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Abstract We derive an explicit representation of the transitions of the Heston stochastic volatil-
ity model and use it for fast and accurate simulation of the model. Of particular interest is the
integral of the variance process over an interval, conditional on the level of the variance at the
endpoints. We give an explicit representation of this quantity in terms of infinite sums and
mixtures of gamma random variables. The increments of the variance process are themselves
mixtures of gamma random variables. The representation of the integrated conditional variance
applies the Pitman-Yor decomposition of Bessel bridges. We combine this representation with
the Broadie-Kaya exact simulation method and use it to circumvent the most time-consuming
step in that method.
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1 Introduction

The Heston [18] stochastic volatility model is among the most fundamental models in both the
theory and practice of financial mathematics. It provides a natural extension beyond geometric
Brownian motion as a description of asset price dynamics, modeling volatility as a positive, mean-
reverting, stochastic process. It also offers some tractability: Heston [18] showed that standard
European options can be priced in this model through an extension of the Black-Scholes formula;
evaluation of this formula reduces to numerical inversion of a characteristic function.

Despite this degree of tractability, the Heston model has proved notoriously difficult to sim-
ulate accurately. Standard Euler and Milstein discretization schemes (as in Kloeden and Platen
[24]) often produce erratic results when applied to the model, largely as a consequence of the
square root functions in its dynamics, which violate the Lipschitz conditions typically used to
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ensure convergence. Indeed, even the convergence of discretization schemes for the univariate
variance process (the Cox-Ingersoll-Ross [10] process) has received considerable attention (see,
in particular, Alfonsi [3], Berkaoui, Bossy, and Diop [7], Deelstra and Delbaen [11], and Higham
and Mao [19]). Discretization methods for the Heston model (and, in some cases, its extensions)
include Alfonsi [4], Andersen [5], Van Haastrecht and Pelsser [31], Kahl and Jäckel [21], and
several methods compared in Lord, Koekkoek, and van Dijk [26]. Some of these methods are
limited to certain parameter ranges; Andersen [5] uses a combination of approximations to make
his method applicable to the variety of parameters that result from calibrating the Heston model
to different markets.

Broadie and Kaya [8] provided a breakthrough by showing that the transitions of the Heston
model can be simulated exactly, with no discretization error. Key to their method is sampling
the integral of the variance process conditional on its endpoints. Broadie and Kaya [8] give
the characteristic function of this integral and generate samples through numerical transform
inversion. As noted by Broadie and Kaya [8] and subsequently by Lord et al. [26], this step is
rather time-consuming because of the form of the characteristic function and, most importantly,
because of its dependence on values of the variance process. This dependence precludes computing
and storing a numerical approximation to the distribution in advance — the relevant distribution
changes at each step of the simulation.

We address this key issue through a gamma expansion of the integral of the variance process
conditional on its endpoints; that is, we provide an exact representation of its distribution as
an infinite sum of mixtures of gamma random variables. This representation is based on results
of Pitman and Yor [27] on decompositions of Bessel bridges and results of Pitman and Yor [28]
on representations of certain infinitely divisible distributions. We note that a gamma expansion
is available for the variance process itself. Thus, a transition of the Heston model can in prin-
ciple be simulated exactly using sums and mixtures of gamma random variables and a single
normal random variable. For practical implementation, we truncate certain infinite series, and
we examine the resulting error both theoretically and numerically; we also consider some com-
putational shortcuts. Across a variety of parameter values, we find that the method is both fast
and accurate.

The rest of this paper is organized as follows. We present our main representation result in
Section 2. Section 3 examines the truncation error and provides a central limit theorem and a
gamma approximation for the remainder from truncation. Section 4 details the practical appli-
cation to simulation. Section 5 reports numerical results, and Section 6 provides an alternative
representation for time-varying step sizes. Section 7 concludes the paper.

2 Main Result

The Heston model is described by the pair of stochastic differential equations

dSt

St
= µdt +

√
Vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
(2.1)

dVt = κ(θ − Vt) dt + σ
√

Vt dW 1
t , (2.2)

in which (W 1,W 2) is a standard two-dimensional Brownian motion. The variable St describes
the level of an underlying asset and Vt the variance of its instantaneous returns. The parameters
κ, θ, σ (and typically also µ) are positive, and ρ takes values in [−1, 1]. We take the initial
conditions S0 and V0 to be strictly positive.

The main result of this section provides a representation of the increments of the Heston
model. Because the process (S, V ) is a time-homogeneous Markov process, a representation of
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(St, Vt) as a function of t and (S0, V0) extends to a representation of (St2 , Vt2) given (St1 , Vt1)
for arbitrary t1 < t2.

We begin by considering the variance process (2.2). This is a square-root diffusion or Cox-
Ingersoll-Ross [10] process, and its transition law is a scaled noncentral chi-square distribution;
more precisely, we have

Vt =
σ2(1− e−κt)

4κ
χ′2δ

(
4κe−κt

σ2(1− e−κt)
V0

)
, t > 0, δ =

4κθ

σ2
, (2.3)

where χ′δ
2(λ) denotes a noncentral chi-square random variable with δ degrees of freedom and non-

centrality parameter λ. This representation allows exact simulation of Vt given V0, as discussed
in Scott [30].

Broadie and Kaya [8] build on this representation to simulate the Heston model. Writing

St = S0 exp
(

µt− 1
2

∫ t

0

Vsds + ρ

∫ t

0

√
VsdW 1

s +
√

1− ρ2

∫ t

0

√
VsdW 2

s

)
,

they observe that log(St/S0) is conditionally normal, given
∫ t

0
Vsds and

∫ t

0

√
VsdW 1

s ,

log
St

S0
∼ N

(
µt− 1

2

∫ t

0

Vsds + ρ

∫ t

0

√
VsdW 1

s , (1− ρ2)
∫ t

0

Vsds

)
(2.4)

as W 2 is independent of V . From (2.2), we also have
∫ t

0

√
VsdW 1

s =
1
σ

{
Vt − V0 − κθt + κ

∫ t

0

Vsds

}
.

Hence, if one can sample from the joint distribution of the pair
(

Vt,

∫ t

0

Vs ds

)
,

then simulating St given (S0, V0) reduces to sampling from the conditional normal distribution
in (2.4). As Vt can be sampled using (2.3), the Broadie-Kaya method reduces the problem of
exact simulation of the Heston model to the problem of sampling from

(∫ t

0

Vs ds

∣∣∣∣ V0, Vt

)
, (2.5)

the conditional distribution of the integrated variance over [0, t], given the level of the variance at
the endpoints. Broadie and Kaya [8] sample from this distribution through numerical inversion
of its characteristic function (as discussed in Section 4); this method is rather time-consuming,
particularly because the characteristic function changes at each step along a simulated path as
the corresponding values of V at the endpoints of each interval change. Our focus is on deriving
a more tractable representation of (2.5), for which we use properties of squared Bessel bridges
studied by Pitman and Yor [27] and investigate associated characteristic functions.

