Expectation, Disappointment, and Exit: Evidence on Reference Point Formation from an Online Marketplace

Matthew Backus† Thomas Blake‡ Dimitriy V. Masterov§
Steven Tadelis¶
25th March, 2017

Abstract

We study expectation-based reference point formation using data from ascending auctions in an online marketplace. Our model formalizes the hypothesis that a disappointment-averse bidder who spends more time in the lead prior to a sudden loss will suffer a higher degree of disappointment. We find that for every additional day in the lead, bidders who lose abruptly are 6 percentage points more likely to exit the marketplace. In contrast, for losing bidders whose expectations are informed by higher competing bids, there is no effect. Also consistent with our model of platform exit, more experienced bidders show less sensitivity to disappointment.

JEL Codes: D03, D47, D83.

*We thank Ned Augenblick, Stefano DellaVigna, Etan Green, Ulrike Malmendier, Conrad Miller, Don Moore, Collin Raymond, Alex Rees-Jones, Hersh Shefrin and Charlie Sprenger for helpful discussions, as well as Dan Ariely and George Loewenstein for comments on a previous draft.

†Columbia University, NBER, and eBay Research Labs, matthew.backus@columbia.edu
‡eBay Research Labs, thblake@ebay.com
§eBay Research Labs, dmasterov@ebay.com
¶UC Berkeley, NBER, and CEPR, stadelis@berkeley.edu
1 Introduction

The framework of prospect theory and reference-dependent preferences developed by the seminal work of Kahneman and Tversky (1979) has offered intuitive hypotheses for a number of so-called “behavioral” puzzles, from loss aversion to the endowment effect. To the canonical model of preferences it adds a reference point, a degree of freedom that distinguishes between a gain and a loss, disappointment and elation. Moreover, if behavior in real markets mirrors the array of biases found in the lab—an important and open area for empirical work—reference points matter for the way we make policy, manage firms, and design markets.

But where do reference points come from, and how can they be manipulated? This question is basic to both the positive and the normative implications of the theory, yet we have little guidance. Kahneman and Tversky (1979) are ambivalent on the point; they mostly focus on the status quo as a reference point, but they also suggest that expectations may play a role. Following a line of thought that takes expectations as reference points (Bell, 1985; Loomes and Sugden, 1986), Köszegi and Rabin (2006) propose an elegant framework in which reference points are given by rational expectations of equilibrium outcomes, engineering reference points that arise naturally and endogenously within the context of the application. However, as they acknowledge, this framework is motivated as much by the need to discipline the model as by realism, for want of germane empirical evidence. The next step of building a practical theory of reference-dependent preferences, relevant for market design and policy analysis, relies on the empirical challenge of understanding reference point formation in context, i.e., in real market behavior.

This paper documents reference point formation and disappointment aversion using data from online consumer behavior. Unique data from eBay’s auction marketplace gives us leverage on the difficult empirical task of teasing out variation in reference points. We show how disappointment from losing an auction, mediated by variation in the anticipated probability of winning, affects a bidder’s likelihood of abandoning the auction platform. The data support two critical ingredients of the expectations-as-reference-points approach. First, a bidder should rationally expect a higher likelihood of winning the longer they are

1 “...research on the nature of reference points themselves is quite limited. While we hope that experiments and other empirical work will shed light on this topic, our model makes the extreme assumption that the reference point is fully determined by the expectations a person held in the recent past” (p. 1141, emphasis original).
in the lead. Second, expecting a higher likelihood of winning makes an abrupt loss more
disappointing, reducing the perceived benefit from participating in the auction platform,
which in turn leads to exit.

Using observational data to study reference point formation presents two salient mea-
measurement problems: finding an observable reference point “shifter” and measuring ex post
disappointment. With those two challenges in mind, we use data from eBay’s hybrid Auc-
tion Buy It Now (ABIN) sales format. These auctions proceed similar to the standard
ascending online auctions on eBay, but potential buyers may execute the Buy It Now
(BIN) option and end the auction immediately to purchase the item at the pre-specified,
publicly listed BIN price set by the seller. Bidders who participated in the auction before
a BIN event have no opportunity to counter or raise their bids in response. In the ABIN
setting we construct a dataset of first-time bidders who hold the standing high bid in
an auction but lose abruptly when another bidder executes the BIN option. We show
that the time these bidders spend in the lead is a proxy for their expectations about the
likelihood of winning: over time, the leading bidder places a higher probability on winning
the auction, which puts them further in the domain of losses should they abruptly lose.

Our model formalizes the argument that, within this sample, bidders who have held
the high bid for longer will suffer greater disappointment than those who held it only
briefly. This is because their reference point shifts over time as they come to rationally
anticipate a higher probability of winning the auction—that this is rational we confirm in
our data. Combined with a model of platform exit, our main hypothesis is that they are
more likely to exit the platform altogether. Our results confirm this: first-time bidders
who spend more time in the lead before the BIN event are significantly more likely to
exit.2

A natural alternative explanation for our findings is that bidders suffer from the sunk
cost fallacy. Irritation at time wasted, and in proportion to time wasted, might drive exit
from the platform. To check that disappointment aversion is the mechanism, we construct
a placebo sample of bidders whose expectations are dampened by competition from other
bidders—that is, they are outbid and ultimately lose, but they had ample time to raise

2A literature on Decision Affect Theory in psychology posits a role for counterfactual thinking in emo-
tional responses (Mellers et al., 1997). With respect to that literature, our results favoring expectations-
based reference points suggest that the significance of counterfactuals in responses depends on the prob-
ability that agents place on them (Shepperd and McNulty, 2002)—probabilities which in our setting
qualitatively match rational expectations.
their bid. An implication of our model is that, although these bidders have the same
material outcome, they do not suffer disappointment because they had the option to win,
and so anticipate loss when they chose not to re-bid. Therefore we predict that they are
insensitive to time spent in the lead. This is confirmed empirically in our placebo sample.

The explicit model of exit choice also allows us to make predictions about how BIN
events affect more experienced bidders. Bidders return to the site if the expected surplus
from doing so exceeds the value of their outside option. Experienced bidders have less
variance in their prior beliefs about future surplus, so they update less severely on a
negative experience. Moreover, they are selected on survival, which implies that they
are likely to have a worse outside option. Therefore we predict that while time spent in
the lead before a BIN event may affect their exit rates, they will be less sensitive than
new bidders. The data confirm our hypothesis. This result is related to arguments that
experienced market participants are less likely to display behavioral biases (List, 2003),
but with an important difference in interpretation. Our model does not require that
experienced traders have different preferences from inexperienced ones—rather, it explains
why nonstandard preferences are less likely to be expressed in the case of experienced
participants.

