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Abstract

A credit valuation adjustment (CVA) is an adjustment applied to the value of a derivative
contract or a portfolio of derivatives to account for counterparty credit risk. Measuring CVA
requires combining models of market and credit risk to estimate a counterparty’s risk of default
together with the market value of exposure to the counterparty at default. Wrong-way risk refers
to the possibility that a counterparty’s likelihood of default increases with the market value of
the exposure. We develop a method for bounding wrong-way risk, holding fixed marginal models
for market and credit risk and varying the dependence between them. Given simulated paths of
the two models, a linear program computes the worst-case CVA. We analyze properties of the
solution and prove convergence of the estimated bound as the number of paths increases. The
worst case can be overly pessimistic, so we extend the procedure by constraining the deviation
of the joint model from a baseline reference model. Measuring the deviation through relative
entropy leads to a tractable convex optimization problem that can be solved through the iterative
proportional fitting procedure. Here, too, we prove convergence of the resulting estimate of the
penalized worst-case CVA and the joint distribution that attains it. We consider extensions
with additional constraints and illustrate the method with examples.

Keywords: credit valuation adjustment, counterparty credit risk, robustness, iterative propor-
tional fitting process (IPFP), I-Projection.

1 Introduction

When a firm enters into a swap contract, it is exposed to market risk through changes in market

prices and rates that affect the contract’s cash flows. It is also exposed to the risk that the party

on the other side of the contract may default and fail to make payments due on the transaction.

Thus, market risk determines the magnitude of one party’s exposure to another, and credit risk

determines the likelihood that this exposure will become a loss. Derivatives counterparty risk refers

to this combination of market and credit risk, and proper measurement of counterparty risk requires

integrating market uncertainty and credit uncertainty.
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The standard tool for quantifying counterparty risk is the credit valuation adjustment, CVA,

which can be thought of as the price of counterparty risk. Suppose firm A has entered into a set

of derivative contracts with firm B. From the perspective of firm A, the CVA for this portfolio of

derivatives is the difference between the value the portfolio would have if firm B were default-free

and the actual value taking into account the credit quality of firm B. More precisely, this is a

unilateral CVA; a bilateral CVA adjusts for the credit quality of both firms A and B.

Counterparty risk generally and CVA in particular have taken on heightened importance since

the failures of major derivatives dealers Bear Stearns, Lehman Brothers, and AIG Financial Prod-

ucts in 2008. A new CVA-based capital charge for counterparty risk is among the largest changes to

capital requirements under Basel III for banks with significant derivatives activity (BCBS [1]). CVA

calculations are significant consumers of bank computing resources, typically requiring simulation

of all relevant market variables (prices, interest rates, exchanges rates), valuing every derivative at

every time step on every path, and integrating these market exposures with a model of credit risk

for each counterparty. See Canabarro and Duffie [12] and Gregory [22] for background on industry

practice.

Our focus in this paper is on the effect of dependence between market and credit risk. Wrong-

way risk refers to the possibility that a counterparty will become more likely to default when the

market exposure is larger and the impact of the default is greater; in other words, it refers to

positive dependence between market and credit risk. Wrong-way risk arises, for example, if one

bank sells put options on the stock of another similar bank. The value of the options increases as

the price of the other bank’s stock falls; this is likely to be a scenario in which the bank that sold

the options is also facing financial difficulty and is less likely to be able to make payment on the

options. In practice, the sources and nature of wrong-way risk may be less obvious.

Holding fixed the marginal features of market risk and credit risk, greater positive dependence

yields a larger CVA. But capturing dependence between market and credit risk is difficult. There

is often ample data available for the separate calibration of market and credit models but little

if any data for joint calibration. CVA is calculated under a risk-adjusted probability measure,

so historical data is not directly applicable. In addition, for their CVA calculations banks often

draw on many valuation models developed for trading and hedging specific types of instruments

that cannot be easily integrated with a model of counterparty credit risk. CVA computation is

much easier if dependence is ignored. Indeed, the Basel III standarized approach for CVA assumes

independence and then multiplies the result by a factor of 1.4; this ad hoc factor is intended to

correct for several sources of error, including the lack of dependence information.

Models that explicitly describe dependence between market and credit risk include in CVA
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calculation include Brigo, Capponi, and Pallavicini [9], Crépey [15], Hull and White [25], and Rosen

and Saunders [30]; see Brigo, Morini, and Pallavicini [10] for an extensive overview of modeling

approaches. Dependence is usually introduced by correlating default intensities with market risk

factors or through a copula. A direct model of dependence is, in principle, the best approach to

CVA. However, correlation-based models generally produce weak dependence between market and

credit risk, and both techniques are difficult to calibrate.

In this paper, we develop a method to bound the effect of dependence, holding fixed marginal

models of market and credit risk. Our approach uses simulated paths that would be needed anyway

for a CVA calculation without dependence. Given paths of market exposures and information

(simulated or implied from prices) about the distribution of time to the counterparty’s default, we

show that finding the worst-case CVA is a linear programming problem. The linear program is easy

to solve, and it provides a bound on the potential impact of wrong-way risk. We view this in-sample

bound based on a finite set of paths as an estimate of the worst-case CVA for a limiting problem

and prove convergence of the estimator. The limiting problem is an optimization over probability

measures with given marginals. We also show that the LP formulation has additional useful features.

It extends naturally to a bilateral CVA calculation, and it allows additional constraints. Moreover,

the dual variables associated with constraints on the marginal default time distribution provide

useful information for hedging purposes.

The strength of the LP solution is that it yields the largest possible CVA value — the worst

possible wrong-way risk — consistent with marginal information about market and credit risk. This

is also a shortcoming, as the worst case can be too pessimistic. We therefore extend the method by

penalizing or constraining deviations from a nominal reference model. The reference model could

be one in which marginals are independent or linked through some simple model of dependence.

A large penalty produces a CVA value close to that obtained under the reference model, and with

no penalty we recover the LP solution. Varying the penalty parameter allows us to “interpolate”

between the reference model and the worst-case joint distribution.

To penalize deviations from the reference model, we use a relative entropy measure between

probability distributions, also known as the Kullback-Leibler divergence. Once we add the penalty,

finding the worst-case joint distribution is no longer a linear programming problem, but it is still

convex. Moreover, the problem has a special structure that allows convenient solution through

iterative rescaling of the rows and columns of a matrix. This iterative rescaling projects a starting

matrix onto the convex set of joint distributions with given marginals. Here, too, we prove con-

vergence of the in-sample solution to the solution of a limiting problem as the number of paths

increases.
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The problem of finding extremal joint distributions with given marginals has a long and rich

history. It includes the well-known Fréchet bounds in the scalar case and the multivariate gener-

alization of Brenier [8] and Rüschendorf and Rachev [33]; see the books by Rüschendorf [32] and

Villani [36] for detailed treatments and historical remarks. In finance, related ideas have been used

to find robust or model-free bounds on option prices; see Cox [14] for a survey. In some versions

of the robust pricing problem, one observes prices of simple European options and seeks to bound

prices of path-dependent or multi-asset options given the European prices, as in Carr, Ellis, and

Gupta [13], Brown, Hobson, and Rogers [11], and Tankov [35], among many others. This has mo-

tivated the study of martingale optimal transport problems in Dolinsky and Soner [18], Beiglböck

and Juillet [2], Henry-Labordère and Touzi [24]. The literature on price bounds focuses on extremal

solutions and does constrain or penalize deviations from a baseline model.

Our focus is not on pricing but rather risk measurement. Within the risk measurement litera-

ture, questions of joint distributions with given marginals arise in risk aggregation; see, for example,

Bernard, Jiang, and Wang [4], Embrechts and Puccetti [20], and Embrechts, Wang, and Wang [21].

A central problem in risk aggregations is finding the worst-case distribution for a sum of random

variables, given marginals for the summands.

Our work differs from earlier work in several respects. We focus on CVA, rather than option

pricing or risk aggregation. Our marginals may be quite complex and need not be explicitly avail-

able — they are implicitly defined through marginal models for market and credit risk. Given the

generality of the setting, we do not seek to characterize extremal joint distributions but rather to

estimate bounds using samples generated from the marginals. We temper the bounds by constrain-

ing deviations from a reference model, drawing on the idea of robustness as developed in economics

in Hansen and Sargent [23] and distributional robustness as developed in the optimization litera-

ture in Ben-Tal et al. [3] and references there. The methods we develop are easy to implement

in practice. The main contribution lies in the formulation and in the convergence analysis. Our

general approach to convergence is to use primal and dual optimization problems to get upper and

lower bounds.

The rest of the paper is organized as follows. In Section 2, we introduce the problem setting,

and in Section 3 we introduce the optimization formulation for the worst case CVA bound and show

convergence of the bound estimator. In Section 4, we extend the problem to a robust formulation

with a relative entropy constraint, and we provide numerical examples in Section 5. In Section 6,

we extend the model further to incorporate expectation constraints.
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2 Problem Formulation

Let τ denote the time at which a counterparty defaults, and let V (τ) denote the value of a swap

(or a portfolio of swaps and other derivatives) with that counterparty at the time of its default,

discounted to time zero. The swap value could be positive or negative, so the loss at default is the

positive part V +(τ). The CVA for a time horizon T is the expected exposure at default,

CVA = E[V +(τ)1{τ ≤ T}], (2.1)

given a joint law for the default time τ and the exposure V +. Our focus will be on uncertainty

around this joint law, but we first provide some additional details on the problem formulation.

CVA is customarily calculated over a finite set of dates 0 = t0 < t1 < · · · < td = T < td+1 =∞;

for example, these may be the payment dates on the underlying contracts. An underlying simula-

tion of market risk factors generates paths of all relevant market variables and is used to generate

exposure paths (V +(t1), . . . , V +(tK)). Calculating these exposures is a demanding task because it

requires valuing all instruments in a portfolio with a counterparty in each market scenario at each

date. In addition, the calculation of each V (tj) needs to account for netting and collateral agree-

ments with the counterparty and recovery rates if the counterparty were to default. The method

we develop takes these calculations as inputs and assumes the availability of independent copies of

the exposure paths. The market risk model implicitly determines the law of (V +(t1), . . . , V +(td)),

and we denote this law by a probability measure p on Rd.

The distribution of the counterparty’s default time τ may be extracted from credit default swap

spreads, or it may be the result of a more extensive credit risk model — for example, a stochastic

intensity model. In either case, we suppose that a credit risk model fixes the probabilities qj ,

j = 1, . . . , d, that default occurs at tk, or, more precisely that it occurs in the interval (tk−1, tk].

Let

X = (V +(t1), . . . , V +(td)) and Y = (1{τ = t1}, . . . ,1{τ = td}).

The problem of calculating CVA would reduce to the problem of calculating the expectation of the

inner product

< X,Y >=

d∑
j=1

V +(tj)1{τ = tj} = V +(τ)1{τ ≤ T},

if the joint law for X and Y were known. With the marginals fixed but the joint law unknown, we

seek to evaluate the worst-case CVA, defined by

CVA∗ := sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > dµ(x, y), (2.2)



Bounding Wrong Way Risk 6

where Π(p, q) denotes the set of probability measures on Rd × Rd with marginals p and q.

