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Abstract

We derive and analyze Monte Carlo estimators of price sensitivities (“Greeks”) for contingent claims
priced in a diffusion model. There have traditionally been two categories of methods for estimating
sensitivities: methods that differentiate paths and methods that differentiate densities. A more recent line of
work derives estimators through Malliavin calculus. The purpose of this article is to investigate connections
between Malliavin estimators and the more traditional and elementary pathwise method and likelihood
ratio method. Malliavin estimators have been derived directly for diffusion processes, but implementation
typically requires simulation of a discrete-time approximation. This raises the question of whether one
should discretize first and then differentiate, or differentiate first and then discretize. We show that in several
important cases the first route leads to the same estimators as are found through Malliavin calculus, but using
only elementary techniques. Time-averaging of multiple estimators emerges as a key feature in achieving
convergence to the continuous-time limit.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The calculation of price sensitivities is a central modeling and computational problem for
derivative securities. The prices of derivative securities are, to varying degrees, observable in
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the market; but the hedging of derivative securities is based on price sensitivities, and these
sensitivities – which are not observable – require models and computational tools.

The computational effort required for the accurate calculation of price sensitivities (or
“Greeks”) is often substantially greater than that required for the calculation of the prices
themselves. This is particularly true of Monte Carlo simulation, for which the computing time
required for sensitivities can easily be 10–100 times greater than the computing time required to
estimate prices to the same level of precision.

The simplest and crudest approach to the Monte Carlo estimation of sensitivities to a
parameter simulates at two or more values of the underlying parameter and produces a finite-
difference approximation to the price sensitivity. In the case of “delta”, this means simulating
from different initial states; in the case of “vega”, this means simulating at different values of a
volatility parameter; and in the case of “rho”, this means simulating at different values of a drift
parameter. Finite-difference estimators are easy to implement, but are prone to large bias, large
variance, and added computational requirements.

Alternative methods seek to produce better estimators through some analysis of the underly-
ing model. These methods evaluate derivatives directly, without finite-difference approximations.
Pathwise methods treat the parameter of differentiation as a parameter of the evolution of the un-
derlying model and differentiate this evolution. At the other extreme, the likelihood ratio method
puts the parameter in the measure describing the underlying model and differentiates this mea-
sure. Because a price calculated by Monte Carlo is an expectation – the integral of a discounted
payoff evaluated on each path, integrated against a probability measure – all estimators of sensi-
tivities must involve some combination of these basic ideas: differentiating the evolution of the
path, or differentiating the measure. For general background on estimating sensitivities and many
references to the literature on this problem, see, e.g., Chapter 7 of Glasserman [9].

More recently, a fairly large and growing literature has developed around the derivation
of sensitivity estimators using Malliavin calculus. This line of work originated in Fournié,
Lasry, Lebuchoux, and Touzi [7] and includes Benhamou [1], Bermin, Kohatsu-Higa, and
Montero [2], Cvitanic, Ma, and Zhang [3], Davis and Johansson [4], Fournié et al. [8], Gobet and
Kohatsu-Higa [10], Kohatsu-Higa and Montero [12], and many others. Using the tools of
Malliavin calculus (cf. Nualart [15]), this approach derives estimators in continuous time, though
their implementation typically requires some form of time-discretization. The purpose of this
article is to investigate the connection between Malliavin estimators and estimators derived using
the more elementary ideas of the pathwise and likelihood ratio methods (LRM).

Our approach is as follows. We begin with a model specified through a stochastic differential
equation. Whereas the application of Malliavin calculus would, in effect, first differentiate and
then discretize, we discretize first. For simplicity, we use an Euler scheme. In the time-discrete
approximation, it is easy to derive pathwise and LRM estimators. Our main contribution is to
show how to combine these methods and then pass to the continuous-time limit in a way that
produces the Malliavin estimators. To put this another way, discretizing the Malliavin estimators
yields estimators that are equivalent (up to terms that vanish in the continuous-time limit) to
estimators derived using the more elementary methods. We carry this out for three important
cases of the Malliavin approach considered in Fournié et al. [7].

An insight that emerges from this analysis is the critical role played by time-averaging of
multiple unbiased sensitivity estimators in passing to the continuous-time limit. This becomes
particularly evident in the case of delta. A straightforward application of LRM to an Euler
scheme produces a delta estimator that explodes as the time increment decreases to zero. To
obtain a meaningful limit, we associate a separate unbiased estimator with each step along a
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(time-discretized) path and average these estimators. The average converges to the Malliavin
estimator, though none of the individual estimators does. This observation sheds light on the
flexible weights that often appear in Malliavin estimators, and indicates that a virtue of the
Malliavin derivation is that it implicitly undertakes the necessary averaging.

We do not see the derivations in this article as inherently better or worse than those using
Malliavin calculus. Working directly in continuous time often permits the use of powerful and
efficient tools for analysis; working in discrete time allows more elementary arguments and can
produce estimators that can be implemented without further approximation. Both approaches
have advantages, and the purpose of this article is to illustrate connections between them. We do
this for three important cases — sensitivities to an initial state, a drift parameter, and a diffusion
parameter. Because our objective is to provide insight, we restrict our analysis to one-dimensional
problems.

The rest of this paper is organized as follows. Section 2 outlines the main steps in our
derivations. In Section 3, we verify that the estimators we derive are unbiased for the discrete-
time approximations with which we work. In Section 4, we show that these estimators converge
weakly as the time step decreases. Several technical results are collected in Appendices A–C.

2. Preview of main results

To prevent technical considerations from obscuring the simplicity of our main results, in this
section we outline our derivations without discussing the conditions required for their validity.
Subsequent sections are devoted to justifying the approach we sketch here.

We suppose that the underlying model dynamics are given by a stochastic differential equation
on [0, T ],

dX t = µ(X t )dt + σ(X t )dWt , X0 = x, (1)

where W is a standard Brownian motion. For simplicity, we restrict attention to scalar X . Con-
sider a (discounted) payoff function Φ that depends on the values of the underlying asset at times
0 ≤ t1 < · · · < tm ≤ T . The expected present value of a contingent claim with this payoff is

u(x) = E[Φ(X t1 , . . . , X tm )], (2)

the expectation taken with X0 = x . In this section, we focus on the case m = 1, in which
u(x) = E[Φ(XT )].

2.1. Delta

We begin by considering delta, the sensitivity of u(x) to the initial state x . When applicable,
the pathwise method brings the derivative with respect to x inside the expectation to get

u′(x) = E
[
Φ′(XT )

dXT

dx

]
.

When equality holds,

Φ′(XT )YT

provides an unbiased estimator of u′(x), where YT = dXT /dx is the pathwise derivative of XT
with respect to the initial state. Under conditions in Section V.7 of Protter [16], the dynamics of
Y can be obtained from (1) to get
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dYt = µ′(X t )Yt dt + σ ′(X t )Yt dWt , Y0 = 1.

The likelihood ratio method (LRM) estimator starts from the transition density g(x, ·)
describing the distribution of XT given X0 = x . The price u(x) is given by

u(x) =

∫
Φ(xT )g(x, xT ) dxT ,

so bringing the derivative inside the integral and then multiplying and dividing by g(x, xT ) yields

u′(x) =

∫
Φ(xT )

d
dx

g(x, xT ) dxT

=

∫
Φ(xT )

[
d

dx
log g(x, xT )

]
g(x, xT ) dxT

= E
[
Φ(XT )

d
dx

log g(x, XT )

]
(3)

and the unbiased estimator

Φ(XT )
d

dx
log g(x, XT ).

By differentiating the density, the LRM method avoids imposing any smoothness conditions on
Φ. However, it requires existence and knowledge of g.

The (or rather, a) Malliavin estimator for this problem is (cf. Fournié et al. [7], p. 399)

Φ(XT )
1
T

∫ T

0

Yt

σ(X t )
dWt . (4)

Like the LRM estimator, this estimator multiplies the payoff Φ(XT ) by a random weight to esti-
mate the derivative. In contrast to the LRM estimator, it does not involve the transition density g.

Consider, now, an Euler approximation,

X̂ i = X̂ i−1 + µ(X̂ i−1)1t + σ(X̂ i−1)1Wi , X̂0 = x, (5)

i = 1, . . . , N , with time step 1t = T/N and 1Wi = W (i1t) − W ((i − 1)1t). Let
û(x) = E[Φ(X̂ N )] and let Ŷi = dX̂ i/dx ,

Ŷi = Ŷi−1 + µ′(X̂ i−1)Ŷi−11t + σ ′(X̂ i−1)Ŷi−11Wi , Ŷ0 = 1. (6)

The pathwise estimator of û′(x), the delta for the Euler scheme, is

Φ′(X̂ N )ŶN .

For the LRM estimator, we may write

û(x) =

∫
· · ·

∫
Φ(xN )ĝ(x, x1) · · · ĝ(xN−1, xN ) dxN · · · dx1, (7)

where ĝ(xi−1, xi ) is the transition density from X̂ i−1 = xi−1 to X̂ i = xi . Proceeding as before,
we arrive at the estimator

Φ(X̂ N )

N∑
i=1

d
dx

log ĝ(X̂ i−1, X̂ i ) = Φ(X̂ N )
d

dx
log ĝ(x, X̂1), (8)

noting that only the first of the transition densities depends on the initial state x .
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Whereas the transition density of the continuous-time process X is often unknown, the
transition density for the Euler scheme is Gaussian. In particular, X̂1 is normally distributed
with mean x + µ(x)1t and variance σ 2(x)1t . As a consequence, we can differentiate the log
density and, after some simplification, write the estimator (8) as

Φ(X̂ N )

(
∆W1

σ(x)1t
+ op(1)

)
,

where op(1) converges weakly to zero as1t approaches zero. While this estimator is, under mild
conditions, unbiased for û′(x) for all 1t , it clearly behaves badly as 1t approaches zero.

But we have more flexibility than (8) initially indicates. For any i = 1, . . . , N , we may write

û(x) = E
[∫

· · ·

∫
Φ(xN )ĝ(X̂ i−1(x), xi ) · · · ĝ(xN−1, xN ) dxN · · · dxi

]
.

Here, we have written X̂ i−1 as X̂ i−1(x) to stress that X̂ i−1 now has a functional dependence
on the initial state x through the Euler recursion (5). Differentiating inside the expectation and
integral and proceeding as before, we get the estimator

Φ(X̂ N )
d

dX̂ i−1
log ĝ(X̂ i−1, X̂ i )

dX̂ i−1

dx
. (9)

The new factor (which we will write as Ŷi−1) enters through the chain rule of ordinary calculus.
This estimator puts the dependence on x in the path up to the (i − 1)st step (as in the pathwise
method), and then treats X̂ i−1 as a parameter of the conditional distribution of X̂ i (as in the LRM
method).

Again using the fact that ĝ is Gaussian, we can write (9) as

Φ(X̂ N )

(
1Wi

σ(X̂ i−1)1t
+ op(1)

)
Ŷi−1.

Under mild conditions, this is unbiased for û′(x) for all 1t , for all i = 1, . . . , N . If we now
average these unbiased estimators, we get

Φ(X̂ N )
1
N

·

N∑
i=1

(
1Wi

σ(X̂ i−1)1t
+ op(1)

)
Ŷi−1 ≈ Φ(XT )

1
T

∫ T

0

Yt

σ(X t )
dWt , (10)

for small 1t . Thus, we recover the Malliavin estimator (4) as the limit of the average of
combinations of pathwise and LRM estimators. Theorem 4.6 makes this limit precise.

