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Histograms

1. A histogram is a graphical display of data showing the frequency of occurrence of
particular values or ranges of values. In a histogram, the horizontal axis is divided
into bins, representing possible data values or ranges. The vertical axis represents
the number (or proportion) of observations falling in each bin. A bar is drawn in
each bin to indicate the number (or proportion) of observations corresponding to
that bin. You have probably seen histograms used, e.g., to illustrate the distribution
of scores on an exam.

2. All histograms are bar graphs, but not all bar graphs are histograms. For example,
we might display average starting salaries by functional area in a bar graph, but
such a figure would not be a histogram. Why not? Because the Y-axis values
do not represent relative frequencies or proportions, and the X-axis values do not
represent value ranges (in particular, the order of the bins is irrelevant).

Measures of Central Tendency

1. Let X1, . . . , Xn be data points, such as the result of n measurements or observations.
What one number best characterizes or summarizes these values? The answer
depends on the context. Some familiar summary statistics are these:

• The mean is given by the arithemetic average X = (X1 + · · ·+ Xn)/n. (No-
tation: We will often write

n∑
i=1

Xi for X1 + · · ·+ Xn.

The symbol
∑n

i=1 Xi is read “the sum from i equals 1 up to n of Xi.”)
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• The median is larger than one half of the observations and smaller than the
other half. If the number of data points is odd, then the median is the middle
value; if the number of data points is even, then the median is the average of
the two middle values.

• The mode is the value that appears with the greatest frequency. There may
be multiple modes.

2. The following statements give some information about the “typical” American
based on the 2000 census. These statements use the word “average” in a vague
way: in everyday usage, “average” doesn’t always signify “mean.” For each state-
ment, think about which summary statistic is probably behind the information
reported.

• The average American is a white woman, 35.4 years old.

• The average household size for owner-occupied units is 2.71 people.

• The average American travels 24.3 minutes to work and works in the service
sector.

• The median household income (including benefits) is $41,343; the mean is
$55,253.

• The median income for males is $30,132; for females, $18,996.

• The average consumer credit card debt is $5,451.

Careful consideration of these examples suggests that the mode is useful is sum-
marizing categorical (i.e., non-numeric) data, to which the other measures are in-
applicable. The sense in which the typical American is a woman is that there are
more women than men.

3. When are the mean and median equal? When is the mean larger? When is the
median larger? The mean and median are equal whenever the distribution of ob-
servations (as depicted by a histogram) is symmetric. The mean is larger (smaller)
if the distribution is skew right (left). See Figure 1.

4. Suppose for simplicity that the data points X1, . . . , Xn can only take the values
1, 2, 3, . . .. For i = 1, 2, 3, . . . , let p(i) be the proportion of data points equal to i.
The mean, defined above, is also given by

X = p(1) · 1 + p(2) · 2 + p(3) · 3 + · · · . (1)

In this expression, each possible value is weighted by its frequency of occurrence.
This formula is particularly convenient when the data appears in a histogram: it
weights each bin-value by the (relative) height of the bar in that bin.
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Figure 1: Examples of distributions that are symmetric, skew right, and skew left.

5. Another way to look at the mean is to think of giving equal weight 1/n to each
observation Xi. More generally, if w1, . . . , wn are positive numbers summing to 1,
the weighted average determined by these numbers is

w1X1 + · · ·+ wnXn =
n∑

i=1

wiXi.

6. Stock indices are an important class of summary statistics. The simplest way to
define an index is to pick n stocks with prices X1, . . . , Xn and let the index be the
mean price. (In contrast to an ordinary average, an index is usually defined relative
to a base value.)

What happens to this index if one or more of the n stocks splits (e.g., if its number
of shares is doubled and the price is cut in half)? What does this say about the
index?