The characterization of extremal joint distributions with given marginals has a rich history; see

Villani [36] and Rüschendorf [32] for recent treatments with extensive historical remarks. In the

scalar case d = 1, the largest value of (2.2) is attained by the comonotonic construction, which

sets X = F−1
p (U) and Y = F−1

q (U), where Fp and Fq are the cumulative distribution functions

associated with p and q, and U is uniformly distributed on [0, 1]. The smallest value of (2.2) is

attined by setting Y = F−1
q (1 − U) instead. In the vector case, a characterization of joint laws

maximizing (2.2) has been given by Brenier [8] and Rüschendorf and Rachev [33]. It states that

under an optimal coupling, Y is a subgradient of a convex function of X, but this provides more of

a theoretical description than a practical characterization. Our setting has the added complication

that at least p (and possibly also q) is itself unknown and only implicitly specified through a

simulation model.

3 Worst-Case CVA

3.1 Estimation

We develop a simulation procedure to estimate (2.2). As we noted earlier, generating exposure

paths is the most demanding part of a CVA calculation. Our approach essentially reuses these

paths to bound the potential effect of wrong-way risk at little additional computational cost.

Let X1, . . . , XN be N independent copies of X, and let Y1, . . . , YN be N independent copies of

Y . Denote their empirical measures on Rd by

pN (·) =
1

N

N∑
i=1

1{Xi ∈ ·}, qN (·) =
1

N

N∑
i=1

1{Yi ∈ ·}, (3.1)

For notational simplicity, we will assume that p has no atoms so that, almost surely, there are

no repeated values in X1, X2, . . . . This allows us to identify the empirical measure pN on Rd

with the uniform distribution on the set {X1, . . . , XN} or on the set of indices {1, . . . , N}. The

assumption that p has no atoms is without loss of generality because we can expand the dimension

of X to include an independent, continuously distributed coordinate Xd+1 and expand Y by setting

Yd+1 ≡ 0 without changing (2.2).

Observe that Y is supported on the finite set {y1, . . . , yd+1}, with y1 = (1, 0, . . . , 0), . . . , yd =

(0, 0, . . . , 1), and yd+1 = (0, . . . , 0). Each yj has probability q(yj). These probabilities may be

known or estimated from simulation of N independent copies Y1, . . . , YN of Y , in which case we

denote the empirical frequency of each yj by qN (yj).

We will put a joint mass function PNij on the set of pairs {(Xi, yj), i = 1, . . . , N , j = 1, . . . , d+1}.
We restrict attention to the set Π(pN , qN ) of joint mass functions with marginals pN and qN . We
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estimate (2.2) using

ĈVA∗ = max
PN∈Π(pN ,qN )

N∑
i=1

d+1∑
j=1

PNij < Xi, yj > .

Finding the worst-case joint distribution is a linear programming problem:

max
{Pij}

N∑
i=1

d+1∑
j=1

CijPij , (3.2)

subject to
d+1∑
j=1

Pij = 1/N, i = 1, ..., N, (3.3)

N∑
i=1

Pij = qN (yj), j = 1, ..., d+ 1 and (3.4)

Pij ≥ 0, i = 1, ..., N, j = 1, ..., d+ 1, (3.5)

with Cij =< Xi, yj >. In particular, this has the structure of a transportation problem, for which

efficient algorithms are available, for example a strongly polynomial algorithm; see Kleinschmidt

and Schannath [27]. Bilateral CVA, involving the joint distribution of market exposure and the

default times of both parties, admits a similar formulation.

3.2 Dual Variables

To formulate the dual problem, let ai and bj be dual variables associated with constraints (3.3) and

(3.4), respectively. The dual problem is then

min
a∈RN ,b∈Rd+1

N∑
i=1

ai/N +
d+1∑
j=1

bjqN (yj)

subject to ai + bj ≥ Cij , i = 1, ..., N, j = 1, ..., d.

The dual variables are useful because they measure the sensitivity of the estimated worst-case

CVA to the marginal constraints. Consider any vector of perturbations (∆q1, . . . ,∆qd+1) to the

mass function qN with components that sum to zero. Suppose these perturbations are sufficiently

small to leave the dual solution unchanged. Then

∆ĈVA∗ =

d+1∑
j=1

bj∆qj .

In particular, we can calculate the sensitivity of the worst-case CVA to a parallel shift in the credit

curve by setting ∆qj = ∆, j = 1, . . . , d, and ∆qd+1 = −d∆, for sufficiently small ∆.
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3.3 Convergence as N → ∞

The solution to the linear program provides an estimate ĈVA∗ based on N simulated paths. But

we are ultimately interested in CVA∗ in (2.2), the worst-case CVA based on the true marginal

laws for market and credit risk, rather than their sample counterparts. We show that our estimate

converges to CVA∗ almost surely as N increases.

Although in our application Y has finite support, we state the following result more generally.

For probability laws p and q on Rd, let pN and qN denote the corresponding empirical laws in (3.1).

Let Π(p, q), Π(pN , qN ), and Π(pN , q) denote the sets of probability measures on Rd × Rd with the

indicated arguments as marginals.

Theorem 3.1. Let X and Y be d-dimensional random vectors with distributions p and q respectively

such that
∫
Rd ‖x‖

2dp(x) <∞, and
∫
Rd ‖y‖

2dq(y) <∞. Then

lim
N→∞

sup
µ∈Π(pN ,qN )

∫
Rd×Rd

< x, y > µ(dx, dy) = lim
N→∞

sup
µ∈Π(pN ,q)

∫
Rd×Rd

< x, y > µ(dx, dy)

= sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > µ(dx, dy).

The proof follows from results on optimal transport in Villani [36]; see Appendix A.

4 Robust Formulation with a Relative Entropy Constraint

The linear program (3.2)–(3.5) provides a simple way to bound the impact of wrong-way risk and

estimate a worst-case CVA, and Theorem 3.1 establishes the consistency of this estimate as the

number of paths grows. An attractive feature of this approach is that it reuses simulated exposure

paths that need to be generated anyway to estimate CVA even ignoring wrong-way risk.

A drawback of the bound CVA∗ is that it may be too pessimistic: the worst-case joint distri-

bution may be implausible, even if it is theoretically feasible. To address this concern, we extend

our analysis and formulate the problem of bounding wrong-way risk as a question of robustness to

model uncertainty. By controlling the degree of uncertainty we can temper the bound on wrong-way

risk.

4.1 Constrained and Penalized Problems

In this formulation, we start with a reference model for the dependence between the market and

credit models and control model uncertainty by constraining deviations from the reference model.

To be concrete, we will assume that the reference model takes market and credit risk to be inde-

pendent, though this is not essential. We use ν to denote the corresponding element of Π(p, q) that
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makes X and Y independent; in other words,

ν(A×B) = p(A)q(B),

for all measurable A,B ⊆ Rd.
To constrain deviations from the reference model, we need a notion of “distance” between

probability measures. Among the many candidates, relative entropy, also known as the Kullback-

Leibler divergence, is particularly convenient. For probability measures P and Q on a common

measurable space and with P >> Q, define the entropy of Q relative to P to be

D(Q|P ) = EP
[
dQ

dP
ln

(
dQ

dP

)]
= EQ

[
ln

(
dQ

dP

)]
,

the subscripts indicating the measure with respect to which the expectation is taken. Relative

entropy is frequently used to quantify model uncertainty; see, for example, Hansen and Sargent

[23] and Ben-Tal et al. [3]. Relative entropy is not symmetric in its arguments, but this is not

necessarily a drawback because we think of the reference model as a favored benchmark. We are

interested in the potential impact of deviations from the reference model, but we do not necessarily

view nearby alternative models as equally plausible. Relative entropy D(Q|P ) is convex in Q, and

this will be important for our application. Also, D(Q|P ) = 0 only if Q = P .

To find a tempered worst case for wrong-way risk, we maximize CVA with the marginal models

p and q held fixed and with a constraint η > 0 on the relative entropy divergence from the reference

joint model ν:

CVAη := sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > dµ(x, y), (4.1)

subject to

∫
ln(

dµ

dν
)dµ ≤ η. (4.2)

At η = 0, the only feasible solution is the reference model µ = ν. At η =∞, the problem reduces

to the worst-case CVA of the previous section. Varying the relative entropy budget η thus controls

the degree of model uncertainty or the degree of confidence in the reference model.

We are actually interested in solving this problem for a range of η values to see how the potential

impact of wrong-way risk varies with the degree of model uncertainty. For this purpose, it will be

convenient to work with a penalty on relative entropy rather than a constraint. The penalty

formulation with parameter θ > 0 is as follows:

sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > dµ(x, y)− 1

θ

∫
ln(

dµ

dν
)dµ. (4.3)
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The penalty term subtracted from the linear objective is nonnegative because relative entropy

is nonnegative. At θ = 0, the penalty would be infinite unless µ = ν; at θ =∞, the penalty drops

out and we recover the worst-case linear program of Section 3. A related problem appears in Bosc

and Galichon [7], but without a reference model ν. The correspondence between the constrained

problem (4.1)–(4.2) and the penalized problem (4.3) is established in the following result, proved

in the Appendix B:

Proposition 4.1. For θ > 0, the optimal solution µθ to (4.3) is the optimal solution to (4.1)–(4.2)

with

η(θ) =

∫
ln(

dµθ

dν
)dµθ. (4.4)

The mapping from θ to η(θ) is increasing, and η(θ) ∈ (0, η∗] for θ ∈ (0,∞), where η∗ is (4.4)

evaluated at the solution to (2.2).

In the following, we write CVAθ instead of CVAη(θ) for θ ∈ (0,∞). To estimate CVAθ, we

form a sample counterpart, modifying the linear programming formulation (3.2)–(3.5). We denote

the finite sample reference joint probabilities by Fij . In the independent case, these are given by

Fij = qN (yj)/N , i = 1, . . . , N , j = 1, . . . , d+ 1. Let P θ denote the optimal solution to the following

optimization problem:

max
{Pij}

N∑
i=1

d+1∑
j=1

CijPij −
1

θ

N∑
i=1

d+1∑
j=1

Pij ln
(Pij
Fij

)
subject to (3.3)-(3.5). (4.5)

We estimate CVAθ by

ĈVAθ :=
N∑
i=1

d+1∑
j=1

CijP
θ
ij .

4.2 Iterative Proportional Fitting Procedure

The penalty problem (4.5) is a convex optimization problem and can be solved using general

optimization methods. However, the choice of relative entropy for the penalty leads to a particularly

simple and interesting method through the iterative proportional fitting procedure (IPFP). The

method dates to Deming and Stephan [17], yet it continues to generate extensions and applications

in many areas.

To apply the method in our setting, we use as initial guess the N × (d + 1) matrix M θ with

entries

M θ
ij =

eθ·Cij · Fij∑N
i=1

∑d+1
j=1 e

θ·Cij · Fij
.
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As before, Fij is the independent joint distribution with prescribed marginals pN and qN , which we

take as reference model. Each Cij =< Xi, yj > is the loss on market risk path i if the counterparty

defaults at time tj . With θ > 0, the numerator of M θ
ij puts more weight on combinations that

produce larger losses. In this sense, M θ
ij is designed to emphasize wrong-way risk.

The denominator of M θ
ij normalizes the entries to sum to 1, but M θ will not in general have

the target marginals. The IPFP algorithm projects a matrix M with positive entries onto the set

of joint distribution matrices with marginals pN and qN by iteratively renormalizing the rows and

columns as follows:

(r) For i = 1, . . . , N and j = 1, . . . , d+ 1, set Mij ←MijpN (i)/
∑d+1

k=1Mik.

(c) For j = 1, . . . , d+ 1 and i = 1, . . . , N , set Mij ←MijqN (j)/
∑N

n=1Mnj .

