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General Ideas of Linear Regression

1. Regression analysis is a technique for using data to identify relationships among vari-
ables and use these relationships to make predictions. We will be studying linear re-
gression, in which we assume that the outcome we are predicting depends linearly on
the information used to make the prediction. Linear dependence means constant rate of
increase of one variable with respect to another (as opposed to, e.g., diminishing returns).

2. Some motivating examples.

(a) Suppose we have data on sales of houses in some area. For each house, we have com-
plete information about its size, the number of bedrooms, bathrooms, total rooms,
the size of the lot, the corresponding property tax, etc., and also the price at which
the house was eventually sold. Can we use this data to predict the selling price of
a house currently on the market? The first step is to postulate a model of how the
various features of a house determine its selling price. A linear model would have
the following form:

selling price = β0 + β1 (sq.ft.) + β2 (no. bedrooms)
+β3 (no. bath) + β4 (no. acres)
+β5 (taxes) + error

In this expression, β1 represents the increase in selling price for each additional square
foot of area: it is the marginal cost of additional area. Similarly, β2 and β3 are the
marginal costs of additional bedrooms and bathrooms, and so on. The intercept
β0 could in theory be thought of as the price of a house for which all the variables
specified are zero; of course, no such house could exist, but including β0 gives us
more flexibility in picking a model.
The last term in the equation above, the “error,” reflects the fact that two houses
with exactly the same characteristics need not sell for exactly the same price. There
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is always some variability left over, even after we specify the value of a large number
variables. This variability is captured by an error term, which we will treat as a
random variable.
Regression gives us a method for computing estimates of the parameters β0 and
β1, . . . , β5 from data about past sales. Once we have these estimates, we can plug in
values of the variables for a new house to get an estimate of its selling price.

(b) Most economic forecasts are based on regression models. The methods used are more
advanced than what we cover, but we can consider a simplified version. Consider
the problem of predicting growth of the economy in the next quarter. Some of the
relevant factors in such a prediction might be last quarter’s growth, this quarter’s
growth, the index of leading economic indicators, total factory orders this quarter,
aggregate wholesale inventory levels, etc. A linear model for predicting growth would
then take the following form:

next qtr growth = β0 + β1 (last qtr growth) + β2 (this qtr growth)
+β3 (index value) + β4 (factory orders)
+β5 (inventory levels) + error

We would then attempt to estimate β0 and the coefficients β1, . . . , β5 from historical
data, in order to make predictions. This particular formulation is far too simplistic to
have practical value, but it captures the essential idea behind the more sophisticated
methods of economic experts.

(c) Consider, next, the problem of determining appropriate levels of advertising and
promotion for a particular market segment. Specifically, consider the problem of
managing sales of beer at large college campuses. Sales over, say, one semester
might be influenced by ads in the college paper, ads on the campus radio station,
sponsorship of sports-related events, sponsorship of contests, etc. Suppose we have
data on advertising and promotional expenditures at many different campuses and
we want to use this data to design a marketing strategy. We could set up a model
of the following type:

sales = β0 + β1 (print budget) + β2 (radio budget)
+β3 (sports promo budget) + β4 (other promo)
+ error

We would then use our data to estimate the parameters. This would tell us the
marginal value of dollars spent in each category.

3. We now put this in a slightly more general setting. A regression model specifies a relation
between a dependent variable Y and certain explanatory variables X1, . . . ,XK . A
linear model sets

Y = β0 + β1X1 + · · ·+ βKXK + ε.

Here, ε (the Greek letter epsilon) is the error term. To use such a model, we need to
have data on values of Y corresponding to values of the Xi’s. (E.g., selling prices for
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Salary Budget
($1,000s) ($100,000s)

59.0 3.5
67.4 5.0
50.4 2.5
83.2 6.0

105.6 7.5
86.0 4.5
74.4 6.0
52.2 4.0
82.6 4.5
59.0 5.0
44.8 2.5

111.4 12.5
122.4 9.0
82.6 7.5
57.0 6.0
70.8 5.0
54.6 3.0

111.0 8.5
86.2 7.5
79.0 6.5
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Figure 1: Salary and budget data

various house features, past growth values for various economic conditions, beer sales
corresponding to various marketing strategies.) Regression software uses the data to find
parameter estimates of β0, β1, . . . , βK , by implementing certain mathematical formulas.
We will not discuss these formulas in detail. Instead, we will be primarily concerned with
the proper interpretation of regression output.