The Dow Jones Industrial Average compensates for splits by adjusting the
denominator: there are 30 stocks in this index, but the sum of their prices is not
divided by 30; it is divided by a “divisor” that changes over time. Each time a
stock splits, the denominator is lowered so that the index is unaffected by the split.
For example, suppose you had an index of stocks with prices $5, $10, and $15 for
an average of $10. If the $15 stock splits 3-for-1, each new share should be worth $5
so if we didn’t adjust the divisor the average would drop to (5 + 10 + 5)/3 = 6.67.
Instead, to compensate for the split we change the divisor to 2 so that the index
stays at (5 + 10 + 5)/2) = 10. In August 2001, the average price of the Dow 30
was about $50. The divisor was at 0.14452124. If we divide the sum of the prices
of the Dow 30 by the divisor rather than by 30 we get the index level (around
10,400, rather than the average price of about 50). For further explanation of these
calculations, visit www.dowjones.com.

7. Another way to get around the problem of splits in a stock index is to weight each
stock by the number of shares: if there are wi shares of stock i, then the index is

1

c

n∑
i=1

wiXi,
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where c is a fixed proportionality constant. If a stock in the index splits, the number
of shares doubles but the price is halved so the product wiXi is unchanged. The
index is thus unaffected by splits. The S&P 500 Index is of this type. There,
the constant c is ten times the average value of the numerator in a base period,
1941-1943. A criticism of this type of capitalization-weighted index is that it is
dominated by a small number of large companies.

8. Suppose you earn interest at the monthly rates r1, r2, . . . , r12 from January to De-
cember. Your total compounded interest is the same as it would have been at a
fixed monthly rate r, for some r. This r is, in some sense, the “average” of the
twelve monthly rates. How do you find r? Answer:

r = [(1 + r1)(1 + r2) · · · (1 + r12)]
1/12 − 1.

What would the equivalent fixed rate be without compounding? Answer:

r = (r1 + r2 + · · ·+ r12)/12.

9. The geometric mean of positive numbers X1, . . . , Xn is given by

(X1X2 · · ·Xn)
1/n,

the n-th root of the product of the n values. Thus, the geometric mean gives the
equivalent fixed monthly rate from twelve different monthly rates when interest is
compounded. This is useful, but we won’t be using the geometric mean in this
course.

Measures of Variability

1. Once a reasonable measure of central tendency has been identified, the next step
is to summarize the extent of deviation from this central tendency or to measure
the degree of variability in the data.

2. The crudest measure of spread in a dataset is its range: the difference between the
largest and smallest value. But the minimum and maximum values of a dataset are
very sensitive to outliers, so the range is similarly sensitive.

3. The interquartile range is the length of the interval containing the middle 50%
of the data; i.e., the spread from the 25th percentile1 to the 75th percentile. The
interquartile range supplements the median. It is less sensitive to outliers than the
range.

1Percentiles are easiest to define by example: 25% of the observations fall below the 25th percentile,
75% below the 75th percentile, 95% below the 95th percentile, etc.
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4. The mean absolute deviation, or MAD, is given by

1

n

n∑
i=1

|Xi − X|. (2)

In words, the MAD is the average distance of the data points from the mean. The
mean absolute deviation is minimized when the mean is replaced by the median;
that is, if we could replace X in (2) with another value, the value that would
minimize the expression is the median. In this sense, the median is the point that
best balances absolute errors.

5. The most important measure of spread in a dataset is the standard deviation,
denoted by σ. The standard deviation is calculated as the square root of the
variance σ2, which is given by

σ2 =
1

n

n∑
i=1

(Xi − X)2. (3)

Thus, the standard deviation is

σ =

√√√√1

n

n∑
i=1

(Xi − X)2. (4)

In practice, it is usually easier to use the following alternative formula:

σ2 =

(
1

n

n∑
i=1

X2
i

)
− (X)2,

and then take the square root to get σ.

6. The σ and σ2 defined above are the so-called population standard deviation and
variance. They assume that the entire population of data consists of our n data
points. If our n points are merely a sample of a larger population, then we would
divide by n − 1 rather than n to get the sample standard deviation and variance.
We don’t need to worry about this distinction until later.

7. The mean X minimizes the sum of squared errors in (3); i.e., replacing X in that
expression with any value can only increase the result. In this sense, the mean
balances squared deviations.

