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1 Introduction

In the main text, we focus on the case of preferences that are separable between non-housing
and housing consumption streams {ct(st)} and {ht(st)}. Here we extend the analysis to
the case of non-separable preferences.

We use two approaches to derive testable implications from the model. The first ap-
proach links our model to the traditional risk-sharing tests based on linear consumption
growth regressions, the workhorse of the consumption insurance literature. That is, we
make assumptions on the regional consumption share processes needed to derive a lin-
ear consumption growth equation from the model. This equation linearly relates regional
consumption share growth and regional income share growth, conditional on the housing
collateral ratio. We refer to this as the linear model (section 4). We estimate the linear
risk-sharing regressions for the case of non-separable preferences, both using aggregate col-
lateral measures and regional collateral measures. We confirm the findings of the main
text: even with non-separable preferences do we find evidence for a time-varying degree of
risk-sharing between U.S. metropolitan areas.

In the second approach (section 5) we fully incorporate the model’s non-linear dynamics
in the estimation, and we use a simulated method of moments estimation to estimate the
non-linear law of motion for consumption shares . We refer to this as the non-linear model.
This is new approach to structural estimation of non-linear risk-sharing models.
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2 Setup

The households have power utility over a CES-composite consumption good:

u(ct, ht) =
1

1− γ

[
c

ε−1
ε

t + ψh
ε−1

ε
t

] (1−γ)ε
ε−1

,

The preference parameter ψ > 0 converts the housing stock into a service flow, γ is the
coefficient of relative risk aversion, and ε is the intra-temporal elasticity of substitution
between non-durable and housing services consumption. Separable utility is a special case
where γε = 1. Here we generalize this treatment.1

3 Data

We additionally use regional rental prices in the analysis. The regional relative price of
housing services, defined as the ratio of the Bureau of Labor Statistics’ price index for rent
to the price index for food, is denoted by ρi.

4 Linear Model for Regional Consumption Growth Wedges

Recall our assumption that the growth rate of the regional consumption wedge is lin-
ear in the product of the housing collateral ratio and the regional income share shock:
∆ log κ̂i

t+1 = −γm̃yt+1∆ log η̂i
t+1, where κ̂i is region i’s consumption wedge, in devia-

tion from the cross-sectional average. All growth rates of hatted variables denote the
growth rates in the region in deviation from the cross-regional average, and the averages
are population-weighted. If we allow for non-separability, this assumption delivers a linear
consumption growth equation:

∆ log ĉi
t+1 = m̃yt+1∆log η̂i

t+1 +
(

γε− 1
γ(ε− 1)

)
∆log α̂i

t+1 −
(

γε− 1
γ(ε− 1)

)
m̃yt+1∆log α̂i

t+1.

where αi
t is the ratio of non-housing consumption to total consumption in region i. The

interaction term of regional income share growth with the collateral ratio is familiar from
the separable preference case. When preferences are non-separable between non-housing
and housing consumption, the region-specific component of expenditure share growth af-
fects region-specific consumption share growth, even if the consumption wedge is zero.
When preferences exhibit complementarity (ε < 1), a rental price increase decreases the
non-durable expenditure share

(
∆log α̂i

t < 0
)
. When the region’s willingness to substitute

over time is bigger than its willingness to substitute between goods (γε < 1), the region
1These preferences belong to the class of homothetic power utility functions of Eichenbaum and Hansen

(1990). Another special case is Cobb-Douglas preferences (ε = 1). The cross-derivative uch > 0 for γε < 1
and uch < 0 for γε > 1. There is complementarity between non-housing and housing consumption when
ε < 1. Substitutability arises when ε > 1.
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decreases its non-durable consumption share. Vice versa, when preferences exhibit sub-
stitutability (ε > 1), a rental price increase increases the non-durable expenditure share(
∆log α̂i

t > 0
)
. Finally, when the region’s willingness to substitute over time is lower than

its willingness to substitute between goods (γε > 1), the region increases its consumption
share.

Before we can estimate the linear consumption growth equation, two more steps are
needed. First, we restate the consumption growth regression in terms of rental price growth,
because we do not have regional expenditure share data. This involves a Taylor approx-
imation. Before we can estimate the linear consumption growth equation, we introduce
measurement error in consumption.

4.1 Linear Model

We derive a linear consumption growth equation from our model. For simplicity, we use the
region as a unit of analysis. The main text shows how to aggregate up from the household
level.

We start from the FONC for optimality of region i’s optimization problem:

βtπ(st|s0)ξi
t(s

t)uc(ci
t(s

t), hi
t(s

t)) = pt(st),

where p(st) is the time-zero price of a unit of consumption in node st, and ξi
t(s

t) = 1
κi

t(s
t)

is
the regional consumption wedge at node st. We define a regions’s expenditure share αi as
the ratio of non-housing expenditures to non-housing plus housing services expenditures.

αi
t ≡

ci
t

ci
t + ρi

th
i
t

. (1)

The equilibrium relative price of housing services ρ equals the marginal rate of substitution
between consumption and housing services:

ρi
t(s

t) =
uh(ci

t(s
t), hi

t(s
t))

uc(ct(st), hi
t(st))

. (2)

Using the definition of the non-housing expenditure share (1) and the expression for the
regional rental price (2), we can write the marginal utility of non-durable consumption as

uc(ci
t, h

i
t) = (ci

t)
−γ(αi

t)
γε−1
ε−1 .

Substituting this expression in the FONC, and dividing the time t+1 by the time t FONC,
we get:

(
ξi
t+1

ξi
t

)(
ci
t+1

ci
t

)−γ (
αi

t+1

αi
t

) γε−1
ε−1

=
pt+1(st+1)

pt(st)π(st+1|st)
≡ p̂t+1

p̂t
=

mt+1

β
, (3)
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where mt+1 is the stochastic discount factor.
We conjecture the modified risk-sharing rule for the equilibrium consumption allocation:

ci
t =

(
ξ̃i
t

) 1
γ

ξ̃a
t

ca
t

Now the consumption weight is the product of the weight ξ̃(st) and the non-durable ex-

penditure share α(st) raised to the power γε−1
γ(ε−1) : ξ̃i

t = ξi
t

(
αi

t

) γε−1
ε−1 . The modified aggregate

consumption weight is

ξ̃a
t (zt) =

∫ ∑

yt

π(yt, zt)
π(zt)

ξ̃i
t(µ0, s

t)dΦ0. (4)

This risk-sharing rule satisfies market-clearing by the definition of ξ̃a in equation (4).
Substituting the risk-sharing rule back in equation (3) and imposing that the region is
unconstrained (ξi

t+1 = ξi
t) yields the expression for mt+1

β in equation (5):

mt+1 = β

(
ca
t+1

ca
t

)−γ
(

ξ̃a
t+1

ξ̃a
t

)γ

= β

(
ca
t+1

ca
t

)−γ

(g̃t+1)
γ , (5)

When preferences are non-separable, the SDF has the same generic form as for separable
preferences, but the weight shock g̃ in equation (5) is more complicated. It also depends
on the entire cross-sectional distribution of expenditure shares (see equation 4).