This iteration is also known as biproportional scaling, Sinkhorn’s algorithm, and the RAS algorithm;

see Pukelsheim [29] for an overview of the extensive literature on the theory and application of these

methods.

Write Φ(M) for the result of applying both steps (r) and (c) to M , and write Φ(n) for the n-fold

composition of Φ. For our setting, we need the following result:

Proposition 4.2. The sequence Φ(n)(M θ), n ≥ 1, converges to the solution P θ to (4.5).

Proof. It follows from Ireland and Kullback [26] that Φ(n)(M θ) converges to the solution of

min
P

N∑
i=1

d+1∑
j=1

Pij ln

(
Pij

M θ
ij

)
subject to (3.3)-(3.5).

In other words, the IPFP algorithm converges to the feasible matrix (in the sense of (3.3)-(3.5))

that is closest to the initial matrix in the sense of relative entropy. For our particular choice of M θ,

this minimization problem has the same solution as the maximization problem

max
P

θ

N∑
i=1

d+1∑
j=1

CijPij −
N∑
i=1

d+1∑
j=1

Pij ln(
Pij
Fij

)−WN
θ subject to (3.3)-(3.5),

with WN
θ = ln

(∑N
i=1

∑d+1
j=1 e

θ·Cij · Fij
)

. This follows directly from the definition of M θ. Because

WN
θ does not depend on P , this maximization problem has the same solution as (4.5). �

To summarize, we start with the reference model Fij , put more weight on adverse outcomes

to get M θ
ij , and then iteratively renormalize the rows and columns of M θ to match the target

marginals. This procedure converges to the penalized worst-case joint distribution defined by (4.5)

with penalty parameter θ.
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4.3 Convergence as N →∞

We now formulate a convergence result as the number of paths N increases. As before, let Π(p, q)

denote the set of probability measures on Rd × Rd with marginals p and q. Let pN , qN denote the

empirical measures in (3.1), and let Π(pN , qN ) denote the set of joint laws with these marginals.

The independent joint distributions are ν ∈ Π(p, q) and νN ∈ Π(pN , qN ); i.e., dν(x, y) = dp(x)dq(y)

and dνN (x, y) = dpN (x)dqN (y).

Fix θ > 0 and define, for a probability measure µ on Rd × Rd,

G(µ, ν) =

∫
< x, y > dµ− 1

θ
D(µ|ν),

and define G(µ, νN ) accordingly. To show that our simulation estimate of the penalized worst-case

CVA converges to the true value, we need to show that∫
< x, y > dµ∗N →

∫
< x, y > dµ∗, a.s. (4.6)

where µ∗N ∈ Π(pN , qN ) maximizes G(·, νN ) and µ∗ ∈ Π(p, q) maximizes G(·, ν).

Theorem 4.1. Suppose the random vectors X and Y satisfy Eν [eθ<X,Y >] < ∞ and that Y has

finite support. The following hold as N →∞.

(i) max
µ∈Π(pN ,qN )

G(µ, νN ) −→ sup
µ∈Π(p,q)

G(µ, ν), a.s.

(ii) The maximizer µ∗N ∈ Π(pN , qN ) of G(·, νN ) converges weakly to a maximizer µ∗ ∈ Π(p, q) of

G(·, ν).

(iii) The penalized worst-case CVA converges to the true value, a.s.; i.e., (4.6) holds.

The proof is in Appendix C.

5 Examples

5.1 A Gaussian Example

For purposes of illustration we begin with a simple example in which X and Y are scalars and

normally distributed. This example is not intended to fit the CVA application but to illustrate

some features of the penalty formulation. It also lends itself to a simple comparison with a Gaussian

copula, which is another way of introducing dependence with given marginals.

Suppose then that X and Y have the standard normal distribution on R. Paralleling the

definition of the matrix M θ, consider the bivariate density

f0(x, y) = c′eθxyp(x)q(y) = ce−
1
2
x2− 1

2
y2+θxy, (5.1)
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where c′ and c are normalization constants. This density weights the independent joint density at

(x, y) by exp(θxy), so the product xy plays the role that Cij plays in the definition of M θ.

The reweighting changes the marginals, so now we want to use a continuous version of the IPFP

algorithm to project f0 onto the set of bivariate densities with standard normal marginals. The

generalization of the algorithm from matrices to measures has been analyzed in Rüschendorf [31].

The row and column operations become

f̂n(x, y)← fn(x, y)p(x)

/∫
fn(x, y) dy

and

fn+1(x, y)← f̂n(x, y)q(y)

/∫
f̂n(x, y) dx .

An induction argument shows that

fn(x, y) = cne
−a

2
n
2
x2−a

2
n
2
y2+θxy,

for constants cn and an, so each fn is a bivariate normal density. The an satisfy

a2
n =

(
1 +

θ2

a2
n−1

)
→ 1

2
+

1

2

√
1 + 4θ2, as n→∞.

Some further algebraic simplification then shows that the limit is a bivariate normal density with

standard normal marginals and correlation parameter

ρ =
2θ

1 +
√

1 + 4θ2
, θ =

ρ

1− ρ2
. (5.2)

This is the bivariate distribution with standard normal marginals that maximizes the expectation

of XY with a penalty parameter of θ on the deviation from independence as measured by relative

entropy.

Observe that ρ = 0 when θ = 0; ρ→ 1 as θ →∞; and ρ→ −1 as θ → −∞. Because θ penalizes

deviations from independence, it controls the strength of the dependence between X and Y . The

relationship between ρ and θ allows us to reinterpret the strength of dependence as measured by

θ in terms of the correlation parameter ρ. This is somewhat analogous to the role of a correlation

parameter in the Gaussian copula, where it measures the strength of dependence but is not literally

the correlation between the marginals except when the marginals are normal.

The fact that the IPFP algorithm projects f0 to a bivariate normal is a specific feature of

the weight exp(θxy) in (5.1). For contrast, we consider the weight exp(θx2y). The resulting f0

is no longer integrable for θ > 0, so we work instead with truncated and discretized marginal

distributions and apply the IPFP numerically. The result is shown in Figure 1. The resulting
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density has nearly standard normal marginals (up to truncation and discretization), but the joint

distribution is clearly not bivariate normal.

The dependence illustrated in the figure is beyond the scope of the Gaussian copula because any

joint distribution with Gaussian marginals and a Gaussian copula must be Gaussian. This example

thus illustrates the broader point that our approach generates a wider range of dependence than

can be achieved with a specific type of copula. For examples of wrong-way risk CVA models based

on the Gaussian copula, see Brigo et al. [10], Hull and White [25], and Rosen and Saunders [30].
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Figure 1: Probability mass of joint truncated and discretized normal random variables X and Y ,
with θ = 1 and intial weight exp(θx2y).

5.2 A Currency Swap Example

In a currency swap between a U.S. bank receiving U.S. dollars and a foreign bank receiving its own

currency, the U.S. bank faces wrong-way risk: when the foreign currency depreciates, the exposure

of the U.S. bank increases, and the foreign bank’s credit quality usually deteriorates as its currency

depreciates.1 Similarly, when a firm borrows money from a bank and posts collateral which is

positively correlated with the firm’s credit quality, the bank lending the money faces wrong-way

risk.

We illustrate our method with a foreign exchange forward, the simplest currency swap that

exchanges only the principal, evaluating the CVA from the U.S. dollar receiver’s perspective. Let

Ut be the number of units of the foreign currency paid in exchange for one U.S. dollar at time t.

1Banks writing credit protection on their sovereigns create similar wrong-way risk. Specific cases of this practice
are documented in “FVA, correlation, wrong-way risk: EU stress test’s hidden gems,” Risk magazine, Dec 5, 2014.
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This exchange rate follows an Ornstein-Uhlenbeck process,

Utj+1 = Utj + κ(Ū − Utj )(tj+1 − tj) + σ(Wtj+1 −Wtj ),

where Ū is the long term mean of the exchange rate and Wt is a standard Brownian motion.

Let δ be the U.S. dollar discount rate, N the contract notional (in U.S. dollars) and K the

contract forward exchange rate. Let R be the recovery rate at failure of the counterparty. The

expected exposure (in U.S. dollars) of this foreign exchange transaction at time t is

EE(t) = E[e−δ(T−t)N(UT −K)/UT |Ut].

The expected exposure discounted to today and adjusted by the recovery rate is

V (t) = e−δtR · EE(t).

We take T = 10 years, divide time into 20 time steps, and simulate 1000 market scenarios.

Expected exposures are adjusted for recoveries and discounted. The mean positive expected expo-

sure is shown in Figure 2. For illustrative purpose, we assume that the counterparty’s default time

follows an exponential distribution with a constant hazard rate λ. We use the following parameters:

(Ut0 , Ū ,K, κ, σ, λ, δ,N) = (1000, 1000, 1000, 0.3, 50, 0.04, 0.03, 106).
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Figure 2: Sample Average Positive Exposure

Figure 3 shows a CVA stress test for wrong-way risk. It plots CVA against the penalty parameter

θ. The numbers are normalized by dividing by the independent market-credit risk CVA, so the

independent case θ = 0 is presented as 100%. As θ increases, the positive dependence between

market and credit risk increases, approaching the worst-case bound, which is over six times as large

as the independent CVA. For θ < 0, we have right-way risk, and the CVA bound approaches zero

as θ decreases. The parameter θ could be rescaled using the transformation in (5.2) to allow a

rough interpretation as a correlation parameter.
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Figure 3: CVA Stress Test

The Gaussian copula provides a simple alternative way to vary dependence and measure wrong-

way risk; see Rosen and Saunders [30] for details and applications. Figure 4 shows how wrong-way

risk varies in the Gaussian copula model as the correlation parameter ρ varies from −1 to 1.

Comparison with Figure 3 shows that constraining dependence to conform to a Gaussian copula

significantly underestimates the potential wrong-way risk.
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Figure 4: CVA Stress Test by Gaussian Copula Method

In Figure 5, we show the impact of varying the foreign exchange volatility σ, and the coun-

terparty default hazard rate. Increasing either of these parameters shifts the curve up for θ > 0.

In other words, increasing the volatility of the market exposure or the level of the credit exposure

in this example increases the potential impact of wrong-way risk, relative to the benchmark of

independent market and credit risk.

6 Adding Expectation Constraints

When additional information is available, we can often improve our CVA bound by incorporating

the information through constraints on the optimization problem. Constraints on expectations are

linear constraints on joint distributions and thus particularly convenient in our framework.

Recall that we think of the exposure path X as the output of a simulation of a market model.
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Figure 5: CVA with different volatility and hazard rate

Such a model generates many other market variables, and in specifying the joint distribution

between the market and credit models, we may want to add constraints through other variables.

Constraints represent relationships between market and credit risk that should be preserved as the

joint distribution varies. To incorporate such constraints, we expand the simulation output from

X to (X,Z), where the random vector Z = (Z1, . . . , Zd) represents a path of auxiliary variables.

The joint law of (X,Z) is determined by the market model. We want to add a constraint of the

form E[Zτ1{τ ≤ td}] = z0, for given z0, when the expectation is taken with respect to the joint

law of the market and credit models. This is a constraint on the expectation of < Z, Y >.

As a specific illustration, suppose Z̃ is a martingale generated by the market model and we

want to impose the constraint E[Z̃τ∧td ] = z0 on the joint law of Z̃ and τ . This is equivalent to

the constraint E[(Z̃td − Z̃τ )1{τ ≤ td}] = 0, so we can define Zj = Z̃d − Z̃j , j = 1, . . . , d, and then

impose the constraint E[< Z, Y >] = 0.

