both near term and longer term forecasts (the red

dashed line) — that is there is effectively a permanent downward jump in earnings followed

by a different pandemic regime growth rate than the one in the non-pandemic regime. In

contrast, if we expect a vaccine in a year, then the longer-term forecasts will be revised down

much less in comparison to the near-term forecasts.

3.5 Estimation

Using this insight from Figure 2, we take our model to data on analyst forecasts in the

following manner. In reality, we do not observe analyst forecasts at t0, which is the immediate
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moment after the pandemic arrival time. Instead, we observe forecasts at a later time, t.

As such, we will employ the approximation Yt/Yt0− ≈ Yt0/Yt0− = e−δ and assume δ = n to

obtain the following relation:

1

Yt0−
Et[Ys] =

Yt
Yt0−

1

Yt
Et[Ys] ≈ e−δ

[
λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
en + e(g−λ)(s−t)

]
=

λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
+ e−ne(g−λ)(s−t) . (8)

That is, we assume that the jump which in our model occurs over an instant takes place

over the period from the end of February 20 to May 14 of 2020.

Moreover, we aggregate corporate earnings forecasts at the firm level up to the industry

level, which we denote by j. The main dependent variable of interest given by the right

side of equation (8) is constructed in the following manner. As Yj,t0− is not empirically

observable, we measure Yj,t0− by using the earnings forecast expression before the arrival

of COVID-19: Et0− [Yj,s] = Yj,t0−e
ĝ(j)(s−t0), where ĝ(j) is the long-run growth rate in the

non-pandemic regime, which as we discuss below is observable. Equivalently, we have

Yj,t0− = exp
[
−ĝ(j) · (s− t0−)

]
· Et0− [Yj,s] . (9)

Using equations (8) and (9), and taking natural logs on both sides, we obtain the following

relation that we take to data:

ln

[
Et[Yj,s]

e−ĝ(j)(s−t0−)Et0−[Yj,s]

]
= ln

[
λ

λ− g(j) + ĝ(j)

(
eĝ

(j)(s−t) − e(g(j)−λ)(s−t)
)

+ e−n
(j)

e(g
(j)−λ)(s−t)

]
.(10)

We estimate equation (10) using non-linear least squares (NLS).

We parameterize the earnings jump parameter n(j) for firms in industry j by

n(j) = n0 + nX(j), (11)

where X(j) are industry characteristics and n is the corresponding parameter vector. The

growth rate g for firms in industry j in the pandemic regime, g(j), is latent and can vary by

industry. We parameterize g(j) as

g(j) = (g0 + gX(j)) · ĝ(j) . (12)
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That is, the growth rate in the pandemic regime g(j) is a multiple of ĝ(j), the growth rate in

the non-pandemic regime for firms in industry j. The ratio between the two growth rates,

g(j)/ĝ(j), captures the average difference in growth rates across the two regimes.

3.6 Comments

The upside of our baseline set-up is parsimony. In practice, rather than assuming that a

successful vaccine is a silver bullet that instantly brings the economy back to normal upon its

arrival as in our baseline model, we may consider a more realistic setting where a successful

vaccine development brings the economy back to normal in several stages over time. These

stages might correspond to an increasing fraction of the population being vaccinated over

time. For example, consider the following setting with N sequentially ordered stages, denoted

by {S1, · · · , SN}, in addition to the pandemic regime, which we denote by S0. We assume

that as the stage transitions from stage Sm to stage Sm+1 at stochastic time τm, where

m = 0, · · · , N − 1, at a constant rate of λm per unit of time, earnings jumps upward by a

constant fraction δm > 0. That is, Yτm = Yτm− e
δm . We can compute the earnings forecast

and other key objects in this more general model in closed form, but the model would be

less parsimonious.

4 Data and Variables

4.1 Earnings Forecasts

We obtain the forecasts on earnings per share (EPS) and growth rate forecasts from the

monthly IBES summary history files from WRDS. Our data is from January 2020 to May

2020. We keep all stocks that are also in CRSP. We set the starting date of the pandemic

regime, t0, to be February 20, 2020. We take the median forecast for each firm in May

as the consensus forecast during the pandemic period. We treat the forecasts in January

as the most recent non-pandemic period forecast. That is, we link our model notations to

our empirical measurement as follows: January 2020 is our t0−, May 2020 is time t for our

forecast, and s is the fiscal year end date of the forecasts.
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Using February and March of 2020 forecasts is problematic from the point of view of

identification since we want timely measures of analyst expectation revisions from just before

COVID-19 arrived to after its arrival. February 2020 may capture a bit of information

about the pandemic since some analysts might have started revising their forecasts based

on infections in other countries such as China. On the other hand, March 2020 might not

capture the full extent of the pandemic regime to the extent some analysts might have

been slow in revising. As such, we view using January 2020 forecasts as cleanly capturing

non-pandemic earnings expectations and either April or May 2020 forecasts as capturing

revisions accounting for the pandemic and hence embedding information regarding vaccines.

We prefer May 2020 to April 2020 since almost all the analysts have revised their forecasts

by then.10

We label the EPS forecasts based on the time gap between their forecast period end date

s (i.e. the fiscal end year end date of the company) and the forecast date t, i.e., the gap

(s − t). If the time gap is less than 365 days, we label the forecast as FY 1t. If the time

gap is between 366 days and 730 days, we label the forecast as FY 2t. We also similarly

collect FY3 and FY4 forecasts from IBES. In addition, we convert LTG forecasts, which are

defined as long-run growth rates from the previous announced earnings out to 5 years, to

FY5 forecasts.

In our empirical analysis, FY1 forecasts need to be adjusted for the fact that a certain

fraction of the fiscal year has already been realized before the pandemic arrived at t0. Con-

sider a firm in our sample that has a fiscal year ending in October 2020 (time s in our

model). In this case, for FY 1t, the FY1 earnings forecast for the period from November

2019 to October 2020, made in May 2020 (our t), only the sub-period between February 20,

2020 (our t0) to October 2020 is exposed to COVID-19.