As with separable preferences, the growth rate g̃t of the aggregate weight process de-
termines the consumption growth of the unconstrained households. If rental prices and
expenditure shares were constant over time, it would still be the case that a household’s
consumption share only increases when it runs into a binding constraint. When expen-
diture shares move around, a region’s consumption weight can also increases when the
nondurable expenditure share decreases and housing services and nondurables are comple-
ments (ε < 1 < γε), because regions want to maintain the optimal mix of non-durable
consumption and housing services.

We take logs on both sides of equation (3) and collect the aggregate terms on the right
hand side:

∆ log ξi
t+1 − γ∆log ci

t+1 +
(

γε− 1
ε− 1

)
∆log αi

t+1 = − log β + log mt+1

We now take the cross-sectional average of the previous equation (by integrating over
regions, or for a finite number of regions, summing over regions and dividing by the number
of regions), and subtract the above equation from the cross-sectional average. The Euler
equation, expressed as growth rates in deviation from the cross-sectional average growth
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rate (denoted with hats), i.e. growth rates of shares, is:

∆ log ξ̂i
t+1 − γ∆log ĉi

t+1 +
(

γε− 1
ε− 1

)
∆log α̂i

t+1 = 0, (6)

where ξ̂i is region i’s consumption wedge, in deviation from the cross-sectional average.
This linear consumption growth equation is not yet empirically testable, because we

do not observe the region-specific consumption wedges ξ̂i. In what follows we make simple
assumptions that allow us to implement this equation. We assume the housing collateral
ratio shifts the consumption wedges monotonically between the wedges for two polar cases:
perfect risk sharing and autarchy. We now fill in the details. In autarchy, the first polar
case, ∆ log ĉi

t+1 = ∆ log η̂i
t+1. Substituting this into the Euler equation for nondurables, we

get:

∆ log ξ̂i,A
t+1 = γ∆log η̂i

t+1 −
(

γε− 1
ε− 1

)
∆log α̂i

t+1.

In the case of perfect risk sharing, the consumption shares stay constant over time: ∆ log ξ̂i,FC
t+1 =

0. We recall the definition of the re-normalized housing collateral ratio: m̃yt+1 = mymax−myt+1

mymax−mymin .
It is a measure of collateral scarcity, and it lies between zero and one. We assume the hous-
ing collateral ratio shifts the regional consumption wedges between those polar cases. Later,
we actually show this is an accurate description of the regional consumption dynamics in
the model. Specification (7) encompasses both limit cases and assumes that the shifting is
linear:

∆ log ξ̂i
t+1 = γm̃yt+1∆log η̂i

t+1 −
(

γε− 1
ε− 1

)
m̃yt+1∆log α̂i

t+1, (7)

Substituting in this expression for consumption weight growth into the Euler equation, we
get an expression in terms of observable variables only. The consumption growth equation
to be estimated is:

∆ log ĉi
t+1 = m̃yt+1∆log η̂i

t+1 +
(

γε− 1
γ(ε− 1)

)
∆log α̂i

t+1 −
(

γε− 1
γ(ε− 1)

)
m̃yt+1∆log α̂i

t+1,

The consumption growth equation involves income growth interacted with the collateral
ratio, expenditure share growth and expenditure share growth interacted with the collateral
ratio. When preferences between non-housing and housing consumption are separable
(γε = 1), the marginal utility of non-durable consumption is uc(ci

t, h
i
t) = (ci

t)
−γ , and the

same steps lead to the expression

∆ log ĉi
t+1 = m̃yt+1∆log η̂i

t+1.

This is the equation that was the basis of our estimation in the main text.

Rental Prices Instead of Expenditure Shares Because we do not have regional data
for expenditure share growth, but we do have rental price growth data, we use equation
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(2) to reformulate the consumption Euler equation. We have

∆ log αi
t+1 = −∆log

(
1 + ψε(ρi

t+1)
1−ε

)
.

Using a linear expansion around ρi
t+1 = ρi

t,

∆ log
(
1 + ψε(ρi

t+1)
1−ε

) ≈ (1− ε)
1

1 + ψ−ε(ρi
t)ε−1

∆log ρi
t+1.

To obtain a linear Euler equation we expand 1
1+ψ−ε(ρi

t)
ε−1 around ρi

t = 1:

1
1 + ψ−ε(ρi

t)ε−1
≈ 1

1 + ψ−ε
+ (ε− 1)

ψ−ε

(1 + ψ−ε)2
(ρi

t − 1).

The resulting linear consumption growth regression is:

∆ log ĉi
t+1 ≈ a1m̃yt+1∆log η̂i

t+1+(a2+a3m̃yt+1)∆ log ρ̂i
t+1+(a4+a5m̃yt+1)(ρ̂

i
t−1)∆ log ρ̂i

t+1,

where it is understood that (ρ̂i
t−1)∆ log ρ̂i

t+1 is (ρi
t−1)∆ log ρi

t+1 in deviation from its cross-
sectional average. The coefficients α are functions of the underlying structural parameters.
In particular: a1 = 1, a2 = γε−1

γ(1+ψ−ε)
, a3 = −a2, a4 = (ε−1)(γε−1)ψ−ε

γ(1+ψ−ε)2
, and a5 = −a4. The

parameters satisfy the following non-linear restriction: a5
a3

= a4
a2

= ε−1
ψε+1 .

Measurement Error We take into account measurement error in non-durable consump-
tion. We express observed consumption shares with a tilde and assume that income shares
and rental prices are measured without error. Equation (8) is the empirical specification
we estimate in section 4:

∆ log c̃i
t+1 ≈ a1m̃yt+1∆log ŷi

t+1+(a2+a3m̃yt+1)∆ log ρ̂i
t+1+(a4+a5m̃yt+1)(ρ̂

i
t−1))∆ log ρ̂i

t+1+νi
t+1.

(8)
All measurement error terms are absorbed in νi

t+1. The measurement error term is νi
t+1 =

−∆b̂i
t+1.