Simple Linear Regression

1. A simple linear regression refers to a model with just one explanatory variable. Thus, a
simple linear regression is based on the model

Y = β0 + β1X + ε

In this equation, we say that X explains part of the variability in the dependent variable
Y .

2. In practice, we rarely have just one explanatory variable, so we use multiple rather than
simple regression. However, it is easier to introduce the essential ideas in the simple
setting first.

3. We begin with a small example. A corporation is concerned about maintaining parity
in salary levels of purchasing managers across different divisions. As a rough guide, it
determines that purchasing managers responsible for similar budgets in different divi-
sions should have similar compensation. Figure 1 displays salary levels for 20 purchasing
managers and the sizes of the budgets they manage.

4. The scatter plot in Figure 1 includes a straight line fit to the data. The slope of this line
gives the marginal increase in salary with respect to increase in budget responsibility.
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5. Since this example is quite simple, we could fit a line to the data by drawing a line with
a ruler. Regression analysis gives us a more systematic approach. Moreover, regression
gives us the best line through the data. (In Excel, you can insert a regression line in a
scatter plot by right-clicking on a data point and then selecting Add Trendline....)

6. We need to define what we mean by the best line. Regression uses the least squares
criterion, which we now explain. Any line we might come up with has a corresponding
intercept β0 and a slope β1. This line may go through some of the data points, but it
typically does not go through all of them. Let us label the data points by their coordinates
(X1, Y1), . . . , (X20, Y20). These are just the 20 pairs tabluated above. For the budget level
Xi, our straight line predicts the salary level

Ŷi = β0 + β1Xi.

Unless the line happens to go through the point (Xi, Yi), the predicted value Ŷi will
generally differ from the observed value Yi. The difference between the two is the error
or residual

ei = Yi − Ŷi

= Yi − (β0 + β1Xi).

(We think of εi as a random variable — a random error — and ei as a particular outcome
of this random variable.) The least squares criterion chooses β0 and β1 to minimize the
sum of squared errors

n∑
i=1

e2i ,

where n is the number of data points.

7. A (non-obvious) consequence of this criterion is that the estimated regression line always
goes through the point (X,Y ) and the estimated slope is given by

β̂1 =
Cov[X,Y ]
StdDev[X]

.

8. To summarize, of all possible lines through the data, regression picks the one that mini-
mizes the sum of squared errors. This choice is reported through the estimated values of
β0 and β1.

9. To give a preliminary indication of the use of regression, let’s run a regression on the 20
points displayed in Figure 1. To get a complete analysis, we use Excel’s Regression tool
which can be found under Tools/Data Analysis. The results appear in Figure 2.

10. We begin by looking at the last two rows of the regression output, under the heading
“Coeff.” The two values displayed there are the estimated coefficients (intercept and
slope) of the regression line. The estimated intercept is β̂0 = 31.937 and the estimated
slope is β̂1 = 7.733. Thus, the estimated relation between salary and budget is

Salary = 31.937 + 7.733 Budget
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Regression Statistics
Multiple R 0.850
R Square 0.722
Adjusted R Square 0.707
Standard Error 12.136
Observations 20

ANOVA
df SS MS F P-value

Regression 1 6884.7 6884.7 46.74 0.000
Residual 18 2651.1 147.3
Total 19 9535.8

Coeff Std Err t Stat P-value Lower 95% Upper 95%
Intercept 31.937 7.125 4.48 0.00 16.97 46.91
Budget 7.733 1.131 6.84 0.00 5.36 10.11

Figure 2: Results of regression of salary against budget

This says that each additional $100,000 of budget responsibility translates to an expected
additional salary of $7,730. (Recall that Budget is in $100,000s and Salary is in $1,000s.)
If we wanted to fit a salary corresponding to a budget of $600,000, we could substitute
6.0 into this equation to get a salary of 31.937 + 7.733(6.0) = 78.335.

11. Two questions remain: Why is the least squares criterion the correct principle to follow?
How do we evaluate and use the regression line? We touch on the first issue only briefly,
then address the second one in detail.

12. Assumptions Underlying Least Squares

• The errors ε1, . . . , εn are independent of the values of X1, . . . ,Xn.

• The errors have expected value zero; i.e., E[εi] = 0.

• All the errors have the same variance: V ar[εi] = σ2, for all i = 1, . . . , n.

• The errors are uncorrelated; i.e., Corr[εi, εj ] = 0 if i �= j.
The first two assumptions imply that

E[Y |X = x] = β0 + β1x;

i.e., they imply that the expected outcome of Y really does depend linearly on the value
of x. When all four assumptions hold, the line selected by the least squares criterion is
the optimal estimate.