2.2. Vega

Next, we turn to the estimation of vega, or sensitivity to changes in the diffusion coefficient.
Suppose Xε satisfies

dXεt = µ(Xεt ) dt + [σ(Xεt )+ εσ̃ (Xεt )] dWt , Xε0 = x, (11)

for some σ̃ , and Z εt = dXεt /dε satisfies

dZ εt = µ′(Xεt )Z
ε
t dt + σ̃ (Xεt ) dWt + [σ ′(Xεt )+ εσ̃ (Xεt )]Z εt dWt , Z ε0 = 0. (12)
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Let Z t denote Z εt at ε = 0. The Malliavin estimator for the sensitivity of E[Φ(XT )] with respect
to ε at ε = 0 is (cf. Fournié et al. [7], p. 403)

Φ(XT )

{
ZT

YT

1
T

∫ T

0

Yt

σ(X t )
dWt −

1
T

∫ T

0
Dt

(
ZT

YT

)
Yt

σ(X t )
dt
}
. (13)

Here, Dt denotes the Malliavin derivative operator.
For the Euler scheme, let Ẑi = dX̂ i/dε at ε = 0, for i = 1, . . . , N . The pathwise estimator of

dE[Φ(X̂ N )]/dε is

Φ′(X̂ N )Ẑ N . (14)

The LRM estimator has the form in (18), but ε now affects the transition densities through their
variances rather than their means. Straightforward calculation shows that (18) becomes

Φ(X̂ N )

N∑
i=1

σ̃ (X̂ i−1)

σ (X̂ i−1)

(
1W 2

i
1t

− 1

)
. (15)

This estimator fails to converge as 1t approaches zero; so, as we did for delta, we combine
the ideas of the pathwise and LRM techniques with averaging along the path. Observe that, for
small ε, the effect on X̂ N of perturbing σ by εσ̃ is the same as the effect of perturbing the initial
state x by ε Ẑ N/ŶN , provided ŶN 6= 0. Thus, we may write the pathwise derivative in (14) as

d
dε

Φ(X̂ N ) =

(
d

dx
Φ(X̂ N )

)
Ẑ N

ŶN
.

By converting the sensitivity to ε to a sensitivity to x , we can take advantage of the derivation in
Section 2.1. In order not to rely on differentiability of Φ, we can take the derivative with respect
to x by multiplying by the LRM factor appearing on the left side of (10) to get(

1
N

N∑
i=1

Ŷi−11Wi

σ(X̂ i−1)1t
+ op(1)

)
Φ(X̂ N )

Ẑ N

ŶN
.

But multiplying by the LRM factor has the effect of differentiating the product Φ(X̂ N )(Ẑ N/ŶN ),
though what we want is the derivative of the first factor. To compensate, we subtract the derivative
of the second factor and (recalling that N1t = T ) get

Φ(X̂ N )

{(
1
T

N∑
i=1

Ŷi−11Wi

σ(X̂ i−1)
+ op(1)

)
Ẑ N

ŶN
−

d
dx

(
Ẑ N

ŶN

)}
. (16)

This estimator subtracts a pathwise derivative from an LRM derivative.
The new term in (16) can be evaluated directly by recursively differentiating the Euler

approximation (5). To make its connection to the Malliavin estimator more evident, we again
average over the path and then use the fact that dX̂ i/d1Wi = σ(X̂ i−1) to get

d
dx

(
Ẑ N

ŶN

)
=

1
N

N∑
i=1

d

dX̂ i

(
Ẑ N

ŶN

)
Ŷi =

1
T

N∑
i=1

d
d1Wi

(
Ẑ N

ŶN

)
Ŷi1t

σ(X̂ i−1)
.

Substituting this expression in (16) then suggests the convergence of (16) to (13). We will show
that this approach does indeed produce estimators that are unbiased for all 1t and that converge
as 1t → 0. Some care will be required to handle division by ŶN .
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2.3. Rho

To consider sensitivities with respect to changes in drift, we consider a family of processes
Xε satisfying

dXεt = [µ(Xεt )+ εγ (Xεt )] dt + σ(Xεt ) dWt , Xε0 = x,

for some γ , and we consider the derivative with respect to ε at ε = 0. The Malliavin estimator
for this problem is (cf. Fournié et al. [7], p. 398)

Φ(XT )

∫ T

0

γ (X t )

σ (X t )
dWt . (17)

The Euler approximation for the perturbed process is

X̂εi = [µ(X̂εi−1)+ εγ (X̂εi−1)]1t + σ(X̂εi−1)1Wi , X̂ε0 = x .

Letting ĝε denote the transition density for this Euler approximation, the LRM estimator of the
sensitivity is

Φ(X̂ N )

N∑
i=1

d
dε

log ĝε(X̂ i−1, X̂ i )

∣∣∣∣
ε=0
. (18)

The fact that the transition density is Gaussian simplifies this to

Φ(X̂ N )

N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)
1Wi .

The convergence of this estimator to the Malliavin estimator (17) now seems evident, and is
stated precisely in Theorem 4.10.

3. Unbiased estimators for Greeks

In this section, we derive estimators of delta, vega and rho that are unbiased for the Euler
approximation.

Introduce a sequence of i.i.d. random variables {ξi , i ≥ 1}, where ξi follows the normal
distribution with mean 0 and variance 1. Write the Euler scheme as

X̂ i = X̂ i−1 + µ(X̂ i−1)1t + σ(X̂ i−1)
√
1tξi , X̂0 = x .

We also need the following technical conditions on the payoff function and the drift and
volatility functions. The payoff Φ is a function of m variables, Φ : Rm

→ R, given by
Φ(X̂ i1 , . . . , X̂ im ) for some {i1, . . . , im} ⊆ {1, . . . , N }. We require the following:

Assumption 3.1. The growth rate of the function Φ is polynomial, i.e., there exists a positive
integer p such that

lim sup
‖x‖→+∞

|Φ(x)|
‖x‖p < +∞.
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Assumption 3.2. (1) The drift µ and the volatility σ are both twice differentiable with bounded
first and second derivatives;
(2) σ is not degenerate, i.e., infx σ(x) > ε for some ε > 0;
(3) The function σ̃ preserves non-degeneracy under a small perturbation, i.e., there exists a
neighborhood of 0, K , and some ε > 0 such that for any ε ∈ K ,

inf
x

[σ(x)+ εσ̃ (x)] > ε.

(4) σ̃ is differentiable and its derivative is bounded.

Assumption 3.3. The drift perturbation function γ is bounded.

In Sections 3.1–3.3, we consider the sensitivity of u(x) with respect to a perturbation of the
initial point x (delta), the volatility σ (vega) and the drift µ (rho), respectively. As in (6), define
Ŷi to be the derivative of X̂ i with respect to x , which satisfies the following recursion:

Ŷi = Ŷi−1 + µ′(X̂ i−1)Ŷi−11t + σ ′(X̂ i−1)Ŷi−1
√
1tξi , Ŷ0 = 1.

We will want to divide by values of the process Ŷ in Section 3.2 and therefore we need to restrict
the process Ŷ to be positive almost surely to avoid the complication that 1/Ŷ could be non-
integrable around 0. But this does not hold with normally distributed increments, so we will use
truncated normals ξ̃i where necessary.

3.1. Delta

In the outline of Section 2.1, we averaged N unbiased estimators of delta with even weights
and considered payoff functions depending only on the value of the underlying asset at the claim
maturity. For the analysis of this section, we consider a more general case of uneven weights and
path-dependent claims, as in Fournié et al. [7].

Theorem 3.1. Suppose the weights {ai : 0 ≤ i ≤ N } satisfy
∑i j

i=1 ai1t = 1 for all 1 ≤ j ≤ m,
and suppose Assumptions 3.1 and 3.2 hold. Then, the following is an unbiased estimator for
û′(x):

Φ(X̂ i1 , . . . , X̂ im ) ·

N∑
i=1

ai ·
Ŷi−1

σ(X̂ i−1)
·
√
1tξi + I + II, (19)

where

I = Φ(X̂ i1 , . . . , X̂ im ) ·

N∑
i=1

ai ·
σ ′(X̂ i−1)

σ (X̂ i−1)
· [(

√
1t · ξi )

2
−1t];

II = Φ(X̂ i1 , . . . , X̂ im ) ·

(
N∑

i=1

ai ·
µ′(X̂ i−1)

σ (X̂ i−1)

√
1t · ξi

)
·1t.

Proof. By the Markov property of X̂ , we may write

û(x) =

∫
· · ·

∫
Φ(xi1 , . . . , xim )ĝ(x, x1) · · · ĝ(xN−1, xN ) dxN . . . dx1,
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where ĝ(xi−1, xi ) is the transition density function of X̂ i , given the condition that X̂ i−1 = xi−1.

ĝ(xi−1, xi ) =
1

√
2π1tσ(xi−1)

exp
(

−
(xi − xi−1 − µ(xi−1)1t)2

2σ 2(xi−1)1t

)
because of the assumption of normal increments ξ . Under Assumptions 3.1 and 3.2, the growth
rate of function Φ is polynomial and the transition density ĝ decays exponentially. So we can
interchange the order of differentiation and integration to get

û′(x) =

∫
· · ·

∫
Φ(xi1 , . . . , xim )

dĝ(x, x1)

dx
ĝ(x1, x2) · · · ĝ(xN−1, xN ) dxN . . . dx1

=

∫
· · ·

∫
Φ(xi1 , . . . , xim )

d ln ĝ(x, x1)

dx
× ĝ(x, x1)ĝ(x1, x2) · · · ĝ(xN−1, xN ) dxN . . . dx1.

After some algebra using the form of ĝ given above, we have

û′(x) =

∫
· · ·

∫
Φ(xi1 , . . . , xim )

{
(x1 − x − µ(x)1t)/(σ (x)

√
1t)

σ (x)
√
1t

+
x1 − x − µ(x)1t

σ(x)
µ′(x)
σ (x)

+
σ ′(x)
σ (x)

[(
x1 − x − µ(x)1t

σ(x)
√
1t

)2

− 1

]}
·ĝ(x, x1) · · · ĝ(xN−1, xN ) dxN · · · dx1

= E

Φ(X̂ i1 , . . . , X̂ im )

 (X̂1 − x − µ(x)1t)/(σ (x)
√
1t)

σ (x)
√
1t

+
X̂1 − x − µ(x)1t

σ(x)
µ′(x)
σ (x)

+
σ ′(x)
σ (x)

( X̂1 − x − µ(x)1t

σ(x)
√
1t

)2

− 1




= E
[
Φ(X̂ i1 , . . . , X̂ im )

{
ξ1

σ(x)
√
1t

+ ξ1
√
1t
µ′(x)
σ (x)

+
σ ′(x)
σ (x)

(ξ2
1 − 1)

}
Ŷ0

]
where we use the iteration X̂1 = x + µ(x)1t + σ(x)

√
1tξ1 and Ŷ0 = 1.

For the case that i ≤ i1, the first reference date, by the Markovian property of X̂ ,

û(x) = E[E[Φ(X̂ i1 , . . . , X̂ im )|X̂ i−1]].

Interchanging the order of differentiation and expectation, and applying the chain rule, we have

û′(x) =
d

dx
E[E[Φ|X̂ i−1]] = E

[
d

dX̂ i−1
E[Φ|X̂ i−1] ·

dX̂ i−1

dx

]

= E
[

d

dX̂ i−1
E[Φ|X̂ i−1] · Ŷi−1

]
.

Treating X̂ i−1 as a new initial point and applying the same arguments as above here,

d

dX̂ i−1
E[Φ|X̂ i−1] = E

[
Φ ·

{
ξi

√
1tσ(X̂ i−1)
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+
√
1tξi

µ′(X̂ i−1)

σ (X̂ i−1)
+ (ξ2

i − 1)
σ ′(X̂ i−1)

σ (X̂ i−1)

}∣∣∣∣∣ X̂ i−1

]
.

Thus,

û′(x) = E

[
Φ ·

{
ξi

√
1tσ(X̂ i−1)

+
√
1tξi

µ′(X̂ i−1)

σ (X̂ i−1)
+ (ξ2

i − 1)
σ ′(X̂ i−1)

σ (X̂ i−1)

}
· Ŷi−1

]
. (20)

For the case that i > i1,

Ji := Φ ·

{
ξi

√
1tσ(X̂ i−1)

+
√
1tξi

µ′(X̂ i−1)

σ (X̂ i−1)
+ (ξ2

i − 1)
σ ′(X̂ i−1)

σ (X̂ i−1)

}
· Ŷi−1

is not necessarily an unbiased estimator for û′(x). But we can show that E[Jl ] = E[Jk] for any
i j < l, k ≤ i j+1. Therefore, given any set of weights {ai : 0 ≤ i ≤ N } such that

∑i j
i=1 ai1t = 1

for all 1 ≤ j ≤ m,

N∑
i=1

ai1t · E[Ji ] =

i1∑
i=1

ai1t · E[Ji ] +

m∑
j=1

i j+1∑
i=i j +1

ai1t · E[Ji ]

= û(x) ·

i1∑
i=1

ai1t +

m∑
j=1

E[Ji j +1]

i j+1∑
i=i j +1

ai1t.