4.2 Estimation of the Linear Model under Non-separable Utility

In this section, we estimate the linear consumption growth regressions that were derived
in the previous section for the case of non-separable preferences. We first use aggregate
collateral measures, and then regional collateral measures, paralleling the treatment in the
main text.
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4.2.1 Aggregate Collateral Measures

Table 1 shows the estimation results for the consumption Euler equation under non-
separability:

∆ log c̃i
t+1 = ai

0+a1m̃yt+1∆log η̂i
t+1+(a2+a3m̃yt+1)∆ log ρ̂i

t+1+(a4+a5m̃yt+1)(ρ̂
i
t−1)∆ log ρ̂i

t+1+νi
t+1,

where ∆ log ρ̂i is the rental price growth in region i in deviation from the cross-regional
average (see appendix 4.1). We also estimate, but do not report, a specification with a
separate income term. As with separable utility, this ‘Specification II’, uses my rather than
m̃y. These results do not add new insights about the results in table 1.

[Table 1 about here.]

First, the point estimates for a1 are very similar to the ones in the main text for the
linear model with separable preferences. Second, a fraction a2 + a3

2 of rental price shocks
end up in consumption growth, when myt+1 = 0 and ρ̂t = 1. In row 1 (2), 72 (70) percent
of rental price shocks are insured away. In general, the interaction term of rental price
growth with the aggregate housing collateral ratio is not significant.

4.2.2 Regional Collateral Measures

In 2, we re-estimate the linear consumption wedge equation under non-separable prefer-
ences. We find that when regional collateral is more abundant, a larger fraction of regional
rental price shocks is insured. For a region whose rental price is at the cross-sectional av-
erage (ρ̂ = 1), an average collateral reading (myi = 0) implies that 51% of regional income
shocks are insured away. A one standard deviation increase in myi from 0 to 0.1 increases
this fraction to 72%, whereas a one standard deviation reduces it to 30 %. Again we find
that the fraction of rental price shocks and income shocks that are insured away varies
substantially with the amount of housing collateral.

[Table 2 about here.]

5 Non-Linear Model

The goal of this section is to device an estimation strategy that fully incorporates the
non-linear consumption dynamics implied by the limited commitment model in the main
text. This approach can be seen as an alternative to the calibration approach in the main
text. Section 5.2 describes a conditional simulation algorithm that implements the non-
linear law of motion for consumption shares. The algorithm is related to indirect inference
estimation methods (e.g. Duffie and Singleton (1993), Gourieroux, Montfort and Renault
(1992), Gourieroux and Monfort (1996)). It estimates the parameters of the model by
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minimizing the distance between cross-sectional moments of regional consumption shares
in the model and in the data. We also match a few key asset pricing moments in model
and data in order to estimate the preference parameters.

As in section 4, we find that the correlation between income shocks and consumption
shocks depends on the housing collateral ratio. The interaction term of the collateral ratio
with region-specific income shares is crucial to match the implied consumption moments
to the data.

5.1 Regional Consumption Share Dynamics

We recall that the equilibrium consumption share process {ĉi
t} follows a non-linear law

of motion: Region i’s consumption share increases to the cutoff level when one of its
households enters a state with a binding constraint. This household’s new consumption
share is the consumption share for which its collateral constraint holds with equality. The
region’s consumption share is the sum of the two households’ shares, and jumps up to the
cutoff level. If both households in region i are unconstrained, the region’s consumption
share decreases at a rate dictated by the aggregate weight shock gt. The cutoff level $t

itself crucially depends on the housing collateral ratio myt and the current region-specific
income shocks ∆ log η̂i

t+1, but not the history of these shocks ∆ log η̂i,t. Nor does it depend
on the household level shocks. (Recall section 5.5 in the main text). The household’s
individual history is erased when it runs into a binding constraint. This is the amnesia
property, shared by many limited commitment models (e.g. Albarran and Attanasio (2001)
and Ljungqvist and Sargent (2004) for a general discussion). The cut-off consumption share
also depends on the aggregate history of the economy ∆ log(ca)t (captured by g).

We first focus on the simplest case of separable preferences. The law of motion of each
region’s consumption weight at the start of the next period, ĉ′, follows a simple cutoff rule:

$′,i = ĉi if ĉi > $i
t+1(m̃yt+1, ∆log η̂i

t+1, ∆log ca,t)

= $i
t+1(m̃yt+1, ∆log η̂i

t+1, ∆log ca,t) elsewhere.

and the new consumption shares are:

ĉ′,i =
$′

g
,

where the aggregate weight shock is computed as the cross-sectional average g = 1
N

∑
i=1,...,N $′,i.

Cutoff Rule under Separable Preferences The cut-off $t+1 is a function of the ag-
gregate consumption growth shocks ∆ log(ca)t+1, the aggregate housing collateral scarcity
measure m̃yt+1 and the current regional income share shock ∆ log η̂i

t+1. Keeping track of
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the current aggregate consumption growth shock and one lag (∆ log(ca)t+1 and ∆ log(ca)t)
closely approximates the full history dependence of ξ

t+1
on the entire aggregate history.

We have to approximate the cutoff function $i
t+1(m̃yt+1,∆log η̂i

t+1, ∆log ca,t). We
start with a cut-off rule that is a linear function of the state variables:

$i
t+1 = θ0η̄

i + θ1∆log ca
t+1 + θ2m̃yt+1∆log ca

t+1 +

θ3∆log η̂i
t+1 + θ4m̃yt+1∆log η̂i

t+1 + θ5∆log ca
t . (9)

Denote the vector of cutoff parameters by Θ. The first term is the average income share of a
region over the entire sample; it acts as a regional fixed effect. The interaction terms capture
the collateral effect. First, for a given aggregate consumption growth shock, the cutoff level
is higher when housing collateral is scarcer (θ2 > 0). Second, a given income share shock
raises the cutoff more when collateral is scarce (θ4 > 0). The last term, associated with θ5,
captures the dependence of the cutoff weight on the aggregate consumption growth history.

Cutoff Rule under Non-Separable Preferences First, even in the absence of binding
constraints, a region’s consumption weight will change when its expenditure share changes.
If not, the unconstrained households would not be equalizing their intertemporal marginal
rates of substitution. We adjust last period’s consumption share for the change in region-
specific expenditure share growth, in the following way:

∆ log ĉi
t+1 =

γε− 1
γ(ε− 1)

∆ log α̂i
t+1. (10)

Because we do not have data for region-specific expenditure share growth, we exploit the
mapping in equation (2) and use data on region-specific rental price growth instead. The
adjustment in equation (10) becomes: ∆ log ĉi

t+1 = 1−γε
γ

1
1+(ρ̂i

t)
ε−1 ∆log ρ̂i

t+1.
Second, the cutoff additionally depends on aggregate and region-specific rental price

growth.