13. The precise sense in which least squares is optimal is a theoretical issue that we do not
address. It is, however, important to touch on the four assumptions made above. The
first two are very reasonable: if the εi’s are indeed random errors, then there is no reason
to expect them to depend on the data or to have a nonzero mean. The second two
assumptions are less automatic.
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• Do we necessarily believe that the variability in salary levels among managers with
large budgets is the same as the variability among managers with small budgets? Is
the variability in price really the same among large houses and small houses? These
considerations suggest that the third assumption may not be valid if we look at too
broad a range of data values.

• Correlation of errors becomes an issue when we use regression to do forecasting.
If we use data from several past periods to forecast future results, we may intro-
duce correlation by overlapping several periods and this would violate the fourth
assumption.

More advanced techniques address these considerations. For our purposes, we will always
assume that the assumptions are in force. You should, however, be aware of possible
limitations in these assumptions.

Evaluating the Estimated Regression Line

1. We feed data into the computer and we get back estimates of the model parameters β0

and β1. Is this estimated line any good? More precisely, does it accurately reflect the
relation between the X and Y variables? Is it a reliable guide in predicting new Y values
corresponding to new X values? (E.g., predicting the selling price of a house that just
came on the market, or setting the salary for a newly defined position.)

2. Intuitively, the estimated regression line is useful if the points (X1, Y1), . . . , (Xn, Yn), when
plotted as in Figure 1, are pretty well lined up. The more they look like a cloud of dots,
the less informative the regression will be.

3. The output of a regression gives us a lot of information to make this intuition precise
in evaluating the explanatory power of a model. There is quite a bit of notation that
goes with this information. As we go through it, keep the following principles in mind:
Our goal is to determine how much of the variability in Y values is explained by the X
values. We measure variability using sums of squared quantities.

4. To understand explained variability, consider the salary example. The Yi’s (the salary
levels) exhibit considerable variability — not all managers have the same salary. We
conduct the regression analysis to determine to what extent salary is tied to responsibility
as measured by budget: the 20 managers have different budgets as well as different salaries.
Thus, we ask to what extent the differences in salaries are explained by differences in
budgets.

5. Continuing with this example, let’s focus on the following portion of the regression output
from Figure 2:
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Regression Statistics
Multiple R 0.850
R Square 0.722
Adjusted R Square 0.707
Standard Error 12.136
Observations 20

ANOVA
df SS MS F P-value

Regression 1 6884.7 6884.7 46.74 0.000
Residual 18 2651.1 147.3
Total 19 9535.8

The lower table is called the ANOVA table. ANOVA is short for analysis of variance.
This table breaks down the total variability into the explained and unexplained parts.

6. DF stands for degrees of freedom, SS for sum of squares, and MS for mean square. The
mean squares are just the sum of squares divided by the degrees of freedom: MS = SS/DF.

7. We begin by looking at the SS, first giving an intuitive explanation before giving any
formulas. A sum of squares measures variability. The Total SS (9535.8) measures the total
variability in the salary levels. The Regression SS (6884.7) is the explained variation.
It measures how much variability is explained by differences in budgets. What’s left over,
the Error SS (2651.1) is the unexplained variation. This reflects differences in salary
levels that cannot be attributed to differences in budget responsibilities. The explained
and unexplained variation sum to the Total SS.

8. How much of the original variability has been explained? The answer is given by the ratio
of the explained variation to the total variation, which is

R2 =
Explained variability
Total variability

=
SSR
SST

=
6884.7
9538.8

= 72.2%

This quantity is the coefficient of determination, though everybody calls itR-square.

9. Other things being equal, a high R2 indicates high explanatory power and a low R2

indicates the opposite.

10. Fact: In simple linear regression, R2 is also equal to the square of the sample correlation
between the Xi’s and Yi’s. Recall that correlation measures the strength of a linear rela-
tionship between two variables. Thus, high R2 corresponds to a strong linear relationship
(either positive or negative) between two variables.

11. Let us now define these quantities more generally and more precisely. Suppose our ob-
served dependent variables are Y1, . . . , Yn and let their sample mean be Y . The total sum
of squares is

SST =
n∑

i=1

(Yi − Y )2.

This is the same as the sample variance, except that we have not divided by n − 1. As
before, let Ŷi denote the predicted value of Y corresponding to Xi; that is,

Ŷi = β̂0 + β̂1Xi,
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where β̂0 and β̂1 are the estimates of the intercept and slope provided by the regression.
The regression sum of squares (the explained variation) is

SSR =
n∑

i=1

(Ŷi − Y )2.