The right hand side of the above equality is û(x) because
∑i1

i=1 ai1t = 1 and
∑i j+1

i=i j +1 ai1t = 0,
and the left hand side is exactly

E

[
N∑

i=1

ai1t · Ji

]
= E

[
Φ(X̂ i1 , . . . , X̂ im ) ·

N∑
i=1

ai ·
Ŷi−1

σ(X̂ i−1)
·
√
1tξi + I + II

]
.

Indeed, given Fi j = σ {ξ1, . . . , ξi j }, we can see that if Ŷi j = 0, then Ŷl = 0 by the dynamics
of Ŷ and thus Jl = 0 for all i j < l ≤ i j+1. We only need to show that when Ŷi j 6= 0, E[Jl |Fi j ]

is the same for all i j < l ≤ i j+1:

E[Jl |Fi j ] = E

[
Φ ·

{
ξl

√
1tσ(X̂l−1)

+
√
1tξl

µ′(X̂l−1)

σ (X̂l−1)
+ (ξ2

l − 1)
σ ′(X̂l−1)

σ (X̂l−1)

}

·
Ŷl−1

Ŷi j

∣∣∣∣∣Fi j

]
· Ŷi j . (21)

Notice that Ŷl−1/Ŷi j = dX̂l−1/dX̂ i j , given Fi j . Thus, the conditional expectation in the right
hand side of (21) should be equal to

d

dX̂ i j

E[Φ(X̂ i1 , . . . , X̂ i j , X̂ i j+1 , . . . , X̂ im )|Fi j ]

if we apply the arguments leading to (20) here. It does not depend on l. So does the left hand side
of (21). �
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3.2. Vega

We take vega to be the derivative of u(x) with respect to a perturbation ε that takes σ(·) to
σ(·)+ εσ̃ (·). In other words,

vega =
d
dε

∣∣∣∣
ε=0

E[Φ(X̂εi1
, . . . , X̂εim

)],

where

X̂εi = X̂εi−1 + µ(X̂εi−1)1t + [σ(X̂εi−1)+ εσ̃ (X̂εi−1)]
√
1t ξ̃i , X̂ε0 = x,

and ξ̃i is a truncated normal distributed random variable whose density function is given by

f (w) =


0, w < wL ;

C
√

2πδ
· e−

w2
2δ , wL < w < wR;

0, w > wR .

The parameters C, δ, wL , wR satisfy (cf. Lemma A.1 for the existence of such parameters):

wR = −wL > 0, C > 0, δ > 0; (22)∫ wR

wL

C
√

2πδ
· e−

w2
2δ dw = 1; (23)

Var[ξ̃i ] =

∫ wR

wL

w2
·

C
√

2πδ
· e−

w2
2δ dw = 1. (24)

(22) implies E[ξ̃i ] = 0, (23) makes sure the function f is a probability density function.
Define Ẑ ε := dX̂ε/dε, which satisfies the following recursion

Ẑ εi = Ẑ εi−1 + µ′(X̂εi−1)Ẑ
ε
i−11t + [σ ′(X̂εi−1)

+ εσ̃ ′(X̂εi−1)]Ẑ εi−1

√
1t ξ̃i + σ̃ (X̂εi−1)

√
1t ξ̃i , Ẑ ε0 = 0.

Let Ẑ denote Ẑ ε at ε = 0. In addition, we define Ŷ ε = dX̂ε/dx , which satisfies the recursion:

Ŷ εi = Ŷ εi−1 + µ′(X̂εi−1)Ŷ
ε
i−11t + [σ ′(X̂εi−1)+ εσ̃ ′(X̂εi−1)]Ŷ

ε
i−1

√
1t ξ̃i , Ŷ ε0 = 1.

It is easy to see that Ŷ is equal to Ŷ ε at ε = 0.
The following is the main theorem in the subsection:

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold. Then, for any sufficiently large integer N,
and for any weight set {ai : 0 ≤ i ≤ N } such that

∑i j
i=i j +1 ai1t = 1 for all 0 ≤ j ≤ m,

vega = E

Φ(X̂ i1 , . . . , X̂ im ) ·

 m∑
k=1

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]

·

ik∑
i=ik−1+1

ai
Ŷi−1

σ(X̂ i−1)
·

√
1t · ξ̃i

δ
−

d
dx

[
Ẑim

Ŷim

]




1700 N. Chen, P. Glasserman / Stochastic Processes and their Applications 117 (2007) 1689–1723

+ E

Φ(X̂ i1 , . . . , X̂ im ) ·

 m∑
k=1

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

ik∑
i=ik−1+1

ai1t · (III + IV)




+
C

√
2πδ

e−
w2

R
2δ

m∑
k=1

ik∑
i=ik−1+1

ai
√
1t E

Φ(X̂ i1 , . . . , X̂ im )

·

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

Ŷi

σ(X̂ i−1)

∣∣∣∣∣
ξ̃i =wR


−

C
√

2πδ
e−

w2
L

2δ

m∑
k=1

ik∑
i=ik−1+1

ai
√
1t E

Φ(X̂ i1 , . . . , X̂ im )

·

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

Ŷi

σ(X̂ i−1)

∣∣∣∣∣
ξ̃i =wL

 ,
where

III =
µ′(X̂ i−1)Ŷi−1

σ(X̂ i−1)
·

√
1t ξ̃i

δ
; IV =

σ ′(X̂ i−1)Ŷi−1

σ(X̂ i−1)
·

[
ξ̃2

i
δ

− 1

]
and notation f (x1, . . . , xn)|x j =w denotes the value of function f when x j is fixed as w.

Proof. We first show that this result holds for Φ with a continuous derivative. By the truncated
normal assumption, the range of all possible values of X̂ and Ẑ must be within a compact set.
Over this range, ∂Φ/∂x is bounded because it is continuous. Therefore, we can take the derivative
inside the expectation to get, by the bounded convergence theorem,

vega =
d
dε

∣∣∣∣
ε=0

E[Φ(X̂εi1
, . . . , X̂εim

)] = E

[
m∑

j=1

∂Φ

∂ X̂ i j

(X̂ i1 , . . . , X̂ im ) · Ẑi j

]
. (25)

For any given (wR, wL ,C, δ) satisfying (22)–(24), we always can find a big enough N such
that

1 − sup
x

|µ′(x)|1t − sup
x

|σ ′(x)|
√
1twR = 1 −

sup
x

|µ′(x)|T

N
−

sup
x

|σ ′(x)|
√

TwR

√
N

> 0.

Under such choice of N , Ŷ is positive almost surely because, for any i ,

Ŷi =

i∏
j=1

(1 + µ′(X̂ j−1)1t + σ ′(X̂ j−1)
√
1t ξ̃ j )

≥

i∏
j=1

(1 − sup
x

|µ′(x)|1t − sup
x

|σ ′(x)|
√
1twR) > 0.
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Now divide and multiply by Ŷ simultaneously in the expectation of (25) to get

vega = E

[
m∑

j=1

∂Φ

∂ X̂ i j

(X̂ i1 , . . . , X̂ im ) ·
Ẑi j

Ŷi j

· Ŷi j

]
. (26)

For any weight set {ai : 0 ≤ i ≤ N } such that
∑i j

i=i j +1 ai1t = 1, notice that Ẑ0/Ŷ0 = 0,

Ẑi j

Ŷi j

· Ŷi j =

j∑
k=1

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
· Ŷi j =

j∑
k=1

 ik∑
i=ik−1+1

ai1t

 ·

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
· Ŷi j . (27)

Plugging (27) back into (26) and interchanging the order of the sum over j and the sums over k
and i , we get

vega =

m∑
k=1

ik∑
i=ik−1+1

ai1t · E

[[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

m∑
j=k

∂Φ

∂ X̂ i j

(X̂ i1 , . . . , X̂ im ) ·
Ŷi j

Ŷi
· Ŷi

]
.

Notice that Ŷi j /Ŷi = (dX̂ i j /dx)/(dX̂ i/dx) = dX̂ i j /dX̂ i , so

vega =

m∑
k=1

ik∑
i=ik−1+1

ai1t · E

[[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

m∑
j=k

∂Φ

∂ X̂ i j

(X̂ i1 , . . . , X̂ im ) ·
dX̂ i j

dX̂ i
· Ŷi

]
.

(28)

Given a sample path of ξ̃1, . . . , ξ̃i−1, ξ̃i+1, . . . , ξ̃N (all increments but ξ̃i ), X̂ i j and X̂ i become
functions of ξ̃i . The implicit function theorem leads to

dX̂ i j

dX̂ i
=

dX̂ i j /dξ̃i

dX̂ i/dξ̃i
=

dX̂ i j /dξ̃i

σ(X̂ i−1)
√
1t

and since ik−1 < i ≤ ik ,[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

m∑
j=k

∂Φ

∂ X̂ i j

·
dX̂ i j

dX̂ i
· Ŷi =

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

m∑
j=k

∂Φ

∂ X̂ i j

·
dX̂ i j

dξ̃i

Ŷi

σ(X̂ i−1)
√
1t

=

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

dΦ
dξ̃i

·
Ŷi

σ(X̂ i−1)
√
1t

by the chain rule dΦ/dξ̃i =
∑m

j=k(∂Φ/∂ X̂ i j ) · (dX̂ i j /dξ̃i ). Taking integrals on both sides of the
above equality with respect to the density of ξ̃i , we have∫ wR

wL

C
√

2πδ
e−

w2
i

2δ ·

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

dΦ
dwi

·
Ŷi

σ(X̂ i−1)
√
1t

dwi

= E

[[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

m∑
j=k

∂Φ

∂ X̂ i j

·
dX̂ i j

dX̂ i
· Ŷi |ξ̃1, . . . , ξ̃i−1, ξ̃i+1, . . . , ξ̃N

]
.

Using the integration by parts formula, the left hand side integral is
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C
√

2πδ

∫ wR

wL

Φe−
w2

i
2δ ·

{[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

Ŷi
√
1tσ(X̂ i−1)

·
wi

δ

−
d

dwi

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

Ŷi
√
1tσ(X̂ i−1)

−

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
· Ŷi−1 ·

σ ′(X̂ i−1)

σ (X̂ i−1)

}
dwi

+
Ce−

w2
R

2δ
√

2πδ


[

Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
· Φ ·

Ŷi
√
1tσ(X̂ i−1)

∣∣∣∣∣
wi =wR

−

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
· Φ ·

Ŷi
√
1tσ(X̂ i−1)

∣∣∣∣∣
wi =wL


where we view all of X̂ , Ŷ and Ẑ as functions of wi and note that dŶi/dwi = Ŷi−1 ·

σ ′(X̂ i−1)/σ (X̂ i−1). In addition, dX̂ i/dwi =
√
1tσ(X̂ i−1) and Ŷi = dX̂ i/dx . So,

d
dwi

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

Ŷi
√
1tσ(X̂ i−1)

=
d

dX̂ i

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

dX̂ i

dx
=

d
dx

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
.

In summary,

E

[[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

m∑
j=k

∂Φ

∂ X̂ i j

·
dX̂ i j

dX̂ i
· Ŷi

]

= E

[
E

[[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·

m∑
j=k

∂Φ

∂ X̂ i j

·
dX̂ i j

dX̂ i
· Ŷi

∣∣∣∣∣ ξ̃1, . . . , ξ̃i−1, ξ̃i+1, . . . , ξ̃N

]]

= E

[
Φ ·

{[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
·
ξ̃i

δ
·

Ŷi

σ(X̂ i−1)
√
1t

−
d

dx

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]}]

−E

[
Φ ·

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
· Ŷi−1 ·

σ ′(X̂ i−1)

σ (X̂ i−1)

]
+

C
√

2πδ
· E



[

Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]

·Φ ·
Ŷi

σ(X̂ i−1)
√
1t

∣∣∣∣∣
ξ̃i =wR

−

[
Ẑik

Ŷik

−
Ẑik−1

Ŷik−1

]
· Φ ·

Ŷi

σ(X̂ i−1)
√
1t

∣∣∣∣∣
ξ̃i =wL

 · e−
w2

R
2δ

 .
We get the result of the theorem by plugging the above equality back into (28).