Therefore, we need to make adjustments to FY 1t forecasts (e.g. May as our t) considering

the differential impact of the pandemic on earnings resulting from heterogeneous fiscal year

end dates. What enters into our calculation of earnings forecast in equation (10) at t (May

10Moreover, most of the government intervention programs have already been announced and hence ought
to be reflected in analyst forecasts as well by then.
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in our empirical analysis) is adjusted as follows:

FY 1adjt = FY 1t ·
(

1

s− t0

)
+ FY 1t0− ·

(
1− 1

s− t0

)
, (13)

where (s− t0) is the fraction of the fiscal year that is exposed to COVID-19.

For the preceding example, s − t0 = (10 − 2)/12 (the event time t0 is February 2020

and time s in equation (13) is October 2020.) That is, 8/12 =2/3 of the annual earnings is

after the pandemic arrival and the other 4/12=1/3 is non-pandemic. Our adjusted earnings

forecast at t (in May for our empirical analysis) is then given by FY 1adjt = (3/2)FY 1t −

(1/2)FY 1t0− = FY 1t + 0.5 × (FY 1t − FY 1t0−). That is, the adjusted annual earnings

forecast FY 1adjt is equal to the unadjusted FY1 forecast FY 1t plus a term, which accounts for

the change of forecasts caused by the pandemic arrival. If pandemic is bad news for the firm,

i.e., FY 1t < FY 1t0−, this earnings forecast is adjusted downward by 0.5×(FY 1t − FY 1t0−),

where the multiple 0.5 reflects the ratio between the non-pandemic 4- month duration and

pandemic 8-month duration. In our sample, the non-pandemic forecast FY 1t0− is the FY1

forecasts in January and FY 1t is the unadjusted FY1 forecasts in May.

We merge IBES forecasts with CRSP market capitalization data using historical 8-digit

CUSIP identifiers.11 We then merge in the 8-digit GICS code obtained from Compustat.

On each date in our IBES sample, we set the negative values in adjusted FY1 to the lowest

positive observation in adjusted FY1 on that date. We also set the negative values of FY2

on each date to the lowest positive FY2 observation on each date. We repeat the same

procedure for FY3, FY4 and FY5. We then aggregate the EPS forecasts, pre-pandemic

growth rate forecasts, non-pandemic earnings, and time until fiscal year end to the 8-digit

GICS industries using the end of 2019 market capitalization from CRSP as the weights. We

winsorize these industry
Et0 [Ys]
Yt0−

and ĝ at the 5% level.

The summary statistics for our dependent variables are presented in Table 1. In Panel

A, we report the distribution of
Et0 [Ys]
Yt0−

for the mid-May 2020 forecasts. The mean is 1.16

and the standard deviation is 0.54. The ln
(

Et0 [Ys]
Yt0−

)
has a mean of 0.01 with a large standard

deviation of 0.61. The mean (s− t) is 2.57 for the May 2020 forecasts.

11For the unmatched cases, we obtain additional matching using the official tickers and 6-digit CUSIP.
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Table 1: Summary Statistics

This table summarizes the mean, standard deviation, and the quartiles of the key variables used
in our main analysis at 8-digit GICS industry level. Et[Ys]/Yt0− is the earnings forecasts in month
t divided by the non-pandemic earnings Yt0−, which is the FY1 forecasts in January 2020 dis-
counted by the I/B/E/S growth rate forecasts in January 2020. ln(Et[Ys]/Yt0−) is the natural log
of Et[Ys]/Yt0−. s − t is the horizon of the earnings forecasts in month t, which is the difference
between the date of the forecast period end and the I/B/E/S statistical period in month t. We
include the May sample of I/B/E/S summary statistics in 2020 in our analysis. The sample in-
cludes the earnings forecasts with horizons up to 5 years. Panel A presents the summary statistics
of Et[Ys]/Yt0−, ln(Et[Ys]/Yt0−) and s − t in May 2020. Panel B contains the summary statistics
of other key variables. Face-to-Face Score is first constructed at the occupation level using O*Net
Main database and then aggregated to industry level using the BLS Industry-occupation matrix
data (from 2018). Market Leverage is calculated at the end of 2019 using the following formula,
(long-term debt+ debt in current liabilities)/(fiscal year end market capitalization + total assets
- common equity). ĝ is the I/B/E/S forecasts of growth rates in January 2020. All the firm level
variables are aggregated to the industry level using 8-digit GICS code, weighted by the market val-
ues of the companies in each industry at the end of 2019. Et[Ys]/Yt0− is winsorized at 5% level on
each date within each horizon. Forecasts horizons are defined by the distance between the forecast
end date and the I/B/E/S statistical period. ĝ is also winsorized at 5% level.

(a) Panel A: Distribution of Et[Ys]/Yt0− and s− t in May 2020

Mean SD P0 P25 P50 P75 P100

Et[Ys]/Yt0− 1.16 0.54 0.05 0.86 1.10 1.39 3.14
ln(Et[Ys]/Yt0−) 0.01 0.61 -3.07 -0.15 0.10 0.33 1.14

s− t 2.57 1.45 0.13 1.56 2.62 3.63 4.67

(b) Panel B: Distribution of other variables used in analysis

Mean SD P0 P25 P50 P75 P100

Market Leverage 0.20 0.10 0.03 0.13 0.19 0.25 0.72
Face-to-Face Score 3.94 0.14 3.59 3.85 3.90 4.01 4.33

Customer Score 3.45 0.45 2.54 3.09 3.44 3.80 4.48
Blinder Score 2.97 0.24 2.57 2.75 2.95 3.13 3.76

ĝ 0.10 0.09 -0.05 0.06 0.08 0.13 0.35
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Figure 3: ln(Et[Ys]/Yt0−) Over Forecast Horizons