The difference between the observed value Yi and the predicted value Ŷi is the i-th residual

ei = Yi − Ŷi.

The error sum of squares (unexplained variation) is

SSE =
n∑

i=1

e2i .

12. It is a non-obvious mathematical fact that the explained and unexplained variation sum
to equal the total variation:

SSR+ SSE = SST

Just as before, we have

R2 =
SSR
SST

,

the fraction of the total variation explained by the regression. So, R2 is a measure of the
explanatory power of the model. (We will discuss adjusted R2 later.)

Evaluating the Estimated Slope

1. Let’s now go back to the regression output and look at some information about the
estimated parameters β0 and β1. The relevant part of the output from Figure 2 is this:

Coeff Std Err t Stat P-value Lower 95% Upper 95%
Intercept 31.937 7.125 4.48 0.00 16.97 46.91
Budget 7.733 1.131 6.84 0.00 5.36 10.11

This table gives more information about the estimates. The first row corresponds to β0

(the intercept), the second to β1 (the slope), which is the influence of budget on salary.
The column Coeff displays the estimates β̂0 and β̂1. The next column gives (estimated)
standard errors associated with these estimates. These are valuable in assessing the
uncertainty in the estimates.

2. The slope estimate β̂1 provided by the least squares method is unbiased; i.e., E[β̂1] = β1.
In this sense, it is accurate. Its precision (or efficiency) is measured by the estimated
standard error — in our example, 1.131.
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3. Does budget have a statistically significant impact on salary? The next two columns
address this question. Notice that we could formulate it as a hypothesis test:

H0 : β1 = 0 (budget has no effect on salary)
H1 : β1 �= 0 (budget has some effect on salary)

The t Stat above is a test statistic for this hypothesis test. It is computed as follows:

t =
β̂1 − 0
sβ̂1

=
7.733
1.131

= 6.84;

sβ̂1
is the Std Err entry corresponding to the β1 row (the estimated standard error of β̂1).

This is a huge t-ratio, so we get a very small p-value, one that is zero to three decimal
places. We conclude that there is very significant evidence in favor of β �= 0; i.e., in favor
of budget having some influence on salary.

4. It is typical to get very small p-values for this type of test. If you don’t, it means you
have somehow included a variable of absolutely no relevance to the dependent variable.

5. Under the null hypothesis (β = 0), the t statistic computed above, namely

t =
β̂1 − 0
sβ̂1

has a t-distribution with n − 2 degrees of freedom, not n− 1. Intuitively, we have lost 2
df because we have estimated both β0 and β1.

6. More generally,

t =
β̂1 − β1

sβ̂1

has a t distribution with n− 2 df, where β1 is the true, unknown slope. We can use this
fact to test other hypotheses. To test

H0 : β1 ≤ 1
H1 : β1 > 1

compute the test statistic

t =
β̂1 − 1
sβ̂1

;

reject H0 if t > tn−2,α. In general, compute the t-ratio by subtracting off the value of β1

in the null hypothesis.

7. The fact that

t =
β̂1 − β1

sβ̂1

has a t distribution with n−2 df, where β1 is the true slope, allows us to get a confidence
interval for the slope:

β̂1 ± tn−2,α/2 sβ̂1
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8. Example: Let’s find a 95% confidence interval for the slope in the example above. Our
point estimate is β̂1 = 7.733 and the estimated standard error is sβ̂1

= 1.131. We have
20− 2 = 18 df. From the t-table we find that t18,.025 = 2.101. This gives the interval

7.733 ± (2.101)(1.131);

so, we are 95% confident that the true slope lies in the interval

(5.357, 10.109)

9. Where does the estimated standard error sβ̂1
come from? The exact standard error of β̂1,

denoted by σβ̂1
satisfies

σ2
β̂1

=
σ2

ε∑n
i=1X

2
i − nX2 ,

where σ2
ε is the (unknown) variance of the errors εi. The denominator in this expression

is similar to the sample variance of the Xi’s, except that is not divided by n − 1. Since
we don’t know σε, we replace it with an estimate se to get sβ̂1

. We discuss se in the next
section.

Making Predictions

1. Our ultimate objective in building a regression model is to make predictions about the
dependent variable Y for new values of the independent variable X. We want to predict
selling price for a house with given characteristics, or growth in the next quarter given
information about the current state of the economy, or sales of beer as a result of a new
marketing strategy.

2. In the salary/budget example, making a “prediction” actually means recommending a
salary level Y for a given budget responsibility X. The regression is useful in ensuring
that the recommended salary is in line with existing levels of compensation.