To incorporate constraints, we redefine p to denote the joint law of (X,Z) on Rd × Rd; we

continue to use q for the marginal law of Y . Let Π(p, q) be the set of probability measures on

(Rd × Rd) × Rd with the specified marginals of (X,Z) and Y . We denote by hX(x, z) = x and

hZ(x, z) = z the projections of (x, z) to x and z respectively. Set

Π̄(p, q) = {µ ∈ Π(p, q) :

∫
< hZ(x, z), y > dµ((x, z), y) = v0}. (6.1)

We will assume that Π̄(p, q) is nonempty so that the problem is feasible.

Given independent samples (Xi, Zi), i = 1, . . . , N , let pN denote their empirical measure. As

before qN denotes the empirical measure for N independent copies of Y . Even if Π̄(p, q) is nonempty,

we cannot assume that the equality constraint in (6.1) holds for some element of Π(pN , qN ), so for

finite N we will need a relaxed formulation. Let Πε(pN , qN ) denote the set of joint distributions on

{((Xi, Zi), yj), i = 1, . . . , N, j = 1, . . . , d+ 1} with marginals pN and q̃, where

max
1≤j≤d+1

|qN (yj)− q̃(yj)| < ε,
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and define

Π̄ε(pN , qN ) =

{
µ ∈ Πε(pN , qN ) :

∣∣∣∣∫ < hZ(x, z), y > dµ((x, z), y)− v0

∣∣∣∣ < ε

}
. (6.2)

In our convergence analysis, we will let ε ≡ εN decrease to zero as N increases.

Let ν ∈ Π(p, q) denote the independent case dν((x, z), y) = dp(x, z)dq(y), and let νN ∈
Π(pN , qN ) denote the independent case dνN ((x, z), y) = dpN (x, z)dqN (y). We will assume that

v0 is chosen so that ν ∈ Π̄(p, q). It then follows that νN ∈ Π̄ε(pN , qN ) for all sufficiently large N ,

for all ε > 0.

The worst-case CVA with an auxiliary constraint on Z is

c∞ = sup
µ∈Π̄(p,q)

∫
(Rd×Rd)×Rd

< hX(x, z), y > dµ((x, z), y) (6.3)

The corresponding estimator is

cN,ε = max
µ∈Π̄ε(pN ,qN )

N∑
i=1

d+1∑
j=1

< Xi, yj > µ((Xi, Zi), yj). (6.4)

This is a linear programming problem: the objective and the constraints are linear in the variables

µ((Xi, Zi), yj). The following result establishes convergence of the estimator.

Theorem 6.1. Suppose the following conditions hold:

(i)
∫
Rd×Rd ‖hX(x, z)‖2dp(x, z) <∞ and

∫
Rd×Rd ‖hZ(x, z)‖2dp(x, z) <∞;

(ii) Π̄(p, q) contains the independent joint distribution ν.

Then with εN = 1/Nα for any α ∈ (0, 1/2), the finite sample estimate converges to the constrained

worst-case CVA for the limiting problem; i.e., cN,εN → c∞, a.s.

We define a penalty formulation with θ > 0 for the limiting problem,

sup
µ∈Π̄(p,q)

G(µ, ν) = sup
µ∈Π̄(p,q)

∫
(Rd×Rd)×Rd

< hX(x, z), y > dµ((x, z), y)− 1

θ
D(µ|ν),

and with (6.2) for the finite problem,

max
µ∈Π̄ε(pN ,qN )

G(µ, ν) = max
µ∈Π̄ε(pN ,qN )

N∑
i=1

d+1∑
j=1

< hX(Xi, Zi), yj > µN ((Xi, Zi), yj)−
1

θ
D(µN |νN ).

The corresponding convergence result given by the following theorem.

Theorem 6.2. Suppose the following conditions hold:
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(i)
∫
Rd×Rd ‖hX(x, z)‖2dp(x, z) < ∞,

∫
Rd×Rd ‖hZ(x, z)‖2dp(x, z) < ∞, and Eν [eθ<hX(X,Z),Y >] <

∞;

(ii) Π̄(p, q) contains the independent joint distribution ν.

Then with εN = 1/Nα for any α ∈ (0, 1/2), the following hold,

(i) max
µ∈Π̄εN (pN ,qN )

G(µ, νN ) −→ sup
µ∈Π̄(p,q)

G(µ, ν), a.s.

(ii) The maximizer µ̄∗N ∈ Π̄εN (pN , qN ) of G(·, νN ) converges weakly to a maximizer µ̄∗ ∈ Π̄(p, q)

of G(·, ν).

(iii) The penalized worst-case CVA converges to the true value, a.s.; i.e.,∫
< x, y > dµ̄∗N →

∫
< x, y > dµ̄∗, a.s. (6.5)

7 Concluding Remarks

We have focused in this article on the problem of bounding wrong-way risk in CVA calculation,

taking the marginal models for market and credit risk as given and varying the dependence between

the two. Put more generally, the problem we have addressed is one of bounding the expected inner

product between two random vectors with fixed marginals. A key feature of our setting is that these

marginals need not be known explicitly. Instead, they are outputs of the simulation of potentially

very complex models, of the type used to model asset prices and default times.

Calculating the worst-case bound for the exact marginal distributions is typically infeasible.

But using simulated outcomes, the problem reduces to a tractable linear programming problem.

We extend this formulation by penalizing deviations from a reference model, which results in a

convex optimization problem. In both cases, we prove convergence of the solutions calculated from

simulated outcomes to the corresponding solutions using exact distributions as the sample size

grows. The approach is sufficiently general and flexible to be applicable to many other settings in

which the nature of dependence between different model components is unknown.

A Proof of Theorem 3.1

The Wasserstein metric of order 2 between probability measures p and q on Rd is W2(p, q), where

W 2
2 (p, q) = inf

π∈Π(p,q)

∫
Rd×Rd

‖x− y‖2 dπ(x, y)

=

∫
Rd
‖x‖2 dp(x) +

∫
Rd
‖y‖2 dq(y)− 2 sup

π∈Π(p,q)

∫
Rd×Rd

< x, y > dπ(x, y). (A.1)
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The empirical measures pN and qN converge weakly to p and q, respectively, a.s., so it follows from

Corollary 6.11 of Villani [36] that W 2
2 (pN , qN ) → W 2

2 (p, q), a.s., and W 2
2 (pN , q) → W 2

2 (p, q), a.s.

Under the assumed square-integrability conditions, we also have∫
Rd
‖x‖2 dpN (x)→

∫
Rd
‖x‖2 dp(x), a.s.,

and similarly for qN . The theorem now follows from (A.1).

B Proof of Proposition 4.1

Problem (4.3) is equivalent to

− inf
µ∈Π(p,q)

1

θ

∫
ln
( dµ

exp(θ < x, y >)dν

)
dµ. (B.1)

Theorem 3 of Rüschendorf and Thomsen [34] implies the existence of a unique optimal solution to

(B.1), which we denote by µθ.

First we show that µθ is optimal for (4.1)–(4.2) with η = η(θ). Suppose µθ is not optimal, then

there exists µη(θ) such that∫
Rd×Rd

< x, y > dµη(θ)(x, y) >

∫
Rd×Rd

< x, y > dµθ(x, y),

and ∫
ln(

dµη(θ)

dν
)dµη(θ) ≤

∫
ln(

dµθ

dν
)dµθ.

But then∫
Rd×Rd

< x, y > dµη(θ)(x, y)− 1

θ

∫
ln(

dµη(θ)

dν
)dµη(θ) >

∫
Rd×Rd

< x, y > dµθ(x, y)− 1

θ

∫
ln(

dµθ

dν
)dµθ,

which contradicts the optimality of µθ for the penalty problem (4.3).

Next we show that the mapping from θ to η(θ) is increasing. For any θ2 > θ1 > 0, let µθ1 and

µθ2 denote optimal solution to the penalty problem with θ1 and θ2 respectively. If µθ1 = µθ2 , then

η(θ1) = η(θ2). If µθ1 6= µθ2 , then, by unique optimality of µθ2 , it holds that∫
Rd×Rd

< x, y > dµθ2(x, y)−1

θ 2

∫
ln(

dµθ2

dν
)dµθ2 >

∫
Rd×Rd

< x, y > dµθ1(x, y)−1

θ 2

∫
ln(

dµθ1

dν
)dµθ1 .

(B.2)

Compare the first term on each side. If
∫
Rd×Rd < x, y > dµθ2(x, y) ≤

∫
Rd×Rd < x, y > dµθ1(x, y),

then
∫

ln(dµ
θ2

dν )dµθ2 <
∫

ln(dµ
θ1

dν )dµθ1 by (B.2). Adding (1
θ 2
− 1

θ 1
)
∫

ln(dµ
θ2

dν )dµθ2 to the left side and

(1
θ 2
− 1

θ 1
)
∫

ln(dµ
θ1

dν )dµθ1 to the right side of (B.2), the sign does not change, which means µθ2 is
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optimal for the penalty problem with θ1. However that contradicts the unique optimality of µθ1 .

We conclude that ∫
Rd×Rd

< x, y > dµθ2(x, y) >

∫
Rd×Rd

< x, y > dµθ1(x, y).

Now compare the second term on each side. If
∫

ln(dµ
θ2

dν )dµθ2 ≤
∫

ln(dµ
θ1

dν )dµθ1 , then the unique

optimality of µθ1 is again contradicted, so we have

η(θ2) > η(θ1).

Next we show η(θ) ∈ (0, η∗] for θ ∈ (0,∞). Since the relative entropy
∫

ln(dµ
θ

dν )dµθ is nonnegative

and equals 0 only if µθ = ν, we have η(θ) > 0 for θ > 0. Let µ∗ denote optimal solution to (2.2)

and let η∗ =
∫

ln(dµ
∗

dν )dµ∗. Since problem (2.2) is a relaxation of problem (4.1)–(4.2), we conclude

that for all θ > 0, ∫
Rd×Rd

< x, y > dµ∗(x, y) ≥
∫
Rd×Rd

< x, y > dµθ(x, y). (B.3)

Suppose there exists θ∗ > 0 such that η(θ∗) =
∫

ln(dµ
θ∗

dν )dµθ
∗
> η∗. By adding − 1

θ∗ η
∗ to the left

and − 1
θ∗ η(θ∗) to the right of (B.3), the inequality does not change, which contradicts the optimality

of µθ
∗
. Thus η(θ) ≤ η∗.

C Proof of Theorem 4.1

We divide the proof into several parts, starting with the convergence of the objective function value

asserted in part (i) of the theorem.

C.1 Convergence of the Optimal Objective Value

We will first show that for any feasible solution to the limiting problem, we can construct a sequence

of approximating solutions that approach the limiting objective function from above. To get the

reverse inequality we will use a dual formulation of the limiting objective and show that it is

approached from below.

Since Y has finite support, we may assume without loss of generality that q(yj) > 0 for all j. If

we had q(yj) = 0 for some j, we could reformulate an equivalent problem by removing the marginal

constraint on yj .

Let µ ∈ Π(p, q) be any feasible solution to the limiting problem. Write µ(dx, y) = p(dx)q(y|x),

and define the following mass function on the pairs (Xi, yj), i = 1, . . . , N , j = 1, . . . , d+ 1:

µN (Xi, yj) =
1

N
q(yj |Xi). (C.1)
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If we sum over the yj for any Xi, we get

d+1∑
j=1

µN (Xi, yj) =
1

N

d+1∑
j=1

q(yj |Xi) =
1

N
.