Remark 2.1 The notation in (2.5) is somewhat informal, since it involves conditioning on an
outcome of probability 0, but it can be made precise as follows. Define a process B through the
time change

Vt = e−κtB

(
eκt − 1
4κ/σ2

)
; (2.6)
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then B satisfies

dB(t) = δdt + 2
√

B(t)dW (t), W

(
eκt − 1
4κ/σ2

)
=

∫ t

0

σ

2
eκs/2dW 1

s ,

which makes B a δ-dimensional squared Bessel process, with δ as defined in (2.3). The conditional
law (Bs, 0 ≤ s ≤ t|B0, Bt) is made precise by Pitman and Yor [27], p.446, and this defines the
conditional law (Vs, 0 ≤ s ≤ t|V0, Vt) through (2.6).

To state our main result, we need to recall the definition of the Bessel distribution, which we
denote by BES(ν, z), with parameter ν > −1 and z > 0 (see Yuan and Kalbfleisch [32] for a
study of this distribution). The BES(ν, z) distribution is supported on the nonnegative integers
with probability mass function

pn ≡ pn(ν, z) =
(z/2)2n+ν

Iν(z)n!Γ (n + ν + 1)
, n ≥ 0,

where Iν is a modified Bessel function of the first kind. We now have the following result:

Theorem 2.2 The distribution (2.5) of the integrated variance conditional on its endpoints ad-
mits the representation

(∫ t

0

Vs ds

∣∣∣∣ V0 = v0, Vt = vt

)
d= X1 + X2 + X3 ≡ X1 + X2 +

η∑

j=1

Zj , (2.7)

in which X1, X2, η, Z1, Z2, . . . are mutually independent, the Zj are independent copies of a
random variable Z, and η is a Bessel random variable with parameters ν = δ/2− 1 and

z =
2κ/σ2

sinh(κt/2)
√

v0vt.

Moreover, X1, X2 and Z have the following representations:

X1
d=

∞∑
n=1

1
γn

Nn∑

j=1

Expj(1), X2
d=

∞∑
n=1

1
γn

Γn(δ/2, 1), Z
d=

∞∑
n=1

1
γn

Γn(2, 1), (2.8)

where δ = 4κθ/σ2,

λn =
16π2n2

σ2t(κ2t2 + 4π2n2)
, γn =

κ2t2 + 4π2n2

2σ2t2
,

the Nn are independent Poisson random variables with respective means (v0 +vt)λn, the Expj(1)
are independent, unit-mean exponential random variables, and the Γn(α, β) denote independent
gamma random variables with shape parameter α and scale parameter β.

Remark 2.3 Before proceeding with the proof, we note that the distribution of the increments
of V can be put in a related form. Let γ = 4κ/(σ2(1− exp(−κt))), then

(Vt|V0 = v0)
d=

1
γ


Γ0(δ/2, 2) +

Nλ/2∑

j=1

Γj(1, 2)


 , λ = γe−κtv0,

with Γ0, Γ1, . . . denoting independent gamma random variables and Nλ/2 a Poisson random
variable with mean λ/2. This follows from the representation of the noncentral chi-square distri-
bution as a Poisson mixture of ordinary chi-square distributions. The Bessel random variable η
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can also be expressed in terms of gamma and Poisson random variables; for example, it follows
from (5.j) in Pitman and Yor [27] that

η ∼

N |Γ (ν + 1, 1) +

N∑

j=1

Expj(1) = z2/4


 ,

with N a unit-mean Poisson random variable. However, we will not use this representation to
generate η.

Proof We prove the result in two steps. We first decompose (2.5) into the the sum of three
independent random variables and identify their Laplace transforms; we then derive the series
representations from the transforms.

For the first step, we apply a result of Pitman and Yor [27] through a transformation of the
variance process. Fix t > 0 and define {As}0≤s≤1 by setting

As =
4

σ2t
Vst. (2.9)

Then A solves the stochastic differential equation

dAs = (δ + 2aAs) ds + 2
√

As dWs

with a = −κt/2 and W a standard Brownian motion, Ws = W 1
st/
√

t. This is the equation for
a δ-dimensional squared Ornstein-Uhlenbeck (OU) process with parameter a. (For integer δ, A
has the law of the squared Euclidean norm of a δ-dimensional OU process; the name applies by
extension to all real δ ≥ 0.) Let us denote by Aδ,1

x,y = {Aδ,1
x,y(s)}0≤s≤1, a process with law

(As, 0 ≤ s ≤ 1|A0 = x,A1 = y) , (2.10)

the law of A conditioned on its endpoints — a squared OU bridge. Pitman and Yor [27] show
(see the discussion of Theorem 5.8 following equation (6.d) on p.456 of [27]) that the squared
OU bridge admits the decomposition

Aδ,1
x,y

d= A0,1
x,0 + A0,1

0,y + Aδ,1
0,0 + A4η,1

0,0 ,

in which the four squared OU bridges on the right are independent processes, and η is an
independent Bessel random variable with parameters ν = δ/2 − 1 and z =

√
xya/ sinh(a). As

explained in Section 5.3 of [27], A0,1
0,y should be understood as the time-reversal of the process

A0,1
y,0 because 0 is an absorbing state for a 0-dimensional squared OU process.

From the decomposition above, we get
∫ 1

0

Aδ,1
x,y(s) ds

d=
∫ 1

0

A0,1
x,0(s) ds +

∫ 1

0

A0,1
0,y(s) ds +

∫ 1

0

Aδ,1
0,0(s) ds +

∫ 1

0

A4η,1
0,0 (s) ds.

The law of the second integral on the right would be unchanged if we replaced its integrand with
an independent copy of A0,1

y,0, in view of the definition of A0,1
0,y through time reversal. Moreover,

independent OU bridges have the following additivity property:

Aδ,1
x,0 + Aδ′,1

y,0
d= Aδ+δ′,1

x+y,0 ;

this follows from a similar additivity property for squared Bessel bridges (equation (1.b) in
Pitman and Yor [27]) through the transformation (6.b) in [27]. Therefore, we have

∫ 1

0

Aδ,1
x,y(s) ds

d=
∫ 1

0

A0,1
x+y,0(s) ds +

∫ 1

0

Aδ,1
0,0(s) ds +

∫ 1

0

A4η,1
0,0 (s) ds. (2.11)
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The additivity property also allows us to express the last term on the right as
∫ 1

0

A4η,1
0,0 (s) ds

d=
η∑

j=1

∫ 1

0

(
A4,1

0,0

)(j)

(s) ds,

using independent copies (A4,1
0,0)

(j) of A4,1
0,0.

Next, we convert (2.11) into a decomposition of (2.5). It follows from (2.9) and (2.10) that
(∫ t

0

Vs ds

∣∣∣∣ V0 = v0, Vt = vt

)
d=

σ2t2

4

∫ 1

0

Aδ,1
x,y(s) ds

with x = 4v0/(σ2t) and y = 4vt/(σ2t). Thus, (2.7) holds with

X1 =
σ2t2

4

∫ 1

0

A0,1
x+y,0(s) ds,

X2 =
σ2t2

4

∫ 1

0

Aδ,1
0,0(s) ds,

Z =
σ2t2

4

∫ 1

0

A4,1
0,0(s) ds.

Since a = −κt/2, x = 4v0/(σ2t) and y = 4vt/(σ2t), we have

z =
a

sinh(a)
√

xy =
2κ/σ2

sinh(κt/2)
√

v0vt.