3. It is necessary to distinguish two types of predictions: predictions of individual values
and predictions of expected values. Examples:

• Predicting the selling price of a particular house vs. predicting the average selling
price among all houses with certain characteristics.

• Predicting salary level for a particular position with a particular budget responsibility
vs. predicting average salary level over all positions with that budget.

• Predicting beer sales at a particular campus based on an advertising/promotion mix
vs. predicting average sales over all campuses at which that mix is used.

The average value of Y corresponding to an X value of x is E[Y |X = x], the conditional
expectation of Y given X = x.
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4. Naturally, we expect to have more uncertainty in our estimate of a particular value than
in our estimate of an average value.

5. This additional uncertainty is reflected in wider confidence intervals for the particular
value. However, the point estimates for the two types of predictions are exactly the same.
In either case, our prediction corresponding to an X value of x is

Ŷ = β̂0 + β̂1x.

Graphically, this corresponds to the height of the regression line at point x.

6. Example: Consider the budget level x = 6.0. The predicted corresponding salary level is

Ŷ = 31.937 + 7.733(6.0) = 78.335.

7. Of course, by itself a point estimate is not very informative. We need to supplement it
with a confidence interval.

8. An important ingredient for this type of confidence interval is the common variance σ2
ε of

the errors εi. Since we don’t know σ2
ε in practice, we estimate it. The estimate is

s2e =
SSE
n− 2

=
1

n− 2

n∑
i=1

e2i ,

where ei = Yi − Ŷi is the i-th residual, as before. Notice that s2e is similar to the sample
variance of the residuals; once again, we have divided by n − 2 because we lost 2 df in
estimating β0 and β1. Taking the square root of s2e yields se.

9. In the regression output of Figure 2, the se is labeled Standard Error and is the fourth
values from the top of the output, 12.136. The value of s2e also appears in the ANOVA
table. Recall that the MS column is the ratio of the SS and DF columns. Thus, MSE =
147.3 is the same as s2e.

10. Back to confidence intervals. A confidence interval for the average Y value at level x,
namely E[Y |X = x] is

Ŷ ± tn−2,α/2

√√√√[1
n
+

(x−X)2∑n
i=1X

2
i − nX2

]
s2e.

For a particular Y value at level x, the confidence interval is

Ŷ ± tn−2,α/2

√√√√[1 + 1
n
+

(x−X)2∑n
i=1X

2
i − nX2

]
s2e.

Notice that the only difference is that we have added one more s2e inside the square root.
This makes sense: the additional uncertainty in predicting a particular value rather than
an average value is the uncertainty in the errors εi, which is σ2

ε , which we approximate
by s2e.
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11. Now look at the complicated ratio appearing inside the square root. This expression
becomes large if its numerator (x−X) is large, which means that we have more uncertainty
in predictions for values of x that are far from X than in predictions for values close to
X . This should not be surprising: our predictions should be most reliable when they are
close to values for which we have data. If we go out to extreme values for which we have
little or no data, it is harder to make accurate predictions.

12. Example: Let’s get a confidence interval for the average salary level corresponding to a
budget of $600,000 to supplement our earlier point estimate. Directly from the regression
output we get s2e = 147.3. To get the other term inside the square root, we need more
information. By taking the average of the data displayed in Figure 1, we find that X =
5.825. We similarly find that the sample standard deviation of the Xi’s is 2.462; i.e.,√√√√ 1

n− 1

(
n∑

i=1

X2
i − nX2

)
= 2.462.

From this we can find the expression we need:
20∑
i=1

X2
i − nX2 = (n − 1)(2.462)2 = 19(2.462)2 = 115.17

Since the x value we want is 6.0, we get√√√√[ 1
n
+

(x−X)2∑n
i=1X

2
i − nX2

]
s2e =

√[
1
20

+
(6.0 − 5.825)2

115.17

]
147.3 = 2.72.

From the t table, we get t18,.025 = 2.101. So, our confidence interval is

78.335 ± (2.101)(2.72) = 78.335 ± 5.71

Multiple Regression

1. We now turn to the more interesting case of building a model with several explanatory
variables. In practice, we almost always need more than one variable to get a meaningful
model. However, one of the principles of regression is that we should use as few variables as
possible: only include the most important explanatory variables and avoid redundancies
among these.