Barberis (2013), reviewing three decades of research on reference-dependent prefer-
ences, argues that outside the areas of choice under uncertainty, namely finance and
insurance, a lack of empirical analyses casts doubt on the relevance of reference points,
and prospect theory more generally. This is a gap that our paper helps fill. Closest to
our work is Card and Dahl (2011), who study the relationship between family violence
and losses by the home football team, finding that the latter contributes only when the
loss is unexpected, as measured by betting markets. Our study uses platform exit as the
outcome variable and expectations about winning as reference point shifters. While we
employ a different reference point shifter and different measure of disappointment, our
research design mirrors theirs in many ways. Our application, however, concerns market
behavior, a domain in which documentation of reference points tends to be indirect, e.g.,
the long series of papers concerning the labor supply of NYC taxi drivers, where reference
points are mediated through an additional hypothesis of wage and time targets (Camerer
et al., 1997; Crawford and Meng, 2011; Farber, 2015). We believe therefore that we offer
the clearest example of reference-dependent preferences using observational data from real
market behavior to date.\footnote{Our work is also related to the idea of a “quasi-” or “pseudo-endowment” effect (Ariely and Simonson, 2003; Heyman et al., 2004; Wolf et al., 2005; Bramsen, 2008; Cotton, 2009). This notion posits that as a consumer holds the standing high bid in an auction, they become progressively attached. It is related to an argument of Strahilevitz and Loewenstein (1998), that the endowment effect takes effect gradually as we incorporate possession into our reference point. Accordingly, a losing bidder who has grown more attached should be more likely to return and bid higher when they do. This contrasts with our basic hypothesis—and our empirical findings—that such bidders will be less likely to return. Moreover, in Section A-3 we show that bidders who do return do not make higher bids, and in Section A-4 we show that our results are robust to focusing on “commodity” items, \textit{i.e.}, those for which there are likely to be many equivalent listings on the platform that bidders could substitute to.}

While our primary interest is the documentation of reference point formation, our results have implications for market design in online platforms. We show that employing allocation mechanisms that risk leaving consumers in the “domain of losses,” \textit{i.e.}, disappointed \textit{vis-à-vis} their reference point, can cause attrition from the platform. This is particularly important for platforms because they face economies of scale via network effects.\footnote{In the platforms literature these are known as \textit{direct network effects}, in which payoffs depend on the number of other participants (\textit{e.g.}, social media) and \textit{indirect network effects}, in which payoffs depends on the number of participants on the other “side” of the market (\textit{e.g.}, buyers and sellers on eBay). See Rochet and Tirole (2003).} These effects are strongest for newer bidders to the platform, which is intuitive: these bidders are still engaged in learning to use the platform and forming expectations. Platforms should be wary of user experiences that encourage unrealistic expectations; disappointed consumers may leave the site entirely. It may be worthwhile to curate the experience of new users on a platform because loss alone does not cause disappointment and exit; consumers who expect to lose do not demonstrate the higher likelihood of exit, even though, in our sample, they share the same material outcome: they go home with nothing.

2 \hspace{1em} \textbf{Auction Buy It Now Listings on eBay}

We examine Auction Buy It Now (ABIN) listings on eBay.com. This is a subset of the auction listings in which a seller has elected to add the Buy It Now (BIN) feature. In a standard auction listing, the seller specifies the auction’s duration and the bidder with the highest bid at the end wins, paying the second highest bid plus an increment. In an ABIN listing, the auction proceeds similarly but potential buyers can execute the BIN option to immediately end the auction and purchase the item at the BIN price. ABIN listings account for about one quarter of all auction listings on eBay. Figure 1 presents an
Notes: This is the listing page for an example ABIN listing. In addition to the “Place Bid” button, which is standard for auction-style listings and does not change the ending time, the buyer can use the “Buy It Now” option and purchase the good, closing the listing immediately. The current standing high bidder has no recourse when the BIN option is exercised.

example of an ABIN listing–buyers can either bid (by clicking on the “Make Bid” button) or execute the BIN option (by clicking on the “Buy it Now” button). In the latter case they will purchase the item at the BIN price of $24.95.

The BIN option may disappear in the course of the auction. For the product categories in our data, it disappears when the standing price exceeds 50% of the BIN. Ignoring bidding increments, this will occur only if there are two bidders who have each placed a bid that it at or above 50% of the BIN price. If only one bidder entered a bid that is higher than 50% of the BIN price then the standing price will be lower than 50% of the BIN price, and the BIN button will still remain. When the BIN option is exercised, the bidder with the standing high bid will be notified that the auction ended, and that their bid was unsuccessful.

Sellers on eBay choose from a variety of mechanisms when they create a listing. Budish and Takeyama (2001) argue that offering a BIN option may allow sellers to extract more revenue from risk-averse buyers; relatedly, Ackerberg et al. (2014) identify risk pref-
ferences as well as discounting preferences from the bid-or-BIN decision faced by bidders who arrive at a listing. Many other conjectures have been put forward to explain the use of the ABIN mechanism, from reference-dependent preferences to common-values concerns; see Bauner (2015) for a recent survey of this still-lively literature as well as a structural model of mechanism choice. For our application we take the set of ABIN listings as given, though we acknowledge that there may be substantial selection of listings into the ABIN mechanism. This is an external validity concern. We note, however, that buyers cannot explicitly condition on the availability of a BIN option among auctions when using the website’s built-in search feature.

3 A Model of Disappointment and Platform Exit

This section presents a simple behavioral model of the effect of unanticipated loss on the likelihood of platform exit. Our main hypothesis is that the longer a first-time bidder has been in the lead, the more severe the disappointment when they abruptly lose to the execution of a BIN option, and therefore the less likely they are to return and participate again. We also develop ancillary hypotheses for bidders who lose by other means, as well as for more experienced bidders who lose to the execution of a BIN option.

We develop the model in two steps. First, we characterize disappointment aversion for bidders with rational expectations reference points in an ascending price auction. Second, we model bidders’ decisions to revisit the auction platform as a function of past outcomes. Bidders weigh revisiting the platform against a random outside option, and update negatively on future expected surplus when they have negative experiences.

Our model is written to the end of generating meaningful empirical predictions. This guides us at several points. For instance, we focus exclusively on losing bidders because it would be problematic to compare winners and losers together, as the winners have obtained the item they were seeking. Moreover, our theoretical model explicitly excludes many salient features of bidders and their bids, e.g., when the bid was placed. We exclude these features from our model not because they are unimportant, but because in the empirical exercise they are observable, and therefore we can control for them to construct the empirical analogue of the simple model to which we now turn.
3.1 Disappointment and Reference Points

A bidder holds the standing high bid in an ascending price auction. We normalize the difference between the consumption value of the item and the amount of their bid to 1, and we write the surplus realized from the auction as

\[\pi = y + \mu(y - p), \]

where \(y \in \{0, 1\} \) is the bidder’s allocation from the auction, \(p \) is the bidder’s expectation of \(y \) at the time the auction ended, and \(\mu \) represents the bidder’s gain-loss utility, as in K˝ oszegi and Rabin (2006). If \(\mu(\cdot) = 0 \) then bidders have classical preferences. The inclusion of that function allows bidders to care about deviations from expectations. For simplicity, let \(\mu \) be piecewise linear, so that

\[\mu(y - p) = \begin{cases} \alpha(y - p) & \text{if } y - p \leq 0 \\ \beta(y - p) & \text{if } y - p > 0. \end{cases} \]

Disappointment aversion implies that \(\alpha > 0 \). In the empirical section we focus exclusively on losing bidders, i.e., the region where \(y = 0 \leq p \). Our plan is to compare bidders with identical outcomes, but different reference points.\(^7\)

There are two circumstances that lead to disappointment vis-a-vis the bidder’s expectations, i.e. \(y \leq p \), at the end of the auction. First, the leading bidder can be “sniped” by another bidder who submitted a last-moment bid, so that the leading bidder cannot possibly respond. Second, another bidder may exercise the BIN option, ending the auction abruptly. We formalize this in an assumption on the evolution of bidders’ reference points. Let \(t = 0 \) denote the beginning of an auction and \(t = 1 \) its end, and assume

ASSUMPTION 1 (Evolution of \(p \)):

\[p = \begin{cases} 0 & \text{if bidder } i \text{ is outbid and does not re-bid at } t < 1 \\ p_s \leq 1 & \text{if bidder } i \text{ holds the high bid at } t = 1 \\ p(t) < p_s & \text{if bidder } i \text{ loses to a BIN event at time } t < 1 \end{cases} \]

\(^7\)A more subtle distinction between disappointment aversion as formulated in Loomes and Sugden (1986) and reference-dependence as in K˝ oszegi and Rabin (2006) concerns whether the referent is the certainty equivalent or the entire distribution of outcomes. Sprenger (2015) explores this distinction experimentally and finds evidence for a risk endowment effect, consistent with the latter. Unfortunately our empirical setting does not offer any further leverage on the distinction.
Moreover, \(p(t) \) is strictly increasing in \(t \).