To derive the series representations of X1, X2, and Z, we record their Laplace transforms in
the following lemma, which is proved in the appendix.

Lemma 2.4 The Laplace transforms Φ1, Φ2, ΦZ of X1, X2 and Z are, for b ≥ 0,

Φ1(b) = exp
(

(v0 + vt)
σ2

(
κ coth

κt

2
− L coth

Lt

2

))
, (2.12)

Φ2(b) =
(

L

κ
· sinhκt/2
sinhLt/2

)δ/2

, (2.13)

ΦZ(b) =
(

L

κ
· sinhκt/2
sinhLt/2

)2

, (2.14)

where L =
√

2σ2b + κ2.

A useful tool in working with these Laplace transforms is the following infinite product from
Pitman and Yor [28], p.308:

∞∏
n=1

(
1 +

x2

π2n2

)−1

=
x

sinhx
. (2.15)

From Ahlfors [2], p.192, Theorems 5 and 6, we know that an infinite product
∏

(1+an) with an 6=
−1 converges simultaneously with

∑
log(1 + an) (using the principal branch in C if necessary)

and that this product converges absolutely if and only if
∑ |an| does. These properties and (2.15)

imply that
∞∑

n=1

log
(

1 +
x2

π2n2

)
= − log

x

sinhx
.
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The series on the left as well as its termwise derivative is uniformly convergent on compact
intervals, so we can deduce that

∞∑
n=1

2x2

x2 + π2n2
= x cothx− 1.

It follows that, for real values x ≥ y ≥ 0, we have

x coth x− y coth y =
∞∑

n=1

2x2

x2 + π2n2
−

∞∑
n=1

2y2

y2 + π2n2
=

∞∑
n=1

2π2n2(x2 − y2)
(x2 + π2n2)(y2 + π2n2)

.

Plugging x = Lt/2, y = κt/2 into this formula (with L =
√

2σ2b + κ2) and rearranging terms,
we get

1
σ2

(
κ coth

κt

2
− L coth

Lt

2

)
= −

∞∑
n=1

16π2n2

σ2t(κ2t2 + 4π2n2)
· b

b + κ2t2+4π2n2

2σ2t2

= −
∞∑

n=1

λnb

b + γn
.

This provides an alternative expression for the Laplace transform of X1 in (2.12).
Now we compare this Laplace transform with that of the first series in (2.8). Set

X ′
1 =

∞∑
n=1

1
γn

Nn∑

j=1

Expj(1).

This random variable is well-defined because the sum of variances
∑∞

n=1 2(v0 +vt)λn/γ2
n is finite,

and thus the infinite sum converges almost surely. For any b ≥ 0, we have

logEe−bX′
1 = logE exp


−b

∞∑
n=1

1
γn

Nn∑

j=1

Expj(1)




=
∞∑

n=1

logE exp


− b

γn

Nn∑

j=1

Expj(1)




= −
∞∑

n=1

(v0 + vt)λnb

b + γn
.

Hence, by the uniqueness of the Laplace transform, X1
d= X ′

1, and we can express the distribution
of X1 with the series representation in (2.8).

For X2, the identities in (2.13) and (2.15) yield

logEe−bX2 =
δ

2

(
log

Lt/2
sinhLt/2

− log
κt/2

sinhκt/2

)

=
δ

2

{
−

∞∑
n=1

log
(

1 +
L2t2

4π2n2

)
+

∞∑
n=1

log
(

1 +
κ2t2

4π2n2

)}

= −δ

2

∞∑
n=1

log
(

1 +
b

γn

)

=
∞∑

n=1

logE exp
(
− b

γn
Γn(δ/2, 1)

)

= logE exp

(
−b

∞∑
n=1

1
γn

Γn(δ/2, 1)

)
.
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The random variable given by the infinite series in the last expression is again well-defined
because the variances of the terms in the series are summable. The expansion of Z is a special
case with δ = 4. ut
Remark 2.5 For the practical application of Theorem 2.2, it is important to note how the terms in
the decomposition (2.7) depend on the endpoints v0 and vt on which we condition. In particular,
we highlight the fact that X2 and Z do not depend on these values at all, so their distributions
do not change as we simulate a path of the Heston model over time steps of length t. The values
of v0 and vt appear in the distribution of the Bessel random variable η and in the means of the
Poisson random variables in X1.

Remark 2.6 We note that X1, X2 and Z belong to certain special classes of infinitely divisible
distributions. Bondesson [6], p.858, defines the class T2 of distributions that are weak limits of
finite convolutions of mixtures of exponential distributions; X1 is clearly in T2. The general-
ized gamma convolutions form the subclass of T2 that are weak limits of finite convolutions of
exponential distributions; X2 and Z are in this subclass.

3 Series Truncation

As explained in the previous section, sampling from the conditional distribution (2.5) is a crucial
step in the Broadie-Kaya [8] method; the decomposition in Theorem 2.2 is useful in sampling
from this distribution. One way (though not the only way) to apply the decomposition is through
truncation of the series that define X1, X2 and Z, so in this section we examine the effect of
truncation.

Define the remainder random variables

XK
1 =

∞∑

n=K+1

1
γn

Nn∑

j=1

Expj(1), XK
2 =

∞∑

n=K+1

1
γn

Γn(δ/2, 1), ZK =
∞∑

n=K+1

1
γn

Γn(2, 1),

resulting from truncating the series at K terms each. The following result shows how the means
and variances of the remainders decrease with K.

Lemma 3.1 As K increases,

EXK
1 ∼ 2(v0 + vt)t

π2K
, V ar(XK

1 ) ∼ 2(v0 + vt)σ2t3

3π4K3
,

EXK
2 ∼ δσ2t2

4π2K
, V ar(XK

2 ) ∼ δσ4t4

24π4K3
,

EZK ∼ σ2t2

π2K
, V ar(ZK) ∼ σ4t4

6π4K3
.

Proof Observe that

V ar(XK
1 ) = (v0 + vt)

∞∑

n=K+1

2λn

γ2
n

= (128(v0 + vt)π2σ2t3)
∞∑

n=K+1

n2

(κ2t2 + 4π2n2)3

∼ (128(v0 + vt)π2σ2t3)
∫ ∞

K

y2

(4π2y2)3
dy

=
2(v0 + vt)σ2t3

3π4K3
.
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Similar calculations establish the other asymptotics. ut
Rather than drop the remainders from truncation, we can approximate them with simpler

random variables to try to reduce the error from truncation in a convenient way. The next result
provides a central limit theorem, supporting a normal approximation for each of the remainders;
but we show that a gamma approximation is also asymptotically valid, and we give a sense in
which it provides a closer approximation to the remainder than does the normal. The gamma
approximation has the added advantage of preserving positivity.

Proposition 3.2 Let RK denote any of the remainder random variables XK
1 , XK

2 or ZK , and
let ΓK denote a gamma random variable with the same mean and variance as RK . Then

RK − E(RK)√
V ar(RK)

=⇒ N (0, 1) and
ΓK − E(RK)√

V ar(RK)
=⇒ N (0, 1), as K ↑ ∞.