This figure plots the natural log of the industry level I/B/E/S earnings forecasts divided by the

non-pandemic earnings, ln(Et[Ys]/Yt0−), against the horizons of the forecasts (s − t). Yt0−, the

non-pandemic earnings, is the FY1 forecasts in January 2020 discounted by the I/B/E/S growth

rate forecasts in January 2020. The May 2020 cross section is plotted. Forecast horizons are marked

with different colors. Forecast are defined by the distance between the forecast end date and the

I/B/E/S statistical period.
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In Figure 3, we take a closer look at the standard deviation of these forecasts by plotting

the industry forecast revisions separately for FY1 to FY5 forecasts. We can see that the

FY1 forecast within twelve months before forecast end are significantly revised down, 54%

on average for the May 2020 forecasts across the industries in our sample. This is consistent

with a significant negative jump on average in our model. But we can also see that the FY2

forecasts farther out are not nearly as impacted.

4.2 Leverage, Face-to-Face, and Customer Interaction Measures

We obtain the GICS code and calculate the market leverage of each firm using Compustat.

Market Leverage is calculated at the end of 2019 using the following formula: long-term debt

(dlttq) plus debt in current liabilities (dlcq) all divided by the sum of market capitalization

(prccq × cshoq) and total assets (atq) net common equity (ceqq).

We then use the O*Net Main database in the U.S. about occupational information to

construct the face-to-face exposures of different industries. O*Net collects information on

974 occupations. They are based on the Standard Occupational Classification (SOC), the

last update of which was done in 2010. O*Net surveys people in these occupations, asking

about the knowledge, skills, and abilities used to perform the activities and tasks of their

occupations. Our face-to-face measure is based on Montenovo, Jiang, Rojas, Schmutte,

Simon, Weinberg, and Wing (2020).

They use questions taken from the 2019 Work Context module. The questions used in

face-to-face measure are: (1) How often do you have face-to-face discussions with individuals

or teams in this job? And (2) To what extent does this job require the worker to perform

job tasks in close physical proximity to other people? These measures are typically provided

on a 1-5 scale, where 1 indicates that a task is performed rarely or is not important to the

job, and 5 indicates that the task is performed regularly or is important to the job.

There is also a direct question that asks people to rate how much they work with cus-

tomers in the O*Net survey. The question is: How important is it to work with external

customers or the public in this job? We take the average score for each occupation for this

alternative measure.
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One issue with this customer measure is that it does not necessarily capture face-to-face

contact. To this end, we have also constructed a customer measure from Blinder (2009)

based on the following questions: (1) establishing and maintaining personal relationships,

(2) assisting and caring for others, (3) performing for or working directly with the public,

(4) selling or influencing others, and (5) social perceptiveness.

The O*Net provides two ways that people weight how an occupation uses these char-

acteristics: Importance and Level. That is, people in an occupation are asked to rate how

important the characteristic is in their job and the level of use of the characteristic in their

job. We use the Importance score of each characteristic and take the simple average of the

Importance scores to make what we call the Blinder index for each occupation. The social

perceptiveness question is in the Social Skills part of the O*Net. The other four measures

are in the Work Activities part of the O*Net.

We have occupation-level measures of face-to-face and the two customer measures. We

then convert them to an industry-level measure. To do this, we use the BLS Industry-

occupation matrix data (from 2018).12 In the BLS data, for every industry, they measure

what percentage of workers work in a given occupation. (They also use the SOC occupation

codes just like the O*Net). So we take the O*Net occupation measures and for each industry

weight them by the percentage of workers in that industry that work in the occupation. We

take a weighted-average to come up with the industry measures. One issue is that the BLS

uses NAICS codes for industries. We convert these to 8-digit GICs codes using a crosswalk.13

The summary statistics for leverage and these three face-to-face measures are provided

in Panel B of Table 1. The mean Market Leverage ratio is 0.2 with a standard deviation

of 0.1. The mean Face-to-Face Score is 3.94 with a standard deviation of 0.14. The mean

Customer Score is 3.45 with a standard deviation of 0.45, while the Blinder Score has a

mean of 2.97 and a standard deviation of 0.24. These measures are correlated (around 0.4

to 0.5 in pairwise correlations). The statistics for ĝ are also displayed — the mean (annual)

non-pandemic growth rate is 10% with a standard deviation of 9%.

12See https://www.bls.gov/emp/tables/industry-occupation-matrix-industry.htm
13See https://sites.google.com/site/alisonweingarden/links/industries
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In our empirical analysis, we will work with percentiles of these measures as opposed to

the values themselves. Figure 4 show the empirical cumulative distribution of our Face-to-

Face Score and Market Leverage measures, respectively. The correlation at the industry level

of face-to-face ranks and leverage ratio ranks is 0.4. There are a number of good economic

reasons why these two industry attributes are correlated. Airline and hotels for instance have

high Face-to-Face Scores and are also industries that have physical assets such as land or

planes that are used for collateralized borrowing. Our goal in this paper is not to disentangle

these two effects. Hence we will use both of these measures interchangeably to model latent

growth rates in our baseline specifications. We will consider the two customer measures in

our robustness exercises.

5 Empirical Results

5.1 Baseline Specification

In Table 2, we present the coefficients and bootstrap confidence intervals from non-linear

least square regressions of equation (10) using May 2020 earnings forecasts. The dependent

variable is the natural log of Et[Ys]/Yt0−, i.e. the revision of forecasts between January

and May 2020. The explanatory variables include the (remaining) duration of time-t earn-

ings forecasts (s − t), the non-pandemic (January 2020) forecasts of the growth rate ĝ, the

percentile rank of industry Face-to-Face Score, and the percentile rank of industry Market

Leverage.