The first scenario reflects bidders who are outbid early in the auction; their expectations are dampened by competition, and at the end of the auction, because they do not hold the standing high bid, they anticipate losing. In the second scenario, the bidder loses at the end of the auction. They are “sniped,” with no time to bid in response, and so we allow for the possibility that \(p_s < 1 \). The third and final scenario allows for the possibility that another bidder executes the BIN option, ending the auction at a time \(t < 1 \). We assume that bidders who hold the high bid grow progressively more convinced that they will win, \(i.e., p(t) \) is strictly increasing in \(t \). What we take as an assumption, however, is a generic result of continuous-time auction models with Poisson arrivals of bidders. Moreover, the rationality of those beliefs is confirmed in the auctions that comprise our dataset (described in more detail in Section 4). Figure 2 presents a plot of the empirical likelihood that the bidder who holds the standing high bid at time \(t \) goes on to eventually win the auction. We see that \(p(t) \) is monotone over \(t \). It appears to be converging to approximately 0.7, before the slope increases sharply to arrive at 1, consistent with the presence of snipers.

In light of this, our assumption implies that bidders’ expectations about the likelihood of winning are qualitatively consistent with the data. This is related to the rational expectations reference points of Köszegi and Rabin (2006), but somewhat weaker. We emphasize that for our analysis, bidders’ expectations about the path of \(p(t) \) need not be exactly correct—this would be a particularly untenable assumption for first-time bidders—we only rely on monotonicity. Therefore we require bidders’ reference points to match the data qualitatively rather than exactly. Our assumption formalizes the notion that a rational bidder who successfully maintains the standing high bid will also update positively on the likelihood that they will win the auction. This exposes them to greater potential disappointment if they lose.

A possible objection to our model concerns predictions for bidders who lose by being outbid, rather than to the BIN option. Because bidders evaluate surplus only at the end of the auction, they update their expectations before the auction ends and hence suffer no disappointment. But why should they suffer less disappointment when they are

\[\text{See Roth and Ockenfels (2002) and Bajari and Hortaçsu (2003) for evidence on the causes and prevalence of sniping, and Backus et al. (2015) for evidence on its effects on platform exit. Much of this sniping happens in the last seconds of an auction, too late for any feasible response, and so we treat it as qualitatively different from being outbid at } t < 1. \]
Notes: This figure presents the empirical likelihood that the bidder who holds the current high bid at time t ultimately wins the auction. Note that, as in the model, t is normalized such that an auction begins at $t = 0$ and ends at $t = 1$. To construct the plot we take, for each point t, the set of bidders who were currently in the lead in each of our auctions and computed the average value of a dummy variable for whether they were the eventual winner at the end of the auction. The figure presents a LOWESS plot of that dummy variable over t. We use all auctions in the four ABIN categories during our sample period.

outbid? There is a substantive difference between these bidders and those who lose to a BIN option, which is that the former have recourse, i.e., the option to re-bid. We exclude this from our model for the sake of parsimony, embedding it in a timing assumption, but in this sense our setup implicitly draws on a notion of regret. A more comprehensive formal treatment would require a unified theory of regret and disappointment, which to our knowledge does not exist.\footnote{From Loomes and Sugden (1986), p. 281: “Because regret theory makes comparisons across actions but within states of the world, it can predict violations of the transitivity axiom but not violations of the sure-thing principle; whereas disappointment theory, which makes comparisons across states of the world but within actions can predict violations of the sure-thing principle, but not violations of transitivity. However, both theories generate many of the same predictions such as the common consequence and common ratio effects in the case of statistically independent prospects, simultaneous gambling and insurance, and the isolation effect. Given the similarity of the fundamental structure of both theories, there may be grounds for thinking that a more general theory of rational choice under uncertainty may encompass both regret and disappointment.”} By assuming that surplus is evaluated at the end of the
auction, then bidders who lose to another bid suffer no disappointment because—unlike those to lose to a BIN event—conditional on losing, they anticipate loss. This is related to the finding of Filiz-Ozbay and Ozbay (2007) that bidders have no regret in standard second-price auctions.

3.2 Platform Exit

The second component of our model connects negative outcomes to platform exit. Bidders update their beliefs about the value of participating in a future auction and chose to exit the platform whenever the expected utility of participating, given prior experience, again is less than that of the next-best substitute,

\[\mathbb{E}[\pi_{m+1}|\pi_1, \ldots, \pi_m] \leq \theta_i. \]

(2)

In our notation, the expectation \(\mathbb{E}[\cdot] \) is taken with respect to bidder \(i \)'s subjective beliefs about the benefit of participating in another auction, and \(\theta_i \) is an exogenous expected payoff to bidder \(i \)'s next-best substitute. \(\theta_i \) is a bidder-specific random variable with distribution \(F(\cdot) \). We assume that bidders’ expectations about future values of \(\pi \) are monotone in prior realizations. Formally,

ASSUMPTION 2 (Beliefs): \(\mathbb{E}[\pi_{m+1}|\pi_1, \ldots, \pi_m] \) is strictly increasing in \(\pi_k \forall k = 1, \ldots, m \).

This implies that a bidder who obtains less surplus in any prior transaction, holding all else constant, is strictly less likely to revisit the site. It is not entirely innocuous: it could be violated if bidders are learning about mechanisms—e.g., a loss to a late bidder today augments future surplus by teaching the loser about the strategic advantage of late bidding. In this sense our model requires that bidders have a reduced-form model of future surplus; we assume they are not learning about the structure of the market, so that their updates about future surplus are monotone in today’s surplus. This is perhaps most reasonable for new bidders who may not fully apprehend the mechanisms on the platform.¹⁰

We are not the first to use platform exit as an outcome of interest. Ascarza et al. (2016) show that recommendations for consumers who make suboptimal bundle choices

¹⁰For more rigorous foundations on misattribution and reference-dependent preferences, we refer the reader to recent work on this topic in Bushong and Gagnon-Bartsch (2016).
on a platform can cause exit and conjecture that the recommendations make expenditures more salient. Israel (2005) uses customer retention in auto insurance to identify learning events for an experience good, and Ho et al. (2015) use price changes and expensive medical events as price salience shocks to study substitution between health insurance plans and, in turn, the pricing of those plans. On the eBay platform Backus et al. (2015) showed that first-time bidders are substantially less likely to return to the platform when they are “sniped,” i.e., lose to a last-minute bid, and Nosko and Tadelis (2015) and Masterov et al. (2015) use buyer exit to measure the quality of competing measures of seller reputation.