Moreover, if we let NK denote a normal random variable with the same mean and variance as
RK , then ΓK is closer to RK than NK is in the following sense: for all b > 0 in a neighborhood
of the origin,

0 ≤ logEebRK − logEebΓK ≤ logEebRK − logEebNK , (3.1)

for all sufficiently large K.

Proof We detail the case RK = XK
1 ; the proofs for the other two cases are very similar.

The Laplace transforms in Lemma 2.4 remain valid for negative arguments sufficiently close
to zero, as well as for all positive arguments. From the representation in (2.8), it follows that,
for all b > 0 in a neighborhood of the origin,

logEebXK
1 =

∞∑

n=K+1

(v0 + vt)λnb

γn − b
= (v0 + vt)

∞∑

n=K+1

∞∑
m=1

λn

(
b

γn

)m

,

and the double sequence is absolutely convergent for each fixed b and K. This yields

logE exp

(
b
XK

1 − EXK
1√

V ar(XK
1 )

)
=

b2

2
+ (v0 + vt)

∞∑
m=3

∞∑

n=K+1

λn

(
b

γn

√
V ar(XK

1 )

)m

.

The asymptotic normality of XK
1 follows from Lemma 15.15 of Kallenberg [22] if the double

sequence in this expression converges to zero.
To establish this convergence, first we observe that, for fixed s > 0

∞∑
m=3

∞∑

n=K+1

λn
sm

γm
n

≤ 4
σ2t

∞∑
m=3

∞∑

n=K+1

sm

γm
n

=
4

σ2t

∞∑
m=3

∞∑

n=K+1

(2σ2t2s)m

(κ2t2 + 4π2n2)m

≤ 4
σ2t

∞∑
m=3

∫ ∞

K

(2σ2t2s)m

(κ2t2 + 4π2y2)m
dy

≤ 4
σ2t

∞∑
m=3

∫ ∞

K

(2σ2t2s)m

(4π2y2)m
dy

≤ 4
σ2t

∞∑
m=3

(
σ2t2s

2π2

)m 1
(2m− 1)K2m−1

.
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Then, we get

∞∑
m=3

∞∑

n=K+1

λn

(
b

γn

√
V ar(XK

1 )

)m

≤ 4
σ2t

∞∑
m=3

(
σ2t2b

2π2
√

V ar(XK
1 )

)m
1

(2m− 1)K2m−1

≤ 4K
σ2t

∞∑
m=3

(
σ2t2b

2π2K2
√

V ar(XK
1 )

)m

=
4K
σ2t

(
σ2t2b

2π2K2
√

V ar(XK
1 )

)3 (
1− σ2t2b

2π2K2
√

V ar(XK
1 )

)−1

,

the last equality holding for all sufficiently large K. Lemma 3.1 now shows that the last expression
goes to zero as K increases.

To match the mean and the variance of XK
1 , the shape parameter αK and the scale parameter

βK of ΓK must satisfy

αK =

(
EXK

1

)2

V ar(XK
1 )

∼ 6(v0 + vt)K
σ2t

, βK =
V ar(XK

1 )
EXK

1

∼ σ2t2

3π2K2
.

From

logEebΓK = −αK log(1− βKb) =
∞∑

m=1

αK

m
(βKb)m,

we get

logE exp

(
b

ΓK − EXK
1√

V ar(XK
1 )

)
=

b2

2
+

∞∑
m=3

αK

m

(
βKb√

V ar(XK
1 )

)m

,

and the asymptotic normality for ΓK follows because

∞∑
m=3

αK

m

(
βKb√

V ar(XK
1 )

)m

≤ αK

(
βKb√

V ar(XK
1 )

)3 (
1− βKb√

V ar(XK
1 )

)−1

→ 0.

Moreover, we have

logEebXK
1 − logEebΓK = (v0 + vt)

∞∑
m=3

( ∞∑

n=K+1

λn

γm
n

)
bm −

∞∑
m=3

(
αKβm

K

m

)
bm

= (v0 + vt)
∞∑

m=3

∞∑

n=K+1

λn

γm
n

(1−Rn,m)bm

with

Rn,m =
αKβm

K/(m(v0 + vt))∑∞
n=K+1 λn/γm

n

.
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The denominator of Rn,m satisfies

∞∑

n=K+1

λn

γm
n

=
16π2

σ2t

∞∑

n=K+1

n2(2σ2t2)m

(κ2t2 + 4π2n2)m+1

∼ 4
σ2t

∞∑

n=K+1

(2σ2t2)m

(4π2n2)m

∼ 4
σ2t

(
σ2t2

2π2

)m ∫ ∞

K

1
y2m

dy

=
4

σ2t

(
σ2t2

2π2

)m 1
(2m− 1)K2m−1

,

and the numerator of Rn,m satisfies αKβm
K/(m(v0+vt)) ∼ 6/(mσ2tK2m−1)

(
σ2t2/(3π2)

)m. These
properties imply that

Rn,m ∼ 6m− 3
2m

(
2
3

)m

, as K →∞.

Thus,

logEebXK
1 − logEebΓK = (v0 + vt)

∞∑
m=3

∞∑

n=K+1

λn

γm
n

(1−Rn,m)bm

≤ (v0 + vt)
∞∑

m=3

∞∑

n=K+1

λn

γm
n

bm

= logEebXK
1 − logEebNK ,

for all sufficiently large K. ut

The comparison in (3.1) indicates that the cumulant generating function (the log moment
generating function) of the remainder is closer to that of the gamma approximation than to that
of the normal approximation. Moreover, it indicates that the tail of the remainder is actually
heavier than that of the gamma approximation. These observations suggest that approximating
the remainder with a gamma random variable is preferable to simply dropping the remainder
or approximating it with a normal random variable, and these suggestions are supported by
separate numerical comparisons (not included here). Thus, when we truncate at level K, we use
an approximation of the form

X1 ≈
K∑

n=1

1
γn

Nn∑

j=1

Expj(1) + Γ 1
K ,

preserving the first two moments of X1, and similarly for X2 and Z.

Remark 3.3 We noted in the previous section that X1, X2 and Z belong to special classes of
infinitely divisible distributions. Indeed, it is easy to see from (2.12) and (2.13) that X1 and X2

are Lévy processes with “time” parameters v0+vt and δ, respectively. From the series expansions
of X1 and X2, we get their Lévy densities

ρ1(x) =
∞∑

n=1

λnγne−γnx, ρ2(x) =
∞∑

n=1

1
2x

e−γnx.
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Table 4.1: Model parameters.

case I case II case III case IV

κ 0.5 0.3 1 6.2
θ 0.04 0.04 0.09 0.02
σ 1 0.9 1 0.6
ρ -0.9 -0.5 -0.3 -0.7

These observations raise the possibility of simulating X1 and X2 using their Lévy densities and
methods of the type discussed in, e.g., Bondesson [6] and Cont and Tankov [9]. However, these
methods also involve truncation and do not appear advantageous in our context, given the very
explicit expressions available in (2.8).