Column (1) contains the results assuming that the earnings jump parameter n depends

on Face-to-Face Score, n = n0+n1×Face-to-Face Score Pct and similarly for the growth rate

parameter, g = g0 + g1 × Face-to-Face Score Pct. Face-to-Face Score Pct is the percentile

rank of the industry level Face-to-Face Score and n1 is the effect on the jump in earnings

from Face-to-Face Score, while g1 is the influence of Face-to-Face score on pandemic regime

growth rates.

The estimate of λ is 0.880 with bootstrap standard errors of [0.32, 1.63]. So the vaccine

that returns the earnings to normal is expected in 1/0.88 or 1.14 years. The estimates of
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Figure 4: The Empirical Distributions of Face-to-Face Scores and Market Leverage

This figure plots the empirical cumulative distributions of Face-to-Face Scores and Market Lever-

age of industries defined by 8-digit GICS codes. Subfigure (a) is the cumulative distribution of

Face-to-Face Scores. Face-to-Face Score is first constructed at the occupation level using O*Net

Main database and then aggregated to the industry level using the BLS Industry-occupation ma-

trix data (from 2018). Subfigure (b) is the cumulative distribution of Market Leverage. Market

Leverage is calculated at the end of 2019 using the following formula, (long-term debt+ debt in

current liabilities)/(market capitalization + total assets - common equity). The variables are from

Compustat. In Compustat variable names, the formula is the following, Market Leverage = (dlttq

+ dlcq)/(atq - ceqq + prccq * cshoq).

(a) The Cumulative Distribution of Face-to-
Face Scores

(b) The Cumulative Distribution of Market
Leverage
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Table 2: NLS Results Using the I/B/E/S Sample in May 2020

This table presents the coefficients and bootstrap confidence intervals from non-linear least square
regressions of Equation (10). The regressions are run using I/B/E/S summary statistics in May
2020. Et[Ys]/Yt0− is the earnings forecasts divided by the non-pandemic earnings. The dependent
variable is the natural log of Et[Ys]/Yt0−. Yt0−, the non-pandemic earnings, is the FY1 forecasts in
January 2020 discounted by the I/B/E/S growth rate forecasts in January 2020. The explanatory
variables include the horizon of the earnings forecasts s − t, the non-pandemic (January 2020)
I/B/E/S forecasts of growth rates ĝ, the percentile rank of industry Face-to-Face Score, and the
percentile rank of industry Market Leverage. λ is the vaccine arrival rate. Columns (1)-(3) present
the results from three different specifications of the jump in earnings, e−n, and the growth rate in
the pandemic regime, g. Column (1) contains the results assuming n and g depend on Face-to-Face
Score, i.e., n = n0 +n1×Face-to-Face Score Pct and g = g0 +g1×Face-to-Face Score Pct. Face-to-
Face Score Pct is the percentile rank of the industry level Face-to-Face Score. Column (2) contains
the results assuming n and g depend on Market Leverage, i.e., n = n0 + n2×Market Leverage Pct
and g = g0+g2×Market Leverage Pct. Market Leverage Pct is the percentile rank of industry level
Market Leverage at the end of 2019. Column (3) contains the results assuming n and g depend on
both Face-to-Face Score and Market Leverage, i.e., n = n0 + n1 × Face-to-Face Score Pct + n2 ×
Market Leverage Pct and g = g0+g1×Face-to-Face Score Pct+g2×Market Leverage Pct. We keep
observations with non-missing Et[Ys]/Yt0−, ĝ, Face-to-Face Score Pct, and Market Leverage Pct.
The 95% bootstrap confidence intervals are reported in square brackets. All the regressions are
weighted by industry market capitalization at the end of 2019.

(1) (2) (3)

λ 0.880 1.090 0.999
[0.32,1.63] [0.49,1.68] [0.45,1.64]

g0 0.433 0.519 0.429
[-1.11,1.47] [-1.17,1.49] [-1.29,1.66]

g1 0.487 0.602
[-2.97,3.06] [-2.78,3.25]

g2 -0.760 -0.887
[-3.89,2.03] [-4.25,1.59]

n0 0.013 -0.073 -0.362
[-0.77,0.57] [-1.05,0.69] [-1.54,0.39]

n1 2.082 1.727
[0.44,19.88] [-0.6,7.7]

n2 3.944 2.270
[0.75,23.41] [0.41,16.64]

Num.Obs. 633 633 633
AIC -4561973.4 -4561999.0 -4562028.8
BIC -4561946.7 -4561972.3 -4561993.2
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g0 and g1 both indicate that pandemic growth rates are lower than during non-pandemic

periods. But neither estimates are statistically significant even as the economic effects are

large. Moreover, high face-to-face industries experience a significantly larger downward jump

in earnings, captured by n1 = 2.082. A 0.01 point increase in this measure leads to a 0.0208

downward jump in earnings. Notice that this parameter also captures the expected reflation

in earnings for these industries when the vaccine does arrive.

In column (2), the jump e−n depends on Market Leverage through the functional form n =

n0+n2×Market Leverage Pct, where Market Leverage Pct is the percentile rank of industry

level Market Leverage at the end of 2019 and n2 is the effect on the jump in earnings from

Market Leverage. In column (2), the growth rate also depends on market leverage through

the coefficient g1. The vaccine arrival rate λ estimate is now 1.090 with standard error

band of [0.49, 1.68]. Again, the estimates of g0 and g1 both indicate that pandemic growth

rates are lower than during non-pandemic periods. But neither estimates are statistically

significant. Highly levered industries experience a significantly larger downward jump in

earnings, captured by n2 = 3.944. A 0.01 point increase in this measure leads to a 0.0394

downward jump in earnings.

Column (3) contains the results assuming the jump and growth rate depend on both

Face-to-Face Score and Market Leverage, n = n0 + n1 × Face-to-Face Score Pct + n2 ×

Market Leverage Pct and g = g0 + g1×Face-to-Face Score Pct + g2×Market Leverage Pct.