3.3 Empirical Predictions

Our main hypothesis combines disappointment aversion with platform exit:

HYPOTHESIS 1: The longer a first-time bidder has been in the lead, the more likely they are to exit the platform after experiencing a loss to a BIN event.

For first-time bidders who lose to a BIN event, the probability of exit is given by $1 - F(E[\pi_2|\pi_1])$, with $\pi_1 = \alpha(y - p(t))$. By Assumption 2, the former term is decreasing in π_1. By Assumption 1, the latter is decreasing in t. Therefore the probability of exit is increasing in t.

Our model yields two additional ancillary hypotheses.

HYPOTHESIS 2: Among first-time bidders who expect to lose at the end of the auction, i.e., do not lose to a BIN event or a late bid, time spent in the lead is unrelated to exit.

For these bidders, $p = 0$ and therefore our model predicts that the probability of exit, $1 - F(E[\pi_2|0])$, is invariant to time spent in the lead.

Hypothesis 2 helps to address alternative stories that depend on time spent in the lead but not disappointment. For instance, perhaps bidders update negatively in proportion to, and because of, time wasted on an unsuccessful bid. The comparison to bidders who had an opportunity to re-bid and chose not to, helps us isolate the role of reference points.

HYPOTHESIS 3: Among experienced bidders who lose to a BIN event, the relationship between time spent in the lead and exit is weaker than for inexperienced bidders.
This follows from selection on survival: repeat bidders are likely to have worse outside options. For bidders who are experienced, we have a long sequence of bounds on the value of their outside option. Therefore θ_i is negatively selected on survival. Formally, the probability that they exit is given by

$$\max\{0, F(\max_k \{E[\pi_{k+1}|\pi_1, \ldots, \pi_k]\}) - F(\mathbb{E}[\pi_m|\pi_1, \ldots, \pi_m])\}. \quad (3)$$

This expression is equal to zero if the bidder is inframarginal—that is, if their beliefs are no worse than they have been before—and positive if the bidder’s expected surplus reaches a new low. As an alternative motivation, if we were to assume that bidders are Bayesian, then the variance on their posterior beliefs about π_{m+1} will shrink as $m \to \infty$, so that they update less (and are therefore less likely to exit) with each additional data point.

In a baseball card trading field experiment, List (2003) showed that experienced traders are less subject to the endowment effect, and in that sense “less behavioral.” Anticipating selling the cards that they buy implies that their ownership is transient, making them less subject to the endowment effect. Our explanation, particular to our setting, is substantively different: experienced and inexperienced buyers on the platform need not have different preferences. The effect of disappointment aversion on exit behavior, rather than the disappointment aversion itself, is endogenous to our model. This is, however, a matter of taste in modeling, and we do not rule out the possibility that bidders’ preferences are a function of experience.

4 Sample Design

We construct our sample using all new users who created an account on the U.S. eBay site between June 1, 2009 and October 31, 2013 and confirmed their account through e-mail verification. From this set, we select users whose first non-browsing consumer action was casting a bid in an ABIN auction. We focus on first-time bidders because, as our model posits, these are the set for whom exit is most responsive to disappointment. We relax this restriction later to test Hypothesis 3.

We further limited the sample to auctions belonging to four specific product categories: cell phones and accessories; clothing, shoes and accessories; event tickets and experiences; and motor parts and accessories. These were chosen because therein the BIN option remains available until the standing price exceeds 50% of the BIN price. In other categories,
the BIN option disappears once the first bid is placed.11 We then restrict attention to successful auctions where there were at least two participants. For each auction that closed prematurely through the BIN option, we retained a single losing bidder: the one who was leading at the time the BIN option was exercised and was also a first-time bidder.12 This reduces the sample to 23,439 first-time bidders who lost due to the BIN event. There is substantial variation in the timing of these BIN events, both in relation to the auction clock and with respect to the length of time that the losing bidder was in the lead. Figure 3a shows the distribution of when the BIN option was exercised. Because auctions vary in length, we normalized the timing by the intended duration so that 0 corresponds to the beginning and 1 to the scheduled end. Figure 3b shows the empirical CDF of time in the lead in hours. The median bidder is in the lead for approximately 6 hours, but there is a substantial right tail of bidders who lead for significantly longer periods of time. The average “time in the lead” for a bidder was just under 15 hours.

For each losing bidder, we construct our primary outcome variable, “exit,” as a dummy for whether the losing bidder ever participated in another auction within 365 days of their

11If there is a secret reserve price, the BIN option lingers until a bid exceeds it. In all categories other than vehicles, the BIN price must always be at least 30% higher than the starting price.

12We relax this restriction later to test Hypothesis 2.
loss. 72% of new bidders who lost via BIN returned to bid in another auction within a year. This rate is substantially higher than in Backus et al. (2015), mainly because the bulk of these auctions are of phones and clothes.

We also obtain data on the timing and levels of their bids, demographic characteristics, as well as the characteristics of the auction and the seller.13 Auctions are scheduled to last about 95 more hours at the time of the BIN event and are generally evenly distributed over the week. Items being auctioned are 42 percent new and are mostly split evenly between clothes and phones, with only 8 percent of the sample in auto parts and tickets. The joint coverage of the demographic data, detailed in the Appendix, limits the sample to 12,068 bidders, which we use for some specifications that control for demographic characteristics. Bidders for whom we have demographics in this sample are 62 percent female and generally young with a wide distribution of incomes.14

5 Main Results: Testing Hypothesis 1

Here we test our main hypothesis, that time spent in the lead is correlated with bidder exit among first-time bidders who lose because of a BIN event. According to our model, they exit with probability \(1 - F(\mathbb{E}[\pi_2|\alpha(y - p(t))])\), which is increasing in \(t\).

Figure 4 plots the probability of bidder exit by hours spent in the lead as the highest bidder for a sample of first-time bidders who lost to a BIN event. We find a positive relationship between time in the lead and the likelihood of exit that is consistent with disappointment aversion and rational reference point formation. Absent any confounds, Figure 4 is evidence for Hypothesis 1: the longer a bidder maintains the standing high bid before the BIN event, the more likely they are to exit. However, there are many omitted variables driving exit that could be correlated with variation in time in the lead. Mechanically, that variation comes from two sources: the time at which the bid is placed and the time of the BIN event. While the former is clearly endogenous, we posit that the latter source of variation is exogenous—we see no reason to believe that the buyer exercising the BIN option does so in a way that is correlated with the likelihood that the current high bidder will return to the site. We isolate this variation by introducing a large set of controls for the former source: the timing and the level of the standing bid.

13Detailed summary statistics on these controls are shown in Appendix Tables A-1 and A-2.

14Note that this sample is not representative of the eBay users in general because it is for a select set of categories and conditional on a BIN event occurring and consists of new users only.
Notes: This figure presents a LOWESS plot of the exit decision of bidders in our sample against time spent in the lead, in hours, prior to the BIN event which closed the auction. This does not control for any observable bid, auction, time, behavioral, or bidder attributes.

high bid as well as attributes of the standing high bidder. This is our identification assumption—that conditional on this large set of controls, the timing of the arrival of the BIN event is exogenous. In Appendix A-2 we show the robustness of our results to omitted variables bias following the suggestions of Altonji et al. (2005) and Oster (2015). We show that one would need to hold very particular beliefs about the covariance structure of the observables and unobservable confounds in order to qualitatively overturn our result. This is particularly apt test here because of the combination of a rich set of controls and the apparent insensitivity of our estimates to those controls.

