The Aggregate and Distributional Effects of Spatial Frictions

Sebastian Heise†
Federal Reserve Bank of New York

Tommaso Porzio‡
Columbia University and CEPR

March 25, 2021

Abstract

We develop a general equilibrium model of frictional labor reallocation across firms and regions, and use it to quantify the aggregate and distributional effects of spatial frictions that hinder worker mobility across regions in Germany. The model leverages matched employer-employee data to unpack spatial frictions into different types while isolating them from labor market frictions that operate also within region. The estimated model shows sizable spatial frictions between East and West Germany, especially due to the limited ability of workers to obtain job offers from more distant regions. Despite the large real wage gap between East and West of Germany, removing the spatial frictions leads, in equilibrium, to only a small increase in aggregate productivity and it mostly affects the within-region allocation of labor to firms rather than the between-region allocation. However, spatial frictions have large distributional consequences, as their removal drastically reduces the gap in lifetime earnings between East and West Germans.

JEL: J6, O1, R1

† We thank Michael Peters for a very insightful discussion of the paper. We also thank Andy Atkeson, Gharad Bryan, Paco Buera, Julieta Caunedo, Lorenzo Caliendo, Kevin Donovan, Niklas Engbom, Ben Faber, Pablo Fajgelbaum, Tarek Hassan, Kyle Herkenhoff, Fatih Karahan, Pete Klenow, David Lagakos, Mushfiq Mobarak, Ben Moll, Simon Mongey, Melanie Morten, Todd Schoellman, and Jonathan Vogel for very useful comments that improved the paper. We have also benefited from the reactions of several seminar and conference audience, including participants at the NBER SI EFMPL, NBER Growth, Berkeley, Columbia, LSE, UBC, UCLA, UPenn, University of Toronto. Rachel Williams provided excellent research assistance. The views and opinions expressed in this work do not necessarily represent the views of the Federal Reserve Bank of New York. This study uses the weakly anonymous Establishment History Panel (Years 1975 - 2014) and the Linked-Employer-Employee Data (LIAB) Longitudinal Model 1993-2014 (LIAB LM 9314). Data access was provided via on-site use at the Research Data Centre (FDZ) of the German Federal Employment Agency (BA) at the Institute for Employment Research (IAB) and remote data access. The study also uses data made available by the German Socio-Economic Panel Study at the German Institute for Economic Research (DIW), Berlin. Neither the original collectors of the data nor the archive bear any responsibility for the analyses or interpretations presented here.

‡ 33 Liberty Street, New York, NY 10045, email: sebastian.heise@ny.frb.org.

§ 3022 Broadway, New York, NY 10027, email: tommaso.porzio@columbia.edu.
1 Introduction

In many countries, large differences in wages and labor productivity across regions have persisted for decades (Gollin, Lagakos, and Waugh (2014), Redding and Rossi-Hansberg (2017)). Spatial frictions (e.g., moving costs that prevent workers from moving to high-wage regions) may be an important factor, as the regional differences cannot be explained by compensation for regional amenities or spatial sorting alone.\(^1\) Spatial frictions could imply a misallocation of workers across regions and entail large aggregate productivity costs (Bryan and Morten (2019); Hsieh, Hurst, Jones, and Klenow (2019)).

Large differences in wages and labor productivity are also observed across firms, even within the same region.\(^2\) These wage differences plausibly reflect labor market frictions (e.g., Burdett and Mortensen (1998)), which could affect the gains from removing spatial barriers. For example, moving workers to high-wage regions is not sufficient to generate aggregate gains if workers do not reach the high-paying firms in those regions. Moreover, workers’ willingness to migrate influences how easily low productivity firms can expand relative to high productivity firms, and hence spatial frictions affect the within-region distribution of labor. To provide a proper quantitative assessment of the costs of spatial frictions, we must therefore take into account the allocation of labor both between and within regions, hence we should study *space* taking into account the role of *firms*.

In this paper, we build a general equilibrium framework of frictional labor reallocation across firms and regions, which we use to quantify the aggregate costs of spatial frictions in Germany. Our main result is that, despite the large and persistent real wage gap of 26% between the East and West of Germany, removing all spatial frictions only modestly raises aggregate output, and these aggregate gains are purely driven by the reallocation of labor within rather than between the two German regions.\(^3\) This result is due to several counteracting forces. While removing spatial frictions allows workers to reach the most productive firms more easily regardless of their location – raising aggregate productivity – it also makes it easier for low productivity firms to attract unemployed workers from anywhere in Germany. This second mechanism allows low productivity firms to expand and offsets most of the gains. Moreover, we find large equilibrium effects: without spatial frictions, East-born workers move towards the more productive West, congesting the local labor market, which leads more West-born workers to move East. Overall, we do not find any net reallocation of workers towards the West in equilibrium.

The estimated model yields two additional results. First, despite the limited aggregate effects of spatial barriers, they have large distributional consequences. Without spatial barriers, the gap

\(^1\)See Combes, Duranton, and Gobillon (2008); Young (2013); Hicks, Kleemans, Li, and Miguel (2017); Lagakos, Marshall, Mobarak, Vernot, and Waugh (2020); Lagakos (2020)
\(^2\)See, among others, Sorkin (2018); Song, Price, Guvenen, Bloom, and Von Wachter (2019).
\(^3\)This result is in contrast to previous work which focused solely on the reallocation between regions and found large effects (e.g. Bryan and Morten (2019)).
in lifetime earnings between East and West Germans is drastically reduced since workers’ job decisions and opportunities no longer depend on their location. Second, our framework allows us to distinguish spatial search frictions, which prevent workers from accessing job opportunities across regions, from moving costs and home bias, which affect workers’ willingness to move, and to study separately the aggregate effect of each spatial friction. We show that spatial search frictions have the largest independent effect on aggregate output while eliminating moving costs actually slightly reduces GDP since it worsens the within-region allocation of workers to firms.

In the first part of the paper, we use micro data from the German Federal Employment Agency to document three sets of facts. These facts show that Germany is an ideal setting to study regional wage gaps and motivate the ingredients of our model. First, we use the Establishment History Panel (BHP), a 50% sample of all establishments in Germany, to study wage gaps between and within the East and West of Germany. We show that there exists a large real average wage gap between the two regions (see Figure 1), and this wage gap has been constant over time and is not driven by observables such as industry or education. At the same time, we find that the within-region wage heterogeneity across establishments is larger than the average wage gap between regions, and that there is significant overlap between the East and the West German wage distributions. Second, we use the Linked Employer-Employee Data (LIAB) to show that all workers obtain large real wage gains when moving from East to West Germany. Conditional on observables, these gains are higher for East Germans than for West Germans, suggesting that workers need to be compensated to leave their home. Importantly, we find that workers also obtain substantial wage gains when moving jobs within East or West
Germany. Since any move across space is also a move across firms, the wage gains of cross-region movers thus combine the returns from switching across firms and the returns from migrating. Third, based on the LIAB data we document that there is substantial worker mobility between East and West Germany, but that, even conditional on current region, workers are much more likely to move towards their home region.

Next, we develop a general equilibrium framework to estimate the aggregate costs of spatial frictions. We build on a job-posting model à la Burdett-Mortensen (e.g., Burdett and Mortensen (1998)), in which workers move between heterogeneous firms subject to labor market frictions, but we extend this previous work to consider worker mobility across regions, subject to spatial barriers. The model is based on the micro empirical evidence: we allow for different types of spatial frictions to match the features of cross-region workers flows and wage gains, and we incorporate labor market frictions to capture the within-region wage dispersion. Our theory allows for an arbitrary number of regions characterized by an exogenous productivity distribution of firms, and an arbitrary number of worker types characterized by differences in skills, moving costs, location preferences, and search efficiency towards each region. Firms choose the wage to post and decide how many job vacancies to open. Workers decide how many job applications to submit to each region and receive random job offers, moving into and out of unemployment and across firms both within and between regions. Workers and firms meet according to a matching function that is concave in applications and vacancies, as in Diamond-Mortensen-Pissarides models (e.g., Pissarides (2000)), generating endogenous labor market tightness. We derive a tractable solution to the model represented by a system of differential equations.

Our model provides a framework to structurally identify the different components of spatial frictions and to isolate them from general labor market frictions. While all model parameters and frictions are jointly identified, we provide a heuristic identification argument. Within-region data on the joint distribution of wages and firm size, the average wage gains of job movers, and the frequency of job changes discipline the unobservable endogenous distribution of job offers in each region. Given a set of within-region distributions, the spatial frictions are identified by comparing the wage gains and job flows across regions to their within-region analogues. The key identifying assumption of the model is that the job offer distributions do not depend on the location or identity of the worker, and thus all workers draw offers from the same distributions irrespective of their current location. Under this assumption, higher observed wage gains for movers into a region compared to movers within that region reflect the presence of moving costs, as cross-region job switchers need to be compensated to move. Similarly, higher observed wage gains for workers moving out of their home region relative to other worker types making the same move identify home preferences. The relative frequency of job switches, instead, disciplines the search efficiency. Relatively lower worker flows across regions, compared to between firms within region, indicate that workers are less successful in applying for jobs in other regions.
We estimate the model with four sub-regions of Germany – which we refer to as locations – corresponding to the Northwest, Southwest, Northeast, and Southeast, and incorporate four worker types reflecting the four possible home locations. The model matches the data well, despite being relatively parsimonious with 21 parameters being used to match 305 micro and aggregate moments.

The model estimates imply substantial spatial barriers. The most important of these barriers is a lower search efficiency across locations: for a given search effort, workers generate only 1/20th as many job applications when searching for jobs across locations as within. Search efficiency is also biased towards each individual’s home: a given search effort across locations directed towards the home location results in four times as many applications as the same effort directed to jobs outside of it. In contrast to the large spatial search frictions, we estimate a direct cost of moving between any two locations of only between 3.1% and 5.3% of life-time income, dependent on the distance, which is considerably smaller than most previous estimates.4 These relatively small moving costs reflect our model’s ability to distinguish actual moving costs from other spatial frictions and to control for the frictional labor market. In terms of home preferences, we find that workers need to be paid 7.4% of their yearly income to move away from their home location and maintain the same utility.

Our model also allows us to quantify the contribution of unobserved individual characteristics to the East-West wage gap. The wages of East German workers are approximately 10% lower than those of West German workers even while working at the same firm, which, structurally interpreted through our model, implies a 10% difference in unobserved ability. Due to the sorting of workers towards their home location, these ability differences explain more than one third of the East-West regional wage gap.

We use the model to study the aggregate and distributional impact of spatial frictions in Germany. We find that eliminating all spatial barriers would decrease the wage gap between East and West Germany by half, mostly due to the reduction in workers’ sorting towards their home location. However, aggregate GDP per capita would increase by a mere 2%. The reason for this result is that the estimated labor misallocation is mainly across firms within locations, rather than between East and West Germany, and the effect of spatial frictions on the within-location allocation of labor is mediated by several counteracting forces. While removing spatial frictions allows workers to find more jobs and to climb a country-wide job ladder – thus increasing labor productivity – eliminating spatial frictions also makes it easier for low productivity firms to hire unemployed workers from far away locations, which depresses productivity. In addition, eliminating spatial barriers raises the share of East German workers in the West by 40 percentage points, but the additional competition for jobs encourages more West German workers to migrate to the East, resulting in no net labor reallocation towards the

4See, for example, Bryan and Morten (2019) and Kennan and Walker (2011).
West.

In contrast to the small aggregate gains, the distributional consequences of spatial frictions are large. Workers’ home location has persistent effects on their earnings throughout their lifetime: the average wage per efficiency unit of East Germans is about 11% below the one of West Germans. Removing spatial frictions almost eliminates this gap since all workers have equal access to jobs in East and West Germany and climb a similar job ladder.

Overall, our results highlight the importance of studying the allocation of labor within and across regions in a unified general equilibrium framework, hence to study space and firms jointly.

Literature. Our paper contributes to several strands of literature.

First, we contribute to the literature quantifying the size of spatial barriers and their aggregate effects (Caliendo, Opromolla, Parro, and Sforza (2017) and Bryan and Morten (2019)). The literature has used observed worker flows and average wage differentials across space to estimate the size of the moving costs. Since worker flows in response to average wage gaps are relatively modest, even after accounting for compensating disamenities, the papers infer large moving costs, which suggest substantial aggregate gains from reallocating workers. Our framework allows us to benchmark worker mobility across space to mobility across firms in a frictional labor market. We find that, despite sizeable spatial barriers, the aggregate gains from removing them are modest because most of the labor misallocation is within regions, and removing spatial barriers does not substantially improve the within-region allocation of workers to firms. Overall, we argue that firms, and firm level-data, should have a prominent role in the analysis of spatial wage gaps.

Second, a recent literature has used panel data to study the observational returns from migration and to quantify the contribution of workers’ sorting to regional wage gaps (see Hicks, Kleemans, Li, and Miguel (2017), Alvarez (2018), and Lagakos, Marshall, Mobarak, Vernot, and Waugh (2020)). We show that the interpretation of panel data used in this literature can be misleading. In our setting, the wages of East-born workers increase steeply when moving West, which the cited literature would interpret as evidence of a large causal effect of working in the West, hence of large returns from reducing spatial barriers. This conclusion does not take into account, however, that labor markets are frictional, and that all job movers are selected — they must have received a good enough job offer to move. Moreover, removing spatial barriers can lead to equilibrium effects. Our work controls for movers’ selection by benchmarking the wage gains of movers between regions to those within regions, and computes the aggregate gains in equilibrium. We conclude that removing spatial frictions provides smaller gains than implied by an a-theoretical interpretation of the data.

Other relevant papers on sorting, using different methods, are Young (2013), Lagakos and Waugh (2013).
Third, our work is related to job ladder models à la Burdett and Mortensen (1998) with labor mobility across sectors or space. Schmutz and Sidibé (2018) build a partial equilibrium model where identical workers receive job offers both from their current location and from other locations. Consistent with our work, they estimate relatively small moving costs and sizable search frictions across space. However, due to the partial equilibrium assumption their paper cannot study the aggregate effects of removing these spatial barriers, and due to the assumption of homogeneous labor the paper cannot study the distributional effects of spatial frictions. Bradley, Postel-Vinay, and Turon (2017) analyze wage posting and employment in a Burdett-Mortensen setup in the presence of an exogenous public sector, and Meghir, Narita, and Robin (2015) develop a general equilibrium model with two sectors to study the allocation of labor between the formal and informal sectors in Brazil. In both papers, workers receive identical job offers from both sectors independently of their current employment status. As a result, there is one unified labor market, and the wage function is continuous as in the standard Burdett-Mortensen model. In our model, workers’ probability of receiving and accepting offers depends on their identity and their current location due to the presence of spatial frictions, which could make the wage functions discontinuous in principle. We resolve this problem by introducing extreme value shocks, building on earlier insights to obtain tractable solutions for discrete choice problems from the trade literature (e.g., Eaton and Kortum (2002)).