$i
t+1 = θ0η̄

i + θ1∆log ca
t+1 + θ2m̃yt+1∆log ca

t+1 +

θ3∆log η̂i
t+1 + θ4m̃yt+1∆log η̂i

t+1 + θ5∆log ca
t

θ6ρ̄
i + θ7∆log ρa

t+1 + θ8m̃yt+1∆log ρa
t+1 +

θ9∆log ρ̂i
t+1 + θ10m̃yt+1∆log ρ̂i

t+1 + θ11∆log ρa
t (11)

The first two lines are identical to specification (9). Non-separability contributes parallel
rental price terms. The average regional rental price is part of the fixed effect (θ6). The
aggregate rental price share growth (∆ log αa

t+1) and its interaction with the housing col-
lateral ratio are the new aggregate state variables (θ7 and θ8). The cutoff also depends
on the region-specific rental price share growth (∆ log α̂t+1) and its interaction with the
housing collateral ratio (θ9 and θ10). To allow for aggregate history dependence, we add
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last period’s aggregate expenditure share growth (θ11).
Finally, as is apparent from equations (4) and (5), the cutoff also depends on cross-

regional distribution of individual expenditure share growth. In some specifications, we
include the cross-sectional dispersion of rental price growth and its interaction with m̃y as
additional variables in the cutoff specification (θ12 and θ13). To keep the number of terms
manageable, we omit the aggregate history dependence terms in that specification, i.e. we
set θ5 = 0 and θ11 = 0.

5.2 Simulation Algorithm

We use a simulated method of moments estimation that: (1) searches over cutoff parameters
Θ to match the correlation of consumption shares, generated by simulating the model, with
observed income shares and the correlation of consumption shares in the data with observed
income shares and (2) that searches over parameters (γ, ε) to minimize pricing errors on
an aggregate stock market return, a long bond return and a risk-free rate. Throughout,
we hold the time discount factor β fixed.

Actual consumption is tainted by measurement error (section 4). We take this into
account by drawing several paths of measurement error innovations, indexed by s, and
average over these paths.

The simulation method is conditional simulation: The actual consumption share ĉi,s
t+1

is computed conditionally on the simulated value in the previous period ĉi,s
t (Gourieroux

and Monfort (1996), p.17).

1. We start with an initial guess for the parameter vector Θ, and we evaluate the
cutoff function $i

t(.) at the observed aggregate state variables and region-specific
state variables according to equation (9) when preferences are separable and (11)
when preferences are non-separable. This produces a T − 1 by N matrix of cutoff
realizations Ξ = [$i

t]
t=T,n=N
t=1,n=1 .

2. For a fixed standard deviation σb, we draw a panel of log-normally distributed random

variables for measurement error:
{

bi,s
t

}T

t=1
for i = 1, 2, ..., N . We draw S such panels,

where s = 1, 2, ..., S denotes the simulation index.

3. For each s ∈ S we build a time series of length T of predicted consumption shares
{ĉi,s

t }.

• For each simulation run s ∈ S, we set the observed initial consumption share
of region i equal to the first observation on the consumption share in the data,
and the true consumption share ĉ is constructed from the observed share c̃:
ĉi,s
1 = c̃i,s

1 exp(−b̂is
1 ).
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• At each t, given ĉi,s
t , we find next period’s consumption share ĉi,s

t+1 for every
region by comparing last period’s consumption share ĉi,s

t to the current cutoff
level (the (t, i) entry of the cutoff matrix Ξ).

• We compute the aggregate weight shock gs
t+1 as the cross-sectional average of

the new consumption weights.

• At the end of every period we re-normalize the consumption shares by the ag-
gregate weight shock. This re-normalization guarantees that the population-
weighted average of shares is one.

• At t + 1 , the observed simulated consumption share is constructed by adding
measurement error to the ĉi,s

t+1 obtained in the previous step: c̃i,s
t+1 = ĉi,s

t+1 exp(b̂is
t+1).

4. We repeat this last step S times to end up with S panels of size T×N model-predicted
observed consumption shares.

5. For each region, we build the model-predicted observed consumption share at time t

by averaging over the S different measurement error realizations:

ki
t (Θ) =

1
S

S∑

s=1

c̃i,s
t ,

and the model-predicted aggregate weigh shock at time t

gt (Θ) =
1
S

S∑

s=1

gs
t ,

for every period t = 2, ..., T .

6. Given the initial guess for (γ, ε) and the fixed value for β, we construct the stochastic
discount factor {mt}, using the aggregate weight shock gt+1, according to equation
(5) or its equivalent under separable preferences (set γε = 1). We form the pricing
error at time t:

pj
t (Θ, β, γ) = mtR

j
t − 1,

where Rj is the gross return on asset j ∈ J .

5.3 Moment Conditions

Given the simulated consumption data, the aggregate weight shocks and the pricing errors:

{ki
t(Θ), ht (Θ) , pj

t (Θ, β, γ)}, (12)

we can construct the moments used in the actual estimation. We use two different sets
of moments. The benchmark set matches the unconditional correlation between income
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and consumption shares, in addition to some asset pricing moments. The robustness set
matches these same correlations, conditional on the housing collateral ratio.

Benchmark Set of Moments The algorithm matches three sets of moments: (1) the
correlation between consumption and income share for each region (N moments):

hi =
1

T − 1

T−1∑

t=1

(c̃i
t − ki

t(Θ))ŷi
t, i = 1 . . . N.

(2) the cross-sectional dispersion in consumption (3 moments):

hN+1 =
1

T − 1

T−1∑

t=1

(σi(c̃t)− σi(kN
t (Θ)))

hN+2 =
1

T − 1

T−1∑

t=1

(
σi(c̃t)
σi(ŷt)

− σi(kN
t (Θ))

σi(ŷt)

)

hN+3 =
1

T − 1

T−1∑

t=1

(
σi(c̃t)
σi(ŷt)

− σi(kN
t (Θ))

σi(ŷt)

)
myt,

where σi(·) stands for the cross-sectional standard deviation, and, (3) J asset pricing
moments:

hN+4 =
1

T − 1

T−1∑

t=1

p1
t (Θ, β, γ, ε) . . .

hN+3+J =
1

T − 1

T−1∑

t=1

pJ
t (Θ, β, γ, ε).