2. The general multiple linear regression model with K explanatory variables has the fol-
lowing form:

Y = β0 + β1X1 + · · ·+ βKXK + ε,

Our data consists of observations

(Y1,X11, . . . ,XK1)
(Y2,X12, . . . ,XK2)
(Y3,X13, . . . ,XK3)

· · ·
(Yn,X1n, . . . ,XKn).
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In other words, we have n observations of the outcome Y , and for each one we have the
corresponding values of the explanatory variables X1, . . . ,XK . The symbol Xij denotes
the value of variable Xi corresponding to the j-th observation. We put this data into a
regression package and get estimates of β0, β1, . . . , βK .

3. As before, these estimates are based on minimizing the sum of squared residuals
∑n

i=1 e
2
i ,

where
ei = Yi − Ŷi,

and
Ŷi = β̂0 + β̂1X1i + · · ·+ β̂KXKi.

The underlying least squares assumptions are the same as in simple regression, with
one new assumption added. The new assumption basically rules out the possibility of
redundancy among the explanatory variables. For example, we cannot have X1 measure
area in square feet and X2 measure area in square yards. Two such variables would
contain exactly the same information but in different units.

4. The possibility of redundancy among the explanatory variables is known asmulticollinear-
ity. If it is present, the regression may give poor results or may fail to run altogether.
Most regression software checks for multicollinearity. As a user, you should be careful not
to introduce redundant variables.

5. Let’s look at an example. Here are the first few lines of a data set consisting of 228
assessed property values along with some information about the houses in question:

ROW VALUE LOC LOTSZ BDRM BATH ROOMS AGE GARG EMEADW LVTTWN

1 190.00 3 6.90 4 2.0 8 38 1 0 1
2 215.00 1 6.00 2 2.0 7 30 1 1 0
3 160.00 3 6.00 3 2.0 6 35 0 0 1
4 195.00 1 6.00 5 2.0 8 35 1 1 0
5 163.00 3 7.00 3 1.0 6 39 1 0 1
6 159.90 3 6.00 4 1.0 7 38 1 0 1
7 160.00 1 6.00 2 1.0 7 35 1 1 0
8 195.00 3 6.00 3 2.0 7 38 1 0 1
9 165.00 3 9.00 4 1.0 6 32 1 0 1
10 180.00 3 11.20 4 1.0 9 32 1 0 1
11 181.00 3 6.00 5 2.0 10 35 0 0 1
. . .

The second column gives the assessed value in thousands of dollars. The third encodes
the location: 1 for East Meadow, 3 for Levittown, and 4 for Islip. The next gives lot size
in thousands of square feet, then bedrooms, bathrooms, total rooms, age, and number of
garage units. The last two columns encode location in dummy variables. We discusse
these in more detail later. For now, just note that a 1 under EMEADW indicates a house
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in East Meadow, a 1 under LVTTWN indicates a house in Levittown, and 0’s in both
columns indicate a house in Islip.

6. Our goal is to use this data to predict assessed values from characteristics of a house.
The best model need not include all variables.

7. Appendix 2 of these notes gives the regression output for a model using all explanatory
variables. (Again, that’s not necessarily the best thing to do.) From the coefficients
displayed there, we find the regression equation

VALUE = 78.737 + 0.679 LOTSZ - 3.687 BDRM + 19.003 BATH + 8.484 ROOMS
- 0.348 AGE + 4.014 GARG + 57.082 EMEADW + 24.418 LVTTWN

This says, for example, that the marginal value of an additional 1000 square feet of lot is
.679 thousand dollars, given that everything else is held fixed.

8. It is important to understand that the estimated slopes β̂i depend on which variables
are included. Adding and deleting variables changes the other β̂i’s. Notice that BDRM
has an estimated negative slope of −3.687. Does this mean that additional bedrooms
detract from the value of a house? Not necessarily. This may simply reflect the fact that
the relevant information in the number of bedrooms is already captured in other variables.
Deleting some variables may eliminate this anomaly.

9. The negative slope on the AGE variable seems appropriate: increasing the age may well
decrease the value.

10. Let’s proceed to information about the estimated parameters:

Coeff Std Err t Stat P-value
Intercept 78.74 10.52 7.49 0.000
LOTSZ 0.6792 0.3706 1.83 0.068
BDRM -3.687 2.224 -1.66 0.099
BATH 19.003 2.802 6.78 0.000
ROOMS 8.484 1.491 5.69 0.000
AGE -0.3475 0.1201 -2.89 0.004
GARG 4.014 2.336 1.72 0.087
EMEADW 57.082 3.972 14.37 0.000
LVTTWN 24.418 3.887 6.28 0.000

This table gives the estimated parameters and the corresponding estimated standard
errors for these estimates. Each t-stat is a test statistic to test which variables have a
significant effect on assessed value; i.e., to test

H0 : βi = 0
H1 : βi �= 0
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Notice that BDRM has a large p-value, suggesting that the true slope may be zero when
the other variables are included. This may prompt us to remove the BDRM variable
in our next attempt to build a model. GARG and LOTSZ also have relatively large
p-values, but these may change once we delete BDRM.