Last, our work is related to the literature on East German convergence (or the lack thereof) after the reunification (e.g., Burda and Hunt (2001), Burda (2006)). This literature has studied the possible drivers behind the East-West wage gap and the nature of migration between the two regions (Krueger and Pischke (1995), Hunt (2001, 2006), Fuchs-Schündeln, Krueger, and Sommer (2010)). Uhlig (2006, 2008) shows that the persistent East-West wage gap is consistent with network externalities, which could discourage firms from moving to the East. In contrast to this work, we take the distribution of firms in each region as exogenously given and do not explicitly model the source of the productivity differences. Instead, we focus on spatial barriers to worker mobility and estimate the aggregate effects of removing them.

Our paper proceeds as follows. In Section 2 we describe our data, and Section 3 documents stylized facts on the German labor market. Section 4 introduces the model and Section 5 discusses how to unpack spatial frictions. We estimate the model in Section 6 and we use it to quantify the aggregate and distributional effects of spatial frictions in Section 7. Section 8 concludes.

7Two other related papers are Hoffmann and Shi (2016) and Bilal (2019). The first studies a two-sector Burdett-Mortensen model with no mobility frictions; the second studies unemployment differences across space.

8For recent related work that models the endogenous productivity differences across regions, see Fajgelbaum and Gaubert (2020); Bilal (2019); Schmutz and Sidibé (2021).
2 Data

We use two main datasets provided by the German Federal Employment Agency (BA) via the Institute for Employment Research (IAB): i) the Establishment History Panel (BHP) and ii) the longitudinal version of the Linked Employer-Employee Dataset (LIAB).

The BHP is a panel containing a 50% random sample of all establishments in Germany with at least one employee liable to social security on June 30th of a given year. The data are based on mandatory social security filings and exclude government employees and the self-employed. Each establishment in the BHP is defined as a company’s unit operating in a distinct county and industry. For simplicity, we will refer to these units as “firms” from now on. For each such firm in each year, the dataset contains information on location, average wages, the number of employees, and employee characteristics (education, age, gender). The data are recorded since 1975 for West Germany and since 1992 for East Germany, and they cover about 1.3 million firms per year in the recent period.

The LIAB data contain records for more than 1.9 million individuals drawn from the Integrated Employment Biographies (IEB) of the IAB, which cover all individuals that were employed subject to social security or received social security benefits since 1993. These data are linked to information about the approximately 400,000 firms at which these individuals work from the BHP. For each individual in the sample, the data provide the entire employment history for the period 1993-2014, including unemployment periods as long as the individual received unemployment benefits. Each observation is an employment or unemployment spell, with exact beginning and end dates within a given year. A new spell is recorded each time an individual’s employment status changes, for example due to a change in job, wage, or employment status. For individuals that do not change employment status, one spell is recorded for the entire year. Variables include the worker’s firm’s location at the county level, the worker’s daily wage, education, and year of birth.

An important variable for our analysis is each worker’s county of residence, reported in the LIAB since 1999, which we will use to analyze workers’ mobility across space. In contrast to the other variables, which are newly reported at each spell, the location of residence is recorded at the end of each year for employed workers and at the beginning of an unemployment spell for unemployed workers and then added to all observations of that year. Since the social security reporting regulations do not prescribe which residence to report for workers with multiple residences, some workers can report very large distances between residence and work location even though they live in a second home closer to work. To deal with the potential measurement...

9Since several plants of the same company may operate in the same county and industry, the establishments in the BHP do not always correspond to economic units such as a plant (Hethey-Maier and Schmieder (2013)).
10We use the term unemployment spell to refer to the period in which an individual is receiving unemployment benefits. After the expiration of the benefits, individuals are not in our dataset until they are employed again.
error, we will define several alternative measures of migration below.

We use three additional datasets. First, we obtain information on cost of living differences across German counties from the Federal Institute for Building, Urban Affairs and Spatial Development (BBSR (2009)), which we will use to construct real wages. The BBSR conducted a study assessing regional price variation in 2007 across 393 German micro regions covering all of Germany that correspond to counties or slightly larger unions of counties.\(^{11}\) Second, we supplement our main analysis with data from the German Socio-Economic Panel (SOEP), an annual survey of around 30,000 individuals in Germany since 1984, to examine additional demographic characteristics and to corroborate some of our main findings. Finally, we use information on firms’ profit shares from the ORBIS database by Bureau van Dijk to compute additional targets for the model’s estimation.

Sample Construction. Since we are interested in the persistent divide between East and West Germany, our analysis focuses on the years 2009 to 2014, the latest years available in the IAB data. We refer to this period as our baseline sample. For some empirical specifications that require a longer sample, we use the years 2004 to 2014. We construct real wages for each county using the BBSR’s price index, which we deflate forward and backward in time using state-specific GDP deflators from the statistics offices of the German states. We use time-consistent industry codes at the 3-digit WZ93 level provided by the IAB based on the concordance by Eberle, Jacobebbinghaus, Ludsteck, and Witter (2011). Since wages are only reported to the IAB up to the upper limit for statutory pension insurance contributions, the BHP contains an imputed average wage variable which estimates the censored wages based on Card, Heining, and Kline (2013). For the LIAB, no such variable is provided and we replicate the imputation steps ourselves. We use the corrected wages for all our analyses. We use full-time workers only, and exclude Berlin, which cannot be unambiguously assigned to East or West since it was divided between the two. We provide additional details on the datasets and on data construction in Appendix A.

3 Motivating Facts

We next document three sets of facts on the German labor market. These facts highlight that Germany is a good setting to study regional wage gaps and serve as motivation for the main

\(^{11}\)The data cover about two thirds of the consumption basket, including housing rents, food, durables, holidays, and utilities. We provide further information on the data in Appendix A and provide a map of county-level price levels. East Germany has a 7% lower population-weighted average price level.
3.1 Wage Gaps Between and Within Regions

We first show that a sizable and persistent real wage gap remains between East and West Germany, despite the absence of a physical or legal border or language difference, since the reunification in 1990.\footnote{Supplemental Appendix K provides a brief discussion of the reunification process. This Supplemental Appendix is not meant for publication and includes additional material. It is available on the authors’ websites.} We run, in the BHP, firm-level regressions of the form\footnote{Recall that we refer to establishment units as “firms”.}

\[
\log(\bar{w}_{jt}) = \gamma \mathbb{1}_{j, East} + \beta X_{jt} + \delta_t + \epsilon_{jt},
\]

(1)

where \bar{w}_{jt} is the average real wage paid by firm j in year t, $\mathbb{1}_{j, East}$ is a dummy for whether firm j is located in the East, X_{jt} is a vector of controls, and δ_t are time fixed effects. We weight by firm size, measured by full-time workers, since we are interested in the average wage gap in Germany.

In Figure 2a we plot coefficients γ_t from running regression (1) separately for each year in the data and without any additional controls. The real wage gap between East and West has been closing very slowly since the mid-1990s, and remains at around 25%.\footnote{In Supplemental Appendix L we use aggregate data on GDP to perform a growth accounting exercise to show that most of the sizable GDP gap between East and West Germany today is due to TFP differences.}

We next pool the data for our core sample period (2009-2014) and investigate, in Table 1, the role of different controls in explaining the wage gap. Worker gender and education (column...
Table 1: Effect of Region on Real Wage

<table>
<thead>
<tr>
<th>Dep var.: log((\bar{w}_{jt}))</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{w}_{j,East})</td>
<td>-2609***</td>
<td>-2695***</td>
<td>-2467***</td>
<td>-2052***</td>
</tr>
<tr>
<td></td>
<td>(.0074)</td>
<td>(.0058)</td>
<td>(.0031)</td>
<td>(.0027)</td>
</tr>
</tbody>
</table>

Year FE Y Y Y Y
Gender & Education - Y Y Y
Age & Firm Size - - Y Y
Industry FE - - - Y
Observations 4,797,798 4,741,107 4,725,435 4,725,210

Source: BHP and authors’ calculations. Notes: The table presents the estimates on the East Germany dummy from specification (1) for the period 2009-2014, where firms are weighted by size. *, **, and *** indicate significance at the 90th, 95th, and 99th percent level, respectively. Standard errors are clustered at the firm-level.

Controlling for 3-digit industries narrows the gap slightly (column 4), but overall about 80% of the real wage gap remains unexplained.

While, on average, firms pay a higher wage in the West, the distribution of wages paid in the East and West of Germany show substantial overlap. In fact, many firms in the East pay higher wages than some West firms and, even looking within the same 3-digit industry, the gap between the firms at the top and at the bottom of the within-region distribution is larger than the average wage gap between regions. This result can be seen in Figure 2b, which plots PDFs of firms’ average real wage from the BHP, separately for both East and West Germany. We pool all observations from our core sample period and residualize log real wages by regressing them on year dummies and 3-digit industry dummies to remove across industry variation. We then find the twentiles of the residualized wage distribution, compute the average real wage (in levels) for each twentile, and plot the associated density.

In Supplemental Appendix M15, we provide some additional robustness checks and show that the between-region wage gap is similar for all industries and across counties of different education or gender composition. Moreover, we show that the wage gap is not driven by a few outlier counties, that there are no clearly delineated regional differences in tax rates, and that the wage gap is accompanied by a large gap in unemployment. We also provide additional details on the within-region joint distribution of wages and firm size, and show that there is substantial wage heterogeneity across firms even within the same county.

3.2 Wage Gains of Movers

Second, we investigate the wage gains that individuals obtain when moving between East and West Germany and between firms. The large East-West wage gap would suggest that workers

15Available on the authors’ websites and not meant for publication.
can obtain substantial gains from moving to the West. We confirm this hypothesis. However, we show that focusing on migrants’ wage gains alone provides a misleading picture. A move across space is also a move across firms, and job switchers within-region also obtain large wage gains. Therefore, to isolate the returns from migration, we need to compare moves across regions to those within region.

Empirical Specification. We define job-to-job movers as workers that change jobs between two firms without an intermittent unemployment spell. For moves between East and West Germany, we distinguish between migration and commuting. The distinction is useful because we expect that commuters to a new job are paid a smaller wage premium than workers that also have to move their residence. We classify job-to-job movers between East and West Germany as migrants if they report a different county of residence in the year of the move from the previous year.\(^{16}\) All other moves between East and West are defined as commuting. As discussed above, the residence variable is subject to measurement error. Our migration measure only includes workers that actively change their recorded residence in the year of the move. We provide several summary statistics on our migration measure in Appendix B.

Our analysis distinguishes individuals based on their “home region”, either East or West Germany. The migration literature has shown that individuals display *home bias*: the birthplace is a key determinant of job flows across space even among adults (see Kennan and Walker (2011)). Since our social security data do not contain information on birth location, we classify individuals as East (West) German if at the first time they appear in our entire dataset since 1993, either employed or unemployed, they are in the East (West). Appendix A provides additional details on the construction of the home region. Our measure is imperfect, since some individuals migrated between the reunification and 1993. In Appendix C, we use survey data from the SOEP, which include individuals’ actual birth location, to provide several validation exercises of our measure of home region. Overall, our results suggest that our measure properly classifies individuals into the region in which they were born in more than 90% of the cases. For this reason, we will interpret workers’ home region also as their birth region going forward, and refer to individuals whose home is East as East-born.\(^{17}\)

Let \(d_{it}^s\) be a dummy for a job switch of type \(s \in \mathbb{S}\), where \(\mathbb{S}\) is the set of the six possible types of moves: i) from East to West via migration or ii) commuting; iii) from West to East via migration or iv) commuting; v) within-East, and vi) within-West. To visualize an individual’s wage dynamics around the time of a job-to-job move, we run a standard system of local projections,\(^{16}\) We compare residence location across years since, as discussed above, the variable is only updated at the end of each year.

\(^{17}\)None of our results hinge on the home region being the birth region, though it does alter the interpretation. An alternative interpretation would be that an individual’s location when they first enter the labor market shapes their attachment and biases.
consisting of one regression for each time period $\tau \in \{t - 3, ..., t - 1, t + 1, ..., t + 5\}$ around t:\footnote{We pool together all the data for time periods t from 2004 to 2014 thus creating an unbalanced panel. In general, working with an unbalanced panel could be problematic. In our application, we are less concerned because: i) we do not observe post-trends; and ii) we are mostly interested in the wage growth on impact.}

$$\Delta \log(w_{it\tau}) = \sum_{s \in S} \beta_{s,\tau} ^{West} d_{it}^s (1 - \tau_i^{East}) + \sum_{s \in S} \beta_{s,\tau} ^{East} \tau_i^{East} + B_{\tau} X_{it} + \epsilon_{it},$$ \hspace{1cm} (2)$$

where $w_{it\tau}$ is an individual’s weighted average wage across all employment spells in year τ, where we use each spell’s length as its weight. The variable $\Delta \log(w_{it\tau})$ is the log change of this average wage between year τ and the previous year except for $t + 1$, where it is the difference with respect to $t - 1$. We drop wages from the year of the move to avoid contaminating our results by other types of payments in the year of the move.\footnote{The results are similar if we include year t, see Supplemental Appendix N.} The variable τ_i^{East} is a dummy for whether an individual’s home region is East Germany. Finally, the controls X_{it} include dummies for the current work region, home region, and their interaction, distance dummies since moves further away could lead to higher wage gains, the total number of past job-to-job switches, age controls, and year fixed effects. Since the left hand side variable is wage growth, any difference across individuals in the wage level would be netted out. Therefore, we do not include individual fixed effects in our main specification. The coefficients $\beta_{s,\tau} ^{West}$ and $\beta_{s,\tau} ^{East}$ capture the real wage gains from making a job-to-job transition relative to the wage growth obtained by staying at the same firm, which is the omitted category.

Results. Figure 3a plots the estimated wage gains for East-to-West migration – i.e. the predicted wage from the relevant coefficients $\beta_{s,\tau} ^{West}$ and $\beta_{s,\tau} ^{East}$, translated into levels, and normalized around the wage level prior to the year of the migration. Figure 3b presents the wage gains for West-to-East migration. The figures highlight that workers moving out of their home region see their wage increase steeply. East-born movers to the West receive on average almost a 35% real wage increase relative to their average within-firm wage growth, which is almost double the wage gain obtained by West-born workers making the same move. Moves to the East, instead, are associated with sizable wage gains for West-born workers and almost no effect for East-born ones. Average wage gains for moves to the East tend to be smaller, consistent with the lower average wage level in the East.