4 Simulation Procedure

We now turn to the specifics of using Theorem 2.2 for simulation of the Heston model. As
explained in Section 2, the Broadie-Kaya method reduces the problem of exact simulation of
the Heston model to the problem of sampling from the conditional distribution in (2.5). Broadie
and Kaya [8] implement this step through numerical inversion of the characteristic function of
(2.5). The characteristic function is complicated, and each inversion is somewhat time-consuming;
moreover, the characteristic function depends on the endpoints v0 and vt, so precomputing the
transform inversion and storing the distribution in a table is not an option: the relevant transform
changes at each step in the simulation. This makes the overall procedure rather slow and opens
the possibility for improvement using the expansions in (2.8).

We treat separately the terms X1, X2 and Z. Recall that the endpoints v0 and vt appear
only in X1 and the Bessel random variable η; this enhances the potential efficiency gains from
Theorem 2.2. Moreover, X1 depends only on the sum of v0 and vt, and η depends only on their
product. Thus, although the full distribution (2.5) depends on two path-dependent parameters,
no element of our decomposition depends on more than one such parameter.

For our numerical experiments, we use the four sets of parameters in Table 4.1. These are
intended to reflect the range of parameter values for which the Heston model is commonly used in
practice, particularly since some methods are known to work better in some ranges than others.
The first three cases are taken from Andersen [5], and case IV is set close to estimated parameters
in Duffie, Pan and Singleton [15]. According to these sources, case I is relevant for long-dated FX
options, case II for long-dated interest rate options, case III for equity options, and case IV for
S&P 500 index options. Andersen [5] describes cases I–III as challenging as well as practically
relevant.

4.1 Simulation of X1

Exact Simulation. As the Laplace transform of X1 is available in closed form, one can avoid
series truncation and sample using transform inversion. The sampling algorithm generates U ∼
Unif[0,1] and then finds x ≥ 0 such that FX1(x) = U , with FX1 the distribution of X1; the
resulting x is returned as a sample from FX1 . Searching for x involves a root-finding procedure
combined with repeated transform inversion to evaluate FX1(x) at each candidate value of x. For
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Table 4.2: Time to generate 100 samples of X1 from Φ1 and time with a dummy calculation of
Iν(z) added.

v0 + vt no Iν(z) one Iν(z)

2 0.57 2.08
0.2 6.67 35.08

0.02 76.59 381.77

illustrative purposes, in this section we use the MATLAB fzero function for root-finding; for
transform inversion we use the algorithm of Abate and Whitt [1], following the approach Broadie
and Kaya [8] use for their transform inversion.

Using the Abate-Whitt algorithm, we calculate the distribution FX1 using

FX1(x) ≈ hx

π
+

2
π

N∑

k=1

sinhkx

k
Re(Φ1(−ihk)), h =

2π

x + uε
. (4.1)

Here, uε = µX1 + mσX1 , with µX1 the mean of X1, σX1 its standard deviation, and m set equal
to 5. (We increase m for higher precision.) The parameter uε controls the discretization error in
the inversion integral. Truncation error is handled by increasing N until |Φ1(−ihN)|/N < πε′/2,
with ε′ = 10−5.

The mean and variance of X1 are given by

µX1 = (v0 + vt)µ∗X1
, σ2

X1
= (v0 + vt)σ∗X1

2

where µ∗X1
and σ∗X1

2 are the mean and variance of X1 with v0 = 1 and vt = 0,

µ∗X1
=

1
κ

coth
(

κt

2

)
− t

2
csch2

(
κt

2

)
,

σ∗X1

2 =
σ2

κ3
coth

(
κt

2

)
+

σ2t

2κ2
csch2

(
κt

2

)
− σ2t2

2κ
coth

(
κt

2

)
csch2

(
κt

2

)
.

These values can be computed and stored in the initialization of the Monte Carlo simulation if
we work with a fixed time step t and and fixed model parameters κ and σ.

We initialize the root-finding routine fzero with a guess of x = F−1
N (U), with FN denoting

the normal distribution N (
µX1 , σ2

X1

)
. We set the tolerance level to 10−5. These steps follow the

approach in Broadie and Kaya [8].
A significant computational burden in inverting the characteristic function of (2.5), as Broadie

and Kaya [8] do, results from a modified Bessel function of the first kind, Iν(z), appearing in
that characteristic function. To illustrate this point, we compare the time required to sample X1

from its transform Φ1 when we include a superfluous evaluation of Iν(z) (which is unnecessary
for Φ1) and compare computing times.

The results of this comparison are shown in Table 4.2, where we record the time (in seconds)
to generate 100 samples of X1. We use values of κ and σ from case I in Table 4.1, and we use
a time step of t = 1. The value of v0 + vt varies along each simulated path, so we take three
different levels 0.02, 0.2, 2 for v0 + vt. The results confirm that evaluating the modified Bessel
function at each step adds significantly to the total computing time. The results also indicate
that the computing time is quite sensitive to the value of v0 + vt.
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Fig. 4.1: Convergence of gamma approximations for cases I–IV with v0 + vt = 0.02.

Gamma Expansion. Next, we test the sampling of X1 from the series representation in (2.8). We
assume that the parameters κ, θ and σ remain fixed throughout each simulation, and we also use
a fixed value of t, taking t = 1. With these parameters fixed, {λn} and {γn} can be tabulated in
the initialization of the Monte Carlo simulation, along with µ∗X1

, σ∗X1
, and values of EXK

1 and
V ar(XK

1 ) for multiple K. Recall that the mean and variance of X1
K are used to determine the

shape and scale parameters of the Γ 1
K random variable. In our tests, we calculate those moments

for all K = 1, . . . , 100.

Table 4.3 reports computing times for generating X1 from the truncated gamma expansion
with K = 1, K = 20 with v0 + vt = 0.02 using MATLAB. As one would expect, the computing
time increases with K. However, the approximations seem to work quite well even for small K:
Figure 4.1 illustrates the distributions of the truncated gamma expansions of X1 with K = 1
and K = 20, and the two are very close to each other. At smaller values of t (not reported here),
they are even closer. We note that the computing time of moments, λn’s and γn’s is not included
in reported times as they can be pre-cached and it takes only a fraction of a second to compute
them (e.g., 0.032 seconds for case I).

In contrast to the transform inversion method, the gamma expansion is not very sensitive to
the level of v0 + vt. For example, in case IV, the computing of 1.86 reported in Table 4.3 with
v0 + vt = 0.02 becomes 2.24 at v0 + vt = 0.2 and 3.73 at v0 + vt = 2. This variation is modest,
particularly in comparison to the values in Table 4.2.
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Table 4.3: Time to generate 10,000 samples of X1 with v0 + vt = 0.02 using gamma expansion
at truncation level K

case K=1 K=20

I 1.66 22.23
II 1.88 23.14
III 1.93 23.18
IV 1.86 24.27

4.2 Simulation of X2 and X3

Simulation of X2. The methods discussed for X1 — sampling through repeated transform inver-
sion or through the gamma expansion — are both applicable to X2 as well. However, the fact
that X2 does not depend on v0 or vt opens a further option of tabulation. If we fix parameters
κ, θ and σ (and therefore δ) and fix a time step t, then the distribution of X2 does not depend
on any intermediate simulated Vt values. We can therefore tabulate the distribution at the start
of the simulation and then draw samples as needed by sampling from the table.