If we sum over the Xi for any yj , we get

N∑
i=1

µN (Xi, yj) =
1

N

N∑
i=1

q(yj |Xi) =: q̄N (yj).

We will not in general have q̄N = qN , so µN is not in general a feasible solution to the finite

problem, in the sense that µN 6∈ Π(pN , qN ). However, by the strong law of large numbers for

{X1, X2, . . . }, for each yj , j = 1, . . . , d+ 1,

q̄N (yj) =
1

N

N∑
i=1

q(yj |Xi)→
∫
q(yj |x) dp(x) = q(yj), a.s.,

because µ ∈ Π(p, q). Also by the strong law of large numbers, we have qN (yj) → q(yj), a.s. We

will therefore consider a relaxed constraint. Let Πε(pN , qN ) denote the set of joint distributions on

Rd × Rd with marginals pN and q′, where |q′(yj)− qN (yj)| ≤ ε, j = 1, . . . , d+ 1.

Lemma C.1. As N →∞,

lim
N→∞

max
µ∈Π(pN ,qN )

G(µ, νN ) ≥ sup
µ∈Π(p,q)

G(µ, ν).

Proof: For each N , we are maximizing a concave function over a compact convex set, so the maxi-

mum is indeed attained. Write cN for maxµ∈Π(pN ,qN )G(µ, νN ) and cN,ε for maxµ∈Πε(pN ,qN )G(µ, νN ).

For any µ ∈ Π(p, q), define µN as in (C.1). Then µN ∈ Πε(pN , qN ) for all sufficiently large N , a.s.,

and

cN,ε ≥
N∑
i=1

d+1∑
j=1

µN (Xi, yj) < Xi, yj > −
1

θ
D(µN |νN )

=

N∑
i=1

d+1∑
j=1

q(yj |Xi)

N
< Xi, yj > −

1

θ

N∑
i=1

d+1∑
j=1

ln

(
q(yj |Xi)/N

qN (yj)/N

)
q(yj |Xi)

N
.

By the strong law of large numbers, almost surely,

N∑
i=1

d+1∑
j=1

q(yj |Xi)

N
< Xi, yj >→

∫ d+1∑
j=1

< x, yj > q(yj |x)dp(x) =

∫
< x, y > dµ(x, y)

and

N∑
i=1

d+1∑
j=1

ln

(
q(yj |Xi)

qN (yj)

)
q(yj |Xi)

N
→
∫ d+1∑

j=1

ln

(
q(yj |x)

q(yj)

)
q(yj |x)dp(x) =

∫
ln(

dµ

dν
)dµ.
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Since this holds for any µ ∈ Π(p, q),

lim
N→∞

cN,ε ≥ c∞ ≡ sup
µ∈Π(p,q)

G(µ, ν). (C.2)

Recall cN = maxµ∈Π(pN ,qN )G(µ, νN ). We claim that

cN,ε ≤ cN + εKN , (C.3)

for

KN = K1 · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > |+
1

θ
·K2,

where K1 and K2 are constants. We prove (C.3) in Appendix C.3.

Under our assumption that Eν [exp(θ < X, Y >)] <∞, the sequence KN satisfies KN/N
α → 0,

for any α ∈ (0, 1/2). Set εN = 1/Nα so εNKN → 0. By the law of the iterated logarithm, with

probability 1,

max
1≤j≤d+1

|qN (yj)− q(yj)| < εN/2 and max
1≤j≤d+1

|q̄N (yj)− q(yj)| < εN/2

for all sufficiently large N , and then

max
1≤j≤d+1

|q̄N (yj)− qN (yj)| < εN

as well. In other words, for any µ ∈ Π(p, q), we have µN ∈ ΠεN (pN , qN ) for all sufficiently large N ,

a.s. We can therefore strengthen (C.2) to

lim
N→∞

cN,εN ≥ c∞.

But

lim
N→∞

cN,εN ≤ lim
N→∞

cN +KNεN = lim
N→∞

cN .

So we have shown that

lim
N→∞

cN ≥ c∞.

�

We now establish the reverse inequality.

Lemma C.2. As N →∞,

lim
N→∞

max
µ∈Π(pN ,qN )

G(µ, νN ) ≤ sup
µ∈Π(p,q)

G(µ, ν), a.s.
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Proof: The supremum of G(µ, ν) over µ ∈ Π(p, q) can be written as

− 1

θ
inf

µ∈Π(p,q)

∫
ln

(
dµ(x, y)

exp{θ < x, y >}dν(x, y)

)
dµ(x, y) =

1

θ
sup

µ∈Π(p,q)
−D(µ|eθ<x,y>ν). (C.4)

By Theorem 3 of Rüschendorf and Thomsen [34], the optimum in (C.4) is attained at a solution of

the form

dµ∗(x, y) = ea(x)+b(y)+θ<x,y> dν(x, y), (C.5)

for some functions a and b on Rd. Similarly, for finite N , the optimizer of G(µ, νN ) over µ ∈
Π(pN , qN ) has the form

dµ∗N (x, y) = eaN (x)+bN (y)+θ<x,y> dνN (x, y).

For the rest of the proof, we will work with the formulation in (C.4), omitting the constant

factor of 1/θ. We will apply a dual formulation of Bhattacharya [5]. To this end, consider the set

Π∗ of functions h : Rd × Rd → R of the form h(x, y) = h1(x) + h2(y) with∫
h1(x) dp(x) +

∫
h2(y) dq(y) ≥ 0.

The convex cone Π∗ is contained within the dual cone of Π(p, q), which is the set of functions

h : Rd × Rd → R that have nonnegative expectations with respect to all µ ∈ Π(p, q). We consider

the dual problem

inf
h∈Π∗

ln

∫
eh1(x)+h2(y)+θ<x,y> dν(x, y).

With a and b as in (C.5), set

h∗1(x) = a(x) + c/2, h∗2(x) = b(x) + c/2,

where

c = −
∫

[a(x) + b(y)] dµ∗(x, y).

Observe that ∫
h∗1(x) dp(x) +

∫
h∗2(y) dq(y) = 0,

so this (h∗1, h
∗
2) is dual feasible. Moreover, with this choice of h∗1, h

∗
2, the dual objective function

value is

ln

∫
ea(x)+b(x)+c+θ<x,y> dν(x, y) = ln

∫
ec dµ∗(x, y) = c. (C.6)

The primal objective in (C.4) evaluated at (C.5) yields

−D(µ∗|eθ<x,y>ν) = −
∫

[a(x) + b(y)] dµ∗(x, y) = c,
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so the primal and dual objective values agree. It follows from Theorem 2.1 of Bhattacharya [5] that

this choice of (h∗1, h
∗
2) is optimal for the dual objective.

Parallel results hold for finite N as well. The maximal value of G(·, νN ) is 1/θ times the dual

optimum

cN = inf
h1,h2

ln

∫
eh1(x)+h2(y)+θ<x,y> dνN , (C.7)

s.t.

∫
h1(x) dpN (x) +

∫
h2(y) dqN (y) ≥ 0.

For ε ≥ 0, define

cε∞ := inf
h1,h2

ln

∫
eh1(x)+h2(y)+θ<x,y> dν, (C.8)

s.t.

∫
h1(x) dp(x) +

∫
h2(y) dq(y) ≥ ε.

The infimum is finite because the integral is finite for any constant h1, h2. Let (hε1, h
ε
2) be feasible

for (C.8) and satisfy

ln

∫
eh

ε
1(x)+hε2(y)+θ<x,y> dν ≤ cε∞ + ε.

Then, with probability 1,∫
hε1(x) dpN (x) +

∫
hε2(y) dqN (y) =

1

N

N∑
i=1

(hε1(Xi) +hε2(Yi))→
∫
hε1(x) dp(x) +

∫
hε2(y) dq(y) ≥ ε,

so, for all sufficiently large N ,∫
hε1(x) dpN (x) +

∫
hε2(y) dqN (y) ≥ 0.

In other words, (hε1, h
ε
2) is feasible for (C.7) for all sufficiently large N , so

cN ≤ ln

∫
eh

ε
1(x)+hε2(y)+θ<x,y> dνN → ln

∫
eh

ε
1(x)+hε2(y)+θ<x,y> dν ≤ cε∞ + ε.

Hence,

lim
N→∞

cN ≤ cε∞ + ε.

By construction, ∫
h∗1(x) dp(x) +

∫
h∗2(y) dq(y) = 0,

so (h∗1 + ε/2, h∗2 + ε/2) is feasible for (C.8) and then

cε∞ ≤ ln

∫
eh
∗
1(x)+h∗2(y)+ε+θ<x,y> dν

and

lim
ε↓0

ln

∫
eh
∗
1(x)+h∗2(y)+ε+θ<x,y> dν = c,



Bounding Wrong Way Risk 26

with c as in (C.6). Thus, since ε > 0 can be taken arbitrarily small,

lim
N→∞

cN ≤ c.

�

Combining Lemmas C.1 and C.2 proves part (i) of the theorem.

C.2 Weak Convergence of Optimal Solutions

Define

ΠN = Π(p, q) ∪
(
∪

n≥N
Π(pn, qn)

)
We will show that, almost surely, ΠN is compact (with respect to the topology of weak convergence

on Rd ×Rd) for all sufficiently large N . It will follow that any sequence of optimizers {µ∗n} is then

eventually contained within a compact set, so every subsequence has a convergent subsequence.

Lemma C.3. ΠN is compact for all sufficiently large N , a.s.

Proof: By Prohorov’s Theorem (Billingsley [6], p.37) the set ΠN is compact if it is uniformly tight,

meaning that for all ε > 0 we can find a compact subset A of Rd × Rd such that µ(A) ≥ 1− ε, for

all µ ∈ ΠN . Let A1, A2 be compact subsets of Rd such that

P (X ∈ A1) =

∫
A1

dp(x) ≥ 1− ε/4, P (Y ∈ A2) =

∫
A2

dq(x) ≥ 1− ε/4.

Then, for any µ ∈ Π(p, q),∫
1{(x,y) 6∈A1×A2} dµ(x, y) ≤ P (X 6∈ A1) + P (Y 6∈ A2) ≤ ε/2.

With probability 1, for all sufficiently large N and µ ∈ Π(pN , qN ),∫
1{(x,y)6∈A1×A2} dµ(x, y) ≤ 1

N

N∑
i=1

(
1{Xi 6∈A1} + 1{Yi 6∈A2}

)
≤ ε.

Thus, with probability 1, ΠN is uniformly tight for all sufficiently large N , and thus compact. �

The optimizers µ∗N are contained in the sets Π(pN , qN ), so for all sufficiently large N , the

sequence µ∗n, n ≥ N , is contained in a compact set ΠN , and then every subsequence has a further

subsequence that converges weakly.

Suppose the subsequence µ∗nk converges, say µ∗nk ⇒ µ̃. The marginals of µ∗nk converge to p and

q, so µ̃ ∈ Π(p, q), making µ̃ feasible for the limiting problem. We claim that it is optimal. We have,

a.s., ∫
eθ<x,y> dµ∗nk ≤

∫ d+1∑
j=1

eθ<x,yj> dpnk(x)→
∫ d+1∑

j=1

eθ<x,yj> dp(x),
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by the strong law of large numbers, because the condition Eν [eθ<x,y>] < ∞ implies that the limit

is finite. This is then more than sufficient to ensure that∫
< x, y > dµ∗nk(x, y)→

∫
< x, y > dµ̃(x, y). (C.9)

Moreover, relative entropy is lower semi-continuous with respect to weak convergence (Dupuis and

Ellis [19], Lemma 1.4.3), so

D(µ̃|ν) ≤ lim
k→∞

D(µ∗nk |νnk)

and then

G(µ̃, ν) ≥ lim
k→∞

G(µ∗nk , νnk) = sup
µ∈Π(p,q)

G(µ, ν),

by part (i) of the theorem. Thus, µ̃ is optimal. Using the equivalence between the optimization of

G(·, ν) and (C.4), we know from Theorem 3 of Rüschendorf and Thomsen [34] that the maximum

is uniquely attained by some µ∗, and thus µ̃ = µ∗.