The large wage gains from moving West could imply the presence of substantial moving costs, and their asymmetry suggests that workers need to be compensated to leave their home region. However, any move across regions is also a move across firms. Figures 3c-3d plot the estimated wage gains for within-region job-to-job switches from regression (2) against the wage gains from a migration away from home. We find that workers experience fairly large gains even moving jobs within-region, suggesting that they are climbing a job ladder in the presence...
Figure 3: Wage Gains for Job-to-Job Moves

(a) East-to-West Migration

(b) West-to-East Migration

(c) Within East vs East-to-West (East-born)

(d) Within West vs West-to-East (West-born)

Source: LIAB and authors’ calculations. Notes: The figure is constructed by taking the point estimates for different sets of coefficients $\beta_{s,t}^{West}$ and $\beta_{s,t}^{East}$ from the regressions (2) for $\tau \in \{t-3, \ldots, t-1, t+1, t+5\}$. We then sum up the coefficients starting at $\tau = -3$ to obtain for each period τ the sum $\sum_{u=-3}^{\tau} \beta_{s,u}$, where $i \in \{\text{West, East}\}$, and subtract from this sum the term $\sum_{u=-3}^{\tau-1} \beta_{s,u}$ to normalize the coefficients with respect to period $\tau = -1$. The dotted lines represent the 95% confidence intervals. The top left panel shows the normalized coefficients for $\beta_{West}^{s,t}$ and $\beta_{East}^{s,t}$. The top right panel shows the normalized coefficients for $\beta_{West}^{s,t}$ and $\beta_{East}^{s,t}$. The bottom left panel shows $\beta_{East}^{s,t}$ and $\beta_{East}^{s,t}$, and the bottom right panel shows $\beta_{West}^{s,t}$ and $\beta_{West}^{s,t}$.

of labor market frictions. As a result, to properly infer the cost of moving between regions, we need to benchmark the cross-regional wage changes with the within-region gains, taking into account that workers moving between regions are selected: they are the ones that received job offers sufficiently appealing to make them migrate. Our model will allow us to do so structurally.

In Supplemental Appendix N, we list the full estimates from specification (2), and show that our results are robust to alternative definitions of job-to-job switches and migration. We also present the results for commuting moves, which exhibit wage gains that are, as expected, smaller but show the same qualitative features as migration moves. We also show that the results are robust to the inclusion of individual fixed effects that account for differences across individuals in the steepness of their experience profiles (as in Guvenen, Karahan, Ozkan, and Song (2015)). Finally, we perform the regression for different demographic subgroups of workers. Across all results we find asymmetric wage gains, compatible with home bias.
3.3 Workers’ Flows

Last, we study the flows of workers across regions. We show that, although the persistent wage gap would suggest otherwise, the labor markets of East and West Germany are, in fact, quite integrated: workers frequently move across the former border; however, worker flows are biased towards their home region. While many workers leave for a few years, most eventually return.

Summary Statistics on Cross-Regional Mobility. Table 2 presents mobility statistics for workers with at least one employment spell in our core sample period 2009-2014. Row 1 shows that in our core period 2.9% of employment spells by West-born workers and 17.5% of spells by East-born workers are not in their home region. Of the workers in our sample, 4.6% of West-born and 23.9% of East-born have at some point had a full-time job in the other region (row 2). However, a sizable fraction of job changes are via commuting: only 1.8% of West-born and 10.2% of East-born have resided in the other region. Row 3 indicates that between one third and one half of the workers taking a job in the other region have since returned to a job at home, after spending on average only 2-3 years away (row 4). The average non-returner is employed in the other region, until her employment history ends, for longer than the average returner, as expected due to a simple selection argument (row 5). The final three rows present characteristics of workers that never left their home region (“Stayers”), took a job in the other region (“Movers”), or took a job and have returned (“Returners”). Overall, while we find some selection on observables, the data show that both workers with and without college education migrate between regions. In fact, less educated workers comprise about three quarters of all cross-region switchers. We present additional statistics on movers in Appendix B, and show that the share of workers away from their home region has been relatively stable in the recent period.

Empirical Gravity Specification on Worker Flows. We next estimate a gravity equation for workers’ flows between counties to separate the role of geographical barriers and identity (home bias) barriers between East and West Germany.

Let \(n^h_{o,d,t} \) be the number of workers with home region \(h \) that were in a job in county \(o \) in year \(t - 1 \) and that have made any job switch to a new job in county \(d \) in year \(t \), including both via migration and commuting for cross-region moves. We compute the share of these job-to-job switchers from county \(o \) moving to county \(d \) (where \(d \) can be equal to \(o \)) across all years in our

\(^{20}\)As discussed, however, the residence variable may be misreported. We provide further statistics on workers’ residence in Appendix B.

\(^{21}\)We observe a higher share of males than in the general population since our sample consists only of full-time workers.

\(^{22}\)We include all moves to maximize the number of county-pairs for which we observe positive flows and minimize the risk of biases due to granularity in our data, see Dingel and Tintelnot (2020). In Supplementary Appendix O we show that our results are robust to alternative definitions, such as using only migrants.
Table 2: Summary Statistics on Mobility

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Home: West</td>
<td>Home: East</td>
</tr>
<tr>
<td>(1) FT job spells in foreign region</td>
<td>2.9%</td>
<td>17.5%</td>
</tr>
<tr>
<td>(2) Crossed border (job / residence)</td>
<td>4.6% / 1.8%</td>
<td>23.9% / 10.2%</td>
</tr>
<tr>
<td>(3) Returned movers</td>
<td>46.3%</td>
<td>36.1%</td>
</tr>
<tr>
<td>(4) Mean years away (returners)</td>
<td>2.90</td>
<td>2.41</td>
</tr>
<tr>
<td>(5) Mean years away (non-returners)</td>
<td>9.41</td>
<td>7.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stayers</th>
<th>Movers</th>
<th>Returners</th>
<th>Stayers</th>
<th>Movers</th>
<th>Returners</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) Age at first move</td>
<td>–</td>
<td>34.4</td>
<td>34.0</td>
<td>–</td>
<td>32.0</td>
<td>31.8</td>
</tr>
<tr>
<td>(7) Share college</td>
<td>0.22</td>
<td>0.30</td>
<td>0.29</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>(8) Share male</td>
<td>0.70</td>
<td>0.78</td>
<td>0.82</td>
<td>0.56</td>
<td>0.74</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Source: LIAB. Notes: The table shows statistics for workers with at least one full-time employment spell in 2009-2014. For these workers, row 1 shows the share of full-time employment spells at jobs not in their home region. Row 2 shows the share of these workers that have ever had a full-time job / resided in their non-home region over the entire sample since 1993. Row 3 shows the share of workers that returned to a job in their home region after their first job in the non-home region, and row 4 presents the average number of years away. Row 5 shows the time passed between the last year the worker is in the data and the year of the first job away from home for workers that never again take a job in their home region. Rows 6-8 present the average age at the time of the first move away from the home region, college share, and male share among workers that have never taken a job outside of their home region (“Stayers”), workers that have moved (“Movers”), and workers that have moved and returned (“Returners”).

core period as

$$s_{o,d}^{h} = \frac{\sum_{t} n_{o,d,t}^{h}}{\sum_{t} \sum_{d \in \mathbb{D}} n_{o,d,t}^{h}}$$

where \(\mathbb{D}\) is the set of all the 402 counties in both East and West Germany.\(^{23}\) We use these shares to fit the gravity equation

$$\log s_{o,d}^{h} = \delta_{o}^{h} + \gamma_{d}^{h} + \sum_{x \in X} \phi_{x} D_{x,o,d} + \rho \mathbb{I}_{R(o) \neq R(d)} + \epsilon_{o,d}^{h},$$

(3)

where \(\delta_{o}^{h}\) and \(\gamma_{d}^{h}\) are county of origin and destination fixed effects, respectively, which differ by workers’ home region, \(D_{x,o,d}\) are dummies for buckets of distance traveled between origin and destination, and \(\mathbb{I}_{R(o) \neq R(d)}\) is a dummy that is equal to one if the job switch is between East and West Germany. The set of buckets \(X\) contains seven 50km intervals from 50km-99km onward to 350km-399km and an eighth group for counties that are further than 399 km apart.

The regression investigates three channels that could affect worker flows. First, the dummies \(D_{x,o,d}\) capture the role of distance. Second, the term involving \(\mathbb{I}_{R(o) \neq R(d)}\) reflects the role of geographical barriers affecting mobility between East and West Germany. If all workers, regardless of their home region, are less likely to make a job switch that involves moving between East and West Germany, then the coefficient \(\rho\) on the dummy should be negative. Finally, the

\(^{23}\)We observe at least one job-to-job flow in some year for 75,937 out of the 160,801 possible origin-destination pairs. When we include also job switches with an intermittent unemployment spell – in Supplemental Appendix O – we have 95,275.
Figure 4: Results from the Gravity Equation: Geography versus Identity

(a) Geography

(b) Identity: Destination FE

Source: LIAB. The figures plot results from specification (3). The left panel shows the point estimates for the coefficients for distance, $\hat{\phi}_x$, in black and the distance coefficients for a cross-border move, $\hat{\phi}_x + \hat{\rho}$, in gray, where each coefficient is plotted at the mid-point of the relevant distance interval and the 400+ category is plotted at 500km. All coefficients are transformed into levels by taking their exponent and then normalized into interpretable shares by dividing by their sum plus exp(0) for the omitted category of short-distance moves. Dotted lines represent the 95% confidence interval. The right panel plots the difference between the destination fixed effects for East- and West-born, $\gamma_{d, East} - \gamma_{d, West}$, as a function of the distance of each county d to the East-West former border. We normalize the fixed effect coefficients for each worker type by their mean and plot counties in the East with a negative distance.

home-region specific fixed effects δ^h_d and γ^h_d capture the fact that some counties may be more attractive to workers of home region h, for example due to preferences, comparative advantage, or possibly due to a social network that allows them to find job opportunities. For example, if γ^h_d is high for a destination then a high share of job-to-job movers of type h move into that county regardless of the location of their previous job and regardless of whether these workers have to cross the East-West border. We refer to this channel as home bias.

Results. We show the full list of estimated coefficients of regression (3) in Supplemental Appendix O and present here the key take-aways. In Figure 4a, the black line plots the distance coefficients $\hat{\phi}_x$, which we re-normalize into interpretable shares of switchers. As expected, workers are less likely to move to counties that are further away. The gray line plots the same results for cross border flows (the coefficients $\hat{\phi}_x + \hat{\rho}$), taking the origin and destination effects as constant. The lines are almost on top of each other. Thus, conditional on distance and fixed effects, we do not find a substantial role for geographical barriers at the former East-West border.

Figure 4b shows that there is strong home bias. For each county, we compute the difference between the destination fixed effect for East- and West-born workers, $\gamma^East_{d} - \gamma^West_{d}$. We then plot these differences against each county’s distance to the East-West border, defined so that
East counties have negative distance.24 The figure shows that East individuals have significantly higher destination fixed effects for the East, indicating that they are relatively more likely to move to counties in the East than West workers regardless of their current county. Conversely, East-born workers are less likely to move to counties in the West.

In Supplemental Appendix O, we plot the origin fixed effects and find that workers are also less likely to move out of counties in their home region. We also show that the results are similar for different sub-groups of the population, for different definitions of cross-border mobility, if we include controls for the distance of the origin county to the former border, and if we include transitions between jobs that are separated by an unemployment spell.

4 Model

We develop a model to leverage our matched employer-employee data to quantify and structurally decompose the spatial barriers that impede worker mobility, taking into account labor market frictions. Our general equilibrium framework embeds the on-the-job search model of Burdett and Mortensen (1998) into a multi-region economy inhabited by heterogeneous firms and workers that are subject to different types of spatial frictions.

The design of our model is motivated by four empirical facts. First, since the East-West wage gap has been constant and the number of workers away from their home region has been relatively balanced in recent years (see Appendix B), we perform our analysis in steady state. Second, since job movers obtain significant wage increases even within-region, a model with heterogeneous firms and labor market frictions is needed. Third, the presence of frequent and repeated moves across East and West leads us to design a framework in which multiple regions are partially integrated and individuals draw (infrequently) jobs from different regions. Finally, the salient asymmetries, in both wage gains and job flows, call for a model with home biases.

4.1 Environment

Let time be continuous and all agents discount future income at rate \(r \). There are \(\mathcal{J} = \{1, ..., J\} \) sites, which we refer to as locations, in an economy inhabited by a continuum of workers of types \(i \in \mathcal{I} \) with mass \(\bar{D}^i \), where \(\sum_{i \in I} \bar{D}^i = 1 \).25 Throughout the text, we will use superscripts for worker types and subscripts for locations. Workers of type \(i \) have a preference parameter \(\tau^i_j \) for being at location \(j \), and consume both a tradable and a local good, such as housing. Their utility is \(U^i_j = \tau^i_j c^a h^{1-a} \), where \(c \) and \(h \) are the amounts of tradable good and

24As known in gravity equations, the level of the fixed effects is not identified. We normalize the fixed effects for both East-born and West-born workers relative to their average value. This normalization is without loss of generality since we are interested only in the relative fixed effects across counties.

25We introduce the term “locations” to differentiate it from the two regions in the empirical section. We will estimate the model below with four locations.
local good, respectively. A worker of type i produces θ_i^j units of output per time unit in location j. Hence if this worker is employed at wage rate w per efficiency unit, she earns an income of $w\theta_i^j$. Worker i’s indirect utility from receiving wage rate w in location j is then $V_i^j = w\theta_i^j \tau_i^j / P_j$, where $P_j = (P_e)^n (P_{h,j})^{1-n}$ is the location’s price level, P_e is the price of the tradable good, and $P_{h,j}$ the price level of the local good in location j.\(^{26}\) We normalize $P_e = 1$.

Workers and firms operate in a frictional and local labor market. We define by e_i^j and u_i^j the mass of employed and unemployed workers of type i in location j, respectively. Workers of type i currently in location j must spend search effort s_x to send $a_{ij,x}^j (s_x) = z_{ij,x}^j s_x$ job applications towards location x. Here, $z_{ij,x}^j$ is the worker’s relative search efficiency, which depends on the worker’s current and destination locations (j,x) to capture that it may be easier to find job opportunities locally. Search efficiency also depends on the worker’s type i, reflecting that it may be easier for workers to find open positions in their home location, for example due to reliance on social networks or referrals (as in, e.g., Galenianos (2013)). Search effort is subject to a cost, to be paid in each location x in which the worker files applications, given by $\psi (s_x) = \frac{s_x^{1+\epsilon}}{1+\epsilon}$ for employed workers. Unemployed workers face a cost $\psi_u (s_x) = \nu^{-\epsilon} \frac{s_x^{1+\epsilon}}{1+\epsilon}$, where $\nu \geq 1$ modulates a potential difference in search intensity between employed and unemployed workers along the lines of Moscarini and Postel-Vinay (2016).