Our preferred specification is column (3) since this column has the lowest AIC and BIC

scores, indicating goodness of fit, compared to columns (1) and (2). The vaccine arrival rate

λ is 0.999 per annum with a bootstrap confidence interval of [0.45, 1.64]. This translates

to an expected vaccine arrival time around 1 year with an early arrival of 0.61 years and

a late arrival of 2.22 years. It is also clear from column (3) that the Market Leverage Pct

is a stronger predictor of the jump than is Face-to-Face Pct. A 0.01 point increase in this

measure leads to a 0.0227 downward jump in earnings. If we examine the coefficient n1 in

column (3), we see that it is also positive but no longer significant.

There has been significant attention to the question of when vaccines will arrive and if
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they will return the economy to normal.14 Our estimate of the vaccine arrival rate λ as far

as we know is the first systematic attempt to speak to this question.

5.2 Role of Industry Characteristics in Driving Inference of Vac-
cine Arrival Rates

To this end, we next delve a bit deeper into how we come up with our estimate. We next

show that our inference of λ is sensibly being driven by the industries most affected by

COVID-19. To see why, consider Panel (a) of Figure 5 where we plot the dependent variable

against both the forecast horizon (s− t) and the industry characteristic Face-to-Face Score

Pct (i.e. fitted values from column (1) regression model in Table 2). We can see that the FY1

forecast within twelve months before forecast end are significantly revised down, especially

for higher Face-to-Face score industries in our sample. This is consistent with a significant

negative jump on average in our model. But we can also see that the FY2 forecasts farther

out are not nearly as impacted.

We see a similar pattern in Panel (b) of Figure 5 where we plot the dependent variable

against both the forecast horizon (s − t) and the industry characteristic Market Leverage

Pct (i.e. fitted values from column (2) regression model in Table 2). It is also clear from

Panel (b) of Figure 5 that it is important to properly account for different jump sizes for

industries so as to efficiently estimate the arrival rate λ.

One important take-away from Figure 5 is that our estimate of λ is larger when we use

Market Leverage as opposed to the Face-to-Face industry characteristics. The reason is that

there is a much bigger difference in FY1 versus FY2 revisions for high Market Leverage

industries. As such, one needs a much larger λ to fit that portion of the data, which

ultimately means that our estimate of λ is being sensibly driven by observations of the most

affected industries.

14For instance, see the McKinsey Report (July 29, 2020) “On pins and needles: Will COVID-19 vaccines
save the world”, and an article in the Washington Post (August 2, 2020), entitled “A coronavirus vaccine
won’t change the world right away”.
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Figure 5: The Surfaces of the Estimated Models Using Data in May 2020

This figure plots the observations and fitted value of ln(Et[Ys]/Yt0−) using the parameter estimates

of Equation (10) on the I/B/E/S sample from May of 2020. Subfigure (a) plots ln(Et[Ys]/Yt0−) and

the fitted surface against the percentile rank of Face-to-Face Score and the horizons of forecasts.

The estimates used correspond to Column (1) in Table 2. Subfigure (b) plots ln(Et[Ys]/Yt0−) and

the fitted surface against the percentile rank of Market Leverage and the horizons of forecasts. The

estimates used correspond to Column (2) in Table 2. ĝ is set to be 0.09, the median value, when

generating the surface plots. The ln(Et[Ys]/Yt0−) observations are the blue dots.

(a) Against Face-to-Face Score and Forecast Hori-
zons

(b) Against Market Leverage and Forecast Hori-
zons
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5.3 Net Market Leverage and Customer Interaction Measures

We next show how our baseline results differ when we use a different market leverage measure.

In Table 3, we report the results using a net market leverage measure where we deduct

corporate cash and short-term investments. In column (1), we find that the vaccine arrival

rate is now estimated to be 1.158 with a standard error band of [0.52, 1.65]. This estimate

is somewhat larger than out baseline estimate which is close to one. The parameters driving

the latent pandemic growth rate are similar to those obtained earlier but not statistically

significant. Moreover, the parameter n2 = 4.829 is statistically significant and larger than

that obtained in our baseline estimate.

In column (2), when we run the specification with both Face-to-Face and Net Market

Leverage scores, we find that the vaccine arrival rate is 1.113 per annum with a standard

error band of [0.54, 1.58]. Net Market Leverage is again more significant in explaining jumps

in earnings than the Face-to-Face score. These results, in columns (1) and (2), then suggest

that Net Market Leverage is marginally better than Market Leverage in capturing pandemic

damage to corporate earnings.

We next replace our baseline face-to-face measure with our two customer interaction

measures. In Panel (a) of Table 4, we use the Customer Score. From column (1), we see

that the vaccine arrival rate is 0.732 with a standard error band of [0.16, 1.83]. This estimate

is lower than the baseline estimate in column (1) from Table 2. Moreover, this Customer

Score does not seem to explain much of the pandemic growth rate nor the earnings jump

on the arrival of COVID-19. From column (2), the conclusion is similar — compared to our

baseline face-to-face measure, this Customer Score explains less of the pandemic damage to

corporate earnings. In Panel (b) of Table 4, we use the Blinder Score. There is not much of

a difference across these two customer scores and both explain less of the damage to earnings

than our Face-to-Face Score.