The objective is to minimize the loss function W:

W = [g]′Ψ [h] ,

where Ψ is the weighting matrix; we use the identity matrix. To find the parameters
(Θ, γ, ε) that minimize the distance between the moments in the data and the moments
simulated from the model, we use a hill-climbing algorithm.

Robustness Set Moments In the second specification, we replace the first N moments,
matching the unconditional correlation between consumption shares and income shares
in model and data for each region, by N moments which match the conditional mean
consumption share in model and data for each region. The conditioning variable is the
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scaled housing collateral ratio m̃yt−1. The moment for the ith region is

hi =
1

T − 1

T−1∑

t=1

(c̃i
t − ki

t(Θ))m̃yt−1, i = 1 . . . N. (13)

The other 3 + J moments remain unchanged.

5.4 Estimation Results Non-Linear Model

The simulated moments estimation recovers the structural parameters: the degree of rel-
ative risk aversion γ (separable preferences), the intratemporal elasticity of substitution
between non-durables and housing services ε (non-separable preferences) and the parame-
ters in the parametric cutoff specification Θ in equation (9 or 11). We discuss the results
for separability and non-separability separately in the next sections. The estimates lend
considerable support to the collateral channel.

5.4.1 Separable Preferences

Table 3 reports the estimates of the collateral model under separable preferences. In
specification 1 in the first column, the history dependence in the cutoff rule is shut down;
θ5 in equation (9) is set to zero. The coefficients in the cutoff specification have the expected
sign: in a recession the cutoff goes up (θ1 < 0). This effect is stronger in a period with
scarce housing collateral (θ2 > 0).

More importantly, households with positive income innovations are more likely to run
into binding constraints because these raise the cutoff consumption weight. This effect is
stronger when collateral is scarce: A positive income share shocks increases the cutoff when
housing collateral is scarce (θ4 > 0). In an average period, m̃y = .5 and a regional income
shock increases the cutoff level (θ3 + θ4

2 > 0). θ4 is positive as predicted by the collateral
mechanism, and measured precisely.

[Table 3 about here.]

Predicted vs. Actual Consumption Dispersion Figure 1 illustrates the risk-sharing
dynamics and how they relate to the evolution of the housing collateral ratio. It plots our
measure of collateral scarcity m̃yrw on the left axis (solid blue line) against actual cross-
regional consumption share dispersion (dashed green line) and estimated consumption share
dispersion (dotted red line). The collateral scarcity measure and the consumption share
dispersion in the data show a strong positive co-movement over time. The estimated cross-
sectional consumption share dispersion tracks the actual dispersion very well , at least at
low frequencies, with the exception of the 1990s. The correlation between the predicted
cross-regional consumption share dispersion and our measure of collateral scarcity is 0.51.

[Figure 1 about here.]
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Time-varying Consumption and Income Correlations The shocks to the risk shar-
ing technology also show up in a time-varying correlation between regional and aggregate
consumption growth. For rolling 5-year windows, we compute the correlation between
each region’s consumption growth and aggregate consumption growth. We average these
correlations across regions. The resulting average correlation with aggregate consumption
growth is high when housing collateral is scarce. This is shown in figure 2, which plots the
observed and predicted correlation of regional consumption growth with aggregate con-
sumption growth against the housing collateral ratio 5 years in the future. As collateral
becomes relatively more abundant between 1974 and 2002, regional consumption growth
became more correlated with aggregate consumption growth. In the data the correlation
goes up from 0.3 to 0.6, in the model estimation it goes up from 0.1 to almost 0.9.

[Figure 2 about here.]

Figures 3 and 4 display this increase in risk sharing between 1974 and 2002 in another
way. For both the data and the model simulation evaluated at the estimated parameters,
they show a histogram of the cross-sectional distribution of consumptions shares in levels
(figure 3) and in growth rates (figure 4). In both the data and the model, the cross-sectional
distribution is much wider in 1974, when collateral scarcity is at its highest level, than in
2002, when collateral is the most abundant. The distribution is also less dispersed when
collateral is abundant.

[Figure 3 about here.]

[Figure 4 about here.]

Without Collateral Channel If we shut down the collateral channel in the non-linear
model, that is if the cutoff specification does not depend on the housing collateral ratio
(θ2 = 0 = θ4 in specification 2), the model performs worse. The J-test statistic is 2.19
(χ2-distributed with 2 degrees of freedom). The null that the non-linear model with the
collateral mechanism does not outperform the model without the collateral mechanism
can be rejected at the 66 percent probability level. This is not as high as standard p-
values, mainly because of the short sample size. However, the two models are economically
significantly different: The predicted consumption shares do not line up with the observed
consumption shares without the collateral mechanism. Figure 5 drives this point home.
Just as in figure 1, it plots actual cross-regional consumption share dispersion (dashed
green line) and estimated consumption share dispersion (dotted red line). The actual and
estimated (predicted) consumption share dispersion are much further apart than in the
non-linear model with the collateral channel (see Figure 1).

[Figure 5 about here.]
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Aggregate Weight Shock The aggregate weight shocks, plotted in Figure 6, provide a
direct measure of the shocks to the risk sharing technology. The figure plots the estimated
aggregate weight shock, observed aggregate consumption growth (dashed green line) and
the estimated consumption share dispersion (dotted red line). Aggregate weight shocks
usually happen in recessions, but they tend to be larger when the collateral ratio is low.
When there is a positive aggregate weight shock, the consumption share dispersion across
regions increases.

[Figure 6 about here.]

Risk Premia The aggregate weight shock is the multiplicative contribution of the collat-
eral constraints to the SDF. This term increases the volatility of the SDF. The aggregate
weight shock g is 1.37 at its maximum. Recall that g would is one if constraints are
never binding. In the estimation, the multiplicative component of the stochastic discount
factor due to the presence of housing collateral constraints accounts for three quarters of
the volatility in the SDF. As a result, the estimated Sharpe ratio for the collateral model
is 3 times as volatile as the one in the standard consumption asset pricing model. The
coefficient estimate for the degree of risk aversion is much smaller than the traditional
estimates from the complete markets consumption-based asset pricing model. A smaller
coefficient of relative risk aversion can reconcile volatile asset prices with smooth aggregate
consumption.

History Dependence Cutoff specification 2 in the second column of table 3 adds limited
history dependence. The estimate for θ4 is still positive and measured precisely. The new
term, lagged consumption growth enters negatively (θ5 < 0).

Measurement Error We estimate the same model for different magnitudes of measure-
ment error volatility. The last column of Table 4 replicates the last column of table 3.
The other columns estimate the same model but for σb = .005, .010, .015. The value of the
objective function is non-monotonic in the standard deviation of measurement error. It is
lowest for σb = .02. More importantly, all parameter estimates have the same sign, similar
magnitudes, and are similarly precisely estimated.