Table 1 shows the average marginal effects (AMEs) on exit from spending an additional 24 hours in the lead, using six probit specifications. The first column presents the slope of Figure 4, with time rescaled to be in days rather than hours. The estimated marginal effect of an additional day in the lead is 7.3 percentage points over the baseline of 28%. That corresponds to a 26% increase in exit.

Our first robustness check is shown in Column 2, where we control for the number of spells as the high bidder that our loser experienced in the course of the auction, as well as
Table 1: AME of an Additional 24 Hours in the Lead on Exit

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AME</td>
<td>0.073</td>
<td>0.069</td>
<td>0.065</td>
<td>0.067</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Time in the Lead (24 Hours)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Bid-Bin Ratio and Spells</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Auction Attributes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Variables</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Site Visits</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>23,439</td>
<td>23,439</td>
<td>23,439</td>
<td>23,439</td>
<td>22,390</td>
<td>12,068</td>
</tr>
</tbody>
</table>

Notes: This table presents the average marginal effect (AME) of time spent in the lead on the likelihood of exiting the auction marketplace for our sample of bidders who lose to a BIN event. Specification (1) corresponds to an approximation of the relationship in Figure 4, while specifications (2)-(6) introduce extensive nested sets of controls. See text for details and discussion.

The decile of the ratio of the losing bid to the BIN price. These covariates are proxies for bidder attentiveness and willingness to pay. A bidder who has high willingness to pay may be more or less likely to exit because the high willingness to pay reflects limited options in other auctions, fixed price listings, or non-eBay merchants. Their high bid is unlikely to be reached by other bidders, giving them a long spell as the winner. The mirror image of this is a “bargain hunter” who enters the auction at the very beginning with a low bid hoping to get lucky. We expect that bidder to enjoy a long spell as the top bidder since most bidding happens at the very end. This happens in part because the search ranking algorithm promotes auctions ending soon, a preference perhaps shared by eBay bidders. The estimated marginal effect falls only slightly to 6.9 percentage points with these added controls.

In Column 3 of Table 1 we add variables that characterize the auction and the seller to absorb some of the variation in exit rates. We use the product category of the item, the intended duration and ending day of the week for the auction, the natural log of the number of item page views for each day the listing was up, a set of dummies that describe the number of transactions that the seller had completed prior to the auction, the item condition (new, used, refurbished, unknown) and whether the item was in the product catalog (a commodity item). Exit rates vary by product category, with clothes having the lowest and tickets the highest. Experienced sellers are more likely to provide better

15 The dummies for the number of transactions are based on the following intervals: 0, [1, 10], [11, 50], [51, 100], [101, 1000], > 1000.
service and produce less exit from the platform, as shown in Nosko and Tadelis (2015). The duration variable is meant to capture bargain hunters, who are likely to return. Shorter auctions are typically used by sellers who are eager to sell, even at the cost of a lower price. The page views variable allows us to control for characteristics unobservable to the econometrician that correlate with the listing’s desirability. For instance, a misspelling that makes a listing hard to find or high-quality photos, which influence search rank, would be captured by this metric. With these, the estimated effect on exit drops to 6.5 percentage points, which is still economically and statistically significant.

Column 4 of Table 1 adds a set of dummy variables corresponding to deciles of scheduled time remaining when the BIN event occurs and a set of dummies corresponding to quintiles for auction part for the first bid of the losing bidder. This addresses our concern that bidders who arrive early may be different from those who arrive late, in a way correlated with platform exit. This does not seem to be the case; the estimated effect is 6.7 percentage points.

The penultimate column adds the logged number of events and sessions between the time that our buyer appears on the site and the lost auction start time, per day. Events are actions on the site, such as a search query or a review of the bidding history of a listing. Whenever more than 30 minutes pass between events, a new session is started. Both of these variables are meant to proxy for, loosely, interest in the site and as more interested users may be more likely to exit the platform. They also allow us to separate the effect of being more attentive from time in the lead. Controlling for these variables reduces the estimated effect to 6.4 percentage points.

In the final column of Table 1 we add demographics: annual household incomes of the users, their genders, and ages. These variables are missing for almost half the sample, but as they are important controls, we believe that their inclusion was a useful robustness check. The estimate of the marginal effects on exit from an additional 24 hours in the lead remains steady at 6.4 percentage points.

Figure 5 plots the expected probability of exit from the probit specification in Column 6 of Table 1 as function of time in the lead with a 95% confidence interval. Figure 6 shows the average marginal effect on exit from an additional 24 hours in the lead from specification 6 of Table 1 as a function of time in the lead with a 95% confidence interval.

The concave shape indicates that the marginal impact of time in the lead on exit

\(^{16}\)Age is the main variable that is missing from our data.
increases with time in the lead, and drops off once someone has been winning for most of the auction, yet it is always positive, and significantly different from zero. As such, the analysis provides strong evidence, both large in magnitude and highly statistically significant, that spending more time in the lead before losing the item abruptly cause the bidder to be more likely to exit the auction platform to avoid such future experiences. We take this as strong evidence for Hypothesis 1.

6 Additional Results: Testing Hypotheses 2 and 3

In the above we have shown that first-time bidders who lose abruptly following a BIN event are more likely to leave the site the longer they have been in the lead, consistent with disappointment aversion and expectations-based reference points. However, there are alternative stories consistent with Hypothesis 1. For instance, one might worry that time spent in the lead is a proxy for time and attention devoted to the purchase, that losing bidders may simply be annoyed at the effort wasted. To rule out this and other alternative hypotheses, we also test Hypotheses 2 and 3.
Notes: This figure presents a plot of the average marginal effect (AME) on the predicted probability of exit as a function of time in the lead (i.e., plugging in alternative values for time spent in the lead) using specification (6) of Table 1.

6.1 H2: Expecting to Lose

Hypothesis 2 is a placebo test. It claims that the exit rate of bidders who have been outbid, and therefore anticipate loss at $t = 1$, should show no sensitivity to time spent in the lead. To test this, we augment our sample with first-time bidders who lost with more than 12 hours remaining in the auction. We impose the 12-hour restriction guarantee that they had ample time to respond, i.e. to exclude bidders who lose to “sniping.”\footnote{The results are not sensitive to using a 6 hour or a 24 hour cutoff. The added observations come from a disjoint set of auctions from our main analysis. These are also losers, but the manner in which they were bested is different: they were outbid, rather than binned, with some time in which to respond.} Intuitively, they had an opportunity to counter-bid and chose not to, and therefore anticipated their

\footnote{An alternative exercise would have been to look for evidence of reference point formation among sniped bidders. We considered this, however the ABIN setting has a critical advantage: the timing of the arrival of the BIN bidder generates variation in time spent in the lead that is uncorrelated with the losing bidders probability of return. However, if there were such variation for sniped losers, our model would predict a positive relationship between exit and time spent in the lead, and this mechanism may contribute to the finding in Backus et al. (2015) that sniping causes platform exit.}
loss \((p = 0)\).