The contrast between the baseline face-to-face industry results with the customer interac-

tion measures suggest that the pandemic damage is not being simply driven by the demand

side (i.e. customers going away until a vaccine returns). The supply-side effects in terms of
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Table 3: NLS Results Using Net Market Leverage

This table presents the coefficients and bootstrap confidence intervals from non-linear least square
regressions of Equation (10). The regressions are run using I/B/E/S summary statistics in May
2020. Et[Ys]/Yt0− is the earnings forecasts divided by the non-pandemic earnings. The dependent
variable is the natural log of Et[Ys]/Yt0−. Yt0−, the non-pandemic earnings, is the FY1 forecasts in
January 2020 discounted by the I/B/E/S growth rate forecasts in January 2020. The explanatory
variables include the horizon of the earnings forecasts s − t, the non-pandemic (January 2020)
I/B/E/S forecasts of growth rates ĝ, the percentile rank of industry Face-to-Face Score, and the
percentile rank of industry Market Leverage. λ is the vaccine arrival rate. Columns (1)-(2) present
the results from two different specifications of the jump in earnings, e−n, and the growth rate in
the pandemic regime, g. Column (1) contains the results assuming n and g depend on Net Market
Leverage, i.e., n = n0 +n2×Net Market Leverage Pct and g = g0 + g2×Net Market Leverage Pct.
Net Market Leverage Pct is the percentile rank of industry level Net Market Leverage at the end
of 2019. Column (2) contains the results assuming n and g depend on both Face-to-Face Score and
Net Market Leverage, i.e., n = n0 + n1 × Face-to-Face Score Pct + n2 × Net Market Leverage Pct
and g = g0 + g1 × Face-to-Face Score Pct + g2 × Net Market Leverage Pct. We keep observations
with non-missing Et[Ys]/Yt0−, ĝ, Face-to-Face Score Pct, and Net Market Leverage Pct. The 95%
bootstrap confidence intervals are reported in square brackets. All the regressions are weighted by
industry market capitalization at the end of 2019.

(1) (2)

λ 1.158 1.113
[0.52,1.65] [0.54,1.58]

g0 0.464 0.391
[-1.13,1.67] [-1.6,1.81]

g1 0.405
[-3.62,3.33]

g2 -0.570 -0.657
[-3.74,2.15] [-3.86,2.25]

n0 -0.090 -0.406
[-0.98,0.61] [-2.9,0.41]

n1 1.649
[-1.13,15.49]

n2 4.829 3.543
[0.85,27.9] [0.64,23.58]

Num.Obs. 633 633
AIC -4561985.5 -4562013.8
BIC -4561958.8 -4561978.2
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Table 4: NLS Results with Alternative Face-to-Face Scores

This table presents the coefficients and bootstrap confidence intervals from non-linear least square
regressions of Equation (10). The regressions are run using I/B/E/S summary statistics in May of
2020. The dependent variable is the natural log of Et[Ys]/Yt0−, where Et[Ys]/Yt0− is the earnings
forecasts divided by the non-pandemic earnings. Yt0−, the non-pandemic earnings, is the FY1
forecasts in January 2020 discounted by the January I/B/E/S growth rate forecasts in 2020. The
explanatory variables include the horizon of the earnings forecasts s−t, the non-pandemic (January
2020) I/B/E/S forecasts of growth rates ĝ, the percentile rank of industry Face-to-Face Score,
and the percentile rank of industry Market Leverage. Panel A reports the results of NLS using
Customer Score as the Face-to-Face Score of an industry. The Customer Score is based on the
question about how much they work with customers in the O*Net survey. Panel B reports the
results using Blinder Score as the Face-to-Face Score of an industry. The Blinder (2009) Score is
another customer measure based on five questions in the O*Net survey. λ is the vaccine arrival rate.
For each panel, Columns (1)-(2) present the results from two different specifications of the jump
in earnings, e−n, and the growth rate in the pandemic regime, g. Column (1) contains the results
assuming n and g depend on Face-to-Face Score, i.e., n = n0 +n1×Face-to-Face Score Pct and g =
g0 +g1×Face-to-Face Score Pct. Face-to-Face Score Pct is the percentile rank of the industry level
Face-to-Face Score. Column (2) contains the results assuming n and g depend on both Face-to-Face
Score and Market Leverage, i.e., n = n0 +n1×Face-to-Face Score Pct +n2×Market Leverage Pct
and g = g0 + g1 × Face-to-Face Score Pct + g2 ×Market Leverage Pct. We keep observations with
non-missing Et[Ys]/Yt0−, ĝ, Face-to-Face Score Pct, and Market Leverage Pct.The 95% bootstrap
confidence intervals are reported in square brackets. All the regressions are weighted by industry
market capitalization at the end of 2019.

(a) Panel A: NLS Results Using Customer Score as Face-to-Face Score

(1) (2)

λ 0.732 1.099
[0.16,1.83] [0.54,1.6]

g0 0.662 0.222
[-1.58,1.94] [-2.1,1.91]

g1 0.214 0.663
[-2.79,3] [-2.86,4.26]

g2 -0.900
[-4.39,1.86]

n0 0.424 -0.527
[-0.38,1.21] [-1.84,0.38]

n1 0.503 0.975
[-0.65,10.31] [-0.8,5.76]

n2 4.275
[0.95,14.71]

Num.Obs. 633 633
AIC -4561929.4 -4562023.4
BIC -4561902.7 -4561987.8
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(b) Panel B: NLS Results Using Blinder Score as Face-to-Face Score

(1) (2)

λ 0.739 1.097
[0.16,1.78] [0.49,1.59]

g0 0.623 0.292
[-1.4,1.89] [-1.98,1.95]

g1 0.284 0.544
[-2.81,2.94] [-2.74,4.19]

g2 -0.899
[-4.31,1.88]

n0 0.331 -0.509
[-0.45,1.14] [-2,0.47]

n1 0.728 1.011
[-0.48,9.55] [-0.97,6.51]

n2 4.160
[0.93,14.11]

Num.Obs. 633 633
AIC -4561948.6 -4562028.8
BIC -4561921.9 -4561993.2

firms having to mitigate to protect their workforce also appear to be important, consistent

with the modeling specifications in Hong, Wang, and Yang (2020).15

5.4 Placebo Analysis

In Table 5, we consider a placebo exercise. We run exactly the same empirical procedure but

using the forecasts in 2019 far before COVID-19. We report in Table 5 the regressions results

with the constraint that λ ≥ 0. The constraint is binding, i.e. our estimate is zero, which

means that the unconstrained regression (unreported for brevity) gives a non-economically

sensible negative estimate. In Figure 6, we plot the dependent variables, i.e. the forecasts

revisions, that are analogous to those shown in Figure 3. We can see that the big difference

between the COVID-19 period and the other placebo period is that one does not typically

see such a large divergence in revisions across FY1 and FY2 forecasts. Understandably, in

most periods, the relationship between FY1 and FY2 revisions should be more synchronized

15For instance, MarketWatch reported on May 2, 2020 that even a technology company like Amazon will
spend $4 billion or more on COVID-19 mitigation responses such as testing for its workers, potentially wiping
out the company’s Q2 profit.