To finish the proof, we can apply Lemma A.2 to extend the conclusion to a general payoff
function Φ satisfying Assumption 3.1. �

3.3. Rho

In this subsection, we go back to normal increments ξi . Define rho to be the derivative of u(x)
with respect to a perturbation ε that takes the drift µ(·) to µ(·)+ εγ (·). In other words,

rho =
d
dε

∣∣∣∣
ε=0

E[Φ(X̂εi1
, . . . , X̂εim

)]
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where

X̂εi = X̂εi−1 + [µ(X̂εi−1)+ εγ (X̂εi−1)]1t + σ(X̂εi−1)
√
1t · ξi .

Let U ε be

U ε
= exp

ε N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi −

1
2
ε2

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t

 .
It is easy to check that U ε > 0 and E[U ε

] = 1. Thus, we can define a new probability measure
using U ε, Pε(dω) = U εP(dω). Moreover, it is easy to see (cf. Lemma A.3) that this change of
measure corresponds to a change of drift, in the sense that

E[Φ(X̂εi1
, . . . , X̂εim

)] = E[Φ(X̂ i1 , . . . , X̂ im ) · U ε
]. (29)

Theorem 3.3. Suppose that Assumptions 3.1–3.3 hold. Then,

rho = E

[
Φ(X̂ i1 , . . . , X̂ im ) ·

N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi

]
.

Proof. Fix a compact neighborhood of ε = 0, say, [−l, l]. By (29) and the Cauchy–Schwarz
inequality,∣∣∣∣∣1ε (E[Φ(X̂εi1

, . . . , X̂εim
)] − u(x))− E

[
Φ(X̂ i1 , . . . , X̂ im ) ·

N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi

]∣∣∣∣∣
=

∣∣∣∣∣E
[
Φ(X̂ i1 , . . . , X̂ im ) ·

1
ε
(U ε

− 1)
]

− E

[
Φ(X̂ i1 , . . . , X̂ im ) ·

N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi

]∣∣∣∣∣
≤

[
E
∣∣∣Φ(X̂ i1 , . . . , X̂ im )

∣∣∣2]1/2

·

E

∣∣∣∣∣1ε (U ε
− 1)−

N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi

∣∣∣∣∣
2
1/2

.

By Taylor expansion with Cauchy’s remainder and the mean-value theorem for integration, we
can find θ(ε) ∈ [−l, l] (which may also depend on the values of ξ ’s) such that

U ε
= U 0

+
dU ε

dε

∣∣∣∣
ε=0

· ε +
1
2

∫ ε

0

d2U x

dx2 (ε − x)2dx

= 1 + ε

[
N∑

i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi

]
+ U θ(ε)

· (ε − θ(ε))

·


 N∑

i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi − θ(ε)

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t

2

−

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t

 · ε.
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Under Assumptions 3.2 and 3.3, γ and 1/σ are bounded, and we clearly have θ(ε) ∈ [−l, l].
It follows that there are positive constants C1 and C2 (not dependent on ξ ) such that

U θ(ε)
= exp

θ(ε) N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi −

1
2
θ(ε)2

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t


≤ exp

[
C1

√
1t

N∑
i=1

|ξi | + C2

N∑
i=1

1t

]
. (30)

Furthermore, there also exist positive constants C3,C4 (not dependent on ξ ) such that N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi − θ(ε)

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t

2

−

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t

≤ C31t
N∑

i=1

ξ2
i + C4

N∑
i=1

1t. (31)

With (30) and (31), using the exponential decay of the density of the ξs, it is easy to show that

sup
ε∈[−l,l]

E

∣∣∣∣∣∣∣U θ(ε)
·


 N∑

i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi − θ(ε)

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t

2

−

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t


∣∣∣∣∣∣∣
2

< +∞,

which implies

E

∣∣∣∣∣1ε (U ε
− 1)−

N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi

∣∣∣∣∣
2

≤ ε · sup
ε∈[−l,l]

E

∣∣∣∣∣∣∣U θ(ε)
·


 N∑

i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi − θ(ε)

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t

2

−

N∑
i=1

[
γ (X̂ i−1)

σ (X̂ i−1)

]2

1t


∣∣∣∣∣∣∣
2

→ 0.

Combining this with the fact that E[Φ2
] < ∞, we have shown that

rho =
d
dε

∣∣∣∣
ε=0

E[Φ(X̂εi1
, . . . , X̂εim

)] = E

[
Φ(X̂ i1 , . . . , X̂ im ) ·

N∑
i=1

γ (X̂ i−1)

σ (X̂ i−1)

√
1tξi

]
.

�
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4. Convergence results

In this section, we show the consistency between the estimators obtained in Section 3 and the
Malliavin estimators. We prove that each of the unbiased estimators converges in distribution to
the corresponding Malliavin estimator as N → +∞. The theoretical cornerstone of this analysis
is the theory of weak convergence for stochastic differential equations. We review the necessary
results in Appendix B. For further background, see Jacod and Shiryayev [11] and Kurtz
and Protter [13,14]. In the section, we attach index N to such notations as X̂ , Ŷ and Ẑ to stress
that they are under N -step Euler approximation.

For each positive integer N , there is a probability space (Ω (N ),F (N ), {F (N )t }, P(N )) and on
it defined a sequence of i.i.d. random variables {ξ

(N )
i , 1 ≤ i ≤ N } or {ξ̃

(N )
i , 1 ≤ i ≤ N }, where

F (N )t = σ(ξ
(N )
1 , . . . , ξ

(N )
[Nt/T ]

) or σ(ξ̃ (N )1 , . . . , ξ̃
(N )
[Nt/T ]

). The distributions of ξ (N )1 and ξ̃ (N )1 are
standard normal or truncated normal, respectively. Define

L̂(N )t =

[Nt/T ]∑
i=1

√
∆t (N )ξ (N )i and L̃(N )t =

[Nt/T ]∑
i=1

√
∆t (N )ξ̃ (N )i .

Thus, L̂(N ) and L̃(N ) induce two different sequences of probability measures on the space
D1

[0, T ] (cf. Appendix B for the definition of the space D1
[0, T ]).

To show the estimator of vega will converge to the Malliavin estimator, we need to get rid of
the last two terms in the expression in Theorem 3.2. For this purpose, we choose the parameters
of the truncated normal as follows:

Assumption 4.1. (w(N )L , w
(N )
R ,C (N ), δ(N )) satisfy

C (N )
=

1

2ψ(
√

N x∗)− 1
, δ(N ) =

1

1 − F(
√

N x∗)
,

w
(N )
R = −w

(N )
L =

√
N x∗δ(N ),

where x∗ > 0 is a fixed number such that

1 − sup
x

|σ ′(x)|
√

T x∗ > 0,

ψ is the cumulative probability function of standard normal and F is defined as in Lemma A.1.
Thus, as N → +∞, C (N ) and δ(N ) converge to 1 and w(N )R goes to +∞ in the order of

√
N .

Remark 4.1. By Lemma A.1, it is easy to show that (w(N )L , w
(N )
R ,C (N ), δ(N )) must satisfy

(22)–(24). Meanwhile, for all sufficiently large N ,

1 − sup
x

|µ′(x)|∆t (N ) − sup
x

|σ ′(x)|
√

∆t (N )w(N )R

= 1 −

sup
x

|µ′(x)|T

N
− sup

x
|σ ′(x)|

√
T x∗δ(N ) > 0.

Thus, all Y (N ) are indeed positive, almost surely, and the proof of Theorem 3.2 goes through for
all sufficiently large N .
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4.1. Preliminary convergence results

As the first step, we establish the weak convergence result of processes (X̂ (N ), Ŷ (N ), Ẑ (N ))
with increments ξ (N ) or ξ̃ (N ) in this subsection. For the purpose, we introduce functions

g(N )(x, y, z) = g(x, y, z) =

 µ(x) σ (x)
µ′(x)y σ ′(x)y
µ′(x)z σ ′(x)z + σ̃ (x)

 .
One can easily see that (X̂ (N ), Ŷ (N ), Ẑ (N )) is the solution to the following SDEs:

M̂ (N )
t =

∫ t

0
g(N )(M̂ (N )

s− )dL̂(N )s or M̃ (N )
t =

∫ t

0
g(N )(M̃ (N )

s− )dL̃(N )s , (32)

dependent on which increments we are using. The sample paths of both M̂ (N ) and M̃ (N ) are in
D3

[0, T ].
The following lemma is needed to establish the tightness of processes L̂(N ) and L̃(N ) (see

Appendix B for the definition of P-UT):

Lemma 4.2. Processes L̂(N ) and L̃(N ) are P-UT.

Proof. In the following proof, we do not need any special properties of the normal (or truncated
normal) distribution except that E[ξ ] = 0 and Var[ξ ] = 1. So, without loss of generality, we
only consider the case of L̂(N ). For any elementary predictable process

H (N )
t = Y (N )0 1{0} +

k∑
i=1

Y (N )i 1(si ,si+1](t)

defined on the probability space (Ω (N ),F (N ), {F (N )t }, P(N )) and satisfying |Y (N )i | ≤ 1 for all
1 ≤ i ≤ k and for any a > 0, by Chebyshev’s inequality,

P
(∣∣∣∣∫ t

0
H (N )

s− dL̂(N )s

∣∣∣∣ > a
)

≤
E[
∫ t

0 H (N )
s− dL̂(N )s ]

2

a2 =

k∑
i=1

E[|Y (N )i |
2
· |L̂(N )si+1 − L̂(N )si |

2
]

a2 .

By the assumption that |Y (N )i | ≤ 1, the right side is bounded above by

k∑
i=1

E[|L̂(N )si+1 − L̂(N )si |
2
]

a2 =
∆t (N )

a2

[Nt/T ]∑
j=1

Var[ξ (N )j ].

Because the variance of ξ (N )j is 1, the right side of the inequality above will be ∆t (N )[Nt/T ]/a2.
This upper bound does not depend on H and N , and it converges to 0 as a → +∞. Thus,

lim
a→+∞

sup
H (N )∈H(N ),N

P
(∣∣∣∣∫ t

0
H (N )

s− dL̂(N )s

∣∣∣∣ > a
)

→ 0.

where H(N ) is the set of all elementary processes on (Ω (N ),F (N ), {F (N )t }, P(N )), i.e., L̂(N ) is
P-UT. �



N. Chen, P. Glasserman / Stochastic Processes and their Applications 117 (2007) 1689–1723 1707

Now we are able to show the weak convergence of (X̂ (N ), Ŷ (N ), Ẑ (N )) in the Skorokhod
topology:

Lemma 4.3. Suppose Assumptions 3.1, 3.2 and 4.1 hold and we have (X̂ (N ), Ŷ (N ), Ẑ (N )) defined
as the solution to the SDE (32). As N → +∞,

(X̂ (N ), Ŷ (N ), Ẑ (N )) ⇒ (X, Y, Z),

where (X, Y, Z) is a global solution of the following SDE:

Mt =

∫ t

0
g(Ms−)dWs .

Proof. Suppose that (X̂ (N ), Ŷ (N ), Ẑ (N )) is the solution to the first SDE in (32). Using Donsker’s
invariance principle for L̂(N ), we know that L̂(N ) weakly converge to Brownian motion W .
Furthermore, L̂(N ) are P-UT by Lemma 4.2. Thus, applying Lemma B.3, we have the conclusion
that (X̂ (N ), Ŷ (N ), Ẑ (N )) ⇒ (X, Y, Z) in the Skorokhod topology if the solution (X, Y, Z) exists
globally.