8. One of the main themes of this course is that the standard deviation is the funda-
mental unit of distance is a statistical setting. Here are some initial indications of
what this means:

(a) Is an observation unusually high or low? Look at how many standard devia-
tions away from the mean it is.
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(b) Is a fluctuation in a stock price unusually large? Look at how many standard
deviations the price moved.

(c) Do Finance concentrators have significantly higher average starting salaries
than Accounting concentrators? Compare the difference in means with the
standard deviations.

9. Just by knowing the mean and standard deviation of a dataset, it is possible to say
quite a bit about the possible spread of the values, using Chebyshev’s rule: The
fraction of data points within m standard deviations of the mean, for any m > 1,
is at least 1− (1/m2). Thus, at least

• 55.6% lie within 1.5 standard deviations of the mean;

• 75% lie within 2;

• 88.9% lie within 3.

This is true for all data sets.

10. EXAMPLE. You were sick on the day of the midterm. Before making up the exam,
you learn that the average score was 73 and the standard deviation was 7. Suppose
the top 25% of the class earns an H. According to Chebyshev, what score will
guarantee you an H?

From Chebyshev’s rule, we know that at least 75% of scores are within 2 standard
deviations of the mean, so at most 25% of scores can be more than 2 standard
deviations above the mean. So, a score 2 standard deviations above the mean will
guarantee an H. This score is 73 + 2× 7 = 87.

What if only the top 20% get an H? How many standard deviations above the mean
do you need to score now? Let m be the required number of standard deviations
above the mean. Chebyshev’s rule tells us to choose m so that 1/m2 = 0.20; i.e.,
m = 2.236. The score that guarantees an H is now 73 + (2.236)× 7 ≈ 88.7.

11. Since Chebyshev’s inequality holds for all datasets, it is somewhat pessimistic;
typically, values will be more clustered around the mean. A frequently used rule
of thumb for large populations is that approximately 68% of the observations lie
within one standard deviation of the mean, 95% lie within two standard deviations.
This rule of thumb is based on the normal distribution which we will study later
in the course. In practice, this rule is used much more often than Chebyshev.

Measures of Shape

1. Throughout much of this course we will be assuming that we are working with nor-
mally distributed data—i.e., data whose histogram follows a bell-shaped curve. It is
worth considering, however, ways in which data can deviate from this assumption.
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2. Perhaps the most dramatic way is that data can be multimodal, meaning that
its histogram can have many peaks. In particular, a distribution is bimodal if it
has two peaks. Often, multiple peaks reflect distinct underlying populations. For
example, the distribution of heights of adults is probably bimodal, with one peak
for the average height of women and one for the average height of men. As in this
example, it is often possible to separate a multimodal distribution into separate
unimodal populations.

3. Skew is another attribute that can distinguish data from a bell-shaped curved. The
Excel function SKEW applied to values X1, . . . , Xn produces

n

(n − 1)(n − 2)

n∑
i=1

(
Xi − X̄

σ

)3

.

Values much larger than the mean will tend to make this expression positive whereas
values much smaller than the mean will tend to make it negative. Thus, positive
values of skew indicate a distribution that is skew right and negative values of skew
indicate a distribution that is skew left. (Positive skew, according to this definition,
is not exactly the same as the condition that the mean be greater than the median,
but the two notions of skew will usually agree if the asymmetry in the distribution
is very pronounced. The same holds for negative skew.)

4. A symmetric, unimodal distribution may differ from a normal distribution by being
excessively or insufficiently peaked. Peakedness is usually measured by kurtosis. A
distribution with high kurtosis is very peaked.

5. If we compare two symmetric distributions with the same mean and the same
standard deviation, the one with higher kurtosis will have more observations near
the mean. It will also have more observations in the extreme tails—it has to for
the standard deviations to work out to be the same. This situation is illustrated
in Figure 2. The histogram has higher kurtosis than the bell-shaped curve; it has
more observations near the mean and in the extremes of the tails.

6. High kurtosis is characteristic of the distribution of returns of financial data, par-
ticularly over short time periods—e.g., daily returns. Most days produce small
changes but occasionally a price will make a sudden sharp move. The combination
results in high kurtosis.