Table 2: AME of an Additional 24 Hours in the Lead on Exit by Loser Type

<table>
<thead>
<tr>
<th>AME:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost to BIN</td>
<td>0.075**</td>
<td>0.076**</td>
<td>0.073**</td>
<td>0.061***</td>
<td>0.058***</td>
<td>0.057***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Outbid</td>
<td>0.011***</td>
<td>0.013***</td>
<td>0.009***</td>
<td>-0.010***</td>
<td>-0.011***</td>
<td>-0.005***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bid-Bin Ratio and Spells</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auction Attributes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Time Variables</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Visits</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>142,481</td>
<td>142,481</td>
<td>142,476</td>
<td>142,476</td>
<td>82,459</td>
</tr>
</tbody>
</table>

Notes: This table presents the average marginal effect (AME) of time spent in the lead on the likelihood of exiting the auction marketplace for bidders who lose to a BIN event as well as bidders who were outbid. Specification (1) corresponds to an approximation of the relationship in Figure 4, while specifications (2)-(6) introduce extensive nested sets of controls. See text for details and discussion.

Table 2 recreates Table 1 for this augmented sample, where we allow for separate constant and slope parameters for the two sets of bidders: those who lose to a BIN, and those who are outbid. We see substantively smaller effects for ordinary losers that are sometimes negative and sometimes positive in specifications (1)-(5). Moreover the effect is not statistically significant when we include the full set of controls in specification (6). We interpret these findings as confirmation of Hypothesis 2. These bidders share the same material outcome for their efforts, but only those for whom the loss was a surprise is time in the lead predictive of exit.

6.2 H3: Experienced Losers

Hypothesis 3 claims that more experienced bidders will be less sensitive to time spent in the lead when they lose to a BIN event for two reasons. First, consistent with the model of Section 3, more experienced bidders are a selected sample with, in expectation, a worse outside option. Second, more informally but consistent with Bayesian updating, bidders should update their beliefs less with each additional experience.

Figure 7 recreates Figure 4 accounting for user experience. It presents LOWESS plots of exit against time in the lead for sets of bidders with different levels of experience.
Consistent with Hypothesis 3, the correlation between time in the lead and exit declines markedly as users accumulate additional experience. For bidders with 51 or more prior transactions, there appears to be no effect at all. These results are strongly consistent with Hypothesis 3, that experience on the platform dampens bidders’ sensitivity to the disappointment of expectations.

Figure 7: Exit Rates by Time in the Lead for Experienced Bidders

Notes: This figure replicates Figure 4 by plotting exit rates against time spent in the lead for four samples of bidders who lose to a BIN event: bidders with experience in 1 to 10 prior transactions, 11 to 50 prior transactions, 51 to 500 prior transactions, and 500+ prior transactions.

7 Discussion

Our work is situated in a growing literature that studies the role of reference points in decision making; see DellaVigna (2009) and Barberis (2013) for recent surveys. Barberis (2013) argues that outside the areas of choice under uncertainty, namely finance and insurance, a lack of empirical analyses casts doubt on the importance of reference points, and of prospect theory more generally.
The main difficulty Barberis (2013) points to is the lack of guidance on what a gain or loss represent relative to well-understood reference points. He states that the rational expectations solution offered by Kőszegi and Rabin (2006) “remains a hypothesis in need of more testing and, in any case, is unlikely to be completely correct.” He later argues that “Reference dependence is the most basic idea in prospect theory, and if any element of the theory finds a permanent place in economic analysis, it will surely be this one.” Our analysis offers an application with rational reference points that endogenously shift over time to explain observed behavior in a large market setting.

Documenting rationally formed, evolving reference points, involves two major measurement problems that have mostly confined the study of reference-dependent preferences to the lab. The first is finding a reference point shifter. In our setting, this is time spent as the winning bidder, which is consistent with rational expectations reference point formation in the spirit of Kőszegi and Rabin (2006). The data confirm that the longer a bidder holds the winning bid, the more likely it is that they will win the auction. This parallels the reference point shifter in Card and Dahl (2011), who exploit the fact that rational expectations about NFL game outcomes are easy to measure using betting markets. The second problem is finding a measure of \textit{ex post} disappointment when the BIN option is exercised. Platform exit serves this purpose in our study, and it is also economically important. We believe that this is the clearest example of reference-dependent preferences using observational data from real market behavior to date. Card and Dahl (2011) use family violence as the outcome variable and find that upset losses strongly impact family violence, while losses in games that were expected to be close have small and insignificant effects. Hence, both studies provide confirmation of rational reference point formation.

Even though Card and Dahl (2011) is the closest study to ours in many respects, we do find an interesting difference between the exit behavior of individuals in our marketplace and the violent behavior in their setting. NFL football games last for several hours, creating the opportunity for updating the reference point during the game. Card and Dahl (2011) test for such updating using the score at halftime and conclude that behavior is driven by the game outcome relative to expectations \textit{at the start of the game}, with no updating of reference points based on halftime information. We find that individuals appear to update their reference points in two important ways. First, time in the lead seems to continuously and rationally shift their beliefs about the likelihood of winning the object. Second, and more striking, if they lose and have recourse to re-bid, and choose
not to, then they update their reference point in an extreme way. Namely, their behavior suggests that they seem to shed the expectation of winning the auction, regardless of how long they were in the lead beforehand.

Our study points at the potential for future empirical work in identifying the magnitude and significance of behavioral biases using data from the exponentially growing datasets associated with online consumer behavior. As ours and other recent studies demonstrate, the breadth and increasing availability of online market data promises new directions for testing behavioral theories and developing an empirical behavioral research agenda that reaches far beyond lab environments.
References

A Robustness Appendix

We conducted a series of robustness checks out of concern both for the exogeneity of our variation as well as the interpretation of the effects. First, we use a linear probability model with a heteroskedasticity-robust variance-covariance matrix. This is partly a specification check and partly meant to lay the ground for our second check, that applies Altonji et al. (2005) and Oster (2015) to calculate bounds on the omitted variable bias under proportional selection on observables and unobservables.

This robustness exercise relies on adding control variables which have substantial explanatory power on the outcome. To that end, we collected extensive controls on the timing and levels of bids, demographic characteristics of bidders, as well as the characteristics of the auction and the seller. Tables A-1 and A-2 display summary statistics for our sample.

Finally, we also re-estimate the model from Section 5 two ways: first, using a set of alternative outcomes to probe a related hypothesis concerning a variant of the endowment effect, and second, using a set of “commodity” products, with more regular availability on the platform, to allay any concerns about subsequent availability should a bidder desire to revisit the site.

A-1 Linear Probability Model

As a specification check and prelude to Section A-2, we replicate our results using a linear probability model (LPM) rather than the probit approach of Section 5. LPM estimates are reported in Table A-3. They are somewhat larger than the probit AMEs, but they have a very similar pattern of adjustment to covariates.