As for the case that (X̂ (N ), Ŷ (N ), Ẑ (N )) is the solution for the second SDE in (32). All of the
above arguments works except that now we can not use Donsker’s invariance principle to show
L̃(N ) converges to Brownian motion because L̃(N ) is the sum of a triangular array (the distribution
of ξ̃ (N )1 depends on N by Assumption 4.1). Here we cite the Lindeberg–Feller theorem for
martingales (cf. Durrett [5], Theorem 7.7.3, p. 414) to establish such convergence. Indeed, for
any t ∈ [0, T ], as N → +∞,

[Nt/T ]∑
j=1

E[

√
∆t (N )ξ̃ (N )i ]

2
= ∆t (N )

[Nt/T ]∑
j=1

E[ξ̃
(N )
i ]

2
= ∆t (N ) · [Nt/T ] → t

and for any ε > 0,

N∑
j=1

E[(
√

∆t (N )ξ̃ (N )i )2 · 1
{|

√

∆t (N ) ξ̃ (N )i |>ε}
] ≤

1
ε2

N∑
j=1

E[(
√

∆t (N )ξ̃ (N )i )4]

=
N
ε2 (∆t (N ))2 E[(ξ̃

(N )
1 )4].

Note that E[(ξ̃
(N )
1 )4] is uniformly bounded for all N . The right hand side of the above inequality

converges to 0. In summary, both (i) and (ii) of Theorem 7.7.3 are satisfied. We have the
conclusion that L̃(N ) weakly converges to Brownian motion W . �

Remark 4.4. This lemma implies that Ŷ (N ) is a tight process. In other words, we have the
following limit holds (cf. [11], p. 350): for any K > 0,

lim
N

P(N )( sup
1≤i≤N

|Ŷ (N )i | > K ) = 0.

4.2. Convergence of delta estimators

To show the convergence of estimators for delta, vega and rho, we need another two
assumptions:
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Assumption 4.2. Φ is a.s. continuous under the measure of X t , i.e., there exists a set E ⊂ Rm

such that Φ is continuous outside of E and

P((X t1 , . . . , X tm ) ∈ E) = 0.

Assumption 4.3. There exists an L2 function {at : 1 ≤ t ≤ T } for which the sequence of
weights {a(N )i : 1 ≤ i ≤ N } satisfies

lim
N→+∞

sup
0≤t≤T

|a(N )
[Nt/T ]

− at | = 0.

Lemma 4.5. Under Assumptions 3.1, 3.2, 4.2 and 4.3,

I(N ) := Φ(X̂ (N )i1
, . . . , X̂ (N )im

) ·

N∑
i=1

a(N )i ·
σ ′(X̂ (N )i−1)

σ (X̂ (N )i−1)
· [(
√

∆t (N ) · ξ
(N )
i )2 −1t (N )]

and

II(N ) := Φ(X̂ (N )i1
, . . . , X̂ (N )im

) ·

(
N∑

i=1

a(N )i ·
µ′(X̂ (N )i−1)

σ (X̂ (N )i−1)

√
∆t (N ) · ξ

(N )
i

)
· ∆t (N )

converge weakly to 0.

Proof. Notice that

E

∣∣∣∣∣ N∑
i=1

a(N )i ·
σ ′(X̂ (N )i−1)

σ (X̂ (N )i−1)
· [(
√

∆t (N ) · ξ
(N )
i )2 − ∆t (N )]

∣∣∣∣∣
2

= 2
N∑

i=1

i−1∑
j=1

a(N )i a(N )j (∆t (N ))2 E

σ ′(X̂ (N )i−1)

σ (X̂ (N )i−1)

σ ′(X̂ (N )j−1)

σ (X̂ (N )j−1)
((ξ

(N )
i )2 − 1)((ξ (N )j )2 − 1)


+

N∑
i=1

(a(N )i ∆t (N ))2 E

(σ ′(X̂ (N )i−1)

σ (X̂ (N )i−1)

)2

((ξ
(N )
i )2 − 1)2

 . (33)

The expectation in the first summand in the right hand side of (33) is 0 because, conditional on
Fi−1,

E

σ ′(X̂ (N )i−1)

σ (X̂ (N )i−1)

σ ′(X̂ (N )j−1)

σ (X̂ (N )j−1)
((ξ

(N )
i )2 − 1)((ξ (N )j )2 − 1)

∣∣∣∣∣∣Fi−1


=
σ ′(X̂ (N )i−1)

σ (X̂ (N )i−1)

σ ′(X̂ (N )j−1)

σ (X̂ (N )j−1)
((ξ

(N )
j )2 − 1)E[((ξ

(N )
i )2 − 1)|Fi−1] = 0

for all i, j , i > j . And the second summand in the right hand side of (33) is bounded by:

sup
x

(
σ ′(x)
σ (x)

)2 N∑
i=1

(a(N )i ∆t (N ))2 E[((ξ
(N )
i )2 − 1)2]

= 2
(
σ ′(x)
σ (x)

)2 N∑
i=1

(a(N )i )2∆t (N ) · ∆t (N ),
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because the assumption that ξ has a standard normal distribution leads to E[(ξ
(N )
i )2 − 1]

2
= 2.

On the other hand, according to Assumption 4.3, supN
∑N

i=1(a
(N )
i )2∆t (N ) < +∞. Thus,

N∑
i=1

a(N )i ·
σ ′(X̂ (N )i−1)

σ (X̂ (N )i−1)
· [(
√

∆t (N ) · ξ
(N )
i )2 − ∆t (N )]

converges to 0 in L2 as N → ∞, which also implies its weak convergence to 0. In
addition, we know that process X̂ (N ) weakly converge to X in the Skorohod topology (cf.
Lemma 4.3). Combining this with Assumption 4.2 shows that Φ(X̂ (N )i1

, . . . , X̂ (N )im
) converges

to Φ(X t1 , . . . , X tm ) weakly. Therefore I(N ) converges weakly to 0.
As for II(N ), by applying Lemma B.3, we can show that

N∑
i=1

a(N )i ·
µ′(X̂ (N )i−1)

σ (X̂ (N )i−1)

√
∆t (N ) · ξ

(N )
i

converges weakly because we know that the processes X̂ (N ) converge weakly by Lemma 4.3.
Thus, (

∑N
i=1 a(N )i · (µ′(X̂ (N )i−1)/σ (X̂

(N )
i−1))

√
∆t (N ) · ξ

(N )
i ) · ∆t (N ) converges to 0 weakly. Using

Assumption 4.2 again, we find that II(N ) converge weakly to 0. �

We now come to the main theorem of this subsection.

Theorem 4.6. Under Assumptions 3.1, 3.2, 4.1 and 4.2, the delta estimator (19) converges
weakly to

Φ(X t1 , . . . , X tm ) ·

∫ T

0
at

Yt

σ(X t )
dWt .

Proof. Define functions

g(N )(x, y; s) =
y

σ(x)
· a(N )

[Ns/T ]
, g(x, y; s) =

y
σ(x)

· as .

It is easy to see that for any compact set K , we have

lim
N→+∞

sup
(x,y,s)∈K

|g(N )(x, y; s)− g(x, y; s)|

= sup
(x,y)∈K

y
σ(x)

· lim
N→+∞

sup
s∈K

|a(N )
[Ns/T ]

− as | = 0

because y/σ(x) is bounded when (x, y) ∈ K . Thus (41) holds. Applying Lemma B.3, we have

N∑
i=1

a(N )i ·
Ŷ (N )i−1

σ(X̂ (N )i−1)
·

√
∆t (N )ξ (N )i ⇒

∫ T

0
at

Yt

σ(X t )
dWt .

Combining this with Lemma 4.5, the theorem follows. �

4.3. Convergence of vega estimators

This section establishes the convergence of the vega estimators we derived in Section 3.
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Lemma 4.7. Under Assumptions 3.1, 3.2 and 4.1–4.3,

ik∑
i=ik−1+1

a(N )i ∆t (N ) · III(N ) :=

ik∑
i=ik−1+1

a(N )i ∆t (N ) ·
µ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
·

√
∆t (N )ξ̃ (N )i

δ(N )

and
ik∑

i=ik−1+1

a(N )i ∆t (N ) · IV(N ) :=

ik∑
i=ik−1+1

a(N )i ∆t (N ) ·
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
·

[
(ξ̃
(N )
i )2

δ(N )
− 1

]
converge to 0 weakly.

Proof. Using similar arguments as those in Theorem 4.6, it is easy to show that

ik∑
i=ik−1+1

a(N )i ·
µ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
·

√
∆t (N )ξ̃ (N )i ⇒

∫ tk

tk−1

as
µ′(Xs)Ys

σ(Xs)
dWs .

On the other hand, by Assumption 4.1, δ(N ) converge to 1. Then we have

ik∑
i=ik−1+1

a(N )i ∆t (N ) · III(N ) =
∆t (N )

δ(N )

 ik∑
i=ik−1+1

a(N )i ·
µ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
·

√
∆t (N )ξ̃ (N )i

 .
⇒ 0.

As for the second convergence in the statement of the lemma, we first show

lim
N→+∞

E


∣∣∣∣∣∣

ik∑
i=ik−1+1

a(N )i ∆t (N ) ·
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
·

[
(ξ̃
(N )
i )2

δ(N )
− 1

]
· 1

{τ
(N )
b ≥i}

∣∣∣∣∣∣
2
 = 0,

for any fixed b > 0, where τ (N )b := inf{ j : |Ŷ (N )j | > b}. Once we establish this limit, we can

conclude that
∑ik

i=ik−1+1 a(N )i ∆t (N ) · IV(N ) ⇒ 0, in light of Remark 4.4 (following Lemma 4.3)

noting that P(N )(τ (N )b ≥ N ) → 1.
Indeed, the left hand side of the above limit is bounded by, using the inequality (a + b)2

≤ 2a2
+ 2b2,

2
(δ(N ))2

E


∣∣∣∣∣∣

ik∑
i=ik−1+1

a(N )i ∆t (N ) ·
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
· [(ξ̃

(N )
i )2 − 1] · 1

{τ
(N )
b ≥i}

∣∣∣∣∣∣
2


+ 2
(

1
(δ(N ))2

− 1
)2

· E


∣∣∣∣∣∣

ik∑
i=ik−1+1

a(N )i ∆t (N ) ·
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
· 1

{τ
(N )
b ≥i}

∣∣∣∣∣∣
2
 . (34)

It is easy to see that the second term in (34) converges to 0 because δ(N ) → 1 and

E


∣∣∣∣∣∣

ik∑
i=ik−1+1

a(N )i ∆t (N ) ·
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
· 1

{τ
(N )
b ≥i}

∣∣∣∣∣∣
2

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≤ N ·

ik∑
i=ik−1+1

E

(a(N )i )2(∆t (N ))2 ·

[
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)

]2

· 1
{τ
(N )
b ≥i}


≤ sup

x

(
σ ′(x)b
σ(x)

)2 ik∑
i=ik−1+1

(a(N )i )2(∆t (N )) · T

is bounded uniformly for all N . For the first term in (34),

a(N )i ∆t (N ) ·
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
· [(ξ̃

(N )
i )2 − 1] · 1

{τ
(N )
b ≥i}

is a martingale difference sequence because the variance of ξ̃
(N )
i is 1 and ∆t (N ) ·

σ ′(X̂ (N )i−1)Ŷ
(N )
i−1 /σ(X̂

(N )
i−1) · 1

{τ
(N )
b ≥i} is F (N )i−1 -measurable. By the orthogonality of martingale

differences and the assumption that σ ′ is bounded and σ is non-degenerate,

E


∣∣∣∣∣∣

ik∑
i=ik−1+1

a(N )i ∆t (N ) ·
σ ′(X̂ (N )i−1)Ŷ

(N )
i−1

σ(X̂ (N )i−1)
· [(ξ̃

(N )
i )2 − 1] · 1

{τ
(N )
b ≥i}

∣∣∣∣∣∣
2


= ∆t (N ) ·

ik∑
i=ik−1+1

|a(N )i |
2 E

∣∣∣∣∣σ ′(X̂ (N )i−1)Ŷ
(N )
i−1

σ(X̂ (N )i−1)
· [(ξ̃

(N )
i )2 − 1] · 1

{τ
(N )
b ≥i}

∣∣∣∣∣
2

· ∆t (N )


≤ Cb2∆t (N ) ·

ik∑
i=ik−1+1

|a(N )i |
2 E[|(ξ̃

(N )
i )2 − 1|

2
] · ∆t (N ). (35)

Noting that the variance of ξ̃ (N )i is 1 and the fourth moment of ξ̃ (N )i is also bounded by some
constant independent of N , we find that E[|(ξ̃

(N )
i )2 − 1|

2
] is bounded uniformly in N . Thus the

right hand side of (35) converges to 0, which implies the convergence of the first term of (34)
to 0. �

Lemma 4.8. Under all assumptions in Section 3 and Assumptions 4.1–4.3, there exists a
constant C which does not depend on N such that, for every 1 ≤ k ≤ m,

sup
ik−1+1≤i≤ik

E

Φ(X̂ (N )i1
, . . . , X̂ (N )im

) ·

 Ẑ (N )ik

Ŷ (N )ik

−

Ẑ (N )ik−1

Ŷ (N )ik−1

 ·
Ŷ (N )i

σ(X̂ (N )i−1)

∣∣∣∣∣∣
ξ̃
(N )
i =w

(N )
R (or w(N )L )


< C N .