7. There is a minor ambiguity concerning the numerical scale on which kurtosis is
measured. On the usual scale, normally distributed data has a kurtosis of three.
The Excel function KURTmeasure excess kurtosis, meaning kurtosis beyond that of
normal data. So, KURT would return a value of zero (rather than three) on normal
data. This distinction does not really present a problem because we are interested
in kurtosis only as a comparative measure. Just remember, higher kurtosis means
more peaked and more observations in the extreme tails.
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Figure 2: The distribution represented by the bars has greater kurtosis than the bell-
shaped curve.

Measures of Association

1. Thus far, we have discussed statistics describing only a single set of observations.
We now turn to measures of relationships between two sets of observations. In
general, these types of measures try to quantify the information about one variable
contained in another, and to answer the following types of questions:

• What does knowing a person’s height tell us about his or her likely weight?

• What does knowing last week’s return on IBM stock tell us about next week’s
likely return?

• What does knowing the result of test marketing in Cleveland tell us about
likely sales in Sacramento?

2. Suppose we have a set of pairs (X1, Y1), . . . , (Xn, Yn) of data points (e.g., Xi is the
ith person’s height and Yi is that person’s weight). The most important measure
of the relationship between the X values and the Y values is their correlation. To
define correlation, we first need to introduce the covariance

Cov[X, Y ] =
1

n

n∑
i=1

(Xi − X)(Yi − Y ).

The covariance looks a bit like the variance; in fact, Cov[X, X] is just the variance
of X.

3. When is Cov[X, Y ] large? It’s large when the individual terms (Xi − X)(Yi − Y )
tend to be large. When are these terms large? They are large if Y tends to be
above its mean when X is above its mean. More precisely, they are large if the
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values of i for which Xi > X tend to coincide with the values of i for which Yi > Y .
Thus, when you see a large, positive covariance think, “Above-average values of Y
tend to occur together with above-average values of X.”

4. By essentially the same argument, a large negative covariance has the opposite
interpretation: “Above-average values of Y tend to occur together with below-
average values of X.” If the covariance is not very large in either the positive or
negative direction, then the relation between X and Y is not very strong.

5. The inevitable next question is, “How large is large, how strong is strong?” A
shortcoming of covariance as a measure of association is that its magnitude de-
pends on the units in which the data is measured and so has no intrinsic meaning.
For example, the covariance between height and weight, with height measured in
inches is 12 times as large as the covariance with height measured in feet. So, it is
impossible to interpret the magnitude of a covariance without knowing the context
in which it is measured.

6. The correlation coefficient addresses this shortcoming by measuring the rela-
tionship between two variables on a fixed scale. By definition, we have

Corr[X, Y ] = ρXY =
Cov[X, Y ]

σXσY

,

where σX and σY are the standard deviations of X1, . . . , Xn and Y1, . . . , Yn, respec-
tively. We usually use ρ, the Greek letter rho, to denote a correlation coefficient.

7. Correlation is always between −1 and 1. A correlation of 1 reflects the strongest
possible positive dependence between two variables, and a correlation of −1 reflects
the strongest possible negative dependence between variables. A correlation near 0
reflects very weak dependence (if any) between the two variables.

8. In the preceding paragraph, we described ρ as a measure of dependence. More
precisely, correlation is a measure of linear dependence: the tendency of the (Xi, Yi)
pairs to fall on a straight line. In fact, ρXY = 1 if and only if there are constants
a, b, with b > 0, for which

Yi = a+ bXi, i = 1, . . . , n.

In words, ρXY = 1 corresponds to a situation in which the (Xi, Yi) pairs lie exactly
on a straight line with positive slope. Similarly, ρXY = −1 corresponds to a situ-
ation in which they lie on a straight line with negative slope b < 0. A value of ρ
close to zero indicates that the (Xi, Yi) pairs do not tend to fall on a line, and look
more like a cloud.

9. If the absolute value |ρXY | is large (meaning close to 1), then information about X
is useful in predicting the outcome of Y . If |ρXY | is close to zero, then information
about X is not very useful in predicting Y .
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10. WARNING: The magnitude of ρ reflects the strength of a linear relationship, not
the steepness of the relationship (as measured by the slope b). The points (Xi, Yi)
could be tightly clustered around a shallow line (large |ρ|, small |b|) or loosely
grouped around a steep line (small |ρ|, large |b|).