31



Table 5: Placebo Results Using I/B/E/S Sample in May 2019

This table presents the coefficients and bootstrap confidence intervals from the placebo non-linear
least square regressions of Equation (10) with the constraint that λ ≥ 0. The regressions are
run using I/B/E/S summary statistics in May of 2019. The dependent variable is the natural
log of Et[Ys]/Yt0−, where Et[Ys]/Yt0− is the earnings forecasts in May divided by the pseudo non-
pandemic earnings. Yt0−, the pseudo non-pandemic earnings, are the FY1 forecasts in January 2019
discounted by the I/B/E/S growth rate forecasts in the same month. The explanatory variables
include the horizon of the earnings forecasts s − t, the January I/B/E/S forecasts of growth rate
ĝ in 2019, the percentile rank of industry Face-to-Face Score, and the percentile rank of industry
Market Leverage. λ is the vaccine arrival rate. Columns (1)-(3) present the results from three
different specifications of the jump in earnings, e−n, and the growth rate in the pandemic regime,
g. Column (1) contains the results assuming n and g depend on Face-to-Face Score, i.e., n =
n0 + n1 × Face-to-Face Score Pct and g = g0 + g1 × Face-to-Face Score Pct. Face-to-Face Score
Pct is the percentile rank of the industry level Face-to-Face Score. Column (2) contains the results
assuming n and g depend on Market Leverage, i.e., n = n0 + n2 × Market Leverage Pct and
g = g0 + g2 ×Market Leverage Pct. Market Leverage Pct is the percentile rank of industry level
Market Leverage at the end of 2018. Column (3) contains the results assuming n and g depend on
both Face-to-Face Score and Market Leverage, i.e., n = n0 + n1 × Face-to-Face Score Pct + n2 ×
Market Leverage Pct and g = g0+g1×Face-to-Face Score Pct+g2×Market Leverage Pct. We keep
observations with non-missing Et[Ys]/Yt0−, ĝ, Face-to-Face Score Pct, and Market Leverage Pct.
The 95% bootstrap confidence intervals are reported in square brackets. All the regressions are
weighted by industry market capitalization at the end of 2018.

(1) (2) (3)

λ 0.000 0.000 0.000
[0,0.91] [0,0.73] [0,0.66]

g0 0.680 0.788 0.722
[0.12,0.88] [0.46,0.92] [0.19,0.94]

g1 0.134 0.118
[-0.34,0.8] [-0.3,0.87]

g2 -0.163 -0.148
[-0.71,0.22] [-0.72,0.24]

n0 -0.066 -0.081 -0.076
[-0.26,0.03] [-0.25,-0.03] [-0.29,0.04]

n1 -0.011 -0.049
[-0.23,0.23] [-0.26,0.19]

n2 0.022 0.055
[0,0.24] [-0.17,0.29]

Num.Obs. 638 638 638
AIC -4548171.5 -4548182.0 -4548219.5
BIC -4548144.7 -4548155.3 -4548183.8
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Figure 6: ln(Et[Ys]/Yt0−) Over Forecast Horizons of the Placebo Sample

This figure plots the natural log of the industry level I/B/E/S earnings forecasts divided by the

pseudo non-pandemic earnings, ln(Et[Ys]/Yt0−), against the horizons of the forecasts (s− t) using

I/B/E/S summary statistics in May 2019. The pseudo non-pandemic earnings are the FY1 forecasts

in January 2019 discounted by the I/B/E/S growth rate forecasts in the same month. Forecasts

horizons are marked with different colors. Forecasts horizons are defined by the distance between

the forecast end date and the I/B/E/S statistical period.

by the growth rate.

But of course, the COVID-19 period data suggests instead that there is a regime switch

that might occur between over the roughly 1 to 2 year period of forecast horizons. As we said,

the alternative is that the growth rates in the pandemic period are just much larger, which

is counterfactual. Importantly, this is not an artifact of slow revisions of FY2 since analysts

revise FY1 and FY2 at the same time and both sets of forecasts experienced significant

revisions downward with the arrival of COVID-19.

6 Accounting for Vaccine News

Finally, we extend our baseline model to allow for the possibility of time-varying arrival rates

or vaccine news. This extension allows us to draw inferences for the June, July, and August
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2020 forecasts. To this end, we now consider a vaccine model in which the vaccine arrives

only after two jumps. We can interpret the two jumps as stages in the vaccine development

process. For instance, the first stage can correspond to basic analysis on whether COVID-19

is a difficult virus to find a vaccine such as HIV or an easy one. The second stage is then

the actual development of the particular treatment.

Let τη denote the arrival time of the first jump, which follows a Poisson process with

arrival rate λη. Upon the arrival of the first jump, investors become informed about the

arrival rate of the second jump (i.e., the first jump arrival reveals news about the second

jump arrival rate, which can be either good (a high arrival rate λG) or bad (a low arrival

rate λB.) Let πB and πG be the probability that the news is good and bad, respectively.

Let τv denote the vaccine arrival time: τv = τG if news is good and τv = τB if news is

bad. The sequential order of the two jumps implies that τv > τη with probability one in our

model. Additionally, the news arrival time τη and the additional time required for vaccine

arrival after news arrival, τv − τη, are independent. The expected vaccine arrival time at

time t before news arrival (i.e., when t < τη) is then given by

Et(τv) = Et(τη) + Et
[
Eτη(τv − τη)

]
=

1

λη
+

(
πG
λG

+
πB
λB

)
, (14)

where the first equality follows from the law of iterated expectation and the second equality

uses the independence property of τη and (τv − τη). The expected vaccine arrival time at

time t where t > τη, i.e., after the news arrival time, is simply Et(τv) = 1/λB if the news is

bad and Et(τv) = 1/λG if the news is good.