Therefore,

C (N )
√

2πδ(N )
exp

(
−
(w

(N )
R )2

2δ(N )

)
ik∑

i=ik−1+1

a(N )i

√
∆t (N )E

×

Φ(N )
·

 Ẑ (N )ik

Ŷ (N )ik

−

Ẑ (N )ik−1

Ŷ (N )ik−1

 ·
Ŷ (N )i

σ(X̂ (N )i−1)

∣∣∣∣∣∣
ξ̃
(N )
i =w

(N )
R (or w(N )L )


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is bounded by C1 N 3/2
· exp(−C2 N ) for some constant C1 and C2 which do not depend on N

either, and thus it converges to 0 as N → +∞. (Here, Φ(N )
= Φ(X̂ (N )i1

, . . . , X̂ (N )im
).)

Proof. We consider only the conditional expectation on the condition that ξ̃ (N )i = w
(N )
R because

the arguments are the same for both cases of w(N )R and w(N )L .
By the definition of Ŷ (N ) and Ẑ (N ) (cf. the part before Theorem 3.2 in Section 3.2), we know

that

Ẑ (N )j

Ŷ (N )j

=
Ẑ (N )j−1

Ŷ (N )j

· (1 + µ′(X̂ (N )j−1)∆t (N ) + σ ′(X̂ (N )j−1)
√

∆t (N )ξ̃ (N )j )+
σ̃ (X̂ (N )j−1)

√
∆t (N )ξ̃ (N )j

Y (N )j

=
Ẑ (N )j−1

Ŷ (N )j

·
Ŷ (N )j

Ŷ (N )j−1

+
σ̃ (X̂ (N )j−1)

√
∆t (N )ξ̃ (N )j

Y (N )j

=
Ẑ (N )j−1

Ŷ (N )j−1

+
σ̃ (X̂ (N )j−1)

√
∆t (N )ξ̃ (N )j

Y (N )j

.

Thus,

Ẑ (N )ik

Ŷ (N )ik

−

Ẑ (N )ik−1

Ŷ (N )ik−1

=

ik∑
j=ik−1+1

 Ẑ (N )j

Ŷ (N )j

−
Ẑ (N )j−1

Ŷ (N )j−1

 =

ik∑
j=ik−1+1

σ̃ (X̂ (N )j−1)
√

∆t (N )ξ̃ (N )j

Y (N )j

.

Because σ is non-degenerate and |σ̃ (x)| ≤ |σ̃ (0)| + supx |σ̃ ′(x)| · |x |, there must exists two
constants C3 and C4 which does not depend on N such that

E


∣∣∣∣∣∣Φ(X̂ (N )i1

, . . . , X̂ (N )im
) ·

 Ẑ (N )ik

Ŷ (N )ik

−

Ẑ (N )ik−1

Ŷ (N )ik−1

 ·
Ŷ (N )i

σ(X̂ (N )i−1)

∣∣∣∣∣∣
∣∣∣∣∣∣
ξ̃
(N )
i =w

(N )
R


=

ik∑
j=ik−1+1

E


∣∣∣∣∣∣Φ(X̂ (N )i1

, . . . , X̂ (N )im
) ·
σ̃ (X̂ (N )j−1)

√
∆t (N )ξ̃ (N )j

Y (N )j

·
Ŷ (N )i

σ(X̂ (N )i−1)

∣∣∣∣∣∣
∣∣∣∣∣∣
ξ̃
(N )
i =w

(N )
R


≤

ik∑
j=ik−1+1

E

|Φ(X̂ (N )i1
, . . . , X̂ (N )im

)| ·

√
∆t (N )(C3 + C4|X̂

(N )
j−1|)|ξ̃

(N )
j |

|Ŷ (N )j |

· |Ŷ (N )i |

∣∣∣∣∣∣
ξ̃
(N )
i =w

(N )
R

 .
Using the arithmetic–geometric mean inequality, for any positive numbers a, b, c, d, we know
that abcd ≤ (a4

+ b4
+ c4

+ d4)/4. So the right hand side of the above inequality is less than

1
4

ik∑
j=ik−1+1

{
E[|Φ(X̂ (N )i1

, . . . , X̂ (N )im
)|4|

ξ̃
(N )
i =w

(N )
R

]

+ (∆t (N ))2 E[|C3 + C4|X̂
(N )
j−1||

4
|ξ̃
(N )
j |

4
|
ξ̃
(N )
i =w

(N )
R

]

+ E[|Ŷ (N )j |
−4

|
ξ̃
(N )
i =w

(N )
R

] + E[|Ŷ (N )i |
4
|
ξ̃
(N )
i =w

(N )
R

]

}
. (36)
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By Lemmas C.3 and C.2, the last two terms in (36) are both bounded by constants independent
of N . The polynomial growth of Φ implies that

E[|Φ(X̂ (N )i1
, . . . , X̂ (N )im

)|4|
ξ̃
(N )
i =w

(N )
R

] ≤ E

 m∑
k=1

(X̂ (N )ik
)2

∣∣∣∣∣∣
ξ̃
(N )
i =w

(N )
R


2p

≤ m2p
m∑

k=1

E[(X̂ (N )ik
)4p

|
ξ̃
(N )
i =w

(N )
R

].

By Lemma C.1, we know that it is also bounded by a constant independent of N .
For

(1t (N ))2 E[|X̂ (N )j−1|
4
|ξ̃
(N )
j |

4
|
ξ̃
(N )
i =w

(N )
R

],

we consider two cases. If j 6= i , noting that X̂ (N )j−1 and ξ̃ (N )j are independent, this equals

(1t (N ))2 E[|X̂ (N )j−1|
4
|
ξ̃
(N )
i =w

(N )
R

] · E[|ξ̃
(N )
j |

4
]

≤ sup
1≤ j≤N

E |ξ̃
(N )
j |

4
· (∆t (N ))2 · E[|X̂ (N )j−1|

4
|
ξ̃
(N )
i =w

(N )
R

],

which is bounded by a constant by Lemma C.1 and the fact that sup1≤ j≤N E |ξ̃
(N )
j |

4 is uniformly
bounded for all N ; if j = i , it equals

E[|X̂ (N )j−1|
4
· (
√

∆t (N )w(N )R )4] = (x∗
√

T δ(N ))4 · sup
j

E |X̂ (N )j−1|
4,

which is also bounded by a constant because δ(N ) → 1 and sup j E |X̂ (N )j−1|
4 bounded.

In summary, all summands in (36) are bounded by constants independent of N . Therefore,
there exists a constant C such that

E


∣∣∣∣∣∣Φ(X̂ (N )i1

, . . . , X̂ (N )im
) ·

 Ẑ (N )ik

Ŷ (N )ik

−

Ẑ (N )ik−1

Ŷ (N )ik−1

 ·
Ŷ (N )i

σ(X̂ (N )i−1)

∣∣∣∣∣∣
∣∣∣∣∣∣
ξ̃
(N )
i =w

(N )
R

 < C N . �

Theorem 4.9. Under Assumptions 3.1, 3.2 and 4.1–4.3, the estimator in Theorem 3.2 converges
weakly to

Φ(X t1 , . . . , X tm ) ·

{
m∑

k=1

[
Z tk

Ytk
−

Z tk−1

Ytk−1

]
·

∫ tk

tk−1

as
Ys

σ(Xs)
dWs −

d
dx

[
Z tm

Ytm

]}
.

Proof. Using Lemmas 4.7 and 4.8, we only need to show that

ik∑
i=ik−1+1

a(N )i
Ŷ (N )i−1

σ(X̂ (N )i−1)
·

√
∆t (N ) · ξ̃

(N )
i

δ(N )
⇒

∫ tk

tk−1

as
Ys

σ(Xs)
dWs (37)

and

d
dx

[
Z (N )im

Y (N )im

]
⇒

d
dx

[
Z tm

Ytm

]
. (38)
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Eq. (37) holds by arguments similar to those used in the proof of Theorem 4.6 and the fact
that L̃(N ) is P-UT (cf. Lemma 4.2).

Now turn to the proof of (38). Notice that

dẐ (N )i
dx

=
dẐ (N )i−1

dx
+

[
µ′′(X̂ (N )i−1)Ŷ

(N )
i−1 Ẑ (N )i−1 + µ′(X̂ (N )i−1)

dẐ (N )i−1

dx

]
∆t (N ) + σ̃ ′(X̂ (N )i−1)Ŷ

(N )
i−1 ξ̃

(N )
i

+

[
σ ′′(X̂ (N )i−1)Ŷ

(N )
i−1 Ẑ (N )i−1 + σ ′(X̂ (N )i−1)

dẐ (N )i−1

dx

]
ξ̃
(N )
i

√
∆t (N )

and

dŶ (N )i
dx

=
dŶ (N )i−1

dx
+

[
µ′′(X̂ (N )i−1)(Ŷ

(N )
i−1 )

2
+ µ′(X̂ (N )i−1)

dŶ (N )i−1

dx

]
∆t (N ) +

[
σ ′′(X̂ (N )i−1)(Ŷ

(N )
i−1 )

2

+ σ ′(X̂ (N )i−1)
dŶ (N )i−1

dx

]
ξ̃
(N )
i

√
1t (N ).

Using arguments similar to those in Lemma 4.3, we can show that (dẐ (N )/dx, dŶ (N )/dx)weakly
converges to (dZ/dx, dY/dx) in the Skorohod topology. Thus,

d
dx

[
Ẑ (N )im

Ŷ (N )im

]
=

dẐ (N )im

dx
·

1

Ŷ (N )im

−
Ẑ (N )im

(Ŷ (N )im
)2

·
dŶ (N )im

dx

⇒
dZ tm

dx
·

1
Ytm

−
Z tm

(Ytm )
2 ·

dYtm

dx
=

d
dx

[
Z tm

Ytm

]
. �

4.4. Convergence of rho estimators

In this section, we turn to the convergence of the rho estimators. Because the necessary
arguments are very similar to (and simpler than) what we used in Theorems 4.6 and 4.9, we
just list the theorem as follows without detailed justification:

Theorem 4.10. Under all assumptions in Section 3 and Assumption 4.2, the estimator given in
Theorem 3.3 converges weakly to

Φ(X t1 , . . . , X tm ) ·

∫ T

0

γ (Xs)

σ (Xs)
dWs .

The rest of this article presents technical results in Appendices A–C.
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Appendix A. Some technical lemmas

Lemma A.1. There exist parameters satisfying (22)–(24).
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Proof. Notice that

lim
x→+∞

xe−x2/2

2ψ(x)− 1
= 0,

where ψ(·) is the cumulative normal distribution function. Thus, we can choose an x such that

F(x) :=
2

√
2π

·
xe−x2/2

2ψ(x)− 1
< 1.

Let C = 1/(2ψ(x)− 1), δ = 1/(1 − F(x)) and wR = −wL = x
√
δ. Then,∫ wR

wL

C
√

2πδ
· e−

w2
2δ dw = C ·

∫ wR/
√
δ

wL/
√
δ

1
√

2π
· e−

w2
2 dw = C · (2ψ(x)− 1) = 1;

∫ wR

wL

w2 C
√

2πδ
· e−

w2
2δ dw = Cδ ·

∫ wR/
√
δ

wL/
√
δ

w2
√

2π
· e−

w2
2 dw

= δ

(
1 −

C · 2xe−x2/2
√

2π

)
= δ(1 − F(x)) = 1. �

Lemma A.2. Theorem 3.2 holds for any Φ satisfying Assumption 3.1.