11. Just as in simple regression, we can use the information in this table to carry out any test
on the slopes. For example, to test

H0 : βBATH ≤ 10
H1 : βBATH > 10,

we would compute

t =
19.003 − 10

2.802
and reject H0 if t > tn−K−1,α, where n is the number of data points and K is the number
of explanatory variables. In our case, n = 228 and K = 8. A t-distribution with 219 df is
very well approximated by the standard normal.

12. We now proceed to the ANOVA Table:

Regression Statistics
Multiple R 0.841
R Square 0.708
Adjusted R Sq 0.697
Standard Erro 20.569
Observations 228

ANOVA
df SS MS F P-value

Regression 8 224290.81 28036.4 66.3 0.000
Residual 219 92657.67 423.1
Total 227 316948.48

13. The Total DF is one less than the sample size, n− 1. The Regression DF is the number
of explanatory variables K. The Error DF is n−K − 1.

14. The interpretation of SS is the same as before. The total sum of squares, SST = 316948,
measures total variation; the regression sum of squares, SSR = 224291, is the explained
variation and the error sum of squares, SSE = 92658, is the unexplained variation. The
proportion of variation that is explained by the model is

R2 =
SSR
SST

= 70.8%.

So, in this case, we have explained a rather large fraction of the variation. However,
adding extraneous explanatory variables will artificially inflate the R2, so we must be
careful in interpreting this number; more on this later.

15. The formulas for SST, SSR and SSE are exactly the same as in simple regression.
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16. Continuing with the ANOVA table, notice the F value of 66.3. This is the ratio of the
MSR to the MSE. (As in simple regression, these mean squares are obtained from the
sum of squares by dividing by the DF.) The F value is a test statistic for the hypotheses

H0 : β1 = β2 = · · · = βK = 0
H1 : some βi �= 0.

Thus, the null hypothesis is that none of the variables has any effect; this is a simulta-
neous test on all the slopes. We have not discussed the F -test, but its interpretation is
the same as for other tests. The very small p-value of 0.000 indicates that we may safely
reject H0. (It is very unusual not to reject this null hypothesis.)

17. As already mentioned, introducing extra variables can lead to spurious results and can
interfere with the proper estimation of slopes for the important variables. On the other
hand, introducing more variables will virtually always increase R2. In order to penalize
an excess of variables, we also consider the adjusted R2, which is

adjusted R2 = 1− SSE/(n −K − 1)
SST/(n− 1)

.

This should be contrasted with
R2 = 1− SSE

SST
,

an alternative expression for the ordinary R2. The adjusted thus divides numerator and
denominator by their DF. Since we divide by n−K−1, increasing the number of variables
will not necessarily increase the adjusted R2.

18. In the example above, the adjusted R2 is 69.7%. When we compare different models, we
should compare the adjusted R2 as well as the ordinary R2.

Dummy Variables

1. Often, some of the variables in a regression are categorical rather then numeric. A
typical example is the location variable in the example above. The possible locations
considered are East Meadow, Levittown and Islip. These were originally encoded as
locations 1, 3, and 4, respectively. However, the numbers 1, 3, and 4 are arbitrary; their
values carry no information but simply provide a means of distinguishing categories.

2. Nothing would stop us from carrying out a regression using the values 1, 3, and 4 for
the three towns, but the results of such a model would be meaningless. How would we
interpret the slope for such a variable?

3. The correct way to incorporate categorical data is through dummy variables. A dummy
variable takes the value 0 or 1 to distinguish between two categories. To distinguish m
different categories, we need m− 1 dummy variables.
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4. Example: To distinguish three towns, we need two dummy variables:

EMEADW = 1 if East Meadow, 0 otherwise
LVTTWN = 1 if Levittown, 0 otherwise

Using these variables, we get the following encoding:

1 0 = a house in East Meadow
0 1 = a house in Levittown
0 0 = a house in Islip

Notice that we don’t need to introduce a separate variable for Islip.