On the firm side, there is a continuum of firms exogenously assigned to locations $j \in \mathbb{J}$, where M_j is the mass of firms in location j and $\sum_{j \in \mathbb{J}} M_j = 1$. Within each location, firms are distributed over labor productivity p according to density function $\frac{\gamma_j(p)}{M_j}$ with support in a location-specific closed set $[\bar{p}_j, \tilde{p}_j] \subseteq \mathbb{R}^+$.\(^{27}\) Each firm p in location j decides how many vacancies $v_j (p)$ to post, subject to a vacancy cost $\xi_j (v)$, and what wage rate $w_j (p)$ to offer, determining the endogenous distributions of wage offers $\{F_j\}_{j \in \mathbb{J}}$. Firms cannot discriminate between worker types, hence they must offer identical wages per efficiency unit to all their workers.

Matches in location j are created as a function of the total mass of applications filed by workers, \bar{a}_j, and vacancies posted by firms, \bar{v}_j, according to a matching function $M (\bar{a}_j, \bar{v}_j) = \bar{a}_j^x \bar{v}_j^{1-x}$. We define market tightness in location j as $\vartheta_j \equiv \frac{\bar{v}_j}{\bar{a}_j}$. Thus, the rate at which a vacancy is filled is ϑ_j^{-x}, and the rate at which an application is accepted and becomes a job is ϑ_j^{1-x}. Offers are randomly drawn from the endogenous wage offer distributions $\{F_j\}_{j \in \mathbb{J}}$.

Upon receiving an offer from location x, workers draw idiosyncratic preference shocks for locations x and j and decide whether to accept or decline the offer. Movers between j and x incur a utility cost $\kappa_{j,x}^i$ that captures any monetary and non-monetary one-time cost associated with the move across locations, similar to Caliendo, Dvorkin, and Parro (2019). Workers can always separate from a match and engage in home production with a backyard technology that has productivity per efficiency unit given by R_j. Workers separate into unemployment at

\(^{26}\)We omit the constant in the indirect utility.

\(^{27}\)Thus, $\gamma_j(p)$ will integrate to the mass of firms in location j, M_j. This definition will simplify notation below.
location-type-specific rate \(\delta_j^i \) and receive an unemployment benefit rate equal to \(b_j^i \) per efficiency unit when unemployed.

We denote by \(l_j^i \) the measure of workers of type \(i \) employed per vacancy of a firm, and thus \(\sum_{i \in I} \theta_j^i l_j^i \) is the measure of efficiency units of labor used by one vacancy. Vacancies can produce any combination of the two goods according to the production functions \(c = p n_c \) and \(h = (p n_h)^{1-\alpha} k^\alpha \), where \(0 < \alpha (1-\eta) < 1 \), and \(n_c \) and \(n_h \) are the efficiency units of labor per vacancy used in the production of the two goods, which satisfy \(n_c + n_h = \sum_{i \in I} \theta_j^i l_j^i \). The term \(k \) is a factor that is in fixed supply, such as land, with aggregate supply in location \(j \) of \(K_j \) and equilibrium price \(\rho_j \). Firms decide how to allocate labor across the production of the two goods, taking prices in the output market as given.

In our model, firms compete for all worker types in one unified labor market. That seems an adequate description of the German labor market since we will define worker types based on their home region below, and firms cannot explicitly hire only West Germans, for example. Previous work with heterogeneous types (e.g. Moser and Engbom (2018)) assumes that the labor market is segmented by type. In our framework, each firm posts a single wage rate \(w_j(p) \), which determines the composition of worker types it attracts.

We next describe the equilibrium in the goods market, which pins down local price levels. We then turn to the workers’ and firms’ optimization problems and the labor market equilibrium.

Goods Market. Consider a firm that has hired \(n_j(w) = \sum_{i \in I} \theta_j^i l_j^i(w) \) efficiency units of labor per vacancy by posting wage \(w \). The firm’s remaining problem is

\[
\hat{\pi}_j(w) = \max_{n_{h,n_c,k}} pn_c + P_{h,j} (p n_h)^{1-\alpha} k^\alpha - \rho_j k
\]

subject to \(n_c + n_h = n_j(w) \). Standard optimization and market clearing conditions imply that in equilibrium the relative price between any two locations \(j \) and \(x \) satisfies

\[
\frac{P_j}{P_x} = \left(\frac{P_j Y_j}{P_x Y_x} \right)^{\alpha(1-\eta)} \left(\frac{K_j}{K_x} \right)^{-\alpha(1-\eta)},
\]

where \(P_j Y_j \) is the nominal output of location \(j \). If more labor moves to location \(j \), increasing output \(Y_j \) relative to \(Y_x \), then the relative local price index \(P_j/P_x \) rises, due to the presence of the fixed factor. As a result, there is local congestion as typical in spatial models (e.g. Allen and Arkolakis (2014)). Substituting in the optimal choices and equilibrium price, we can simplify \(\hat{\pi}(w) \) to

\[
\hat{\pi}_j(w) = pn_j(w) = p \sum_{i \in I} \theta_j^i l_j^i(w).
\]

The firm’s profits thus boil down to a linear expression in the total number of workers, as in the standard Burdett-Mortensen framework. We provide details in Appendix D.1.
Workers. Workers choose search effort for each location x, file applications, and randomly and infrequently receive offers from firms. Workers accept an offer if it provides higher expected value than the current one. As is known, this class of models yields a recursive representation (e.g., Burdett and Mortensen (1998)). We next derive the expected value of a job offer and the value functions for employed and unemployed workers, respectively.

Given an offer from a firm in location x paying wage w', the acceptance decision of an employed worker of type i earning wage w in location j solves

$$\max \left\{ W^i_j (w) + \epsilon_j; W^i_x (w') - \kappa^i_{jx} + \epsilon_x \right\},$$

where $W^i_j (w)$ is the value of employment at wage w in location j, $W^i_x (w')$ is the value of employment in location x at wage w', and $\kappa^i_{jx} = 0$ if $j = x$. The terms ϵ_j and ϵ_x are idiosyncratic shocks drawn from a type-I extreme value distribution with zero mean and standard deviation σ, as in, for example, Caliendo, Dvorkin, and Parro (2019), which capture shocks to workers’ preferences for being in a specific location. These shocks simplify the model characterization and computation. We assume that workers operating the backyard technology are subject to the same shocks, which fixes a lower bound for wages in each location.

Given the properties of the type-I extreme value distribution, the probability that an employed worker of type i accepts an offer is given by

$$\mu^E_{jx} (w, w') \equiv \frac{\exp \left(W^i_x (w') - \kappa^i_{jx} \right)^{\frac{1}{\beta}}}{\exp \left(W^i_j (w) \right)^{\frac{1}{\beta}} + \exp \left(W^i_x (w') - \kappa^i_{jx} \right)^{\frac{1}{\beta}}},$$

and the expected value of an offer is

$$V^E_{jx} (w, w') \equiv \sigma \log \left(\exp \left(W^i_j (w) \right)^{\frac{1}{\beta}} + \exp \left(W^i_x (w') - \kappa^i_{jx} \right)^{\frac{1}{\beta}} \right).$$

Similarly, an unemployed worker of type i in location j receiving an offer w' from x solves

$$\max \left\{ U^i_j + \epsilon_j; W^i_x (w') - \kappa^i_{jx} + \epsilon_x \right\}.$$

The probability of an unemployed worker accepting this offer is $\mu^U_{jx} (b^i_j, w')$, defined analogously to the acceptance probability of employed workers. The expected value of an offer is

$$V^U_{jx} (b^i_j, w') \equiv \sigma \log \left(\exp \left(U^i_j \right)^{\frac{1}{\beta}} + \exp \left(W^i_x (w') - \kappa^i_{jx} \right)^{\frac{1}{\beta}} \right).$$

The discounted expected value of employment $W^i_j (w)$ of a worker i earning wage w in location j consists of the flow value of employment, $w^d_j \pi^i_j / P_j$, a continuation value for drawing new job offers from location x at rate $a^i_{jx} (s_x) \vartheta^1 x$, which is a function of the optimal search effort s_x,
implies that more productive firms offer a higher wage.

Burdett-Mortensen setup, a higher wage rate allows firms to hire and retain more workers, but maximizes their steady state profits for each vacancy vacancies and choosing wages can be solved separately. Employers choose the wage rate that Firms.

The total mass of applications filed for jobs in location searching in location \(x \) is then

\[\tilde{a}_j^i \equiv \sum_{x \in J} \left[\int a_{E,j}^i (w) dE_j^i (w) + a_{U,j}^i (b) u_x^i \right], \]

where \(E_j^i (w) \) is the mass of employed workers of type \(i \) at firms in location \(j \) receiving at most \(w \), with \(E_j^i (w(\tilde{p}_j)) = e_j^i \). The total number of applications by location is \(\bar{a}_j \equiv \sum_{i \in I} \tilde{a}_j^i \).

Firms. Since the firms’ production functions are linear, the firm-level problem of posting vacancies and choosing wages can be solved separately. Employers choose the wage rate that maximizes their steady state profits for each vacancy

\[\pi_j (p) = \max_w (p - w) \sum_{i \in I} \theta_j^i t_j^i (w), \]

where \(p \sum_{i \in I} \theta_j^i t_j^i (w) \) are the net revenues from the goods market from (6). As in the standard Burdett-Mortensen setup, a higher wage rate allows firms to hire and retain more workers, but cuts down the profit margin, \(p - w \). The complementarity between firm size and productivity implies that more productive firms offer a higher wage.
Firms choose the number of vacancies by solving
\[q_j(p) = \max_v \pi_j(p) \vartheta_j^x v - \xi_j(v), \]
where \(\pi_j(p) \) are the maximized profits per vacancy from (10). The overall size of a firm \(p \) in location \(j \) is given by \(l_j(w_j(p))v_j(p) \), where \(w_j(p) \) is the profit-maximizing wage.

Firms’ vacancy posting policy gives the total mass of offers posted in each location,
\[\bar{v}_j = \int_{\bar{\xi}_j}^{\check{p}_j} v_j(p) \gamma_j(p) \, dp, \]
and the wage policy gives the endogenous distribution of offers
\[F_j(w) = \frac{1}{\bar{v}_j} \int_{\bar{\xi}_j}^{\check{p}_j} v_j(p) \gamma_j(p) \, dp, \]
where \(\check{p}_j(w) \equiv w_j^{-1}(w) \) is the productivity of the firm paying wage \(w \). This inverse of the wage function exists since the wage function within a given location is strictly increasing as in the standard framework.

Labor Market Clearing. To close the model, we need to describe how the distribution of workers to firms is determined. We obtain the steady state value of \(l^i_j(w) \) from its law of motion
\[\dot{l}^i_j(w) = \vartheta_j^{-x} \frac{\bar{a}^i_j}{\bar{a}_j} \mathcal{P}^i_j(w) - q^i_j(w) l^i_j(w) \quad \text{if} \quad w \geq R_j, \]
and \(\dot{l}^i_j(w) = 0 \) if \(w < R_j \). The first term is the hiring rate, which consists of the product of three endogenous terms: i) \(\vartheta_j^{-x} \), the arrival rate of workers for vacancies posted in location \(j \), which is a decreasing function of the local market tightness \(\vartheta_j \); ii) \(\frac{\bar{a}^i_j}{\bar{a}_j} \), the share of applications going towards location \(j \) that is filled by workers of type \(i \); and iii) \(\mathcal{P}^i_j(w) \in [0, 1] \), the probability that an offer \(w \) posted in location \(j \) is accepted by workers of type \(i \). Since there is random matching within location, the acceptance probability is a weighted average of the acceptance probabilities of workers of type \(i \) that are submitting applications to location \(j \),
\[\mathcal{P}^i_j(w) \equiv \frac{1}{\bar{a}_j} \sum_{x \in \mathcal{X}} \left[\int a^E_{x,j} (w') \mu^E_{x,j} (w, w') dE^i_x (w') + a^U_{x,j} (b) \mu^U_{x,j} (b, w) u^i_x \right]. \]
The second term in (14) is the separation rate, where

\[q_j^i (w) \equiv \delta_j^i + \sum_{x \in I} \vartheta_x^{1-x} a_{jx}^{E,i} (w) \int \mu_{jx}^{E,i} (w, w') \, dF_x (w'), \quad (16) \]

which consists of the exogenous separation rate into unemployment plus the rate at which workers receive and accept offers from other firms – i.e. poaching within and across locations.

In steady state, the mass of workers per vacancy solves \(\dot{l}_j^i (w) = 0 \), and thus

\[l_j^i (w) = \frac{\rho_j(w) \vartheta_j^i a_j^{E,i}}{q_j^i (w)} \quad \text{if } w \geq R_j \quad (17) \]

and zero otherwise.

The mass of employed workers \(i \) in location \(j \) at firms paying at most \(w \) satisfies

\[E_j^i (w) = \int_{l_j} \dot{l}_j^i (w_j (z)) v_j (z) \gamma_j (z) \, dz, \quad (18) \]

where \(l_j^i (w) \) is given by (17). The mass of unemployed workers is defined via the flow equation

\[\dot{u}_j^i = \delta_j^i e_j^i - \varphi_j^i u_j^i, \]

where \(\varphi_j^i \) is the rate at which workers leave unemployment, given by

\[\varphi_j^i = \sum_{x \in I} \vartheta_x^{1-x} a_{jx}^{U,i} (b) \int \mu_{jx}^{U,i} (b, w') \, dF_x (w'). \]

In steady state, the mass of unemployed workers is then

\[u_j^i = \frac{\delta_j^i}{\varphi_j^i + \delta_j^i} \bar{D}_j^i, \quad (19) \]

where \(\bar{D}_j^i \equiv e_j^i + u_j^i \).

4.2 Stationary Equilibrium

As discussed, we focus on the steady state equilibrium of the economy, which we now define.