In implementing this approach, we first compute FX2(xi), the distribution function of X2 at
points

xi = wµX2 +
i− 1
M

(uε − wµX2), i = 1, . . . ,M + 1,

with M = 200 and w = 0.01. We compute these values using transform inversion; because the
distribution remains fixed, the total number of inversions is far smaller than in the iterative
method described for X1. To sample from the tabulated distribution, we generate U uniformly
over [0, 1] and set X2 = F−1

X2
(U), using linear interpolation between tabulated values. To accel-

erate the search through the table, we use the cutpoint method (as described, for example, in
Fishman [17], Section 3.3) with 100 cutpoints.

We calculate FX2(xi) using the Abate-Whitt algorithm, as in (4.1). To achieve a high degree
of precision in the tabulated values, we set uε = µX2 +12σX2 . The mean and standard deviation
of X2 are given by

µX2 = δµ∗X2
, σ2

X2
= δσ∗X2

2

with

µ∗X2
=

σ2

4κ2

(
−2 + κt coth

(
κt

2

))
(4.2)

σ∗X2

2 =
σ4

8κ4

(
−8 + 2κt coth

(
κt

2

)
+ κ2t2csch2

(
κt

2

))
. (4.3)

Evaluating the transform (2.13) with b ∈ iR for the inversion in (4.1) requires care. Some
numerical packages (including MATLAB) use the complex logarithm with the principal branch
(−π, π]. This leads to a discontinuity in Φ2(−ib) as b moves along the real line and thus to a
discontinuous approximation to the distribution of X2. This kind of discontinuity is also observed
in Broadie and Kaya [8]. To address this issue, we keep track of how many times the expression
(L sinhκt/2)/(κ sinhLt/2) in (2.13) rotates around the origin as b varies. In our implementation
of (4.1), we add 2π whenever Φ2(−ihk) crosses the negative real axis, moving from the second
quadrant to the third quadrant. With this implementation, the computing times required to
tabulate the distribution of X2 in cases I–IV are 1.41, 1.87, 0.36, and 0.13 seconds, respectively.
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Table 4.4: Time to generate 10,000 samples from the Bessel distribution

z δ = 0.1 δ = 2 δ = 6

1 1.555 1.429 1.303
5 1.461 1.415 1.522

10 1.644 1.553 1.432
50 2.035 1.967 1.878

100 2.425 2.324 2.355
200 3.323 3.194 3.232
300 4.312 4.299 4.238

Simulation of X3. We can generate samples of Z from its series expansion or from a precomputed
distribution table. The distribution of Z is a special case of that of X2; it is simpler to work with
because the exponent in its transform (2.14) is 2, so the complication arising from the complex
logarithm can be avoided by evaluating the square as a product, without exponentiation. The
mean and variance of Z are given by µZ = 4µ∗X2

and σ2
Z = 4σ∗X2

2, with the parameters for X2

as given in (4.2)–(4.3).
To simulate X3, we need to generate the Bessel random variable η ∼ BES(ν, z), with param-

eters

ν =
δ

2
− 1, z =

2κ/σ2

sinh(κt/2)
√

v0vt,

as given in Theorem 2.2. Devroye [13] proposed and analyzed fast acceptance-rejection algorithms
for sampling Bessel random variables; Iliopoulos et al. [20] also proposed acceptance-rejection
algorithms, using properties of the Bessel law studied in Yuan and Kalbfleisch [32]. However, with
acceptance-rejection methods, small changes in parameter values can produce abrupt changes in
the samples generated. Given the importance of sensitivity estimates in financial applications,
we therefore prefer to avoid rejection methods and sample instead from the inverse of the cumu-
lative distribution function. (Iliopoulos et al. [20] discuss this approach as well.) We generate U
uniformly over [0, 1] and calculate the probability mass function recursively,

pn+1 =
z2

4(n + 1)(n + 1 + ν)
pn, p0 =

(z/2)ν

Iν(z)Γ (ν + 1)

until we reach a value η such that

η−1∑
n=0

pn < U ≤
η∑

n=0

pn.

We return η as our sample from the Bessel distribution.
It turns out that the computing time with this approach increases with z but is relatively

insensitive to δ; Table 4.4 compares computing times (in seconds) across parameter values. This
is convenient for our intended application because typical z-values arising in the Heston model
are small. For example, with v0 = vt = θ, the z-values for cases I–IV are 0.16, 0.2, 0.35 and 0.06,
respectively. For large values of z, one could use the fast approximate sampling method of Yuan
and Kalbfleisch [32]. We do not explore that option here because our focus is on exact sampling.
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5 Numerical Tests

We now test our method by pricing European call options and comparing the results with the
exact scheme of Broadie and Kaya [8] and the QE method of Andersen [5]. We use the parameters
in Table 4.1 with S0 = 100, v0 = θ, and a maturity of one year. We set the truncation level at
K = 1 or K = 10 for the gamma approximations. European options in the Heston model
can be priced numerically (without Monte Carlo), so they provide a convenient benchmark for
comparison.

In the interest of achieving realistic speed-accuracy tradeoffs, our pricing comparisons use
programs coded in the C programming language and compiled by Microsoft Visual C++ 6.0 in
release mode. Execution files are run on a personal desktop computer with Intel Pentium 4 CPU
3.20 GHz and 1.0GB of RAM.

We first evaluate the bias resulting from truncation at K = 1 and K = 10 terms. The bias
is small, so to estimate it precisely we use 1 billion simulation trials for each case. Table 5.1
reports the estimated biases and standard errors for at-the-money options in parameter cases
I–IV together with exact option prices and confirms that these are indeed very small. Results for
in-the-money and out-of-the-money options are reported in Kim [23] and are generally similar to
those in Table 5.1, with a few exceptions. The exceptions result from the Abate-Whitt inversion
algorithm (4.1) used to tabulate the distributions of X2 and Z, and not from truncation of the
gamma expansion. Increasing the accuracy of (4.1) by setting uε to be 14 standard deviations
above the mean (rather than 12) and setting ε′ = 10−7 (rather than 10−5) produces consistently
small biases in all cases.

Figure 5.1 illustrates the speed-accuracy tradeoff for the Broadie-Kaya exact method and
the gamma expansion with K = 1 and K = 10. Each figure plots the root mean square error
(RMSE) against computing time on a log-log scale for each method. The RMSE measure reflects
both bias and variance. For K = 1, the graphs indicate that as the number of simulation trials
increases the bias eventually dominates the RMSE and slows the decrease in the RMSE. But
at K = 10, the gamma approximation exhibits the same convergence rate as the exact method
while reducing the computation time by the factor of 102 to 103.

Recall that to sample X2 and Z, we can tabulate their distributions; this is a one-time
computation for each set of parameter values. The computing times required for tabulation in
cases I–IV are 0.69, 0.81, 0.44 and 0.36 seconds, respectively. As the number of simulation trials
increases, the computational burden of tabulation becomes relatively negligible.

Next, we compare results with Andersen’s [5] QE method. This is a time-discretization al-
gorithm based on approximating the transition of the Heston model over a small time step ∆t.
Thus, the QE method may take multiple time steps to simulate a one-year option, whereas the
Broadie-Kaya algorithm and the gamma expansion simulate to maturity in a single step. Ander-
sen [5] compared the QE method with various alternative discretizations and found that the QE
method works best. For the numerical tests, we set the QE parameters at γ1 = γ2 = 0.5 and
ψC = 1.5, following [5]. We do not implement the martingale correction scheme, particularly as
we are dealing with at-the-money options. See Andersen [5] for the details of the QE method
and other variants.