5. The two dummy variables just defined are X7 and X8 in the example above. These
variables take only the values 0 and 1. How do we interpret the “slopes” β7 and β8? If
X7 = 1, then the expected increase in assessed value is β7, compared with X7 = 0; if
X8 = 1, then the expected increase in assessed value is β8. Thus, β7 is the premium for
a house in East Meadow over a comparable house in Islip and β8 is the premium for a
house in Levittown over a comparable house in Islip.

6. In our example, these premiums are estimated at $57,082 and $24,418. The p-values for
both are 0.000, indicating that a non-zero premium does in fact exist.

7. Using the corresponding standard errors, we can get confidence intervals for these premi-
ums. For the first one, we get

$57, 082 ± t219,α/2(3.972).

The DF of 219 is large enough to replace the t-value with the corresponding z-value of
zα/2.

Prediction

1. As in simple linear regression, we use estimates of β0, β1, . . . , βk to make predictions
by substituting specific values for the explanatory variables. Regardless of whether we
predict a particular outcome or an expected outcome, our point estimate of Y for values
x1, . . . , xK of the explanatory variables is

Ŷ = β̂0 + β̂1x1 + · · ·+ β̂KxK .

2. Here is an example of a prediction in the housing value example. The predicted value of
a house with lot size 6.8, 3 bedrooms, 2 baths, 7 rooms, 32 years old, 1 garage unit in
Levittown is given by

Fit Stdev.Fit 95% C.I. 95% P.I.
187.00 3.27 ( 180.55, 193.45) ( 145.94, 228.06)
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The fitted value of 187 is found by plugging the specified values into the regression equa-
tion.

3. The formula for the standard deviation in the multiple case is too complicated to be
discussed here. Statistical software (such as MINITAB) gives the value 3.27 automatically.

4. A quick-and-dirty approximation to the confidence interval can be based on se, given
just before the ANOVA table. In our example, se = 20.57. An approximate confidence
interval for a predicted individual value is

Ŷ ± tn−K−1,α/2(se)

and for a predicted average value it is

Ŷ ± tn−K−1,α/2
se√
n

5. These approximate confidence intervals are adequate for ball-park information but are
not very precise. They are the best available option with the current state of spreadsheet
software.
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Appendix 1

Regression Statistics
Multiple R 0.252
R Square 0.064
Adjusted R Squ 0.059
Standard Error 36.238
Observations 228

ANOVA
df SS MS F P-value

Regression 1 20160.5 20160.5 15.4 0.000
Residual 226 296788.0 1313.2
Total 227 316948.5

Coefficients Std Err t Stat P-value Lower 95% Upper 95%
Intercept 205.292 7.389 27.785 0.000 190.733 219.851
AGE -0.796 0.203 -3.918 0.000 -1.196 -0.396
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Appendix 2

Regression Statistics
Multiple R 0.841
R Square 0.708
Adjusted R Sq 0.697
Standard Erro 20.569
Observations 228

ANOVA
df SS MS F P-value

Regression 8 224290.81 28036.4 66.3 0.000
Residual 219 92657.67 423.1
Total 227 316948.48

Coeff Std Err t Stat P-value Lower 95% Upper 95%
Intercept 78.737 10.516 7.487 0.000 58.011 99.463
LOTSZ 0.679 0.371 1.833 0.068 -0.051 1.410
BDRM -3.687 2.224 -1.658 0.099 -8.069 0.696
BATH 19.003 2.802 6.783 0.000 13.482 24.525
ROOMS 8.484 1.491 5.690 0.000 5.545 11.422
AGE -0.348 0.120 -2.894 0.004 -0.584 -0.111
GARG 4.014 2.336 1.718 0.087 -0.590 8.617
EMEADW 57.082 3.972 14.373 0.000 49.254 64.909
LVTTWN 24.418 3.887 6.282 0.000 16.757 32.079
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Appendix 3

Regression Statistics
Multiple R 0.834
R Square 0.696
Adjusted R Squ 0.689
Standard Error 20.828
Observations 228

ANOVA
df SS MS F P-value

Regression 5 220644.2 44128.8 101.7 0.000
Residual 222 96304.2 433.8
Total 227 316948.5

Coefficients Std Err t Stat P-value Lower 95% Upper 95%
Intercept 80.573 9.794 8.227 0.000 61.272 99.874
BATH 19.592 2.795 7.009 0.000 14.084 25.101
ROOMS 8.092 1.315 6.152 0.000 5.500 10.684
AGE -0.368 0.119 -3.093 0.002 -0.603 -0.134
EMEADW 53.484 3.550 15.067 0.000 46.489 60.480
LVTTWN 18.711 3.312 5.649 0.000 12.183 25.238
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