Definition 1: Stationary Labor Market Equilibrium. A stationary equilibrium in the labor market consists of a set of wage and vacancy posting policies \(\{ w_j (p), \mu_j (p) \}_{j \in I} \), search efforts \(\{ \rho_{jx}^{E,i} (w), \tau_{jx}^{U,i} (b) \}_{j \in I, x \in I, i \in I'} \), wage offer distributions \(\{ F_j (w) \}_{j \in I} \), acceptance probabi-
ties \(\{ \mu_{jx}^{E,i}(w, w'), \mu_{jx}^{U,i}(b, w') \} \) \(j \in \mathbb{J}, x \in \mathbb{I}_i \), labor per vacancy for each worker type \(\{ l_j^i(w) \} \) \(j \in \mathbb{J}, i \in \mathbb{I}' \), unemployment \(\{ u_j^i \} \) \(j \in \mathbb{J}, i \in \mathbb{I}' \), and market tightness \(\{ \theta_j \} \) \(j \in \mathbb{J} \) such that

1. workers file applications and accept offers to maximize their expected present discounted values taking as given tightness \(\{ \theta_j \} \) \(j \in \mathbb{J} \) and the wage offer distributions, \(\{ F_j(w) \} \) \(j \in \mathbb{J} \);
2. firms set wages to maximize per vacancy profits, and choose vacancies to maximize overall firm profits, taking as given the function mapping wage to firm size, \(\{ l_j^i(w) \} \) \(j \in \mathbb{J}, i \in \mathbb{I}' \);
3. the arrival rates of offers and wage offer distributions are consistent with aggregate applications, vacancy posting, and wage policies, according to equations \((10), (12) \) and \((13) \);
4. firm sizes and worker distributions satisfy the stationary equations \((17), (18), \) and \((19) \).

Our model does not admit an analytical solution. However, the following proposition shows that the wage policies follow a system of differential equations, which facilitates significantly the computation of the model.

Proposition 1. The \(J \) location-specific equilibrium wage functions \(\{ w_j(p) \} \) \(j \in \mathbb{J} \) solve a system of differential equations

\[
w_j(p) = w_j(p) + \int_{\tilde{E}_j} \frac{\partial w_j(z)}{\partial z} \gamma_j(z) \, dz
\]

where, defining \(\tilde{x}(p) \equiv x(w(p)) \) for any \(x \),

\[
\frac{\partial w_j(p)}{\partial p} = \frac{(p - w_j(p)) \left(\sum_{i \in \mathbb{I}} \theta_j^i \frac{\partial \tilde{q}_j^i(p)}{\partial p} \tilde{q}_j^i(p) - \frac{\partial \tilde{q}_j^i(p)}{\partial p} \tilde{q}_j^i(p) \right)}{\left(\sum_{i \in \mathbb{I}} \theta_j^i \tilde{q}_j^i(p) \frac{\partial \gamma_j(z)}{\partial z} \right)}
\]

and

\[
\tilde{q}_j^i(p) \equiv \delta_j^i + \sum_{x \in \mathbb{J}} \theta_j^i \frac{\partial \tilde{q}_j^i(p)}{\partial p} \frac{\partial \gamma_j(z)}{\partial z} \tilde{q}_j^i(p) \int \tilde{\mu}_j^{E,i}(z, z') \, d\tilde{F}_x(z')
\]

\[
\hat{P}_j^i(p) \equiv \frac{1}{a_j^i} \sum_{x \in \mathbb{J}} \left[\int \tilde{a}_j^{E,i}(z') \tilde{\mu}_j^{E,i}(z', z) \, d\tilde{E}_x(z') + \frac{\partial a_j^{U,i} (b, p)}{\partial p} \mu_j^{U,i}(b, p) \right]
\]

together with \(J \) boundary conditions for \(w_j(p_j) \) satisfying

\[
w_j(p_j) = \max \left\{ R_j, \arg \max_{\tilde{w}} (p_j - \tilde{w}) \sum_{i \in \mathbb{I}} \theta_j^i l_j^i(\tilde{w}) \right\}.
\]
Proof. See Appendix D.2. \qed

Comparison to Burdett-Mortensen. Our framework is a rich generalization of the benchmark Burdett-Mortensen model (see Mortensen (2005)). In the benchmark case – as is well known – the equilibrium wage policy is as follows: the lowest productivity firm sets the minimum wage that allows it to hire workers from unemployment, i.e. \(w(p) = b \), and the wage policy is an increasing and continuous function of productivity. Workers separate either exogenously or upon receiving a job offer from any firm with a higher productivity. Lemma 1 shows that our model collapses to the standard framework under the appropriate assumptions.

Lemma 1. If \(a_{jx}^i(s_x) = 1 \) and \(\kappa_{jx}^i = 0 \) for all \(i, j, \) and \(x, \) \(\theta_j^i = 1, \tau_j = \tau_j, \delta_j^i = \delta, \) \(b_j^i \tau_j P_j^{-1} = \hat{b}, \) and \(R_j \tau_j P_j^{-1} = \hat{R} \) for all \(i \) and \(j, \) \(\nu = 1, \chi = 0, \) and \(\sigma \to 0, \) then the ODEs for the wage functions simplify to

\[
\frac{\partial \hat{w}(p)}{\partial p} = -2 \left(p - \hat{w}(p) \right) \frac{\partial \hat{q}(p)}{\partial p} / \hat{q}(p)
\]

where

\[
\hat{q}(p) = \delta + \hat{v}[1 - \hat{F}(p)]
\]

\[
\hat{P}(p) = \hat{E}(p) + u
\]

and

\[
\hat{w}(p) = \hat{R},
\]

where \(\hat{w} \equiv w \tau_j P_j^{-1} \) is the real wage in terms of utility, hence accounting for local amenities and prices.

Proof. See Appendix D.3. \qed

Our setting generalizes the insights of the benchmark model, subject to some refinements. First, since workers receive wage offers from firms in any location, their decision to quit to another firm no longer depends only on the wage offered but instead on the overall value of the job, reflected in the acceptance probability \(\hat{P}_j^i(p) \). Second, firms take into account that by changing the posted wage rate they can affect the composition of workers they attract. Within a given type \(i \)-location \(j \) pair, the firm size depends only on the ranking of firms’ wage offers, just as in the benchmark model. However, across locations and worker types, the level of the wage is also relevant. While in principle this feature of the model can lead to discontinuities in the wage policy, in practice the presence of the preference shocks preserves the continuity of the wage function. Third, due to the presence of the stochastic shocks, the lowest productivity firms might be willing to offer a higher or lower wage than the value of unemployment within
their location. Our solution bounds the minimum wage by R_j since the backyard technology is subject to the same shocks as regular production.

The framework closest to ours is Meghir, Narita, and Robin (2015), which builds a two-sector Burdett-Mortensen framework. Crucially, however, their model does not consider switching costs between sectors, and assumes one unified labor market rather than multiple semi-integrated local labor markets as in our framework. As a result, their model cannot be easily adapted to study our research question.

5 Unpacking Spatial and Labor Market Frictions

Our model contains four frictions that could hinder the mobility of workers across space: i) moving costs κ_{ij}, as in spatial models with frictional labor mobility (e.g., Bryan and Morten (2019), Caliendo, Dvorkin, and Parro (2019)); ii) comparative advantage towards the home location, governed by θ_i^j; iii) location preference τ_j^i, as in migration models with home bias (e.g., Kennan and Walker (2011); Caliendo, Opromolla, Parro, and Sforza (2017)); and iv) differences in search efficiency across locations, governed by z_{ij}^i. In addition, the model contains three sources of general labor market frictions that prevent the most productive firms from hiring all the workers within in a given location: i) vacancy posting costs, $\xi_j(v)$; ii) costs faced by workers to file applications, $\psi(s)$; and iii) preference shocks ε that limit the allocative power of wages.

While all model parameters and frictions are jointly identified, we next provide a heuristic argument to clarify how our data can be used to identify the different spatial frictions, taking into account the presence of labor market frictions.

5.1 Overall Identification Strategy

To isolate the spatial frictions from the labor market frictions, we rely on the insight that the labor market frictions directly impact the within-location moments as in the standard Burdett-Mortensen model, while spatial frictions mostly affect cross-location moments. Specifically, labor market frictions impact the within-location job flows of workers and the within-location wage gains of job movers, and therefore the joint distributions of firm sizes and wages. As a result, they directly influence the market tightness, ϑ_j, the probability that within-location offers are accepted, $\mu_{ij}^E(\cdot, \cdot)$, the distributions of wage offers, $F_j(\cdot)$, the mass of employed workers, $E_j(\cdot)$, and the mass of within-location applications, $a_{jj}^{E_i}(\cdot)$. In our empirical implementation in Section 6, we target a rich set of within-location moments to discipline these endogenous objects, and hence the labor market frictions, following a large literature on estimating Burdett-Mortensen models (see, e.g., Bontemps, Robin, and Van den Berg (2000)). Conditional on the labor market frictions, the cross-location moments help to isolate the spatial frictions.
5.2 Identifying the Spatial Frictions

We next show how different cross-location moments discipline the size of the spatial frictions.

Comparative Advantage: \(\theta \). The model, due to wage posting, yields a log additive wage equation decomposing the wage into an individual-location effect and a firm effect

\[
\log w^i_j (p) = \log \theta^i_j + \log w_j (p).
\]

This equation is similar to the specification by Abowd, Kramarz, and Margolis (1999), which relates wages to an individual and a firm fixed effect. The main difference is that in our specification the individual fixed effect is location-specific. As we describe in Appendix E, we can include additional dummies for workers not in their home location in the AKM regression to identify the comparative advantage term.

Moving Costs and Location Preferences: \(\tau \) and \(\kappa \). The key empirical moments that help to pin down the moving costs and location preferences are the wage gains of cross-location job-to-job movers. The average wage gain conditional on a move for an individual of type \(i \), employed in location \(j \), and taking a job in location \(x \) is

\[
\text{Average Observed Wage Gain} = \log \frac{\log(\theta^i_x)}{\log(\theta^i_j)} + \log \frac{\theta^i_j}{\theta^i_x} + \log \left(\frac{\theta^i_j}{\theta^i_x} \right) + \log \left(\frac{\theta^i_j}{\theta^i_x} \right) + \log \left(\frac{\theta^i_j}{\theta^i_x} \right).
\]

The flow utility of an individual \(i \) employed at a firm that pays wage \(w \) per efficiency unit in location \(j \) is given by \(\frac{1}{\tau_j^i} \theta^i_j w \). However, the observed nominal wage is simply \(\theta^i_j w \), since \(\tau_j^i \) does not enter into the wage.

28The flow utility of an individual \(i \) employed at a firm that pays wage \(w \) per efficiency unit in location \(j \) is given by \(\frac{1}{\tau_j^i} \theta^i_j w \). However, the observed nominal wage is simply \(\theta^i_j w \), since \(\tau_j^i \) does not enter into the wage.
Since the value functions are increasing, the cutoff wage level \(\hat{\omega}_{ijx}(w) \) at which an individual of type \(i \) employed in location \(j \) would accept an offer from location \(x \) is an increasing function of \(w \). An increase in \(\kappa_{jx}^i \), or a decrease in \(\tau_x^i \), would raise this cutoff wage for any level of \(w \), since workers need to be compensated for the moving cost or the lower utility received from income earned in location \(x \). As the worker accepts only relatively better offers, the expected wage gain of a move increases in \(\tau_x^i \) and decreases in \(\cdot \).

The identification argument relies on a key assumption of our model: individuals draw random offers from the same offer distribution \(F_x(\cdot) \), irrespective of their current location. In other words, firms cannot discriminate and post different wages for workers that are in different locations, nor can workers direct their search effort to specific firms within the location. As a result, given \(F_x(\cdot) \), which is mostly disciplined by within-location moments, the cross-location moments allow us to pin down spatial frictions.

Without further restrictions, we cannot separate the moving costs from the location preference parameters. In our empirical implementation, we will disentangle the two by assuming that moving costs are identical for all worker types. Under this assumption, we can identify the location preferences from the differences in wage gains for individuals of different types that make the same migration move.

Search Efficiency: \(z \). Given an estimate of the labor market frictions, as well as estimates of skills, moving costs, and preferences \((\theta, \kappa, \tau) \), we can recover the relative search efficiencies from the relative job-to-job flows within and between locations. The rate at which workers of type \(i \) currently employed in location \(j \) move towards a job in location \(x \) is given by

\[
\psi_{jx}^i = \left[\vartheta_x^{1-\chi} \left[\text{Tightness} \right] \text{Applications} \right] \times \left[\int \left(\int \frac{\mu_{jx}^E(w, w')}{\text{Prob. Accept}} \cdot \frac{dF_x(w')}{\text{Offer CDF}} \right) \frac{dE_{jx}^i(w)}{\hat{a}_{jx}^i} \text{d}E_{j}^i(w) \right] \quad (21)
\]

The quit rate is the product of the rate at which offers arrive (first bracket) and the average probability that an offer is accepted (second bracket). Since \(\hat{a}_{jx}^{E,i} = z_{jx}^i s_{jx}^{E,i} \), where \(s_{jx}^{E,i} \equiv \int s_{jx}^{E,i}(w) \text{d}E_{j}^i(w) \), a lower search efficiency \(z_{jx}^i \) leads to lower job-job flows from location \(j \) to \(x \), given the acceptance probability \(\mu_{jx}^E(w, w') \), which is not directly affected by \(z_{jx}^i \) itself.

The argument relies on the same assumption as before: irrespective of their current location, workers file job applications to the same labor market within each location. Thus, they draw offers from the same distributions and face the same job market tightness \(\vartheta_x \). Therefore, we can compare job flows within and across locations to infer the implied search efficiencies.
Our identification argument is based on two assumptions that are at the core of the Burdett and Mortensen (1998) framework: wage posting and random search.

The wage posting protocol implies that firms cannot discriminate based on workers’ type or current location. This assumption is supported by recent evidence that shows that the outside option has a very limited effect on workers’ wages (Jäger, Schoefer, Young, and Zweimüller...
and that, conditional on the current firm, a worker’s previous firm has almost no effect on current wages (Kline, Saggio, and Sølvsten (2019)). Nonetheless, we note that under a different wage setting method what we infer as a lower skill level of a given type i could represent some type of discrimination from firms, rather than a lower level of human capital. Similarly, larger wage gains for movers between locations could be driven by firms offering wage premia to compensate workers that have to migrate to accept a job offer. In our framework, these premia would be identified as moving costs as long as they are common across workers.

Random search within location implies that, for any given application, workers are equally likely to draw offers from each firm in the distribution. Since we do not observe offers received, this is an unverifiable assumption. It affects the interpretation of the search efficiencies z_{jx}^i. For example, lower observed flows from location j to location x could be driven not by a low search efficiency, but, for example, by workers i employed in location j being more likely to sample from the left tail of the distribution in location x. While our assumption is strong, it does not affect the overall interpretation of z_{jx}^i: whether workers receive fewer or worse offers from a particular location, they still have a hard time accessing job opportunities, hence a low search efficiency. A related assumption of our model is that only workers can direct their search effort towards locations, while firms cannot post vacancies targeted to a specific labor market. This is an identifying assumption driven by the fact that, given our data, we cannot distinguish between firms’ or workers’ behavior in generating matches.