Proof. Consider any Φ satisfying Assumption 3.1, not necessarily differentiable. Let ϕ be a C∞

function

ϕ(x1, . . . , xm) =


c exp

 1
m∑

i=1
x2

i − 1

 ;

m∑
i=1

x2
i < 1;

0; otherwise,

where c is selected so that
∫

Rm ϕ(x)dx = 1 and let ϕn(x) = nmϕ(nx). We employ the mollifiers
ϕn(x) to obtain differentiable approximations to Φ by convolution:

φn(x) =

∫
Rm
ϕn(x − y)Φ(y)dy.

Then, the function φn is C∞ for every n and φn
→ Φ as n → +∞ (cf. Evans [6], Theorem C.6

(i) and (ii), p. 630).
Pick a neighborhood K of ε = 0 as in Assumption 3.2.

sup
ε∈K

E[|φn(X̂εi1
, . . . , X̂εim

)− Φ(X̂εi1
, . . . , X̂εim

)|2]

= sup
ε∈K

∫
[wL ,wR ]N

|φn(x̂εi1
, . . . , x̂εim

)− Φ(x̂εi1
, . . . , x̂εim

)|2

·

N∏
j=1

(
C

√
2πδ

exp(−
w2

j

2δ
)

)
dw1 · · · dwN

where the production is the joint density function of (ξ̃1, . . . , ξ̃N ) and xεi is given by the recursion:
x̂εi = x̂εi−1 + µ(x̂εi−1)1t + [σ(x̂εi−1)+ εσ̃ (x̂εi−1)]

√
1twi . We can see that the right hand side of



1716 N. Chen, P. Glasserman / Stochastic Processes and their Applications 117 (2007) 1689–1723

the above equality should be less than

sup
ε∈K

∫
RN

|φn(x̂εi1
, . . . , x̂εim

)− Φ(x̂εi1
, . . . , x̂εim

)|2 ·

N∏
j=1

(
C

√
2πδ

exp

(
−
w2

j

2δ

))
dw1 · · · dwN

if we enlarge the whole integration region from [wL , wR]
N to RN . Now applying change of

variable here to switch integration variables from (w1, . . . , wN ) to (x̂ε1, . . . , x̂εN ), we have the
above should equal to(

C
√

2πδ

)N

sup
ε∈K

∫
RN

|φn
− Φ|

2

·

N∏
j=1

(
1

√
1t(σ (x j−1)+ εσ̃ (x j−1))

exp
(

−
(xi − xi−1 − µ(xi−1)1t)2

2δ(σ (x j−1)+ εσ̃ (x j−1))21t

))
dx .

By part (3) of Assumption 3.2, we know that σ + εσ̃ is bounded below by a positive constant ε
for all ε ∈ K . Thus the above should be less than

C N
∫

RN
|φn

− Φ|
2
·

N∏
j=1

(
1

√
2πδ1tε

exp
(

−
(xi − xi−1 − µ(xi−1)1t)2

2δε21t

))
dx1 · · · dxN .

Notice that the production is the joint density function of (X̂ ε1, . . . , X̂ εN ) where X̂ εi is defined
by the recursion: X̂ εi = X̂ εi−1 + µ(X̂ εi−1)1t +

√
δε

√
1tξi . One can easily show that the above

converges to 0 as n → +∞ if using the argument of Theorem C.6(iv) in Evans [6] (cf. p. 630.
The proof there is under the Lebesgue measure. But one can easily change it to cover our case
under the measure induced by (X̂ ε1, . . . , X̂ εN )). This implies,

lim
n→∞

sup
ε∈K

E[|φn(X̂εi1
, . . . , X̂εim

)− Φ(X̂εi1
, . . . , X̂εim

)|2] = 0.

Next, applying the arguments which lead to Theorem 3.2 and noticing that φn is differentiable,
for any ε ∈ K ,

d
dε

E[φn(X̂εi1
, . . . , X̂εim

)] = E[φn(X̂εi1
, . . . , X̂εim

) · D(ε)] (39)

where

D(ε) =


[

Ẑ εik

Ŷ εik

−

Ẑ εik−1

Ŷ εik−1

]
·

ik∑
i=ik−1+1

ai
Ŷ εi−1

σ(X̂εi−1)
·

√
1t · ξ̃i

δ
−

d
dx

[
Ẑ εim

Ŷ εim

]
+


m∑

k=1

[
Ẑ εik

Ŷ εik

−

Ẑ εik−1

Ŷ εik−1

]
·

ik∑
i=ik−1+1

ai1t

·

(
µ′(X̂εi−1)Ŷ

ε
i−1

σ(X̂εi−1)
·

√
1t ξ̃i

δ
+
σ ′(X̂εi−1)Ŷ

ε
i−1

σ(X̂εi−1)
·

[
ξ̃2

i
δ

− 1

])
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+
C

√
2πδ

e−
w2

R
2δ

m∑
k=1

ik∑
i=ik−1+1

ai
√
1t ·

[
Ẑ εik

Ŷ εik

−

Ẑ εik−1

Ŷ εik−1

]
·

Ŷ εi
σ(X̂εi−1)

∣∣∣∣∣∣
ξ̃i =wR

−
C

√
2πδ

e−
w2

L
2δ

m∑
k=1

ik∑
i=ik−1+1

ai
√
1t ·

[
Ẑ εik

Ŷ εik

−

Ẑ εik−1

Ŷ εik−1

]
·

Ŷ εi
σ(X̂εi−1)

∣∣∣∣∣∣
ξ̃i =wL

.

By the Cauchy–Schwarz inequality,

sup
ε∈K

E[|φn(X̂εi1
, . . . , X̂εim

)− Φ(X̂εi1
, . . . , X̂εim

)| · |D(ε)|]

≤ sup
ε∈K

E[|φn(X̂εi1
, . . . , X̂εim

)− Φ(X̂εi1
, . . . , X̂εim

)|2] · sup
ε∈K

E[|D(ε)|2].

Note that D(ε) is a continuous function with respect to ε and realization of (ξ̃1, . . . , ξ̃N ). �

The following result is a discrete version of the well-known Girsanov theorem. We state it
without proof.

Lemma A.3. Define a new probability measure dPε = U εdP with U ε defined as in Section 3.3.
Then,

Pε[
√
1tξ1 ∈ dw1, . . . ,

√
1tξN ∈ dwN ] =

1
(2π∆t)N/2

· exp

−
1
2

N∑
i=1

(wi − ε
γ (X i−1)
σ (X i−1)

1t)2

1t

 dw1 · · · dwN .

Appendix B. Weak convergence of stochastic differential equations

This appendix presents a lemma, based on Kurtz and Protter [13] or Kurtz and Protter [14]
on the stability of stochastic differential equations that serves as the theoretical foundation of
Section 4.

Suppose that the space of all cadlag functions: [0, T ] → Rm (that is, functions with right
continuity and left limits) by Dm

[0, T ]. Equip this space with the Skorokhod topology: a
sequence of processes αn ∈ Dm

[0, T ] converges to a process α if and only if there exists a
sequence of functions λn , which are all strictly increasing with λn(0) = 0 and λn(T ) = T , such
that

lim
n→+∞

sup
0≤t≤T

|λn(s)− s| = 0 and lim
n→+∞

sup
0≤t≤T

|αn(λn(s))− α(s)| = 0.

We work with a sequence of probability spaces B(N ) := (Ω (N ),F (N ), {F (N )t }, P(N )) and
a probability space B := (Ω ,F, {Ft }, P). For each N , an m-dimensional process L(N ) is a
semimartingale defined on the probability space B(N ), which is adapted to the filtration {F (N )t }.
The sample paths of L(N ) is in the space Dm

[0, T ]. Let g(N ) : Rk
× [0,+∞) → Mkm be a

continuous function mapping, with Mkm the space of k × m matrices. Assume that a pair of
k-dimensional processes M (N ) and U (N ) satisfies the following SDE:

M (N )
t = U (N )

t +

∫ t

0
g(N )(M (N )

s− , s−)dL(N )s .
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Similarly, on the space (Ω ,F, {Ft }, P), a triple (M,U, L) and a continuous function g satisfy

Mt = Ut +

∫ t

0
g(Ms−, s−)dLs, (40)

where the sample paths of L is in Dm
[0, T ] too.

In addition, we call a sequence of probability measures on Dm
[0, T ], ηn , weakly converges

in the Skorokhod topology to another probability measure η if for any bounded continuous
functional f : Dm

[0, T ] → R, we have

lim
n→+∞

∫
Dm [0,T ]

f (ω)dηm(ω) =

∫
Dm [0,T ]

f (ω)dη(ω).

Then we denote that ηm ⇒ η.
We would like to present a sufficient condition under which processes M (N ) converge weakly

to M . But before doing that, several definitions are needed.

Definition B.1 (Elementary Processes). An elementary process on B(N ) is a predictable process
of the form

Ht = Y01{0} +

k∑
i=1

Yi 1(si ,si+1](t),

for some positive integer k and 0 < s1 < · · · < sk+1, with Yi being F (N )si -measurable and
|Yi | ≤ 1. The set of all elementary stochastic processes on B(N ) is denoted by H(N ) and the set
of all elementary processes on B is denoted by H.

Definition B.2 (P-UT Condition (Definition 6.1, Jacod and Shiryaev [11])). A se-
quence L(N ) of adapted cadlag k-dimensional processes defined on probability spaces
(Ω (N ),F (N ), {F (N )t }, P(N )) is said to be predictably uniformly tight (or P-UT) if for every t > 0

lim
a→+∞

sup
H (N )∈H(N ),N

P(N )
(∣∣∣∣∫ t

0
H (N )

s− dL(N )s

∣∣∣∣ > a
)

= 0.

We now have the following lemma on the weak convergence of M (N ). It is a simple corollary
of Theorem 5.4 in Kurtz and Protter [13] or Theorem 8.6 in Kurtz and Protter [14]:

Lemma B.3. Suppose that (U (N ), L(N )) converge weakly to (U, L) in the Skorokhod topology
and that L(N ) is P-UT. Assume that g(N ) uniformly converges to g locally,

lim
N→+∞

sup
(x,t)∈K

|g(N )(x, t)− g(x, t)| = 0. (41)

If there exists a global solution M of (40) and weak local uniqueness holds, then
(U (N ), L(N ),M (N )) ⇒ (U, L ,M) in the Skorokhod topology.

Appendix C. Uniform bounds on moments

In this appendix, we derive various upper bounds for the moments of X̂ (N ), Ŷ (N ) and (Ŷ (N ))−1

used in the proof of weak convergence of the vega estimators. Throughout this appendix, these
processes are assumed to be constructed from the truncated normal increments ξ̃ (N )i .
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Lemma C.1. Suppose that p is a positive integer. Then,

sup
N

sup
1≤i≤N

E[(X̂ (N )i )2p
|ξ̃
(N )
j = w

(N )
R ] < +∞.

Proof. Using the multinomial theorem, we know that

(a + b + c)2p
= a2p

+

∑
k1<2p,k1+k2=2p−1

(
2p

k1, k2, 1

)
ak1bk2 c

+

∑
k1<2p,k3 6=1

(
2p

k1, k2, k3

)
ak1 bk2 ck3 . (42)

For any index i 6= j , substituting a, b, c in the above equation by X̂ (N )i−1, µ(X̂ (N )i−1)∆t (N ) and

σ(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i and taking expectations of both sides,

E[(X̂ (N )i )2p
|ξ̃
(N )
j = w

(N )
R ] = E

(X̂ (N )i−1)
2p

+

∑
k1<2p,k3 6=1

(
2p

k1, k2, k3

)

× (∆t (N ))k2+
k3
2 (X̂ (N )i−1)

k1(µ(X̂ (N )i−1))
k2(σ (X̂ (N )i−1)ξ̃

(N )
i )k3 |ξ̃

(N )
j = w

(N )
R

 , (43)

where the middle term in (42) is absent because

E[σ(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i |ξ̃
(N )
j = w

(N )
R ]

= E[σ(X̂ (N )i−1)
√

∆t (N )E[ξ̃
(N )
i |Fi−1]|ξ̃

(N )
j = w

(N )
R ] = 0.