The theoretical convergence rate of the QE method is unknown, but we can estimate the
order of the bias O(∆tβ) numerically. Based on 1 billion simulation trials at time steps ranging
from ∆t = 1 to ∆t = 1/32, we estimate β values of 1.28, 1.88, 1.63 and 1.27 for cases I–IV. See
Table 5.2 for relevant numbers. (These estimates do indeed compare favorably with a standard
Euler approximation, which would typically have β = 1 for a smooth payoff and a diffusion with
smooth coefficients, and which usually performs worse with the Heston model.) With the optimal
allocation rule of Duffie and Glynn [14] (which allocates computing effort optimally between
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decreasing ∆t and increasing the number of replications), the overall convergence rate of the
RMSE is β/(1 + 2β); the β estimates for cases I–IV thus yield estimated optimal convergence
rates of 0.36, 0.39, 0.38 and 0.36, respectively. These values should be compared with an optimal
rate of 1/2 for unbiased simulation.

Figure 5.2 illustrates the speed-accuracy tradeoff for the QE method with ∆t = 1/8 and
∆t = 1/32 and the gamma expansion truncated at K = 10. In cases II and III, the QE method
with ∆t = 1/8 performs slightly better up to 160,000 simulation trials. With a larger step size,
the QE method is faster, and with a smaller number of replications the bias from a larger step
size is obscured by the variance, as both affect the RMSE. However, the gamma expansion shows
better overall performance, particularly at high levels of precision. It exhibits a faster convergence
rate, achieving a slope very close to the optimum of −1/2. Table 5.3 reports detailed simulation
results for the QE method for comparison with Table 5.1. Similar results are reported in Kim
[23] for in-the-money and out-of-the-money options.

The results in Figure 5.2 compare the QE and gamma expansion methods at a single date
— a maturity of one year. But the QE method with ∆t = 1/32 generates 31 intermediate
values of the process in sampling the terminal value, whereas the gamma expansion method
samples the terminal value directly. This is a potential advantage of the QE method in pricing
path-dependent options for which the intermediate values are needed. In the numerical examples
above, the gamma expansion method outperforms the QE method with ∆t = 1/32 by a factor
of 2–3. This suggests that generating all 32 values would take approximately 12 times as long
using the gamma expansion. This is only a rough comparison because it does not incorporate
potential adjustments to the gamma expansion parameters to tailor the method to a short time
step.

In pricing Bermudan options, it is useful to be able to simulate backwards in time using
bridge sampling or the approach developed by Dutt and Welke [16] for the method of Longstaff
and Schwartz [25]. Yuan and Kalbfleisch [32], p.444, provide a sampling algorithm for a squared
Bessel bridge which can be used to simulate values of Vt backwards in time; at each step, we
can then use (2.5) and (2.4) to simulate values of St in reverse time as well. Thus, the gamma
expansion method is potentially useful in pricing Bermudan options as well as European options.

6 Extension to Non-Equidistant Time Grids

In our discussion of Theorem 2.2, and particularly in the implementation in Section 4, we have
highlighted the distinction between terms that depend on the endpoints (V0, Vt) and terms that
do not, but we have implicitly taken the length of the time interval t to be fixed. In practice, one
might want to simulate the asset price process at dates 0 < t1 < · · · < tm without restricting
these to be equally spaced.

The decomposition in Theorem 2.2 continues to apply over each transition from ti to ti+1,
with the parameter t in the theorem set to ti+1 − ti, even if these time increments vary along
the simulated path. However, some of the shortcuts in Section 4 require modification if the time
steps vary. In particular, Section 4 exploits the fact that the distributions of X2 and Z do not
depend on the endpoints (V0, Vt) and thus do not vary from one simulation step to another.
Their distributions do, however, depend on the value of t through the coefficients γn defined
in Theorem 2.2; t also appears in z and the λn. If the value of t varies, one cannot simply use
tabulated distributions to generate X2 and Z as required for Theorem 2.2.

In this section, we present an extension of Theorem 2.2 that removes all dependence on t
through a measure transformation. In order to consider a change of probability measure, we will
suppose that the original model (2.1)–(2.2) is specified under a probability Q; in other words,
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Fig. 5.1: Speed and accuracy comparisons for truncated gamma expansions and the Broadie-Kaya
exact method in pricing a European call option.

(W 1
t ,W 2

t ) is a standard two-dimensional Brownian motion under Q. We will introduce a new
probability P.

It will be convenient to rescale time and define Ãt = V4t/σ2 , which then satisfies

dÃt =
(

δ − 4κ

σ2
Ãt

)
dt + 2

√
Ãt dW̃ 1

t ,

where (W̃ 1
t , W̃ 2

t ) = (σW 1
4t/σ2/2, σW 2

4t/σ2/2) is a standard two-dimensional Brownian motion
under Q. Accordingly, we set S̃t = S4t/σ2 , which satisfies

dS̃t

S̃t

=
4µ

σ2
dt +

2
σ

√
Ãt

(
ρdW̃ 1

t +
√

1− ρ2dW̃ 2
t

)
.

Because S and S̃ are related through a deterministic rescaling of time, any payoff that is a
function of the level of S at a fixed set of dates may be written as a payoff p(S̃t1 , . . . , S̃tm) on
the path of S̃. Our objective, then, is to evaluate the Q-expectation of such a payoff.

Define a new probability measure P by setting

dP
dQ

= exp
(

q

∫ t

0

√
Ãs dW̃ 1

t −
q2

2

∫ t

0

Ãs ds

)
, (6.1)

with q = 2κ/σ2. To evaluate the Q-expectation of the payoff, we can use the identity

EQ
[
p(S̃t1 , . . . , S̃tm)

]
= EP

[
p(S̃t1 , . . . , S̃tm)

dQ
dP

]
, (6.2)
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Fig. 5.2: Speed and accuracy comparisons for the truncated gamma expansion (K = 10) and the
QE method with step sizes ∆t = 1/8 and ∆t = 1/32.

with dQ/dP given by the reciprocal of (6.1). The problem, then, is to simulate (S̃t1 , . . . , S̃tm) and
dQ/dP under P.