We have shown that every subsequence of µ∗n has a further subsequence that converges to µ∗.

It follows that µ∗n ⇒ µ∗. This proves part (ii) of the theorem. The uniform integrability needed for

(4.6) follows as in (C.9), which proves part (iii). �

C.3 Proof of Inequality (C.3)

It remains to prove (C.3). First we construct a feasible solution µ̂N of maxµ∈Π(pN ,qN )G(µ, νN ) by

modifying the optimal solution µ∗N,ε of the relaxed problem maxµ∈Πε(pN ,qN )G(µ, νN ). Then we use

the difference between G(µ̂N , νN ) and G(µ∗N,ε, νN ) to bound the difference between cN and cN,ε.

Define εNj =
∑N

i=1 (µ∗N,ε)ij−qN (yj), which is the difference between the Y marginal of µ∗N,ε and

the empirical distribution of Y . Note that |εNj | ≤ ε for j = 1, ..., d+ 1. We claim that there exists

{ε∗ij} for which

(µ̂N )ij := (µ∗N,ε)ij − ε
∗
ij , i = 1, ..., N and j = 1, ..., d+ 1,

satisfies the following conditions:

µ̂N ∈ Π(pN , qN ), (C.10)∑N
i=1

∑d+1
j=1 |ε∗ij | ≤ (d+ 1)ε, (C.11)

−CN · ε · 1
N ≤ ε

∗
ij ≤ CN · ε · (µ∗N,ε)ij , (C.12)

where CN = maxj=1,··· ,d+1{1/qN (yj)}. Since q(yj) > 0 for j = 1, · · · , d + 1, we know qN (yj) > 0

for all j and N large enough, and CN is well defined.
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To see that such {ε∗ij} exist, rearrange {εNj } in descending order {εNjk} for k = 1, · · · , d+ 1, and

let m denote number of nonnegative elements. Note that εNjk ≥ 0 for k = 1, · · · ,m, and εNjk < 0 for

k = m+ 1, · · · , d+ 1, and
∑m

k=1 ε
N
jk

= −
∑d+1

k=m+1 ε
N
jk

. Let

ε∗i,jk =
(µ∗N,ε)i,jk∑N
i=1 (µ∗N,ε)i,jk

· εNjk

for i = 1, · · · , N and k = 1, · · · ,m. Let

Si =
m∑
k=1

ε∗i,jk

for i = 1, · · · , N . Let

ε∗i,jk =
εNjk

|
∑d+1

l=m+1 ε
N
jl
|
· Si

for i = 1, · · · , N and k = m+ 1, · · · , d+ 1.

We verify (C.10)-(C.12) for {ε∗ij}. Since (C.10) is equivalent to
∑N

i=1 ε
∗
i,jk

= εNjk for k = 1, · · · , d+

1, we know that by construction it holds for {ε∗ij}. Next,

N∑
i=1

d+1∑
j=1

|ε∗ij | =
N∑
i=1

d+1∑
k=1

|ε∗i,jk |

=
N∑
i=1

m∑
k=1

ε∗i,jk −
N∑
i=1

d+1∑
k=m+1

ε∗i,jk

=

N∑
i=1

m∑
k=1

(µ∗N,ε)i,jk∑N
i=1 (µ∗N,ε)i,jk

· εNjk −
N∑
i=1

d+1∑
k=m+1

εNjk

|
∑d+1

l=m+1 ε
N
jl
|
· Si

=
m∑
k=1

εNjk −
d+1∑

k=m+1

εNjk

≤ (d+ 1)ε

The last equality follows by
∑N

i=1 Si =
∑m

k=1 ε
N
jk

= |
∑d+1

l=m+1 ε
N
jl
|. Thus {ε∗ij} satisfy (C.11).

For k = 1, · · · ,m,

0 ≤ ε∗i,jk =
(µ∗N,ε)i,jk

qN (yjk) + εNjk
· εNjk ≤

(µ∗N,ε)i,jk
qN (yjk)

· εNjk ≤ CN · ε · (µ
∗
N,ε)i,jk

For k = m+ 1, · · · , d+ 1,

0 ≥ ε∗i,jk ≥ −Si ≥ −CN · ε ·
m∑
k=1

(µ∗N,ε)i,jk
≥ −CN · ε ·

1

N

Thus {ε∗ij} satisfy (C.12).
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Because µ̂N is feasible but not necessarily optimal, we have

G(µ̂N , νN ) ≤ cN ≤ cN,ε.

We will show that

cN,ε −G(µ̂N , νN ) ≤ εKN , (C.13)

for

KN = (d+ 1) · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > |+
1

θ
·K2,

where K2 is a constant. It then follows that

cN,ε − cN ≤ εKN .

To show (C.13), write

cN,ε −G(µ̂N , νN ) =
( ∫

< x, y > dµN,ε −
∫
< x, y > dµ̂N

)
−1

θ

∫ (dµN,ε
dνN

ln(
dµN,ε
dνN

)− dµ̂N
dνN

ln(
dµ̂N
dνN

)
)
dνN .

The first part has upper bound

(d+ 1) · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > | · ε.

Let x = dµN,ε/dνN and x−∆x = dµ̂N/dνN . Drop the factor −1/θ and rewrite the second part as
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follows:

∫
x lnx− (x−∆x) ln(x−∆x) dνN

=

∫
x lnx− x ln(x−∆x) + ∆x ln(x−∆x) dνN

=

∫
−x ln(1− ∆x

x
) + ∆x ln(x−∆x) dνN

≥
∫
−x · (−∆x

x
) dνN +

∫
∆x ln(x−∆x) dνN

=

∫
∆x dνN +

∫
1{∆x≥0}∆x ln(x−∆x) dνN +

∫
1{∆x<0}∆x ln(x−∆x) dνN

= 0 +

∫
1{∆x≥0}

∆x

x−∆x
(x−∆x) ln(x−∆x) dνN +

∫
1{∆x<0}∆x ln(x−∆x) dνN

≥
∫

1{∆x≥0}
∆x

x−∆x
(x−∆x− 1) dνN +

∫
1{∆x<0}∆x(x−∆x− 1) dνN

=

∫
1{∆x≥0}∆x(1− 1

x−∆x
) dνN +

∫
1{∆x<0}(∆x · x− (∆x)2 −∆x) dνN

≥
∫

1{∆x≥0}(−
∆x

x−∆x
) dνN − C2

Nε− C3
N (d+ 1)ε2

≥
∫

1{∆x≥0}(−
CN · ε

(1− CN · ε)
) dνN − C2

Nε− C3
N (d+ 1)ε2

≥ − CN
(1− CN · ε)

· ε− C2
Nε− C3

N (d+ 1)ε2

= −
( CN

(1− CN · ε)
+ C2

N + C3
N (d+ 1)ε

)
· ε

:= −KCN ,ε · ε

We explain the inequalities in turn. The first inequality follows from lnx ≤ x − 1 for x ≥ 0, and

the second inequality follows from both lnx ≤ x − 1 for x ≥ 0 and x lnx ≥ x − 1 for x ≥ 0. The

third inequality follows by dropping a positive term ∆x in the first integral and noting that

∫
1{∆x<0}∆x · x dνN =

∫
1{dµN,ε−dµ̂N<0}

dµN,ε − dµ̂N
dνN

·
dµN,ε
dνN

dνN

=
∑
ij

1{ε∗ij<0}ε
∗
ij

1
N qN (yj)

· (µN,ε)ij

≥
∑
ij

−C2
N · ε · (µN,ε)ij = −C2

N · ε, by (C.12),
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and ∫
1{∆x<0}(−∆x)2 dνN ≥ −

∫
∆x2 dνN = −

∑
ij

(ε∗ij)
2

1
N qN (yj)

≥ −
∑
ij

C2
N ( 1

N )2ε2

1
N qN (yj)

, by (C.12),

≥ −C3
N (d+ 1)ε2.

The fourth inequality holds because ∆x ≤ x · CN · ε for ∆x ≥ 0, by (C.12).

The coefficient KCN ,ε is increasing in both CN and ε. Since qN (yj) → q(yj) as N → ∞,

CN → maxj=1,··· ,d+1{1/q(yj)} as N →∞, thus we can find a constant C ≥ CN for all N . On the

other hand, without loss of generality we can assume that ε is small enough, such that 1−C ·ε > 1/2,

i.e. ε < 1/(2C). Choose K2 = KC,1/(2C). Then∫
x lnx− (x−∆x) ln(x−∆x) dνN ≥ −K2 · ε

for all N and ε small enough. We thus have

cN,ε −G(µ̂N , νN ) ≤ (d+ 1) · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > | · ε+
1

θ
K2 · ε

= KN · ε,

and ((C.13)) is proved.

D Proof of Theorem 6.1

Let µ ∈ Π̄(p, q) be any feasible solution to the limiting problem. Write µ((dx, dz), y) = p(dx, dz)q(y|x, z),
and define the mass function µN on ((Xi, Zi), yj), i = 1, . . . , N , j = 1, . . . , d+ 1, by setting

µN ((Xi, Zi), yj) =
1

N
q(yj |(Xi, Zi)).

For each yj , we get the marginal probability

q̄N (yj) =

N∑
i=1

µN ((Xi, Zi), yj) =
1

N

N∑
i=1

q(yj |(Xi, Zi)).

The expectation of < Zi, yj > with respect to µN is given by

v̄N0 =

N∑
i=1

d+1∑
j=1

< Zi, yj > µN ((Xi, Zi), yj).
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By the strong law of large numbers for the i.i.d. sequence (Xi, Zi), i = 1, . . . , N , we have (q̄N (y1), . . . , q̄N (ym))→
(q(y1), . . . , q(ym)), a.s., and also

v̄N0 =
1

N

N∑
i=1

d+1∑
j=1

< Zi, yj > q(yj |(Xi, Zi)) →
∫ d+1∑

j=1

< hZ(x, z), yj > q(yj |(x, z)) dp(x, z)

=

∫
< hZ(x, z), y > dµ((x, z), y) = v0,

where v0 is the value in the constraint (6.1) because µ ∈ Π̄(p, q). In fact, by the law of the iterated

logarithm, if we set εN = 1/Nα with 0 < α < 1/2, then, with probability 1,

max
1≤j≤d+1

|q̄N (yj)− q(yj)| < εN , max
1≤j≤d+1

|q̄N (yj)− qN (yj)| < εN

and, under our square-integrability condition on Z,

|v̄N0 − v0| < εN ,

for all sufficiently large N . It follows that µN ∈ Π̄εN (pN , qN ), for all sufficiently large N .

D.1 Upper Bound

Because µN is feasible for all sufficiently large N , it provides a lower bound on the optimal value

cN,εN in (6.4),

cN,εN ≥
N∑
i=1

d+1∑
j=1

µN ((Xi, Zi), yj) < Xi, yj >=
1

N

N∑
i=1

d+1∑
j=1

q(yj |(Xi, Zi)) < Xi, yj > .