[Table 4 about here.]

5.5 Non-Separable Preferences

Under non-separability between non-housing and housing consumption, both the pricing
kernel and the law of motion for individual consumption shares are different. The repre-
sentative agent pricing kernel additionally depends on aggregate rental price growth and
the cutoff consumption share also depends on rental price changes (equation 11). Table 5
reports four different specifications for the cutoff level.
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[Table 5 about here.]

The new terms in specification 3 are the average region-specific rental price level (fixed
effect), the aggregate rental price growth rate and the aggregate rental price growth rate
interacted with the housing collateral ratio. In specification 4, we add region specific
rental price changes and their interaction term with the housing collateral ratio. In the
third column, we add limited history dependence by including one lag of aggregate con-
sumption growth and aggregate rental price growth. Finally, specification 6 includes the
cross-regional dispersion of rental prices and its interaction with the housing collateral ra-
tio. These terms capture the dependence of the cutoff weight on the distribution of rental
prices. For parsimony we omit the lagged aggregate consumption growth and aggregate
rental price growth variables in this specification.

The parameter ε is the intratemporal elasticity of substitution between non-durable
and housing services consumption. This estimate ranges from -.4 to .9 and has mostly a
large standard error. The non-linear model has a hard time pinning down this parameter.
The coefficients on the new rental price growth terms in the cutoff specification coming
from the non-separability (θ6− θ13) are measured less precisely than the coefficients on the
terms from the separable specification. However, the parameter estimates for θ3 and θ4

(columns 2-5) have the right sign and are still precisely estimated. When regions witness
a positive relative income shock, the cutoff level increases more when housing collateral
is relatively scarce (θ4 > 0). This indicate the presence of the collateral effect under
non-separable preferences, just as in the model with separable preferences. The correlation
between the aggregate weight shock is the measure of collateral scarcity is large and positive
(.3-.5). The main collateral effect is strongly present. In addition the non-separable model
matches simulated and observed consumption paths more closely: The objective function
W is lowest in specification 4.

Robustness Set of Moments The parameter estimates are very similar when we re-
place the first N moments, which match the unconditional correlation between consumption
shares and income shares in model and data for each region, by N moments which match
the conditional mean consumption share in model and data. The conditioning variable is
m̃yt, which indexes the risk-sharing capacity, or equivalently, the investment opportunity
set. The last 6 moments are unchanged. Table 6 shows the parameter estimates for speci-
fication 1 and 2, corresponding to columns 1 and 2 of table 3 and for specification 4 and 5,
corresponding to columns 2 and 3 of table 5. Again, the key parameter θ4 is positive and
measured precisely. The parameter estimates imply that consumption is relatively more
dispersed than income in times when collateral is scarce.

[Table 6 about here.]
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5.5.1 Regional Collateral Measures

Finally, we revisit the non-linear model and use the regional housing collateral ratio myi

instead of the aggregate housing collateral ratio in the cutoff specification (9). The regional
collateral measures are described in the data appendix in the main text. Table 7 reports
estimation results for the separable preference specification with the benchmark set of
moments (as in table 3). The coefficients θ2 and θ4, which capture the collateral mechanism,
have the correct sign and are estimated precisely. When the economy goes through a period
of low aggregate consumption growth, risk sharing becomes more difficult when regional
collateral is scarce (θ2 > 0). Likewise, when a region has high region-specific income
growth, its consumption share increases by more when its collateral is scarce (θ4 > 0).

[Table 7 about here.]
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Figure 1: Housing Collateral Ratio and Cross-Regional Consumption Share Dispersion.
On the left axis is the collateral scarcity measure m̃yrw (solid blue line). On the right axis is the observed (dashed
green line) and predicted (dotted red line) cross-sectional consumption share dispersion. The predicted dispersion is
the one that corresponds to the model under separability (specification 2).
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Figure 2: Housing Collateral Ratio and Correlation between Regional and Aggregate Con-
sumption Growth.
On the left axis is the collateral scarcity measure m̃yrw (solid blue line). On the right axis is the observed (dashed
green line) and predicted (dotted red line) average correlation between the past 20 years over regional consumption
growth and aggregate consumption growth. The average is taken across regions. The predicted dispersion is the one
that corresponds to the model under separability (specification 2).
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Figure 3: The Cross-Sectional Distribution of Consumption Shares
The left column shows the cross-section distribution of consumption shares in levels in 1974, the year with the lowest
reading of the housing collateral ratio (high scarcity)and in 2002, the year with the highest reading of the collateral
ratio (low scarcity). The right column displays the corresponding distributions as implied by the model estimation
in Table 3, specification 2. On the horizontal axes are the levels of the consumption share, which are one on average
for each region. On the vertical axes are the number of regions in each bin. Bins are defined by midpoints ranging
from 0.8 to 1.4 with increments of 0.05.
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Figure 4: The Cross-Sectional Distribution of Consumption Share Growth Rates
The left column shows the cross-section distribution of consumption shares in growth rates in 1974, the year with
the lowest reading of the housing collateral ratio (high scarcity)and in 2002, the year with the highest reading of the
collateral ratio (low scarcity). The right column displays the corresponding distributions as implied by the model
estimation in Table 3, specification 2. On the horizontal axes are the growth rates of the consumption share, which
are zero on average for each region. On the vertical axes are the number of regions in each bin. Bins are defined by
midpoints ranging from -0.3 to 0.3 with increments of 0.05, except for additional bins with midpoints -.025, -.01, .01
and .025. The stars denote the bin midpoints.
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Figure 5: Housing Collateral Ratio and Cross-Regional Consumption Share Dispersion:
No Collateral Effect.
On the left axis is the collateral scarcity measure m̃yrw (solid blue line). On the right axis is the observed (dashed
green line) and predicted (dotted red line) cross-sectional consumption share dispersion. The predicted dispersion
is the one that corresponds to the model under separability (specification 2) but with θ2 = 0 = θ4 in the cutoff
specification.
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Figure 6: Estimated Aggregate Weight Shock and Consumption Share Dispersion, and
Observed Aggregate Consumption Growth
On the left axis is the estimation-implied aggregate weight shock g (solid blue line) and observed aggregate con-
sumption growth (dashed green line). On the right axis is the predicted cross-sectional consumption share dispersion
(dotted red line). The predicted dispersion is the one that corresponds to the model under separability (specification
2).
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Table 1: Linear Model - Non-Separable Preferences - Aggregate Collateral Measures
We estimate: ∆ log c̃i

t+1 = ai
0a1fmyt+1∆log η̂i

t+1+(a2+a3fmyt+1)∆ log ρ̂i
t+1+(a4+a5fmyt+1)(ρ̂

i
t−1)∆ log ρ̂i

t+1+νi
t+1.