By the Girsanov Theorem, dWP := dW̃ 1
t − q

√
Ãtdt becomes a standard Brownian motion

under P. Writing the dynamics of Ã as

dÃt = δ dt + 2
√

Ãt dWP
t ,

we see that Ã is a δ-dimensional squared Bessel process under P. We also have

dS̃t

S̃t

=
(

4µ

σ2
+

2ρq

σ
Ãt

)
dt +

2
σ

√
Ãt

(
ρdWP

t +
√

1− ρ2dW̃ 2
t

)
,

and W̃ 2 remains a standard Brownian motion independent of WP under P.
The Broadie-Kaya [8] scheme (2.3)–(2.5) for the Heston model extends to the law of (S̃, Ã)

under P. The transition law of Ã is again noncentral chi-square (set κ = 0 and σ = 1 in (2.3) with
δ held fixed), and exact sampling of S̃ reduces to the problem of sampling from the conditional
law (∫ t

s

Ãu du

∣∣∣∣ Ãs, Ãt

)
, (6.3)

for arbitrary s < t. Moreover, the two integrals appearing in the exponent of dQ/dP are byprod-
ucts of the Broadie-Kaya scheme applied to (S̃, Ã), much as the integrals in (2.4) are. Thus, we
can sample the Radon-Nikodym derivative exactly, to get an unbiased estimator of (6.2), if we
can simulate (6.3).
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If we define A′u = Ãs+αu/α for some α > 0, then A′ is still a δ-dimensional squared Bessel
process and

(∫ t

s

Ãu du

∣∣∣∣ Ãs = a1, Ãt = a2

)
=

(
α2

∫ (t−s)/α

0

A′u du

∣∣∣∣∣ A′0 =
a1

α
, A′(t−s)/α =

a2

α

)
.

By setting α = t− s, we reduce the problem of simulating (6.3) to the problem of simulating

(∫ 1

0

A′u du

∣∣∣∣ A′0 = a1/(t− s), A′1 = a2/(t− s)
)

.

In this expression, the length of the time increment t − s appears only in the values of the
endpoints on which we condition. As an application of the decomposition of squared Bessel
bridges in Pitman and Yor [27], we obtain an expansion similar to that in Theorem 2.2.

Theorem 6.1 The distribution of the integral of A′ conditional on endpoints A′0, A′1 admits the
representation

(∫ 1

0

A′u du

∣∣∣∣ A′0 = a′0, A′1 = a′1

)
d= Y1 + Y2 + Y3 ≡ Y1 + Y2 +

η′∑

j=1

Z ′j

in which Y1, Y2, η′, Z ′1, Z
′
2, . . . are mutually independent, the Z ′j are independent copies of a

random variable Z ′, and η′ is a Bessel random variable with parameters ν = δ/2 − 1 and z =√
a′0a

′
1. Moreover, Y1, Y2 and Z ′ have the following representations:

Y1 =
∞∑

n=1

2
π2n2

Nn∑

j=1

Expj(1), Y2 =
∞∑

n=1

2
π2n2

Γn (δ/2, 1) , Z ′ =
∞∑

n=1

2
π2n2

Γn (2, 1)

where the Nn are independent Poisson random variables with mean a′0 + a′1.

In this representation, dependence on the time increment t−s is absorbed into the endpoints
a′0 and a′1. As in Theorem 2.2, dependence on these endpoints is limited to Y1 and η′. In particular,
the distributions of Y2 and Z ′ could be tabulated and re-used over time steps of different lengths.

Remark 6.2 To take this observation a step further, note that the distribution of Z ′ is universal, in
the sense that it does not depend on any parameters of the model or simulation; this distribution
could be tabulated for once and for all and then re-used with any model parameters and time
steps. Indeed, the model parameters appear in the decomposition of Theorem 6.1 only through
the value of δ = 4κθ/σ2, which appears in Y2 and η. This feature of Theorem 6.1 is potentially
valuable in model calibration, where one is interested in iterative calculation of prices while
varying parameters in order to find parameters that best fit market prices.

Remark 6.3 One can extend the gamma approximation to variants of the Heston model such
as the SVJ and SVCJ models, following the approach used by Broadie and Kaya [8] for exact
simulation of these models. These extensions are straightforward and explained well in [8], so we
do not consider them further here.
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7 Concluding Remarks

We have developed a representation of the transition law of the Heston stochastic volatility model
using sums and mixtures of gamma random variables for the volatility process and mixtures of
normal random variables for the log asset price. This expansion builds on connections between the
volatility process and Bessel processes and results of Pitman and Yor [27] on the decomposition of
Bessel bridges. When combined with the method of Broadie and Kaya [8], the gamma expansion
allows exact sampling of the transitions of the Heston model. We have also analyzed the error
resulting from truncating infinite series in this expansion and proposed some computational
shortcuts. Numerical examples illustrate the speed and accuracy of the approach.

The methods developed here are applicable in other contexts as well, particularly in light of
the widespread use of the square-root diffusion (2.2) as an element of other models. Similar ideas
should be applicable to the constant elasticity of variance model, given its connections to Bessel
processes; see Delbaen and Shirakawa [12]. We note two other examples. In the Cox-Ingersoll-Ross
[10] model, the square-root diffusion models a continuously compounded instantaneous interest
rate, and its integral appears in the exponent of the discount factor. Theorem 2.2 can be used
for exact simulation of the discount factor along with the interest rate over long time horizons;
indeed, this was the motivating application in Scott’s [30] work.

The square-root diffusion is also a standard model of a stochastic default intensity. In this
type of model, default occurs the first time the integrated intensity reaches the level of an
independently sampled exponential random variable. Simulating the default time thus requires
simulating the square-root diffusion together with its time integral, and this is facilitated by
Theorem 2.2.

Appendix

Proof (Lemma 2.4) The calculations use a change of measure argument, so we begin with a process W̃ that is a

Brownian motion with respect to a measure Q̃. A process B0 satisfying dB0
t = 2

√
B0

t dW̃t is then a 0-dimensional

squared Bessel process with respect to Q̃. From Revuz and Yor [29], Corollary 3.3, p.465, we have the Laplace
transform

Ẽ
[

exp

(
− b2

2

∫ 1

0
B0

sds

)∣∣∣∣ B0
0 = x, B0

1 = 0

]
= exp

(x

2
(1− b coth b)

)

for b ∈ R and x ≥ 0, where Ẽ means expectation under Q̃.

We now apply the change of measure formula (6.d) in Pitman and Yor [27], under which the law of the squared

OU bridge A0,1
x+y,0 becomes the law of a squared Bessel bridge with B0

0 = x + y and B0
1 = 0. For b ≥ 0 we have

(with a = −κt/2),

Φ1(b) = E
[
exp

(
−b

σ2t2

4

∫ 1

0
A0,1

x+y,0(s)ds

)]

= Ẽ
[
exp

(
−

(
bσ2t2

4
+

a2

2

) ∫ 1

0
A0,1

x+y,0(s)ds

)]
÷ Ẽ

[
exp

(
−a2

2

∫ 1

0
A0,1

x+y,0(s)ds

)]

= exp

(
(v0 + vt)

σ2

(
κ coth

κt

2
− L coth

Lt

2

))

with L =
√

2σ2b + κ2. This is also how the Laplace transform of (2.5) is derived in Broadie and Kaya [8].

For X2 and Z, we start from the Laplace transform

Ẽ
[

exp

(
− b2

2

∫ 1

0
Bf

s ds

)∣∣∣∣ Bf
0 = Bf

1 = 0

]
=

(
b

sinh b

)f/2
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of the f -dimensional squared Bessel process Bf , dBf
t = fdt + 2

√
Bf

t dW̃t under Q̃. The same change of measure

argument used above changes the law of Af,1
0,0 , f > 0, to that of Bf conditional on Bf

0 = Bf
1 = 0, and a similar

calculation then completes the proof. ut

Acknowledgements The authors thank Mark Broadie and Özgur Kaya for helpful discussions and comments
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