In addition, the assumption of bounded derivatives of µ and σ implies that there exists a
constant C1, independent of N and index i , such that |µ(x)| ≤ C1(1 + |x |) and |σ(x)| ≤

C1(1 + |x |) for all x . Then, the right hand side of (43) is bounded by

E

[
|X̂ (N )i−1|

2p
+

∑
k1<2p,k3 6=1

(∆t (N ))k2+
k3
2 Ck2+k3

1 (1 + |X̂ (N )i−1|)
k1+k2+k3 |ξ̃

(N )
i |

k3 |ξ̃
(N )
j = w

(N )
R

]

≤ E

[
|X̂ (N )i−1|

2p
+ C2p

1 (1 + |X̂ (N )i−1|)
2p

∑
k1<2p,k3 6=1

(∆t (N ))k2+
k3
2 |ξ̃

(N )
i |

k3 |ξ̃
(N )
j = w

(N )
R

]

where k1 + k2 + k3 = 2p. Notice that X̂ (N )i−1 and ξ̃ (N )i are independent, that max1≤k≤N E[|ξ̃
(N )
i |

k
]

is bounded uniformly for all N , and that k2+k3/2 ≥ 1 when k1+k2+k3 = 2p, k1 < 2p, k3 6= 1.
We can find a constant C2, independent of N and index i , such that the above is less than

E[|X̂ (N )i−1|
2p

+ C2∆t (N )(1 + |X̂ (N )i−1|)
2p

|ξ̃
(N )
j = w

(N )
R ].

Using the inequality (a + b)2p
≤ 22p(a2p

+ b2p), the above is bounded by

(1 + 22pC21t (N ))E[|X̂ (N )i−1|
2p

|ξ̃
(N )
j = w

(N )
R ] + 22pC2∆t (N ). (44)
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For index j ,

E[(X̂ (N )j )2p
|ξ̃
(N )
j = w

(N )
R ] = E[(X̂ (N )j−1 + µ(X̂ (N )j−1)∆t (N )

+ σ(X̂ (N )j−1)
√

∆t (N )ξ̃ (N )j )2p
|ξ̃
(N )
j = w

(N )
R ]

= E[(X̂ (N )j−1 + µ(X̂ (N )j−1)∆t (N ) + σ(X̂ (N )j−1)
√

∆t (N )w(N )R )2p
].

By Assumption 4.1,
√

∆t (N )w(N )R =
√

T x∗δ(N ), which is bounded by a constant C3 for all N
because δ(N ) → 1. Using the vector inequality (a + b + c)2p

≤ 32p−1(a2p
+ b2p

+ c2p), and
|µ(x)| ≤ C1(1 + |x |) and |σ(x)| ≤ C1(1 + |x |), we have

E[(X̂ (N )j )2p
|ξ̃
(N )
j = w

(N )
R ] ≤ 32p−1 E[|X̂ (N )j−1|

2p
+ |µ(X̂ (N )j−1)|

2p
|1t (N )|2p

+ C2p
3 |σ(X̂ (N )j−1)|

2p
]

≤ 32p−1 E[1 + |X̂ (N )j−1|]
2p

· (1 + C2p
1 |∆t (N )|2p

+ C2p
3 C2p

1 ).

By the vector inequality (a + b)2p
≤ 22p(a2p

+ b2p) again, we can find constant C4 such that
the right hand side of the above is less than C4(1 + E[|X̂ (N )j−1|

2p
]).

In summary, for a general i , we can find a common constant C , which is independent of N ,
such that

E[(X̂ (N )i )2p
|ξ̃
(N )
j = w

(N )
R ] ≤ (1 + C1t (N )) · E[(X̂ (N )i−1)

2p
|ξ̃
(N )
j = w

(N )
R ] + C∆t (N )

if i 6= j or

E[(X̂ (N )i )2p
|ξ̃
(N )
j = w

(N )
R ] ≤ C E[(X̂ (N )i−1)

2p
|ξ̃
(N )
j = w

(N )
R ] + C

if i = j . Accordingly, by induction, we can easily get that

E[(X̂ (N )i )2p
|ξ̃
(N )
j = w

(N )
R ] ≤ (1 + C + 2C1t (N ))(1 + C1t (N ))N−1.

The limit of the right hand side exists when N → +∞. Therefore,

sup
N

sup
1≤i≤N

E[(X̂ (N )i )2p
|ξ̃
(N )
j = w

(N )
R ] < +∞. �

Lemma C.2. For any j ,

sup
N

sup
1≤i≤N

E[(Ŷ (N )i )4|ξ̃
(N )
j = w

(N )
R ] < +∞.

Proof. For i 6= j ,

E[(Ŷ (N )i )4|ξ̃
(N )
j = w

(N )
R ] = E[(Ŷ (N )i−1 )

4
· (1 + µ′(X̂ (N )i−1)∆t (N )

+ σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i )4|ξ̃
(N )
j = w

(N )
R ]

= E[(Ŷ (N )i−1 )
4
· E[(1 + µ′(X̂ (N )i−1)∆t (N )

+ σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i )4]|ξ̃
(N )
j = w

(N )
R ].

Using the multinomial theorem and similar argument as in the proof of Lemma C.1, and the fact
that µ′ and σ ′ are both bounded, the right hand side of the above equation is bounded by
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(1 + C51t (N )) · E[(Ŷ (N )i−1 )
4
|ξ̃
(N )
j = w

(N )
R ]

where C5 is a constant which does not depend on N and index i .
For index j ,

E[(Ŷ (N )j )4|ξ̃
(N )
j = w

(N )
R ] = E[(Ŷ (N )j−1)

4
· (1 + µ′(X̂ (N )j−1)∆t (N )

+ σ ′(X̂ (N )j−1)
√

∆t (N )ξ̃ (N )j )4|ξ̃
(N )
j = w

(N )
R ]

= E[(Ŷ (N )j−1)
4
· (1 + µ′(X̂ (N )j−1)∆t (N )

+ σ ′(X̂ (N )j−1)
√

∆t (N )w(N )R )4|ξ̃
(N )
j = w

(N )
R ].

We know from the proof of Lemma C.1 that
√

∆t (N )w(N )R ≤ C3. Thus, by the boundedness of
µ′ and σ ′ and similar arguments as those in the proof of Lemma C.1,

E[(Ŷ (N )j )4|ξ̃
(N )
j = w

(N )
R ] ≤ 33 E[|Ŷ (N )j−1|

4
] · (1 + C4

6 |∆t (N )|4 + C4
6C4

3).

where supx |µ′
| < C6 and supx |σ ′

| < C6.
By induction,

E[(Ŷ (N )i )2p
|ξ̃
(N )
j = w

(N )
R ] ≤ (1 + C51t (N ))N−1

· 33
· (1 + C4

6 |∆t (N )|4 + C4
6C4

3)

→ eC5T 33
· (1 + C4

6C4
3). �

Lemma C.3. For any j ,

sup
N

sup
1≤i≤N

E[(Y (N )i )−4
|ξ̃
(N )
j = w

(N )
R ] < +∞.

Proof. Consider the function G(x) := 1/(1 + x)4. If we expand it at x = 0 in a Taylor series
with Lagrange remainder, we get

1
(1 + x)4

= G(0)+ G ′(0)x +
1
2

G ′′(θ)x2
= 1 − 4x +

10x2

(1 + θ)6

for some θ between 0 and x . Furthermore, if we choose some positive number ε such that 1 −

supx |σ ′(x)|
√

T x∗
−ε > 0 (by Assumption 4.1, such ε exists because 1−supx |σ ′(x)|

√
T x∗ > 0)

and suppose x lies in an interval [− supx |σ ′(x)|
√

T x∗
− ε, supx |σ ′(x)|

√
T x∗

+ ε], then we can
bound the function G(x) by 1 − 4x + 10m∗x2, where m∗ is the maximum value of 1/(1 + θ)6

over the interval [− supx |σ ′(x)|
√

T x∗
− ε, supx |σ ′(x)|

√
T x∗

+ ε].
Notice that for any index i 6= j , by Assumption 4.1,

|µ′(X̂ (N )i−1)∆t (N ) + σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i | ≤ sup
x

|µ′(x)|1t (N ) + sup
x

|σ ′(x)|
√
1t (N )w(N )R

= sup
x

|µ′(x)|∆t (N ) + sup
x

|σ ′(x)|
√

T x∗δ(N ).

In other words,µ′(X̂ (N )i−1)∆t (N )+σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i falls in the interval [− supx |σ ′(x)|
√

T x∗

− ε, supx |σ ′(x)|
√

T x∗
+ ε] almost surely when N is big enough. Therefore,

(1 + µ′(X̂ (N )i−1)∆t (N ) + σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i )−4
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≤ 1 − 4[µ′(X̂ (N )i−1)∆t (N ) + σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i ]

+ 10m∗
[µ′(X̂ (N )i−1)∆t (N ) + σ ′(X̂ (N )i−1)

√
1t (N )ξ̃ (N )i ]

2

= 1 + [−4µ′1t (N ) + 10m∗(µ′∆t (N ))2] + [−4σ ′
+ 20m∗µ′

√
∆t (N )σ ′

]

√
1t (N )ξ̃ (N )i

+ 10m∗(σ ′)2∆t (N )(ξ̃ (N )i )2.

Taking expectations on both sides of the above inequality, we have

E[(1 + µ′(X̂ (N )i−1)∆t (N ) + σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i )−4
|ξ̃
(N )
j = w

(N )
R ]

≤ 1 + [−4µ′∆t (N ) + 10m∗(µ′1t (N ))2] + 10m∗(σ ′)2∆t (N )E[ξ̃
(N )
i ]

2.

Because E[ξ̃
(N )
i ]

2 is bounded uniformly for all N and µ′ and σ ′ are both bounded, there exists a
constant C7 such that

E[(1 + µ′(X̂ (N )i−1)∆t (N ) + σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i )−4
|ξ̃
(N )
j = w

(N )
R ] ≤ 1 + C71t (N ).

For index j ,

E[(1 + µ′(X̂ (N )j−1)∆t (N ) + σ ′(X̂ (N )j−1)
√

∆t (N )ξ̃ (N )j )−4
|ξ̃
(N )
j = w

(N )
R ]

= E[(1 + µ′(X̂ (N )j−1)∆t (N ) + σ ′(X̂ (N )j−1)
√

∆t (N )w(N )R )−4
|ξ̃
(N )
j = w

(N )
R ]

= E[(1 + µ′(X̂ (N )j−1)∆t (N ) + σ ′(X̂ (N )j−1)
√

T x∗δ(N ))−4
|ξ̃
(N )
j = w

(N )
R ]

where w(N )R =
√

N x∗δ(N ) by Assumption 4.1. Using the fact that µ′ and σ ′ are bounded
and that δ(N ) → 1, we find that the right hand side of the above equality is bounded by
(1 − supx |σ ′(x)|

√
T x∗

− ε)−4 if N is big enough.
Accordingly,

E[(Ŷ (N )i )−4
|ξ̃
(N )
j = w

(N )
R ] = E[(Ŷ (N )i−1 )

−4
· (1 + µ′(X̂ (N )i−1)∆t (N )

+ σ ′(X̂ (N )i−1)
√

∆t (N )ξ̃ (N )i )−4
|ξ̃
(N )
j = w

(N )
R ]

will be less than

(1 + C71t (N ))E[(Ŷ (N )i−1 )
−4

|ξ̃
(N )
j = w

(N )
R ]

if i 6= j , and will be less than

(1 − sup
x

|σ ′(x)|
√

T x∗
− ε)−4 E[(Ŷ (N )i−1 )

−4
|ξ̃
(N )
j = w

(N )
R ]

if i = j . By induction, we get

E[(Ŷ (N )i )−4
|ξ̃
(N )
j = w

(N )
R ] ≤

(1 + C7∆t (N ))N−1

(1 − sup
x

|σ ′(x)|
√

T x∗ − ε)4

→
eC7T

(1 − sup
x

|σ ′(x)|
√

T x∗ − ε)4
. �
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