6 Estimation

We use simulated method of moments to estimate our model for the German labor market. First, we discuss how we parametrize the model and present the parameters that are directly calibrated outside of the model. Next, we discuss the targeted moments and describe our estimation algorithm. Finally, we present the model fit and the estimation results.

6.1 Parametrization and Calibrated Parameters

Solving the model requires the computation of several endogenous and interrelated distributions. To keep the problem tractable, we limit the number of locations to four, two in the West and two in the East. Analogously, we choose four worker types, which are distinguished by their home location. This is the minimum number of locations and types that allows us to distinguish the role of the former East-West border from more general local identity and migration frictions. Going forward, we will continue to refer to East and West Germany as “regions”, as in the empirical section. The four locations we use – Northwest ($j = NW$), Southwest ($j = SW$), Northeast ($j = NE$), and Southeast ($j = SE$) – combine federal states so that, within the
East and within the West, each has approximately the same number of workers. Appendix F provides further details.

Even with four locations and types, the model entails a very large number of parameters. We thus directly calibrate all the ones that have an empirical counterpart and, facing the usual trade-off between model flexibility and parsimony, we choose functional forms and structural restrictions, explained below, to reduce the total number of estimated parameters to 21.

Functional Forms. We set a unit interval of time to be one month. Firms’ log productivity is drawn from a log-normal distribution with equal variance in all locations, Σ, and mean \(A_j \). We normalize \(A_{NW} = 1 \) and refer to \(A_j \) as the relative aggregate productivity in location \(j \).

We parametrize the vacancy cost function as
\[
\xi_j(v) = \xi_{0,j} \left(\frac{\pi_j(p)}{\bar{\pi}_j(p)} \right)^{\xi_1},
\]
where \(\xi_{0,j} \) and \(\xi_1 \) are parameters to be estimated, and \(\bar{\pi}_j(p) \) is the average firm profit in location \(j \). This parametrization implies that the equilibrium mass of vacancies posted by a firm with productivity \(p \) is
\[
v_j(p) = \xi_{0,j} \left(\frac{\pi_j(p)}{\bar{\pi}_j(p)} \right)^{\xi_1}. \]
We assume that the curvature \(\xi_1 \) is constant across locations but allow \(\xi_{0,j} \) to be specific to the overall region – i.e. we estimate \(\xi_{0,W} \) and \(\xi_{0,E} \).

We fix the unemployment benefits \(b_{ij} \) so that
\[
U_{ij} = W_{ij}^{1} w_j^{2},
\]
where \(w_j^{2} \) determines how profitable it is to set up a firm since \(R_j \) provides a lower bound on workers’ wages.

Spatial Frictions. We interpret the moving cost as an opportunity cost of foregone wages (Sjaastad (1962)), and assume that the moving cost of a given worker type is symmetric and proportional to her average value,
\[
\hat{\kappa}_{jx} = \kappa_{jx} \bar{W}_i, \quad \bar{W}_i = \frac{1}{\sigma} \sum_{j \in J} \int W_j(w) dE_j(w) \]
or otherwise, if \(\kappa_{jx} \) were a constant for all \(i \), then the moving cost would be more binding for East-born workers since these have on average lower wages at any firm, as we show below.

We assume that \(\hat{\kappa}_{jx} \) is equal to zero within each location and that it is a symmetric function of distance between locations \(j \) and \(x \), identical for all workers,
\[
\hat{\kappa}_{jx} = \begin{cases}
0 & \text{if } j = x \\
\kappa_0 e^{\kappa_1 \text{dist}_{jx}} & \text{if } j \neq x.
\end{cases}
\]
The symmetry across worker types is important for identification because it loads all asymmetries on the preference parameter \(\tau_j^i \).

29For example, we measure empirically the average probability that a worker moves into unemployment during a month, call it \(\text{Prob}_u \), and then – since the model is in continuous time – we can recover the Poisson rate \(\delta \) at which unemployment shocks arrive such that \(\text{Prob}_u = 1 - e^{-\delta} \).
We specify worker preferences τ^i_j to be the product of three terms:

$$
\tau^i_j = \tau_j \left(1 - \tau_l \mathbb{I}(i \neq j) \cap (r(i) = r(j)) \right) \left(1 - \tau_r \mathbb{I}(r(i) \neq r(j)) \right),
$$

where τ_j captures general amenities of location j, τ_l captures a worker's utility cost to live outside of her home location but inside her home region, and τ_r is the cost to live outside the home region, where $r(i)$ maps locations to regions. This specification allows individuals to value both their home location and their overall home region, i.e., East or West Germany.

We specify the search efficiency z^i_{jx} to be a function of both geography and identity:

$$
z^i_{jx} = \begin{cases}
(1 - z_{l,1} \mathbb{I}_{i \neq j}) & \text{if } j = x \\
(1 + z_{l,2} \mathbb{I}_{i = x}) \left(1 + z_r \mathbb{I}_{r(i) = r(x)} \right) & \text{if } j \neq x
\end{cases}
$$

In the first expression, which governs within-location moves, the parameter $z_{l,1}$ captures that workers might be less effective in filing applications when they are away from their home location. In the second expression, which governs across-location moves, the parameters z_0 and z_1 allow workers’ search efficiency to decay with distance. The parameters $z_{l,2}$ and z_r allow workers’ search efficiency to be relatively higher towards their home location, if $z_{l,2} \geq 0$, and region, if $z_r \geq 0$.

To reduce the number of parameters to be estimated we make two further assumptions. First, we restrict $A_{NE} = A_{SE}$ since average wages and GDP per capita are similar in the Northeast and the Southeast, see Appendix F. Second, matching this assumption, we assume that local amenities are the same, $\tau_{NE} = \tau_{SE} = \tau_E$. In our estimation below, we show that despite these restrictions, we match well the location-specific moments of the Northeast and Southeast.

Calibrated Parameters. We calibrate eight sets of parameters, which we discuss briefly here. We provide more details on how they are computed in Appendix G.

We compute the mass of firms in each location, M_j, from the BHP data. We obtain the share of workers born in each location, \bar{D}^i, based on the population shares in 1991 from the the Growth Accounting of the States (Volkswirtschaftliche Gesamtrechnung der Länder, VGRdL) since the LIAB data start only in 1993 and are not nationally representative. More than 80% of firms are in West Germany, and 76% of the workers are born there. Within the East and the West, the North and the South have roughly equal sizes.

We assume that the separation rates δ^i_j depend only on the work location j and set them equal to the monthly probabilities, computed in the LIAB data, that workers separate into unemployment or permanent non-employment (i.e. either retired or dropping out of the labor
To set the price levels P_j, we take the prices from the BBSR (2009) for each state and compute a population-weighted average across all the states within each of the locations.

Interpreting the fixed factor in the model as land, we set $\alpha (1 - \eta)$ equal to 5%, which is the estimate of the aggregate share of land in GDP for the United States, see Valentinyi and Herrendorf (2008). We are not aware of estimates for Germany. It is worthwhile to note that $\alpha (1 - \eta)$ does not affect the estimation of the model since we feed in the local price levels directly. It is only relevant for the general equilibrium counterfactuals.

We assume that the matching function has constant returns to scale - as standard in the literature, see Petrongolo and Pissarides (2001) - and puts equal weight on applications and vacancies, $\chi = 0.5$. The value of χ only affects the parameters of the vacancy costs and does not influence the other parameters in the estimation procedure, as it is not separately identified from $\xi_{0,j}$ and ξ_1.

Since individuals in our model are infinitely lived, the interest rate r accounts for both discounting and rates of retirement or death. We pick a monthly interest rate equal to 0.5%.

Finally, we estimate workers’ skills θ_j^i using the augmented-AKM regression described in Appendix E. Our estimation indicates that workers do not have regional comparative advantages, and therefore we set $\theta_j^i = \theta^i$ for all j. We recover $\{\theta^i\}_{i \in I}$ as the average individual fixed effects of workers with home location i, and we find that conditional on age, gender, and schooling, West-born workers earn, within the same firm, nearly 10% higher wages. The differences between locations within the East and within the West are small.

A recent literature has shown several concerns related to the estimation of second moments in AKM regressions.\(^{30}\) For our application, these concerns do not apply since we focus on first moments, which are unbiased (Andrews, Gill, Schank, and Upward (2008)).

6.2 Targeted Moments and Identification

We are left with 21 parameters that we jointly estimate through simulated method of moments. We target the 305 moments shown in Table 3. The table indicates the appendices where we list the values of the moments and provide details on how each moment is constructed. The table also lists the parameters that are primarily pinned down by each set of moments, as we describe below through an heuristic identification argument.

Identification of Parameters and Choice of Moments. The spatial frictions are disciplined by the wage gains of job-to-job movers and the worker flows across firms within and across locations, as discussed. Therefore, we target the 64 wage gains and 64 rates of job flows, by type i, location of current firm j, and location of destination firm x (rows 1 and 2 of Table 3).

Since the model is in steady state, the size of the spatial frictions together with firms’ vacancy costs determine labor demand and supply in each location. Therefore, we also target the distribution of employed and unemployed workers across locations and the firm component of wages in each location and for each type relative to \((i, j) = (NW, NW')\) (rows 3, 4 and 5). Overall, these moments help us to pin down the preferences \(\{\tau_j^i\}\), search efficiencies \(\{z_{jx}^i\}\), moving costs \(\{\kappa_{jx}^i\}\), and vacancy costs \(\{\xi_j\}\).

The productivity shifters \(\{A_j\}\) are mainly related to the relative average wage paid by firms in each location, since a higher productivity leads firms, everything else equal, to offer higher wages. A higher productivity is also reflected in a higher relative GDP per worker, which we target as well (rows 6 and 7). The local unemployment rates (row 8) allow us to identify the relative search intensity from unemployment \(\nu\), given the separation rates that we calibrated directly.

As described, our model needs to be consistent with the joint distributions of firm wage and size, \(G_j^i(w)\), in each location. Therefore, we target the share of employment in each decile of the firm size distribution (row 9) and the relationship between firm wage and size (row 10). These moments are relevant to discipline firms’ vacancy costs \(\{\xi_j\}\) since lower posting costs imply that more labor is concentrated at the most productive firms. The moments also help determine the variance of the firm productivity \(\Sigma\) since the variance of wages increases in \(\Sigma\).

The variance of taste shocks \(\sigma\) governs how directed workers’ moves are. As \(\sigma \to \infty\), the idiosyncratic preference shocks dominate workers’ acceptance decisions and workers become equally likely to accept offers that give a wage increase or decrease. The cost of search effort \(\epsilon\) modulates the relationship between workers’ search intensity and the value of employment at their current firm. When \(\epsilon \to \infty\), workers search at equal intensity irrespective of their current job’s value, while for any \(\epsilon < \infty\) workers in low paying jobs search more intensively. To separately identify \(\sigma\) and \(\epsilon\), we target the relationship between workers’ wage and their wage gains upon a job-to-job move (row 11), and the relationship between workers’ separation rates (including job-to-job moves) and their wage (row 12). The former increases in \(\sigma\), while the latter increases in \(\epsilon\).\(^{31}\) We also target the standard deviation of the job-to-job wage gains by type \(i\), location of the current firm \(j\), and location of the destination firm \(x\) (row 13). This standard deviation is increasing in \(\sigma\) because a high \(\sigma\) makes workers more likely to accept offers with a negative wage change.

Finally, the ratio of firms’ profits to labor costs (row 14) helps us to pin down the productivity of the backyard technology \(\nu\). Since workers have the possibility to leave employment and get \(\nu p_j\), a larger \(\nu\) implies that workers need to be compensated more and firms’ profits are lower.

\(^{31}\)Both relationships are negative, hence when they increase, they become less steep.
Computing the Moments. While all moments have a clear correspondence between the model and the data, there are two conceptional issues that arise in their empirical computation.

First, we need to decide which controls to add in the empirical regressions that construct the moments. In our model, differences across firms in size and wages are purely driven by differences in productivity and by labor market frictions. We thus want to control for other sources of empirical variation that may be affecting firm size and wage but that are not in our model. For this reason, when calculating the moments for the joint distributions of firm wage and size, we control for industry dummies and for a set of demographic controls that capture the composition of the labor force along observable characteristics (but not birth place, of course, since it is a key variable in the model). Similarly, when we calculate the wage gains for individuals that make a job-to-job move, we control for age, gender, and education to avoid for example capturing the fact that young individuals might be more likely to move across firms. Further details on all the controls are in Appendix G.

Second, we need to take a stand on how to define a cross-location move for the estimation. While we do not introduce separate residence and work location choices in the model to keep it tractable, a sizable share of individuals in our data report to be working in a location different from their residence. As a result, we face a trade-off. Defining cross-location movers as only those workers that change the location of their job and update their residence, similar to the cross-region definition in Section 3, could overestimate the search frictions and moving costs since some of the received offers lead workers to commute rather than migrate. On the other side, including all job-to-job moves regardless of residence could underestimate the frictions since commuters most likely do not pay the same fixed costs of relocating as migrants. Moreover, some movers report to be already living in the location of their new job, and hence are in fact reducing their commuting cost as a result of the move.

To strike a balance between these concerns, our baseline definition of a cross-location move includes all movers that change their work location and update their residence, similar to Section 3, plus all cross-location moves that take the worker further away from her current residence as long as the worker’s residence remains within 200km of her job. To be consistent with this definition we target the distribution of labor in rows 3, 4, and 5 of Table 3 using workers’ residence location, as it more closely reflects the way in which we define a cross-location move.

In Supplemental Appendix P, we re-estimate our model with two alternative definitions of cross-location moves: first, the broadest possible definition by defining all job changes across locations as cross-location moves, regardless of residence. In this alternative, we target the distribution of labor using individuals’ work location rather than their residence. Second, we re-

32 About 7% of workers work in a location different from their residence.
33 As mentioned in Section 2, the living location is self-reported and subject to misreporting. We therefore exclude individuals that report to be living far away from their job as it is likely that these observations are misreported.
estimate the model with the narrow definition of only workers who update their residence when they move. Appendix F provides statistics on the number of movers and their distance. The estimation results are broadly consistent across the three alternatives, with the main difference being that, as expected, the estimated search frictions and moving costs in our benchmark estimation lie between the two alternatives.