Rows 1-2 are for the period 1952-2001 (1166 observations). The measure of idiosyncratic income is disposable personal
income. Rows 3-4 are identical to rows 1-2 but are for the period 1970-2000 (713 observations). Regressions 5-6 use
labor income plus transfers, available only for 1970-2000 (704 observations). All rows use the rescaled myrw and
myfa, estimated for the period 1925-2002. mymax (mymin) is the sample maximum (minimum) in 1925-2002. The
coefficients on the fixed effect, ai

0, are not reported. Estimation is by feasible Generalized Least Squares, allowing for
both cross-section heteroscedasticity and contemporaneous correlation. Rows 7-8 are the results for the instrumental
variable estimation by 3SLS. Instruments are a constant, log(η̂i

t+2), log(η̂i
t+3), log(η̂i

t+4), ∆ρ̂i
t+2, ∆ρ̂i

t+3, ∆ρ̂i
t+4,

log(c̃i
t+2), log(c̃i

t+3), log(c̃i
t+4), and myt+2, myt+3, myt+4. The period is 1952-1998 (1074 observations).All results

are for 23 US metropolitan areas.

Coll. Measure a1 σa1 a2 σa2 a3 σa3 a4 σa4 a5 σa5 R2

1 myrw .68 (.05) .98 (.18) -1.40 (.39) 1.13 (.96) -1.95 (1.74) 9.3
2 myfa .74 (.06) .53 (.21) -.46 (.48) 1.72 (1.41) -3.48 (2.81) 9.5
3 myrw .75 (.04) .64 (.05) -.57 (.11) 1.90 (.49) -2.69 (.92) 9.0
4 myfa .81 (.04) .53 (.07) -.40 (.15) .34 (.82) .35 (1.66) 9.0
5 myrw 1.01 (.04) .80 (.09) -.97 (.22) .66 (.67) -.77 (1.23) 14.3
6 myfa 1.09 (.05) .62 (.14) -.60 (.32) .61 (1.18) -1.03 (2.40) 13.8
7 myrw .55 (.07) .87 (.24) -1.31 (.53) .30 (1.69) -.84 (2.96)
8 myfa .62 (.08) 1.09 (.31) -1.66 (.71) 2.18 (1.83) -4.23 (3.67)

Table 2: Linear Model - Non-Separable Preferences - Regional Collateral Measures
This table reports estimation results under non-separability. The consumption growth regression is: ∆ log

�
ĉi
t+1

�
=

bi
0 +b1∆log

�
η̂i

t+1

�
+b2Xi

t+1∆ log
�
η̂i

t+1

�
+b3∆log

�
ρ̂i

t+1

�
+b4Xi

t+1∆log
�
ρ̂i

t

�
+b5(ρ̂i

t−1)∆ log
�
ρ̂i

t+1

�
+b6Xi

t+1(ρ̂
i
t−

1)∆ log
�
ρ̂i

t+1

�
+ νi

t+1, where Xi = myi is the region-specific housing collateral ratio (569 observations). It is
measured as the residual from a regression of the log ratio of real per capita regional housing wealth to real per
capita labor income, log(hvi

t) − log(ηi
t), on a constant and a time trend. A higher myi means more abundant

collateral in region i. In all regressions η is disposable income. The coefficients on the fixed effect, βi
0, are not

reported. Estimation is by feasible Generalized Least Squares allowing for both cross-section heteroscedasticity and
contemporaneous correlation. All regressions are for the period 1975-2000 for 23 US metropolitan areas, the longest
period with metropolitan housing data.

Coll. Measure b1 σb1 b2 σb2 b3 σb3 b4 σb4 b5 σb5 b6 σb6 R2

myi .39 (.02) -.33 (.18) .10 (.02) -1.80 (.20) 1.38 (.23) -9.74 (2.70) 7.7
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Table 3: Non-Linear Model - Separable Preferences.
The estimation is by simulated method of moments (S=20), using the N+6 moments described in the text. Estimation
of the cutoff policy function:$i

t+1 = θ0η̄i + θ1∆log ca
t+1 + θ2fmyt+1∆log ca

t+1 + θ3∆log η̂i
t+1 + θ4fmyt+1∆log η̂i

t+1 +
θ5∆log ca

t . The measurement error volatility is fixed at σb = .02. The discount factor is fixed at β = .95. The
weighting matrix is the identity matrix in 3 iterations and the Newey-West HAC matrix for the computation of
standard errors. The housing collateral ratio is myrw. The parameter γ is a preference parameter; the parameters
in the consumption weight cutoff specification parameter are Θ. The two columns correspond to two different
specifications of the cutoff process, discussed in the text. The last three rows report the aggregate weight shock
and collateral scarcity, the highest realization of the aggregate weight shock, and the Simulated Method of Moments
function value W . Data are for 1951-2002 for 23 US metropolitan areas.

Parameter Specification 1 Specification 2
γ .51 (.34) .27 (.17)
θ0 .69 (.07) .53 (.12)
θ1 -14.24 (5.17) -8.85 (21.60)
θ2 .05 (8.62) 28.53 (50.23)
θ3 -7.36 (4.31) -29.53 (2.79)
θ4 25.72 (9.87) 60.10 (5.54)
θ5 -23.61 (5.48)

corr(g, fmy) .36 .16
max(g) 1.37 1.81

W 0.054 .0313

Table 4: Non-Linear Model - Separable Preferences - Size of Measurement Error
The estimation is by simulated method of moments (S=20), using the N+6 moments described in the text. Estimation
of the cutoff policy function: $i

t+1 = θ0η̄i +θ1∆log ca
t+1 +θ2fmyt+1∆log ca

t+1 +θ3∆log η̂i
t+1 +θ4fmyt+1∆log η̂i

t+1 +
θ5∆log ca

t . Same as table 3, for four different values of the volatility of the measurement error σb. The cutoff
specification corresponds to the second column of table 3 (specification 2).