A-2 LPM Coefficient Stability

While our coefficients are stable as we add covariates, that is not a sufficient condition for omitted variable bias to be negligible. Figures A-1 and A-2 are based on the omitted variable bias bounding approach of Oster (2015). We assume that the unobservables share at least some of the covariance properties of the observables we selected. Without this reasonable assumption, very little can be said about the merits of our identification strategy.
<table>
<thead>
<tr>
<th>Table A-1: Summary Statistics: Auctions and Bids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Abandoned Auctions After Losing</td>
</tr>
<tr>
<td>Abandoned eBay After Losing</td>
</tr>
<tr>
<td>Number of Distinct-Auction Bids In the Year Since Losing</td>
</tr>
<tr>
<td>Number of BINs In the Year Since Losing</td>
</tr>
<tr>
<td>Perc. Diff. B/W Subsequent Attempt and Losing Bid</td>
</tr>
<tr>
<td>Attempted to Buy Same Product ID</td>
</tr>
<tr>
<td>Time in the Lead (24 Hours)</td>
</tr>
<tr>
<td>Time in the Lead Intervals</td>
</tr>
<tr>
<td>Losing Bid-BIN Price Ratio</td>
</tr>
<tr>
<td>Seller’s Previous Transaction Count (1Ks)</td>
</tr>
<tr>
<td>Item Page Views Per Day Up</td>
</tr>
<tr>
<td>Events Before Auction Was Up (Normalized)</td>
</tr>
<tr>
<td>Sessions Before Auction Was Up (Normalized)</td>
</tr>
<tr>
<td>Item in Product Catalog</td>
</tr>
<tr>
<td>Listings Within 1 Year for Losing Product ID</td>
</tr>
<tr>
<td>First Bid Normalized By Duration</td>
</tr>
<tr>
<td>Scheduled Time Remaining When Outbid (Hours)</td>
</tr>
<tr>
<td>Intended Lost Auction Duration (Days)</td>
</tr>
<tr>
<td>Intended Auction End Day:</td>
</tr>
<tr>
<td>Sun</td>
</tr>
<tr>
<td>Mon</td>
</tr>
<tr>
<td>Tue</td>
</tr>
<tr>
<td>Wed</td>
</tr>
<tr>
<td>Thu</td>
</tr>
<tr>
<td>Fri</td>
</tr>
<tr>
<td>Sat</td>
</tr>
<tr>
<td>Vertical:</td>
</tr>
<tr>
<td>Clothes</td>
</tr>
<tr>
<td>Phones</td>
</tr>
<tr>
<td>Auto Parts</td>
</tr>
<tr>
<td>Tickets</td>
</tr>
<tr>
<td>Item Condition:</td>
</tr>
<tr>
<td>New</td>
</tr>
<tr>
<td>Refurbished</td>
</tr>
<tr>
<td>Used</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>

Notes: This table presents summary statistics concerning auction and bid attributes from our main dataset of first-time bidders who participate in ABIN auctions and ultimately lose. See the text for further details on sample definition.
Table A-2: Summary Statistics: Bidders

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female User</td>
<td>0.62</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
<td>18,836</td>
</tr>
<tr>
<td>User Age (2 Year Increments)</td>
<td>35.0</td>
<td>14.42</td>
<td>18</td>
<td>99</td>
<td>13,650</td>
</tr>
<tr>
<td>Annual Household Income:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><15K</td>
<td>0.15</td>
<td>0.35</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>15-19K</td>
<td>0.066</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>20-29K</td>
<td>0.12</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>30-39K</td>
<td>0.11</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>40-49K</td>
<td>0.098</td>
<td>0.30</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>50-74K</td>
<td>0.21</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>75-99K</td>
<td>0.10</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>100-124K</td>
<td>0.055</td>
<td>0.23</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
<tr>
<td>125K+</td>
<td>0.086</td>
<td>0.28</td>
<td>0</td>
<td>1</td>
<td>23,316</td>
</tr>
</tbody>
</table>

Notes: This table presents summary statistics concerning bidder attributes from our main dataset of first-time bidders who participate in ABIN auctions and ultimately lose. See the text for further details on sample definition.

Table A-3: LPM Marginal Effect of an Additional 24 Hours in the Lead on Exit

<table>
<thead>
<tr>
<th></th>
<th>ME</th>
<th>ME</th>
<th>ME</th>
<th>ME</th>
<th>ME</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in the Lead (24 Hours)</td>
<td>0.080***</td>
<td>0.076***</td>
<td>0.073***</td>
<td>0.075***</td>
<td>0.072***</td>
<td>0.071***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Bid-Bin Ratio and Spells</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Auction Attributes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Remaining</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Site Visits</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographics</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>23,439</td>
<td>23,439</td>
<td>23,439</td>
<td>23,439</td>
<td>22,390</td>
<td>12,068</td>
</tr>
<tr>
<td>R^2</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Notes: This table presents the LPM analogue of the profit specification employed in Table 2. As before, specifications (1)-(6) introduce extensive nested sets of controls.
Figure A-1: Treatment Effect Under Assumptions About Selection Proportionality

Notes: This figure presents the treatment effect for the LPM results of specification (6) adjusted according to the method of Oster (2015). See text for a discussion of this method and definition of parameters δ and R^2_{MAX}. The dashed vertical line refers to the recommended value for comparison of $1.3 \cdot \tilde{R}^2$.

The horizontal line in Figure A-1 shows the marginal effect on exit from an additional 24 hours in the lead from specification (6) in Table A-3. The bias of this estimate depends on two unknown in-sample parameters: the R^2 from a hypothetical regression of the outcome on all observed and unobserved determinants of exit, R^2_{MAX}, and the coefficient of selection proportionality δ. A δ of one indicates that the observed and unobserved variables have an equally important effect on the coefficient of interest. A δ greater than one indicates that the unobserved variables are relatively more important.\(^{19}\) Similarly, an

\(^{19}\)To fix the idea, consider our model

$$y = \alpha + \beta \cdot t + \sum_{j=1}^{C} \gamma_j \cdot x_j + \sum_{k=1}^{U} \eta_k \cdot z_k + \varepsilon = \alpha + \beta \cdot t + C + U + \varepsilon,$$

where y is the binary exit outcome, t is time in the lead, x_j are the controls and z_k are the unobserved variables. We assume that U and C are orthogonal. The proportionality of selection relationship is defined as

$$\delta = \frac{\text{Cov}(U, t)}{\text{Var}(U) \cdot \text{Cov}(C, t) / \text{Var}(C)}.$$
R_{MAX}^2 of 1 would indicate that the potential explanatory variables are highly predictive and there is very little measurement error or idiosyncratic variation driving a bidder’s exit decision.

The green line shows the bias-adjusted marginal effect for the equal selection case ($\delta = 1$) for a range of plausible R_{MAX}^2 values. Other downward-sloping lines make different assumptions about the selection proportionality. In a setting where the observed and unobserved variables explain a lot of the variation, the bias-adjusted effect turns negative. However, near the $1.3 \cdot \tilde{R}^2$ cutoff for R_{MAX}^2 suggested by Oster (2015), the bias-adjusted estimates are generally near the unadjusted one and considerably above zero. This suggests that our estimated effect is robust and economically significant.

For each value of R_{MAX}^2, we also calculate the value of δ that would explain away the marginal effect and reduce it all the way to zero. That value is plotted in Figure A-2. Near our cutoff, the unobserved variables needs to be more than 15 times as important as observed ones to completely suppress the estimated effect. When the exit decision is more predictable, at least hypothetically, a smaller role for unobservables is sufficient to reduce the estimates below zero.

Another motivation for this robustness check is that it is possible for the perceived time in the lead to exceed the measured time since users are typically not monitoring the site closely and are inattentive to outbid notifications. We use the timestamp of when the BIN event occurs to define time in the lead, but some amount of time may pass before the losing bidder reads the e-mail or becomes cognizant of in-app notification, which are instantaneous. This gap between measured time in the lead and perceived time in the lead for the user means the effect we seek to estimate will be attenuated. Since this issue can be re-expressed as a kind of omitted variable problem, this bounding approach allows us to characterize the magnitude of this measurement error-induced bias in the behavioral response.