Estimation. Proposition 1 allows us to solve the model in just a few seconds despite its high dimensionality. Appendix H provides further details on the solution algorithm. Our estimation algorithm is otherwise standard: we solve for a vector of parameters \(\phi \) satisfying

\[
\phi^* = \arg \min_{\phi \in \mathcal{F}} \sum_x [\omega_x (T (m_x (\phi), \hat{m}_x))^2]
\]

where \(T (\cdot) \) is the log difference between the model, \(\{m_x (\phi)\} \), and data, \(\{\hat{m}_x\} \), moments, unless the moments are in logs. In this latter case, \(T (\cdot) \) is the difference expressed as a percentage of the empirical moment. We also pick a weighting vector, \(\{\omega_x\} \), so that each row of moments in Table 3 receives the same weight.\(^{34}\) Otherwise, rows that are by origin-destination-type would receive higher weight than moments that are by region only. For example, we have 64 moments for standard deviation of wage gains, but we only have three for the GDP differences across regions. Our procedure assigns to the GDP differences \(\frac{64}{3} \) times more weight.

6.3 Model Fit

The model provides a good fit to the data along several dimensions: most importantly, the model closely matches the key moments that help to identify the spatial frictions – the wage gains associated with the different types of job-to-job moves, and the frequency of job flows within and across locations. The left panel of Figure 6 plots the wage gains of job-to-job movers in the data against those in the model (from row 1 of Table 3).\(^{35}\) Each dot is for one of the 64 different types of moves by origin-destination-home location, which we color code by direction and type of worker. The dots are close to the 45 degree line, indicating a good fit. As in the data, the model generates larger wage gains for moves towards the West (blue symbols), for within-region moves away from the home location (gray stars) and for moves away from the home region, in particular to the West (blue stars). The right panel presents a similar plot for the monthly share of movers in all employed workers (from row 2). As in the data, in our model individuals are more likely to move within-location (gray circles) and to move back to their home location and region (diamonds) than away from home (stars).

\(^{34}\)Details are in Appendix H. Crucially, Figure A5 shows that all parameters seem to be properly estimated, at least based on the likelihood being locally single-peaked.

\(^{35}\)For brevity, we present the model fit in figures in the main draft. In Supplemental Appendix Q, we list all the targeted and estimated moments explicitly.
Table 3: Targeted Moments

<table>
<thead>
<tr>
<th>Moments</th>
<th>N</th>
<th>Source</th>
<th>Model Fit</th>
<th>Key Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Wage gains of job-job moves, by ((i, j, x))</td>
<td>64</td>
<td>Sect G.2.1</td>
<td>Fig 6</td>
<td>({\tau^i_j}; {\xi^i_{jx}})</td>
</tr>
<tr>
<td>(2) Frequency of job flows, by ((i, j, x))</td>
<td>64</td>
<td>Sect G.2.2</td>
<td>Fig 6</td>
<td>({z^i_{jx}}; {\xi_j})</td>
</tr>
<tr>
<td>(3) Employment shares, by ((i, j))</td>
<td>16</td>
<td>Sect G.2.3</td>
<td>Fig A6</td>
<td>({\tau^i_j}; {z^i_{jx}}; {\xi_j})</td>
</tr>
<tr>
<td>(4) Unemployment shares, by ((i, j))</td>
<td>16</td>
<td>Sect G.2.4</td>
<td>Fig A6</td>
<td>({\tau^i_j}; {z^i_{jx}}; {\xi_j})</td>
</tr>
<tr>
<td>(5) Firm component of wages, by ((i, j))</td>
<td>15</td>
<td>Sect G.2.5</td>
<td>Fig A6</td>
<td>({\tau^i_j}; {Z_j})</td>
</tr>
<tr>
<td>(6) Average firm component of wages, by (j)</td>
<td>3</td>
<td>Sect G.2.6</td>
<td>Fig A6</td>
<td>({Z_j})</td>
</tr>
<tr>
<td>(7) Relative GDP per worker, by (j)</td>
<td>3</td>
<td>Sect G.2.7</td>
<td>Fig A6</td>
<td>(\nu)</td>
</tr>
<tr>
<td>(8) Unemployment rates, by (j)</td>
<td>4</td>
<td>Sect G.2.8</td>
<td>Fig A6</td>
<td>(\sigma, \epsilon, {\xi_j})</td>
</tr>
<tr>
<td>(9) Deciles of firm-size distributions, by (j)</td>
<td>40</td>
<td>Sect G.2.9</td>
<td>Fig A7</td>
<td>(\sigma, \epsilon, {\xi_j})</td>
</tr>
<tr>
<td>(10) Slope of wage vs firm size relationship, by (j)</td>
<td>4</td>
<td>Sect G.2.10</td>
<td>Table A29 and Fig A8</td>
<td>(\Sigma, {\xi_j})</td>
</tr>
<tr>
<td>(11) Slope of J2J wage gain vs firm wage, by (j)</td>
<td>4</td>
<td>Sect G.2.11</td>
<td>Table A29 and Fig A8</td>
<td>(\sigma, \epsilon, \Sigma)</td>
</tr>
<tr>
<td>(12) Slope of separation rate vs firm wage, by (j)</td>
<td>4</td>
<td>Sect G.2.12</td>
<td>Table A29 and Fig A8</td>
<td>(\sigma, \epsilon)</td>
</tr>
<tr>
<td>(13) Std of job-job wage gains, by ((i, j, x))</td>
<td>64</td>
<td>Sect G.2.13</td>
<td>Table A29 and Fig A9</td>
<td>(\sigma, \Sigma)</td>
</tr>
<tr>
<td>(14) Profit to labor cost ratio, by (j)</td>
<td>4</td>
<td>Sect G.2.14</td>
<td>Table A29</td>
<td>(\gamma)</td>
</tr>
</tbody>
</table>

Notes: The table reports the moments used in the estimation. The column titled “N” lists the number of moments in the group. Column “Source” links to the appendix section where the moment is computed, and column “Model fit” lists the table or figure that compares the empirical moment to the model-computed moment. The last column lists the key parameters that are pinned down by each set of moments.

We discuss the fit of all other moments in Appendix I, and we summarize here the main takeaways.

The model matches well the steady state distributions of workers and the average GDP, wages, and unemployment rates by location, consistent with the hypothesis that the German labor market is in a steady state. Higher productivity firms offer higher wages to increase their size, leading workers to climb a job ladder and to separate with higher probability from low productivity firms. This core mechanism allows the model to do a reasonable job in matching the empirical joint distribution of firm wages, sizes, and separation rates, as well as the standard deviations of the wage gains of job movers and firms’ profit shares. The model somewhat overestimates the relationship between firm wage and firm size, and generates a smaller standard deviation of wage gains of movers than the data. These results are possibly expected: in the model, wage dispersion across firms is purely generated by labor market frictions, while in the data there may be other sources of wage dispersion that our empirical controls are not capturing.\(^{36}\)

Overall, the model displays a good fit. Several structural restrictions imposed by the model on the joint distributions of firm wages, employment, wage gains, and labor flows are satisfied in the data, building confidence in our estimated spatial frictions, which we discuss next.

\(^{36}\)In Figure A9, we show that adding individual fixed effects in wage growth brings the empirical estimates for the standard deviations of wage growths very close to the model’s ones. In Figure A8 we show the non-parametric relationships for the moments in rows 10, 11, and 12 of Table 3.
Figure 6: Wage Gains and Frequency of Job Flows

Notes: The left panel shows the average wage gains of different types of job-to-job moves in the data (x-axis) against the average wage gains in the model (y-axis). The right panel shows the frequency of each type of job-to-job move in the data (x-axis) against the frequency in the model (y-axis). Different types of moves are identified by a mix of colors and symbols, listed in the right panel. In total, there are 64 possible types of moves by origin location, destination location, and home location. The data moments are listed in Appendix G.2.1 and G.2.2. Gray symbols are moves within-region, blue symbols are moves to the West, and red symbols are moves to the East. Diamonds symbolize cross-location moves within-region back to the home location (in gray) or cross-region moves back to the home region (blue or red). Stars symbolize cross-location moves within-region away from the home location (in gray) or cross-region moves away from the home region (blue or red). Gray circles are moves within-location.

6.4 Estimation Results

Table 4 presents the spatial frictions estimated by the model. Row (1) reports the estimated one-time moving costs as a fraction of the present discounted value of income, \(\hat{\gamma}_{jx} \). Since these costs vary with distance, we present a range of costs for moves between the closest two locations and moves between the farthest two locations. Our estimates indicate moving costs in the range of 3 – 5% of the PDV of income, implying that an individual earning a yearly salary of 36,000€ for a work life of 45 years faces a moving cost of between 17,453 € and 29,704 €.\(^{37}\)

Rows (2) and (3) show strong preferences for living in the home location and region. A worker employed not in her home location but still in her home region would need to be paid, in real terms, about 7.4% more than in her home location to obtain the same utility. Moving away from both home location and region requires a yearly compensation almost 10% higher.

Both the estimated migration and preference costs are an order of magnitude smaller than previous estimates in the literature (see Kennan and Walker (2011); Bryan and Morten (2019)) for two main reasons: first, our estimation identifies these costs by comparing the wage gains of cross-location movers to those of within-location job-to-job movers. Since any cross-location move is also a move between firms, we should expect migrants to experience a wage increase even in the absence of moving costs, simply due to general frictions in the labor market. Only the difference between across- and within-location wage gains reflects moving costs. Second,\(^{37}\) We discount at the model interest rate of 0.5% per month.
our framework allows us to distinguish between moving costs and search frictions. A lack of movement away from the home location can either be due to migration and preference costs or due to a lack of job opportunities resulting from search frictions.

Rows (4) and (5) report the estimated search efficiencies, relative to the within-home location level, which is normalized to 100%. Individuals that are in a location away from home and search within that location are slightly less effective than at home, filing only about 90% as many applications per unit of search effort as at home (row 4). More importantly, however, all individuals have a much lower search efficiency for cross-location searches (row 5). Since the search efficiency depends on distance, we again provide a range for searches between the two closest locations and between the two farthest locations. Row (5.i) shows that one unit of search effort used to search across locations in the non-home region translates into filing only about 1/20th as many applications as in the home location. Cross-location searches directed towards the home region, but not to the home location, are only slightly more effective (5.ii).

Row (5.iii) shows that the search efficiency has a sizable home bias: one unit of search effort by workers currently away from their home location that is directed towards the home location generates 24.11% to 17.22% as many applications as searches within the home location. Hence, workers searching across locations are about four times as efficient in searching in their home location than in their non-home region, possibly due to stronger social connections (Bailey, Farrell, Kuchler, and Stroebel (2020), Burchardi and Hassan (2013)). These results show that search frictions play an important role in hampering labor market integration.

To illustrate more formally the importance of search frictions, we decompose the variance of workers’ log job-to-job flows from equation (21), Var \[\log \psi_{ijx} \], into variation due to differences in workers’ search efficiency, Var \[\log z_{ijx} \], and variation due to the remaining endogenous components. These endogenous components explain only approximately 21% of the variance of log flows for all the pairs \((j, i, x)\). The remaining empirical variance is due to the large estimated differences in the search efficiency.

We present all 21 estimated parameters in Appendix H. While the main parameters of interest are those related to the spatial frictions, it is worthwhile to mention that unemployed workers have approximately six times the search intensity of employed workers and that the estimated application cost is quite convex, making it very costly to improve labor market outcomes simply by searching more intensively.

We present the estimated parameters for the alternative definitions of cross-location moves

\[\log \bar{\psi}_{ijx} = \log z_{ijx} + \log \bar{z}_{ijx} \]

\[\log \psi_{ijx} = \log \bar{\psi}_{ijx} + \left(\int \mu_{ijx}(w, w') \, dF_x(w') \right) \frac{a_{i,j}(w)}{p_{ijx}} \, dE_j(w) \]

From equation (21), we can write \[\log \psi_{ijx} = \log z_{ijx} + \log \bar{\psi}_{ijx} \] where \log z_{ijx} is the search efficiency and \log \bar{\psi}_{ijx} is the endogenous component given by the matching rate, the search intensity and the acceptance probability. We can then decompose the variance of job flows as \(\text{Var} \begin{bmatrix} \log \psi_{ijx} \end{bmatrix} = \text{Var} \begin{bmatrix} \log z_{ijx} \end{bmatrix} + \text{Var} \begin{bmatrix} \log \bar{\psi}_{ijx} \end{bmatrix} + 2 \text{Cov} \begin{bmatrix} \log z_{ijx}, \log \bar{\psi}_{ijx} \end{bmatrix} \). We find that \(\text{Var} \begin{bmatrix} \log \psi_{ijx} \end{bmatrix} \) explains 21% of the variance, \(\text{Var} \begin{bmatrix} \log z_{ijx} \end{bmatrix} \) 38%, and the remaining 41% is due to the covariance term.
Table 4: Estimated Spatial Frictions

<table>
<thead>
<tr>
<th>Moving Costs ({ \kappa })</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Moving cost as share of PDV of income: (\kappa_0 e^{\kappa_1 \text{dist}_{j,x}}) (b/w closest to b/w furthest locations)</td>
<td>3.12% to 5.31%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preferences ({ \tau })</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Cost of not living in the home location but in the home region, as share of income: (\tau_l)</td>
<td>7.41%</td>
</tr>
<tr>
<td>(3) Cost of not living in the home region, as share of income: (\tau_r)</td>
<td>9.88%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Search Efficiency ({ z })</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) w/i location, away from home location: (1 - z_{l,1})</td>
<td>90.52%</td>
</tr>
<tr>
<td>5.i) not to home region: (z_0 e^{-z_1 \text{dist}_{j,x}})</td>
<td>6.10% to 4.95%</td>
</tr>
<tr>
<td>(5) b/w locations (closest to furthest locations)</td>
<td></td>
</tr>
<tr>
<td>5.ii) to home region: (\left(z_0 e^{-z_1 \text{dist}_{j,x}} \right) \left(1 + z_r \right))</td>
<td>7.32% to 5.23%</td>
</tr>
<tr>
<td>5.iii) to home location: (\left(z_0 e^{-z_1 \text{dist}{j,x}} \right) \left(1 + z{l,2} \right))</td>
<td>24.11% to 17.22%</td>
</tr>
</tbody>
</table>

Notes: The table shows the estimated values of the spatial frictions. All parameters used to compute them, according to the formula included in each row, are in Table A28. Row 1 provides a range of the estimated moving costs, ranging from costs for moves between the closest two locations to moves between the furthest two locations. Rows 2-3 present the values of the estimated preference parameters. Search efficiencies in rows 4 and 5 are expressed as a percentage of the efficiency within the home location, \(z_{l,1} \), which is normalized to 1. Rows 5i-5iii show the efficiencies for searching across locations outside of the home region, in the home region but not the home location, and in the home location, respectively. The efficiencies are again reported as a range for searching between the two closest locations to searching between the two furthest locations.