By the strong law of large numbers

1

N

N∑
i=1

d+1∑
j=1

q(yj |(Xi, Zi)) < Xi, yj > →
∫
Rd×Rd

d+1∑
j=1

q(yj |(x, z)) < hX(x, z), yj > dp(x, z)

=

∫
(Rd×Rd)×Rd

< hX(x, z), y > dµ((x, z), y).

So

lim
N→∞

cN,εN ≥
∫

(Rd×Rd)×Rd
< hX(x, z), y > dµ((x, z), y)

And since this holds for any µ ∈ Π̄(p, q),

lim
N→∞

cN,εN ≥ c∞. (D.1)
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D.2 Lower Bound

To prove a lower bound, we formulate a dual problem for the relaxed finite-N problem (6.4) with

objective value dN,ε, and we formulate a dual for the limiting problem (6.3) with objective value

d∞.

The relaxed finite problem in (6.4) is a linear program. Its dual can be written as

dN,ε ≡ min
Φ,Ψ1,Ψ2,ξ1,ξ2

{FN (Φ,Ψ1,Ψ2, ξ1, ξ2) + εK(Ψ1,Ψ2, ξ1, ξ2)} (D.2)

with

FN (Φ,Ψ1,Ψ2, ξ1, ξ2) =
1

N

N∑
i=1

Φi +
d+1∑
j=1

(Ψ1j + Ψ2j) · qN (yj) + (ξ1 + ξ2)v0

and

K(Ψ1,Ψ2, ξ1, ξ2) =

d+1∑
j=1

(Ψ1j −Ψ2j) + (ξ1 − ξ2),

the infimum taken over Φ ∈ R, Ψ1j ≥ 0, Ψ2j ≤ 0, ξ1 ≥ 0, ξ2 ≤ 0, satisfying

Φi + Ψ1j + Ψ2j + (ξ1 + ξ2)· < Zi, yj > ≥ < Xi, yj >,

for i = 1, ..., N , and all j = 1, ..., d + 1 with qN (yj) > 0. We have already seen that problem

(6.4) is feasible for all sufficiently large N , and once it is feasible cN,ε = dN,ε by standard linear

programming duality.

We define the dual of the limiting problem (6.3) by setting

d∞ = inf
φ,ψ,ξ

F (φ, ψ, ξ)

with

F (φ, ψ, ξ) =

∫
φ(x, z) dp(x, z) +

d+1∑
j=1

ψ(yj)q(yj) + ξv0,

the infimum taken over functions φ : Rd × Rd → R, ψ : Rd → R, and a scalar ξ ∈ R, satisfying, for

all (x, z) in the support of p and all y in the support of q,

φ(x, z) + ψ(y) + ξ < z, y > ≥ < x, y >,

with φ ∈ L1(p).

For any ε̃ > 0, we may pick φε̃, ψε̃, and ξε̃ feasible for the limiting dual and for which

F (φε̃, ψε̃, ξε̃) ≤ d∞ + ε̃.
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We may then define a feasible solution to (D.2) by setting Φi = φε̃(Xi, Zi), Ψ1j = ψ+
ε̃ (yj), Ψ2j =

−ψ−ε̃ (yj), ξ1 = ξ+
ε̃ , and ξ2 = −ξ−ε̃ . By the strong law of large numbers, this choice yields

FN (Φ,Ψ1,Ψ2, ξ1, ξ2)→ F (φε̃, ψε̃, ξε̃), a.s.

For any ε̄ > 0, there is a stochastic N(ε̃, ε̄) such that for all N > N(ε̃, ε̄),

FN (Φ,Ψ1,Ψ2, ξ1, ξ2) ≤ F (φε̃, ψε̃, ξε̃) + ε̄, a.s.,

and this N(ε̃, ε̄) does not depend on the ε that defines the relaxation (D.2). Thus, we have, for all

sufficiently large N ,

dN,ε ≤ d∞ + ε̃+ ε̄+K(Ψ1,Ψ2, ξ1, ξ2)ε;

and, because N(ε̃, ε̄) does not depend on ε,

dN,εN ≤ d∞ + ε̃+ ε̄+K(Ψ1,Ψ2, ξ1, ξ2)εN ,

for all N > N(ε̃, ε̄), so

lim
N→∞

dN,εN ≤ d∞ + ε̃+ ε̄.

Because ε̃ > 0 and ε̄ > 0 are arbitrary,

lim
N→∞

dN,εN ≤ d∞.

We have already noted that dN,εN = cN,εN by ordinary linear programming duality. In Appendix

D.3 we show that that

d∞ = c∞. (D.3)

Thus,

lim
N→∞

cN,εN = lim
N→∞

dN,εN ≤ d∞ = c∞,

which, together with (D.1) proves the result.

D.3 A Duality Result

In this section, we prove the equality c∞ = d∞ used in Appendix D.2. The result follows from The-

orem 5.10 of Villani [36], once we show that we can transform the primal problem to an equivalent

problem that satisfies the conditions of the theorem. We formulate the equivalent problem using a

result of Luenberger [28], for which we adopt his notation.

Let X be the vector space of signed finite measures µ on (Rd × Rd)× Rd satisfying∫
Rd×Rd

‖u‖µ(dx,Rd) <∞.
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Let Ω ⊂ X be the subset of probability measures with marginals p and q, which is a convex set.

For µ ∈ X, let

f(µ) =

∫
(Rd×Rd)×Rd

− < hX(x, z), y > dµ((x, z), y).

Let G(·) be a mapping from X to R defined by

G(µ) =

∫
< hZ(x, z), y > dµ((x, z), y)− v0.

The primal problem is

c∞ = − inf
µ∈Ω,G(µ)=0

f(µ).

Define

L(ξ) = inf
µ∈Ω

{∫
− < hX(x, z), y > dµ((x, z), y) + ξ ·G(µ)

}
. (D.4)

Now apply Theorem 1 of Section 8.6 of Luenberger [28] (with the extension in problem 7 of Section

8.8) to conclude that

inf
µ∈Ω,G(µ)=0

f(µ) = max
ξ∈R

L(ξ),

and there exists ξ∗ such that L(ξ∗) = −c∞.

Drop the constant term −ξ∗ · v0 in L(ξ∗), and denote it by L∗, so

L∗ = inf
µ∈Π(p,q)

∫
− < hX(x, z), y > dµ((x, z), y) + ξ∗ ·

∫
< hZ(x, z), y > dµ((x, z), y)

= inf
µ∈Π(p,q)

∫ (
− < hX(x, z), y > +ξ∗· < hZ(x, z), y >

)
dµ((x, z), y)

Define the dual problem DL∗,

DL∗ = sup
(φ,ψ)∈L1(p)×L1(q); −φ−ψ≤−c+ξ∗·v

−
∫
Rd×Rd

φ(x, z)dp(x, z)−
d+1∑
j=1

ψ(yj)q(yj),

where c((x, z), y) =< hX(x, z), y >, and v((x, z), y) =< hZ(x, z), y >.

Let a(x, z) = 1
2 < (x, ξ∗z), (x, ξ∗z) > and b(y) = 1

2 < y, y >. We have

− < hX(x, z), y > +ξ∗· < hZ(x, z), y > ≥ −a(x, z)− b(y).

By condition (i) in Theorem 6.1, a ∈ L1(p) and b ∈ L1(q). It follows from Theorem 5.10 of Villani

[36] that strong duality holds, i.e. L∗ = DL∗.
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Since L∗ < +∞ and − < hX(x, z), y > +ξ∗· < hZ(x, z), y > ≤ a(x, z) + b(y), it follows from

part (iii) of Theorem 5.10 of Villani [36] that solutions exists for both problems. Let (φ∗, ψ∗) denote

an optimal solution to DL∗, then (φ∗, ψ∗, ξ∗) is a feasible solution to the dual problem

d∞ = inf
φ(x,z)+ψ(y)+ξv((x,z),y)≥c((x,z),y)

∫
Rd×Rd

φ(x, z)dp(x, z) +

d+1∑
j=1

ψ(yj)q(yj) + ξv0.

Let d∗ denote the objective value by substituting (φ∗, ψ∗, ξ∗) in the objective function. Note that

d∗ = −DL∗ + ξ∗v0 = −L∗ + ξ∗v0 = c∞, so (φ∗, ψ∗, ξ∗) is optimal for the dual problem d∞, and

strong duality holds d∞ = c∞.

E Proof of Theorem 6.2

In this section we show the convergence result for the penalty problems with the auxiliary con-

straints in (6.1) as N →∞. We start with the convergence of the objective function value asserted

in part (i) of the theorem.

E.1 Convergence of the Optimal Objective Value

Let G∞ denote the optimal value of the penalty limit problem,

G∞ = sup
µ∈Π̄(p,q)

G(µ, ν) = sup
µ∈Π̄(p,q)

∫
< x, y > dµ− 1

θ

∫
ln(

dµ

dν
) dµ. (E.1)

Let GN,ε be the optimal value of the penalty finite relaxed problem with sample size N ,

GN,ε = sup
µ∈Π̄ε(pN ,qN )

G(µ, νN ) = sup
µ∈Π̄ε(pN ,qN )

∫
< x, y > dµ− 1

θ

∫
ln(

dµ

dνN
) dµ. (E.2)

Lemma E.1. limN→∞GN,εN ≥ G∞, for εN = 1/Nα and α ∈ (0, 1/2).

Proof: Let µ ∈ Π̄(p, q) be any feasible solution to the limiting problem. Define a mass function on

the pairs ((Xi, Zi), yj), i = 1, · · · , N , j = 1, · · · , d+ 1:

µN ((Xi, Zi), yj) =
1

N
q(yj |(Xi, Zi)).

From the argument in Appendix D, we know that µN ∈ Π̄N
εN

, so

GN,εN ≥
N∑
i=1

d+1∑
j=1

µN ((Xi, Zi), yj) < Xi, yj > −
1

θ
D(µN |νN )

=
1

N

N∑
i=1

d+1∑
j=1

q(yj |(Xi, Zi)) < Xi, yj > −
1

θ

1

N

N∑
i=1

d+1∑
j=1

ln(
q(yj |(Xi, Zi))

q(yj)
)q(yj |(Xi, Zi))

→
∫
< x, y > dµ((x, z), y)− 1

θ

∫
ln(

dµ

dν
)dµ,



E.1 Convergence of the Optimal Objective Value 37

the limit following from the strong law of large numbers. Thus, limN→∞GN,εN ≥ G∞. �

We have shown that the limiting objective value is a lower bound for the sequence in part (i) of

Theorem 6.2. We will use a dual formulation to show the reverse inequality. The argument requires

several lemmas.

We reformulate the problem of maximizing G(·, ν) as

− 1

θ
min

µ∈Π̄(p,q)

∫ (
dµ((x, z), y)

exp(θ < x, y >)dν((x, z), y)

)
dµ((x, z), y) = −1

θ
min

µ∈Π̄(p,q)
D(µ|e(θ<x,y>)ν). (E.3)

Dropping the constant factor −1/θ from (E.3), we get the equivalent problem

P∞ = min
µ∈Π̄(p,q)

D(µ|e(θ<x,y>)ν) (E.4)

Define Π̄∗(p, q) to be the set of functions h : (Rd × Rd)× Rd → R of the form

h((x, z), y) = h1(x, z) + h2(y) + h3v((x, z), y)− h4

where

v((x, z), y) =< hZ(x, z), y >=< z, y >,

with ∫
h((x, z), y)dµ((x, z), y) ≥ 0, for all µ ∈ Π̄(p, q).