11. Let’s consider an example. Below are the first 11 rows of a table of 228 assessed
property values in three Long Island towns. Each row corresponds to a single house.
The numbers under VALUE are the property values. Under LOC, a 1 indicates
East Meadow, a 4 indicates Levittown, and a 3 indicates Islip. Lot size is measured
in thousands of square feet. The remaining variables should be self-explanatory.

ROW VALUE LOC LOTSZ BDRM BATH ROOMS AGE GARG

1 190.00 3 6.90 4 2.0 8 38 1

2 215.00 1 6.00 2 2.0 7 30 1

3 160.00 3 6.00 3 2.0 6 35 0

4 195.00 1 6.00 5 2.0 8 35 1

5 163.00 3 7.00 3 1.0 6 39 1

6 159.90 3 6.00 4 1.0 7 38 1

7 160.00 1 6.00 2 1.0 7 35 1

8 195.00 3 6.00 3 2.0 7 38 1

9 165.00 3 9.00 4 1.0 6 32 1

10 180.00 3 11.20 4 1.0 9 32 1

11 181.00 3 6.00 5 2.0 10 35 0

. . .

To what extent does each of the property attributes explain or help predict property
values?

12. One way to explore relationships among these variables is to look at the matrix of
correlation coefficients:

VALUE LOTSZ BDRM BATH ROOMS AGE GARG

VALUE 1

LOTSZ -0.059 1

BDRM 0.209 0.150 1

BATH 0.540 0.109 0.275 1

ROOMS 0.481 0.171 0.525 0.466 1

AGE -0.252 -0.185 -0.142 -0.161 -0.152 1

GARG 0.233 0.127 0.048 0.260 0.236 -0.052 1
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Figure 3: Scatter plots of house value against number of rooms and age

Each variable is perfectly correlated with itself, so we have 1’s on the diagonal. The
upper half of the table is omitted because the Corr(X, Y ) = Corr(Y, X), so the
upper half is redundant.

13. Not surprisingly, the number of rooms is positively correlated with the value of
the house, and the relationship is fairly strong. The age of a house is negatively
correlated with its value, but that relationship is not as strong.

14. These relationships are further examined in Figure 1, where we have scatter plots
relating house values to rooms and to age. (Each dot in each scatter plot corre-
sponds to a pair of attributes for a single house.) The scatter plots are consistent
with the positive and negative relations noted above. They are also consistent
with the strengths noted above: there appears to be somewhat more of a linear
relationship in the first scatter plot than the second.

15. The line drawn through each of the scatter plots is, in a precise sense, the best
linear fit to the data. This is called a regression line. (We will discuss the precise
sense in which this is the best fit later in the course.) The regression line helps
summarize the relationship between pairs of variables. Its effectiveness in doing so
depends on how strongly the variables are correlated.

16. As an example, suppose we ask, “What is the average value of houses with 5
rooms?” If we find 5 on the X-axis of the first graph and go up to the regression
line, we find the value 150,000.

17. More importantly, suppose we want the average value of houses 47 years old. It
turns out that there is not a single 47-year old house among the 228 in our table.
Nevertheless, from the regression line we can predict that the average value of such
houses (drawn from the same population as those in our table) should be about
168,000.
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18. Later in the course, we will see how to do this kind of analysis more precisely. We
will also see how to incorporate multiple variables simultaneously, instead of just
two at a time. This will allow us, for example, to separate the value of additional
rooms from the value of additional lot size.

19. We briefly mention how the regression line is determined (though we don’t really
need to know this now). The slope, typically denoted by the Greek letter β, is
given by

β =
Cov[X, Y ]

σ2
X

.

The intercept is then determined by the requirement that the line pass through the
point (X, Y ).

20. Final remark: You may have heard of a stock’s beta. This is a special case of the β
above, in which Y denotes returns on the stock and X denotes returns on the entire
market. A stock’s beta is a measure of how sensitive its price is to movements in
the market as a whole.
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