Essentially, δ is the ratio of univariate regression coefficients of the linear index t on U and the linear index t on C. R_{MAX}^2 comes from the infeasible regression of y on t and the variables that comprise C and U.

20The cutoff is based on a sample of high-quality randomized studies that considered the sensitivity of treatment effects to the inclusion of controls. The assumption is that since treatment is experimental, these estimates should generally “survive” the adjustments process. The cutoff of $1.3 \cdot \tilde{R}^2$, where \tilde{R}^2 is the R^2 from the regression with the controls, allows 90% of estimates to survive. This value corresponds to a bound on δ where the unobservables explain somewhat less than the observables.
Figure A-2: Proportionality of Selection Coefficient δ s.t. $\hat{\beta} = 0$

Notes: This figure plots the proportionality of selection coefficient (δ) required to generate adjusted estimates such that $\hat{\beta} = 0$, as a function of R^2_{MAX}. We view this as a bound on the assumptions on unobserved heterogeneity required to qualitatively overturn our result. The dashed vertical line refers to the recommended value for comparison of $1.3 \cdot R^2$ from Oster (2015).

A-3 Other Outcomes

Table A-4 recreates the six specifications from Table 1 (by row) for a variety of other outcomes of interest. Note that each cell of the table presents an average marginal effect for a separate regression. The first column of Table A-4 reproduces Table 1 to facilitate comparisons. The second column takes as a dependent variable exit from eBay.com altogether, not merely the auction part of the market.\(^{21}\) Not surprisingly, the effect of time in the lead is somewhat weaker since some of the people who abandon auctions may substitute towards fixed price listings. In the third column, a successful outcome is an attempt to purchase the same product catalog item, conditional on coming back to eBay. We find that increasing time in the lead makes that less likely, and the effect is significant even

\(^{21}\)Einav et al. (2013) show that fixed price sales are a large and growing portion of the website, and so it is important to consider substitution to fixed-price sales.
in our richest specification despite the limited sample. This means that losing to a BIN event makes returning to find the same item less likely when the loser was in the lead for longer.\footnote{We limited this regression to items where there were at least 10 listings available on eBay in the year after the loss to ensure this was not driven by stock-outs.} This is a different result from both the experimental and field literature, which has found a heightening effect on rebidding within the same auction from additional time in the lead (Bramsen, 2008; Wolf et al., 2005). Of course, it is possible that subsequent purchases take place on a different e-commerce site or off-line, which is unobservable to us. However, we anticipate this would attenuate rather than reverse the measurement of an attachment effect unless bidders who are susceptible to attachment are particularly likely to make purchases off-site. Finally, the fourth column shows the marginal effect on the change in willingness to pay (WTP), conditional on returning to eBay for the same product catalog item. We measure this as the highest subsequent bid or the fixed price, the latter in the case of a fixed price listing purchase. Prior work predicts that bidders should bid more aggressively in subsequent auctions. For interpretation of the result, the scale is such that 100 would correspond to doubling the bid and 0 to no change. We limited the regression to products with at least 10 listings within one year of the lost auction and removed any observations where the outcome exceeded 500. We find no statistically significant effect.

A-4 Commodity Items

We noted earlier that an alternative story to disappointment aversion would be one of a quasi-endowment or attachment effect (Ariely and Simonson, 2003). It posits that as bidders become attached to a good in the course of bidding and are therefore more likely to return to the site upon losing, in order to ultimately obtain the item. Our results on exit are inconsistent with this hypothesis; our supplementary results in Table A-4 showed that bidders who do return do not bid on the same product, and bidders who do return and bid on the same product do not bid more. However, one might suspect that these bidders lack opportunities to bid on the exact same product. We therefore offer a sharper test by restricting attention to items that are in eBay’s product catalog, meaning that they are sufficiently common to have a UPC code. These are items that are standardized and more frequently offered, so that a bidder could return and buy exactly the same product. To further ensure this, we also limit the sample to items that had at
Table A-4: AME of an Additional 24 Hours in the Lead on Other Outcomes

<table>
<thead>
<tr>
<th></th>
<th>(1) Auct. Exit</th>
<th>(2) eBay Exit</th>
<th>(3) Same Product ID</th>
<th>(4) WTP Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec. (1)</td>
<td>0.073***</td>
<td>0.060***</td>
<td>-0.044***</td>
<td>-7.026</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.009)</td>
<td>(5.018)</td>
</tr>
<tr>
<td>Spec. (2)</td>
<td>0.069***</td>
<td>0.057***</td>
<td>-0.050***</td>
<td>4.807</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.010)</td>
<td>(4.573)</td>
</tr>
<tr>
<td>Spec. (3)</td>
<td>0.065***</td>
<td>0.056***</td>
<td>-0.054***</td>
<td>3.400</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.011)</td>
<td>(5.332)</td>
</tr>
<tr>
<td>Spec. (4)</td>
<td>0.067***</td>
<td>0.058***</td>
<td>-0.055***</td>
<td>2.373</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.011)</td>
<td>(5.478)</td>
</tr>
<tr>
<td>Spec. (5)</td>
<td>0.064***</td>
<td>0.055***</td>
<td>-0.056***</td>
<td>2.534</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.011)</td>
<td>(5.564)</td>
</tr>
<tr>
<td>Spec. (6)</td>
<td>0.064***</td>
<td>0.054***</td>
<td>-0.043***</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.015)</td>
<td>(6.528)</td>
</tr>
</tbody>
</table>

Notes: This table presents the average marginal effect (AME) of time spent in the lead on other outcomes for our sample of bidders who lose to a BIN event. Each cell of the table corresponds to a separate regression. Column-wise, we consider alternative dependent variables. See text for further discussion. Row-wise, specifications (1)-(6) correspond to the nested control sets introduced in Table 1, where Specification 6 includes observables capturing bid and auction attributes, time variables, behavioral variables, and bidder demographics.

Table A-5 recreates Table 1 using this restricted sample. If shifting reference points were creating an endowment effect, i.e., changing valuations for an entire class of products, say all 64GB gold iPhone 3s rather than the particular one that was lost, we would expect the losing bidder to return to bid at a higher rate. Instead, we find a positive effect of time in the lead on exit probability. Moreover, we cannot reject the hypothesis that the slope is different for commodity and non-commodity items.23

23These results are available upon request.
Table A-5: AME of an Additional 24 Hours in the Lead on Exit for Commodities

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AME</td>
<td>AME</td>
<td>AME</td>
<td>AME</td>
<td>AME</td>
<td>AME</td>
</tr>
<tr>
<td>Time in Lead (24 Hours)</td>
<td>0.091***</td>
<td>0.084***</td>
<td>0.067***</td>
<td>0.072***</td>
<td>0.072***</td>
<td>0.078***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Bid-Bin Ratio and Spells</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Auction Attributes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Variables</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Site Visits</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>7,006</td>
<td>7,006</td>
<td>7,006</td>
<td>7,006</td>
<td>6,509</td>
<td>3,167</td>
</tr>
</tbody>
</table>

Notes: This table re-creates Table 2 using the following subsample: We restrict attention to the 7,006 bidders who made their first bid in an auction for a “commodity” item, *i.e.*, an item for which there exists an entry in the eBay product catalog and had at least 10 listings in the year after the loss.