The vaccine arrival-rate estimate of roughly one year from our baseline model using May

2020 forecasts essentially gives us an estimate of Et(τv), the LHS of Equation (14). Hence,

we can interpret the expected arrival time as the sum of two arrival times: the news arrival

time (stage 1) and then the subsequent vaccine development (stage 2).

A simple way then to check for the arrival of vaccine news is to re-estimate our baseline

model for June, July, and August forecasts and check to see if the inferred vaccine arrival

rates differ from that of the May forecasts.

More specifically, we take our model’s predictions for Yt for time t in the pandemic regime,
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Y pred
t , by using the May 2020 estimates of n and g, which we denote by the subscript may

(i.e. nmay and gmay). Then, with June, July or August forecasts, we can estimate λ with the

same expectations formula as in our baseline model:

1

Y pred
j,t

Et[Ys] =

∫ s

t

λe−λ(τ−t)egmay(τ−t)enmayeĝ(s−τ)dτ + e−λ(s−t)egmay(s−t)

=
λ

λ− gmay + ĝ

[
eĝ(s−t) − e(gmay−λ)(s−t)

]
enmay + e(gmay−λ)(s−t)

In the pandemic regime at time t, conditional on no news arrival, we expect our estimate of

λ using these other months to be the same as that obtained from the May 2020 forecasts.

That is, the estimate of λ in July conditional on no news arrival implies a value of 1/λ that

is about the value of 1/Et(τv) given in equation (14). On the other hand, if there is news,

the estimated value of λ will differ — the estimated λ at t conditional on news arrival (i.e.,

t > τη) should then be close to either λG or λB.

We report the results of this estimation in Table 6. First, our inference of λ using the

June and July forecasts are similar to those obtained using May. For instance, In Panel A,

where we use the estimates of n and g from column (1) of Table 2, we estimate λ to be

0.948 for the June forecasts and 1.075 for the July forecasts, respectively. These estimates

are close to 1. The same holds for Panels B and C where we use estimates from columns (2)

and (3) from Table 2, respectively. The estimates here are slightly higher at 1.2 to 1.4. But

the standard error bands of these estimates overlap with those of our May 2020 estimates.

For instance, the standard error band for column (3) of Table 2 is [0.45, 1.64].

However, we find that the estimated arrival rate increased when using the August 2020

forecasts. Across Panels A-C, the estimated λ now varies from 2.005 to 2.374. The standard

error band for the August 2020 estimate from Panel B does not overlap with the standard

error band for the May 2020 estimate. The August 2020 forecasts suggest that a vaccine

is expected in 6 months, or the Spring of 2021. In other words, our model’s estimates

indicate that there was good news on vaccines in the late summer, consistent with qualitative

narratives in the stock market. Our estimates anticipate good news on Pfizer, Moderna and

AstraZeneca vaccine effectiveness announced in November. But it remains to be seen if the
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Table 6: Updated Estimates of the Vaccine Arrival Rate

This table presents the updated estimates of the vaccine arrival rate λ using I/B/E/S summary

statistics in June, July, and August. The dependent variable is the natural log of Et[Ys]/Y pred
t .

Y pred
t is the earnings predicted from the estimates in Table 2. The explanatory variables include

the horizons of the earnings forecasts s− t, the non-pandemic (January 2020) I/B/E/S forecasts of
growth rates ĝ, the pandemic growth rate predicted from the estimates in Table 2, the percentile
rank of industry Face-to-Face Score, and the percentile rank of industry Market Leverage. Panel
A presents the estimates of λ after plugging in the parameter estimates from Column (1) of Table
2. Panel B presents the estimates of λ after plugging in the parameter estimates from Column (2)
of Table 2. Panel C presents the estimates of λ after plugging in the parameter estimates from
Column (3) of Table 2. The 95% bootstrap confidence intervals are reported in square brackets.
All the regressions are weighted by industry market capitalization at the end of 2019.

(a) Panel A: Plugging in Estimates From Column (1) of Table 2

June July August

λ 0.948 1.075 2.005
[0.66,1.33] [0.76,1.51] [1.29,3.12]

(b) Panel B: Plugging in Estimates From Column (2) of Table 2

June July August

λ 1.244 1.447 2.374
[0.92,1.67] [1.07,1.97] [1.7,3.54]

(c) Panel C: Plugging in Estimates From Column (3) of Table 2

June July August

λ 1.132 1.323 2.180
[0.83,1.5] [0.98,1.79] [1.52,3.16]
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vaccines are indeed widely distributed by the Spring of 2021 and if the economy will return

to normal then.

7 Conclusion

We estimate a parsimonious model of pandemic damage to corporate earnings developed

in Hong, Wang, and Yang (2020). We infer from analysts’ earnings forecasts that, as of

mid-August 2020, an effective vaccine that returns corporate earnings to normal is expected

to arrive in six months. Levered and face-to-face industries would benefit the most from a

vaccine arrival. Analysts expectations imply that the vaccines are expected to collectively

be a silver bullet for corporate earnings by the Spring of 2021.

Our estimates have implications for a number of policy questions. Notably, there is a

timely debate on when and whether a vaccine will be a silver bullet for COVID-19 that

reverts the economy to normal. Our estimates derived from analysts earnings forecasts

provide a potential answer. Moreover, there are several natural inquiries based on our model

and estimates. For instance, one can combine these estimates with an asset pricing model to

assess the extent to which stock prices particularly for distressed industries such as airlines

or hotels, are efficient. One can also consider the pricing of vaccine risk. We leave these

inquires for future research.
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