Lemma E.2. Let D∞ be the dual problem to P∞, defined as

D∞ = inf
h∈Π̄∗(p,q)

ln

∫
eh((x,z),y)+θ<x,y> dν((x, z), y), (E.5)

The following statements hold:

(i) The optimal solution to the primal problem is

dµ∗((x, z), y) = ea(x,z)+b(y)+ξv((x,z),y)+θ<x,y> dν((x, z), y). (E.6)

(ii) The optimal solution to the dual problem is

h∗((x, z), y) = h∗1(x, z) + h∗2(y) + h∗3v((x, z), y)− h∗4,

h∗1(x, z) = a(x, z), h∗2(x) = b(x), h∗3 = ξ, h∗4 =

∫
a(x, z) + b(y) + ξ · v((x, z), y) dµ∗((x, z), y).

(iii) Strong duality holds, P∞ = −D∞.
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Proof: Conclusion (i) follows Theorem 3 of Rüschendorf and Thomsen [34].

To apply the dual formulation in Bhattacharya, we consider the set Π̄∗(p, q) of functions h :

(Rd × Rd)× Rd → R of the form

h((x, z), y) = h1(x, z) + h2(y) + h3v((x, z), y)− h4

with, for any µ ∈ Π̄(p, q)∫
h((x, z), y)dµ((x, z), y) =

∫
h1(x, z) dp((x, z)) +

∫
h2(y) dq(y) + h3v0 − h4

≥ 0.

Observe that (the convex cone) Π̄∗(p, q) is contained within the dual cone of Π̄(p, q). We consider

the dual problem

inf
h∈Π̄∗

ln

∫
eh((x,z),y)+θ<x,y> dν((x, z), y).

With µ∗, a(x, z), b(x), ξ as in (E.6), set

h∗1(x, z) = a(x, z), h∗2(x) = b(x), h∗3 = ξ, h∗4 = c ≡
∫
a(x, z)+b(y)+ξ·v((x, z), y) dµ∗((x, z), y).

Observe that∫
h∗((x, z), y)dµ((x, z), y) =

∫
h∗1((x, z)) dp((x, z)) +

∫
h∗2(y) dq(y) + h∗3v0 − h∗4 = 0,

for all µ ∈ Π̄(p, q), so this (h∗1, h∗2, h∗3, h∗4) is dual feasible. Moreover, with this choice of h∗1, h∗2, h∗3,

h∗4, the dual objective function value in (E.5) is

D∞ = ln

∫
ea(x,z)+b(y)+ξv((x,z),y)−c+θ<x,y> dν((x, z), y) = ln

∫
e−c dµ∗(x, y) = −c.

The primal objective function value is

P∞ = D(µ∗|eθ<x,y>ν) =

∫
a(x, z) + b(y) + ξv((x, z), y) dµ∗((x, z), y) = c.

It follows from Theorem 2.1 of Bhattacharya that this choice of (h∗1, h
∗
2, h
∗
3, h
∗
4) is optimal for the

dual problem (E.5), and strong duality holds P∞ = −D∞. �

Next we establish a similar result for the discrete problem. Define Π̄∗εN (pN , qN ) to be set of

functions h : (Rd × Rd)× Rd → R of the form

h((x, z), y) = h1(x, z) + h2(y) + h3v((x, z), y)− h4

with ∫
h((x, z), y)dµN ((x, z), y) ≥ 0,

for all µN ∈ Π̄εN (pN , qN ).
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Lemma E.3. For the primal problem

PN,εN = min
µ∈Π̄εN (pN ,qN )

∫ (
dµ((x, z), y)

exp(θ < x, y >)dνN ((x, z), y)

)
dµ((x, z), y), (E.7)

define the dual

DN,εN = inf
h∈Π̄∗εN (pN ,qN )

ln

∫
eh((x,z),y)+θ<x,y> dνN ((x, z), y). (E.8)

The following statements hold:

(i) The optimal solution to the primal problem takes the form

dµ∗N ((x, z), y) = ea
N (x,z)+bN1 (y)+bN2 (y)+ξN1 v((x,z),y)+ξN2 v((x,z),y)+θ<x,y> dνN ((x, z), y),

where bN1 (y) ≤ 0, bN2 (y) ≥ 0, ξN1 ≤ 0, ξN2 ≥ 0.

(ii) A feasible solution to the dual is h̃,

h̃((x, z), y) = h̃1(x, z) + h̃2(y) + h̃3v((x, z), y)− h̃4, where

h̃1(x, z) = a(x, z), h̃2(x) = b1(x) + b2(x), h̃3 = ξ1 + ξ2,

h̃4 =

∫
a(x, z) dpN (x, z)+

∫
(b1(y)+b2(y)) dqN (y)+(ξ1 +ξ2)v0 +

d+1∑
j=1

(b1(yj)−b2(yj))εN +(ξ1−ξ2)εN

where b1(y) = b(y)−, b2(y) = b(y)+, and ξ1 = ξ−, ξ2 = ξ+, for a(x, z), b(x), ξ as in (E.6).

(iii) D∞ ≥ lim
N→∞

DN,εN .

Proof: Conclusion (i) is the discrete form of part (i) in Lemma E.2. For (ii), we consider the dual

problem

inf
h∈Π̄∗εN (pN ,qN )

ln

∫
eh((x,z),y)+θ<x,y> dνN ((x, z), y).

Let h̃1(x, z) = a(x, z), h̃2(x) = b1(x) + b2(x), h̃3 = ξ1 + ξ2 and

h̃4 = c̃ ≡
∫
a(x, z) dpN (x, z) +

∫
b1(y) + b2(y) dqN (y) + (ξ1 + ξ2)v0

+

d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN

where b1(y) = b(y)−, b2(y) = b(y)+, and ξ1 = ξ−, ξ2 = ξ+, for a(x, z), b(x), ξ as in (E.6).

Notice that
d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN ≤ 0.
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For any µN ∈ Π̄εN (pN , qN ),∫
h̃(x, y)dµN ((x, z), y) =

∫
h̃1(x, z) dpN (x, z) +

∫ (
h̃2(y) + h̃3v((x, z), y)

)
dµN ((x, z), y)− h̃4

≥
∫
h̃1(x, z) dpN (x, z) +

∫
h̃2(y) dqN (y) + h̃3v0 − h̃4

+

d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN

=

∫
a(x, z) dpN (x, z) +

∫
b1(y) + b2(y) dqN (y) + (ξ1 + ξ2)v0

+
d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN − h̃4

= 0

so this (h̃1, h̃2, h̃3, h̃4) is feasible for the dual problem (E.8).

For (iii), let D̃N,εN denote the objective value in (E.8) with solution h̃. Since h̃ is dual feasible,

D̃N,εN ≥ DN,εN

We show that D̃N,εN → D∞ as N →∞. Substituting h̃ in (E.8)

D̃N,εN = ln

N∑
i=1

d+1∑
j=1

exp
(
a(Xi, Zi) + b(yj) + ξv((Xi, Zi), yj)−

1

N

N∑
i=1

a(Xi, Zi)−
∫
b(y) dqN (y)

−ξv0 −
d+1∑
j=1

|b(yj)|εN − |ξ|εN + θ < Xi, yj >
)
· 1

N
· qN (yj)

= ln exp
(
− 1

N

N∑
i=1

a(Xi, Zi)−
∫
b(y) dqN (y)− ξv0 −

d+1∑
j=1

|b(yj)|εN − |ξ|εN
)

+ ln
1

N

N∑
i=1

d+1∑
j=1

exp
(
a(Xi, Zi) + b(yj) + ξv(Xi, yj) + θ < Xi, yj >

)
qN (yj)

=
(
− 1

N

N∑
i=1

a(Xi, Zi)−
1

N

N∑
j=1

b(Yj)− ξv0 −
d+1∑
j=1

|b(yj)|εN − |ξ|εN
)

+ ln
( 1

N2

N∑
i=1

N∑
j=1

exp(a(Xi, Zi) + b(Yj) + ξv((Xi, Zi), Yj) + θ < Xi, Yj >)
)

→ −
∫
a(x, z) dp(x, z)−

∫
b(y) dq(y)− ξv0 + ln

∫
ea(x,z)+b(y)+ξv((x,z),y)+θ<x,y> dν = D∞

so D∞ ≥ lim
N→∞

DN,εN . �
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Lemma E.4. G∞ ≥ lim supN GN,εN .

Proof: From strong duality of the continuous problem (E.4) and (E.5) in Lemma E.2, we have

G∞ = −1
θP∞ = 1

θD∞. By weak duality of the finite relaxed problem (E.7) and (E.8), we have

1
θDN,εN ≥ −1

θPN,εN = GN,εN . Therefore by Lemma E.3, we have

G∞ =
1

θ
D∞ ≥ lim sup

N

1

θ
DN,εN ≥ lim sup

N
GN,εN .

�

Combining Lemma E.1 and Lemma E.4 proves part (i) of Theorem 6.2.

E.2 Weak Convergence of Optimal Solutions

The argument is similar to that of Section C.2. Define

Π̄N = Π̄(p, q) ∪
(
∪

n≥N
Π̄εn(pn, qn)

)
.

By the argument used in Lemma C.3, we have

Lemma E.5. Π̄N is compact for all sufficiently large N, a.s.

The optimizers µ̄∗N are contained in the sets Π̄εN (pN , qN ), so for all sufficiently large N , the

sequence µ̄∗n, n ≥ N , is contained in a compact set Π̄N , and then every subsequence has a further

subsequence that converges weakly.

Suppose the subsequence µ̄∗nk converges, say µ̄∗nk ⇒ µ̃. The marginals of µ̄∗nk converge to p and

q, and limk→∞
∫
v((x, z), y) dµ̄∗nk = v0, so µ̃ ∈ Π̄(p, q), making µ̃ feasible for the limiting problem.

We claim that it is optimal. We have, a.s.,∫
eθ<hx(x,z),y> dµ̄∗nk ≤

∫ d+1∑
j=1

eθ<hx(x,z),yj> dpnk(x, z)→
∫ d+1∑

j=1

eθ<hx(x,z),yj> dp(x, z),

by the strong law of large numbers, because the condition Eν [eθ<hx(x,z),y>] < ∞ implies that the

limit is finite. This is then more than sufficient to ensure that∫
< hx(x, z), y > dµ̄∗nk((x, z), y)→

∫
< hx(x, z), y > dµ̃((x, z), y). (E.9)

Moreover, relative entropy is lower semi-continuous with respect to weak convergence (Dupuis and

Ellis [19], Lemma 1.4.3), so

D(µ̃|ν) ≤ lim
k→∞

D(µ̄∗nk |νnk)



Bounding Wrong Way Risk 42

and then

G(µ̃, ν) ≥ lim
k→∞

G(µ̄∗nk , νnk) = sup
µ∈Π̄(p,q)

G(µ, ν),

by part (i) of the theorem. Thus, µ̃ is optimal. Using the equivalence between the optimization of

G(·, ν) and (E.4), we know from Theorem 2.1 of Csiszár [16] that the maximum is uniquely attained

by some µ̄∗, and thus µ̃ = µ̄∗.

We have shown that every subsequence of µ̄∗n has a further subsequence that converges to µ̄∗.

It follows that µ̄∗n ⇒ µ̄∗. This proves part (ii) of the theorem. The uniform integrability needed for

(6.5) follows as in (E.9), which proves part (iii).
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