Parameter σb = .005 σb = .010 σb = .015 σb = .020
γ .71 (.42) .45 (.29) .60 (.38) .27 (.17)
θ0 .85 (.02) .70 (.09) .79 (.05) .53 (.12)
θ1 -5.82 (11.76) -13.33 (9.79) -9.59 (4.01) -8.85 (21.60)
θ2 .49 (22.02) -2.72 (16.97) .13 (9.45) 28.53 (50.23)
θ3 -8.75 (2.86) -5.48 (3.69) -7.85 (4.72) -29.53 (2.79)
θ4 27.54 (6.98) 21.96 (8.47) 26.30 (10.63) 60.10 (5.54)
θ5 1.95 (1.42) 1.66 (.53) .90 (1.09) -23.61 (5.48)

corr(g, m̃y) .41 .33 .37 .16
max(g) 1.20 1.39 1.27 1.81

W .0548 .0511 0.0546 .0313
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Table 5: Non-Linear Model - Non-Separable Preferences
The estimation is by simulated method of moments (S=20), using the N+6 moments described in the text.
The measurement error volatility is fixed at σb = .02. Estimation of the cutoff policy function: $i

t+1 =

θ0η̄i + θ1∆log ca
t+1 + θ2fmyt+1∆log ca

t+1 + θ3∆log η̂i
t+1 + θ4fmyt+1∆log η̂i

t+1 + θ5∆log ca
t

θ6ρ̄i + θ7∆log ρa
t+1 + θ8fmyt+1∆ log ρa

t+1 + θ9∆log ρ̂i
t+1 + θ10fmyt+1∆log ρ̂i

t+1 + θ11∆log ρa
t . The discount factor is

fixed at β = .95. The weighting matrix is the identity matrix in 3 iterations and the Newey-West HAC matrix for
the computation of standard errors. The housing collateral ratio is myrw. The parameters γ and ε are preference
parameters, the parameters in the consumption weight cutoff specification parameter are Θ. The last three rows
report the aggregate weight shock and collateral scarcity, the highest realization of the aggregate weight shock, and
the Simulated Method of Moments function value W . The four columns denote different specifications for the cutoff
rule discussed in the text. Data are for 1951-2002 for 23 US metropolitan areas.

Parameter Specification 3 Specification 4 Specification 5 Specification 6
γ .40 (.57) 1.09 (.54) .51 (.34) .94 (.51)
ε .90 (3.47) -.38 (.43) .16 (1.76) .02 (.91)
θ0 .48 (.15) .36 (.25) .59 (.14) .48 (.23)
θ1 -3.70 (8.00) -10.56 (9.25) -1.70 (5.37) -4.72 (8.85)
θ2 2.19 (15.34) 16.44 (17.73) -.36 (11.25) -.18 (17.03)
θ3 -12.73 (3.17) .47 (2.33) -9.41 (4.57) -5.24 (4.88)
θ4 35.44 (7.96) 10.01 (3.97) 27.91 (9.92) 20.61 (11.89)
θ5 -2.90 (1.77)
θ6 .43 (.14) .35 (.23) .35 (.14) .23 (.14)
θ7 3.83 (12.84) -15.66 (22.07) 3.00 (17.12) -6.33 (25.99)
θ8 .75 (31.01) .81 (45.87) -6.90 (33.09) .16 (51.34)
θ9 -2.99 (8.86) -1.34 (13.55) -2.51 (9.60)
θ10 5.19 (20.83) 1.48 (32.70) .30 (29.86)
θ11 1.00 (5.43)
θ12 1.28 (1.82)
θ13 .14 (4.31)

corr(g, fmy) .49 .33 .46 .46
max(g) 1.21 1.34 1.25 1.25

W .0546 .0245 .0550 .0363

Table 6: Non-Linear Model - Robustness Set of Moments.
Same as in table 3 columns 1 and 2 and table 5 columns 2 and 3, expect that the first N moments in the estimation
match the conditional mean consumption share in model and data for each region, conditional on the lagged housing
collateral scarcity measure m̃yt. The last 6 moments are unchanged.

Separable Preferences Non-Separable Preferences
Parameter Specification 1 Specification 2 Specification 4 Specification 5
γ .62 (.33) .68 (.45) .93 (.48) .89 (.51)
ε -.50 (.52) -.15 (.74)
θ0 .72 (.07) .83 (.03) .47 (.18) .47 (.13)
θ1 -10.84 (5.83) -6.44 (9.00) -6.15 (17.72) -3.57 (16.44)
θ2 -2.07 (11.63) .37 (17.41) 7.98 (31.62) .47 (29.63)
θ3 -4.86 (3.18) -5.17 (2.31) -4.27 (2.98) -4.88 (3.30)
θ4 20.34 (6.21) 20.57 (4.54) 17.69 (4.71) 20.69 (6.91)
θ5 1.94 (.57) 1.66 (1.85)
θ6 .29 (.19) .32 (.10)
θ7 -13.33 (34.69) -9.00 (30.91)
θ8 -.59 (61.38) -4.11 (53.54)
θ9 -3.54 (11.60) -1.16 (4.24)
θ10 1.29 (23.58) -.18 (9.73)
θ11 4.34 (4.59)
corr(g, fmy) .38 .36 .38 .46
max(g) 1.31 1.18 1.38 1.26
W .0138 .0135 .0073 .0079
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Table 7: Non-Linear Model - Separable Preferences - Regional Collateral Measures.
The estimation is by simulated method of moments (S=20), using the N+6 moments described in the text. Estimation
of the cutoff policy function: $i

t+1 = θ0η̄i +θ1∆log ca
t+1 +θ2fmyt+1∆log ca

t+1 +θ3∆log η̂i
t+1 +θ4fmyt+1∆log η̂i

t+1 +
θ5∆log ca

t . The measurement error volatility is fixed at σb = .02. The discount factor is fixed at β = .95. The
weighting matrix is the identity matrix in 3 iterations and the Newey-West HAC matrix for the computation of
standard errors. The housing collateral ratio is region-specific and measures the collateral scarcity (0 is highest level
of myi, 1 is the lowest level of myi). The parameter γ is a preference parameter; the parameters in the consumption
weight cutoff specification parameter are Θ. The two columns correspond to two different specifications of the cutoff
process, discussed in the text. The last three rows report the highest realization of the aggregate weight shock and
the Simulated Method of Moments function value W . Data are for 1975-2000 for 23 US metropolitan areas.

Parameter Specification 1 Specification 2
γ -.04 (.27) -.17 (1.50)
θ0 .74 (.03) .65 (.11)
θ1 11.15 (6.32) 1.02 (7.63)
θ2 9.47 (5.79) 13.51 (6.27)
θ3 -12.31 (2.39) -3.48 (2.60)
θ4 12.94 (2.99) 12.14 (4.13)
θ5 7.11 (1.78)

max(g) 1.46 1.21
W 0.0605 .0589
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