In Supplementary Appendix P, when we define cross-location moves including all job switches, the model estimates moving costs roughly one quarter as large and a search efficiency towards the home location that is roughly twice as high as in the baseline to match the higher worker mobility. On the other hand, with our narrower definition using only workers that update their residence, estimated moving costs double and the search efficiency towards home approximately halves.

In Supplementary Appendix R, we further explore one potential source of home preferences using the SOEP. We show that workers’ likelihood of moving back home increases sharply after the birth of a child, possibly highlighting the importance of family ties.

7 Spatial Frictions’ Aggregate and Distributional Effects

We use the estimated model to study the aggregate costs of spatial frictions and their role in generating earnings inequality between East- and West-born individuals. Beyond the specific German context, the discussion clarifies the mechanism through which different spatial frictions impact the economy.

Our analysis is motivated by Figure 7, which shows the model-generated CDFs of real wages per efficiency unit, \(w_j (p) P_j^{-1} \), by location of the firm (Fig. 7a) and by home location of the
Figure 7: Wage Distributions by Work and Birth Regions

(a) Work Location
(b) Home Location

Notes: The figure shows the CDFs of real wages per efficiency unit by firms’ location (left panel) and by workers’ birth location (right panel). The two locations in the East are in red and the two in the West are in blue. The level of wages is normalized based on $A_{NW} = 1$, which implies a support of firm productivity in the North-West of $[0.5, 2]$.

worker (Fig. 7b). These CDFs are consistent with the data as they reflect several targeted moments. Figure 7a reveals that firms in the East pay, on average, lower wages than in the West. The figure also shows that there is large wage dispersion within each region. Spatial frictions could generate misallocation of labor across locations, as workers might be trapped in the lower productivity East, and they could keep workers at lower productivity firms within each location by hampering their ability to climb a more integrated Germany-wide job ladder. The spatial frictions could also play a key role in generating a persistent effect of birth location on wages, as shown in Figure 7b.

7.1 The Aggregate Effects of Removing Spatial Frictions

We recompute the equilibrium, varying the different spatial frictions while keeping all other primitive parameters unchanged, to study the role of spatial frictions in the allocation of labor within and across locations. To simplify the exposition, our discussion focuses on the comparison between East and West Germany. This choice is justified by Figure 7, which shows that the within-region differences are minor. While we report the results at the regional level, however, the removal of frictions also affects the allocation of workers within regions across locations, which contributes to the aggregate results.

Figure 8 and Table 5 summarize the results. Each panel in the figure shows the CDFs of real wages per efficiency unit in East and West Germany in the benchmark (dotted) and in the counterfactual (solid line). In the table, the first five columns report the values of various key variables for the aggregate German economy, with the baseline in column 1 normalized to one.

39Recall that individual of type i working in location j for firm p earns the real wage per efficiency unit multiplied by θ_j^i, i.e., $w_j(p) P_j^{-1} \theta_j^i$.

41
Notes: The figure reports the CDFs of real wages per efficiency unit by firms’ region, East in red and West in blue. In each panel, we compare the benchmark economy (dotted lines) with the counterfactual economy (solid line). We consider four counterfactuals, left to right: i) no home preferences; ii) no moving costs; iii) equal search efficiency towards each region; iv) no spatial frictions.

The last five columns compute the percentage gap between West and East Germany for each of these variables. Appendix J shows all the aggregate statistics separately for East and West Germany.

Home Preferences. First, we consider an economy with no home preferences, $\tau_l = \tau_r = 1$. Column 2 of Table 5 and panel 1 of Figure 8 show that removing home preferences has only a small effect on the real wages per efficiency unit paid by firms (row 1). The main effect is that the share of East-born workers in the West increases while the share of West-born workers declines, since workers are no longer attached to their home regions (row 2i and 2ii).

The increased mobility of workers puts pressure on East German firms, which lose their comparative advantage in hiring East German workers, shifting the wage distribution slightly to the right (red lines in Figure 8). This shift reduces the gap in real wages per efficiency unit between the East and the West from 15% to 12%. While competitive pressure also increases in the West, the effect on the wage distribution is smaller since East firms are less able to hire West German workers due to the firms’ lower average productivity.

The West-East difference in efficiency units per capita, θ_j^i, falls, since more East workers are in the West, reducing the gap in average wages paid – i.e., the average of $u_j(p) P_j^{-1} \theta_j^i$ (rows 3 and 4). Aggregate GDP per capita rises (row 5), but just marginally, implying that home bias does not entail large aggregate productivity costs. The effect on workers’ average value is larger but still modest (row 6).\(^40\)

Moving Costs. Next, we compute an economy with no moving costs – $\kappa_0 = 0$. Removing moving costs also has very small aggregate effects (Column 3 of Table 5). However, there is an important difference relative to home preferences: when home preferences are eliminated, East German workers stay in the West and climb the West German job ladder, putting pressure

\(^{40}\)The average value is computed using the estimated value functions – U_j^i and $W_j^i(w)$ – and the distribution of labor across firms, regions, and employment status.
Table 5: Aggregate Effects of Spatial Frictions

<table>
<thead>
<tr>
<th></th>
<th>Germany Aggregate</th>
<th>Difference West - East (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Wage per efficiency unit</td>
<td>1</td>
<td>1.013</td>
</tr>
<tr>
<td>(2) % of Labor in West</td>
<td>80.40%</td>
<td>80.40%</td>
</tr>
<tr>
<td>2.i West-born</td>
<td>97.26%</td>
<td>92.36%</td>
</tr>
<tr>
<td>2.ii East-born</td>
<td>24.28%</td>
<td>41.08%</td>
</tr>
<tr>
<td>(3) Efficiency units pc</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>(4) Average wage paid</td>
<td>1</td>
<td>1.012</td>
</tr>
<tr>
<td>(5) GDP per capita</td>
<td>1</td>
<td>1.006</td>
</tr>
<tr>
<td>(6) Average value</td>
<td>1</td>
<td>1.018</td>
</tr>
</tbody>
</table>

Notes: The table shows the aggregate effects of spatial frictions by comparing the benchmark (Base) with four hypothetical economies: i) No home preference (τ); ii) No moving costs (κ); iii) No differences in search efficiency across regions (z); iv) No spatial frictions (All). Columns 1-5 present statistics for the aggregate German economy. Statistics in rows 1, 3, 4, 5, and 6 are normalized relative to the benchmark. Columns 6-10 present, for each statistic, the difference between West and East Germany, computed for the same scenarios. Row 1 presents the average wage per efficiency unit, $w_j (p) P^{-1}_j$, averaged across all employed workers in j. Row 3 shows efficiency units per capita, the average of θ^j_i across all workers in j. Row 4 displays the average wage paid, $w_j (p) P^{-1}_j \theta^j_i$. Row 5 presents the average output per capita, $p \sum_{i \in I} \theta^j_i (w)$. Row 6 shows the average value, obtained by averaging across U^j_i and W^j_i (w) using the distribution of labor across firms, regions, and employment status.

on East German firms to compete. In contrast, when moving costs alone are eliminated, East German workers are continually attracted back to the East because of their preferences. As a result, they do not climb much of the West German job ladder and remain at relatively lower productivity firms. Overall, East firms reduce their wages in response to the larger labor supply, which decreases aggregate wages per efficiency unit and increases the West-East wage gap (row 1, and panel 2 of Figure 8). Since more workers are employed at low productivity firms, aggregate GDP actually slightly declines (row 5).

Search Efficiency. In column 4 of Table 5 and panel 3 of Figure 8, we show an economy in which individuals’ search efficiency is identical towards each region – $z_0 = 1$, $z_1 = 0$, $z_{l,1} = z_{l,2} = z_r = 0$. Eliminating differences in search efficiency has large effects on the distribution of labor both across and within regions. As workers draw more job opportunities from the whole German labor market, firms compete more fiercely for workers, which leads all firms to increase their wages. The increased opportunities allow workers to climb the job ladder more quickly, which concentrates labor at the more productive firms. Average wages per efficiency unit therefore rise by 14% and GDP per capita increases by 7%.
All Spatial Frictions. Finally, Column 5 in Table 5 shows our main result: eliminating all spatial frictions \(-\tau_l = \tau_r = 1, \kappa_0 = 0, z_0 = 1, z_1 = 0, z_{l,1} = z_{l,2} = z_r = 0\) causes the average wage per efficiency unit to decrease slightly and GDP per capita to rise by a mere 2%. These gains are significantly smaller than the gains from eliminating differences in search efficiency alone.

The aggregate effects are significantly weaker than the large gains found in previous work (e.g. Bryan and Morten (2019)). Three factors drive this unexpected result in our framework. First, while a large average wage gap exists between regions, the bulk of the labor misallocation is within regions across firms, reflected in the large within-region wage dispersion, which is not directly impacted by spatial frictions. Second, while eliminating all spatial frictions allows workers to draw more job opportunities from high productivity firms, it also gives firms in each region access to the pool of unemployed workers of the entire German market. As a result, low productivity firms can now more easily attract workers. Taken together, these two forces lead to a rotation of the CDF of wages which concentrates more labor both at the top and at the bottom of the wage distribution (panel 4 of Figure 8). Through general equilibrium effects, most firms end up paying a lower wage, which further decreases average wages (row 1). This mechanism is not strong enough when we shut down only one of the spatial frictions at a time, since the remaining frictions are strong enough to keep the regional labor markets separated. Third, the increase of the share of East German workers in the West creates extra competition for jobs, which, in equilibrium, favors the migration of about one quarter of West German workers to the lower productivity East, reducing output (rows 2i and 2ii).

It is relevant to notice that, while the effect on GDP is larger if we only shut down search efficiency, the effect on the average value (row 6), which is the relevant welfare measure in the model, is larger, as expected, when we shut down all the frictions.

Shutting down all spatial frictions has a large effect on the West-East gap. The gap in wages paid falls from almost 25% to 11% (row 4), and the gap in GDP per capita declines from 20% to 8%. This result, however, is mostly due to the decline in spatial sorting, hence in the West-East gap in efficiency units (row 3), rather than to an increase in firm wages per efficiency units or aggregate productivity in the East.

Within Versus Across-Region Allocation of Labor. We next show that the main allocative effect of shutting down spatial frictions is to change the within-region allocation of labor to firms, rather than the share of labor in each region.

To illustrate this point, in Figure 9 we compute the density of labor at each level of firm productivity, aggregated across all regions, and take its ratio with the benchmark density in each of the four scenarios (gray solid lines). If the densities are identical, the gray solid lines should lie on top of the horizontal dotted line at 1. As previously discussed, removing preference frictions
allows East-born workers to more easily access the West German job ladder, slightly increasing the mass of workers at more productive firms (panel 1). The economy without differences in search efficiency (panel 3) has significantly more mass at the highest productivity firms, while the economy without any spatial frictions (panel 4) has a larger mass of workers not only at the top but also at the bottom.

The differences in allocation could either be the result of more workers employed at more productive firms within each region, or due to a change in the shares of workers located in East and West Germany, holding the within-region allocation constant. For example, since the average productivity in the West is higher than in the East, moving more workers West would increase the mass of workers at high productivity firms.

We analyze the contribution of each of these channels separately, holding constant the other. The result is stark: keeping the within-region distribution of labor fixed and only varying the share of labor in each region barely changes the overall allocation relative to the benchmark (blue dashed line). Consequently, the effect of reducing spatial frictions on the overall distribution of labor mostly operates through within-region changes (green dashed line). Eliminating spatial frictions allows workers to climb a country-wide job ladder, significantly altering the within-region allocation of labor.

7.2 The Persistent Effects of Birth Location

Next, we show that spatial frictions have significantly larger effects on the wage inequality between East- and West-born workers than on the gap between East and West Germany. The results are presented in Figure 10 and Table 6.
Large Effects on Birth-Place Inequality. Column 2, row 1 of Table 6 illustrates that eliminating home preferences alone reduces the gap in the average wage per efficiency unit between East and West German workers by 40%. Removing mobility costs, instead, has a relatively small impact on wage inequality since the effect is similar for East and West-born individuals. Eliminating differences in search efficiency has the biggest independent effect, shrinking the gap in the average wage per efficiency unit by more than two thirds (column 4 of Table 6). In this scenario, all workers have identical job opportunities, irrespective of where they are born, and the only remaining difference is their willingness to accept these job offers.

When all spatial frictions are shut down, only a 2% gap in average wages per efficiency unit remains between East- and West-born workers, much smaller than the wage gap between regions. All worker types now have equal access to jobs in both regions and accept similar offers. A small gap remains due to the different efficiency units of East- and West-born workers, which affect their job search behavior due to the complementarity between firms’ wages and workers’ efficiency units. Summing up, while spatial frictions have a relatively minor role on regional wage gaps, they are a key driver of the persistent effect of workers’ birth region on their lifetime earnings.

East- and West-born Workers Climb Parallel, but Distinct, Ladders. To further investigate the mechanism through which spatial frictions generate the persistent effect of workers’ home region, we use the model to simulate job histories for 100,000 workers. We assume that each worker starts unemployed in her home region and simulate her employment history for 30 years. We perform the exercise using the policy functions of the benchmark and then repeat the analysis for each one of the four alternative economies. The dotted lines in each panel of Figure 11 display the resulting paths for workers’ wages per efficiency unit in the benchmark economy, and the solid lines show the counterfactual paths. To illustrate the general equilibrium effects,

\[41\text{West-born workers search slightly more intensively and have a slightly better allocation to firms.}\]
Table 6: Distributional Effects of Spatial Frictions

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>τ</th>
<th>κ</th>
<th>z</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Gap in avg. wage per efficiency unit</td>
<td>11.02%</td>
<td>6.65%</td>
<td>9.84%</td>
<td>3.84%</td>
<td>2.11%</td>
</tr>
<tr>
<td>(2) Gap in avg. wage paid</td>
<td>22.00%</td>
<td>17.20%</td>
<td>20.70%</td>
<td>14.11%</td>
<td>12.20%</td>
</tr>
<tr>
<td>(3) % of W-born in West</td>
<td>97.26%</td>
<td>92.36%</td>
<td>93.54%</td>
<td>80.94%</td>
<td>73.80%</td>
</tr>
<tr>
<td>(4) % of E-born in West</td>
<td>24.28%</td>
<td>41.08%</td>
<td>33.77%</td>
<td>65.03%</td>
<td>67.60%</td>
</tr>
</tbody>
</table>

Notes: The table shows the effects of spatial frictions on the earnings inequality between East and West-born by comparing the benchmark (Base) with four hypothetical economies: i) No home preference (τ); ii) No moving costs (κ); iii) No differences in search efficiency across regions (z); iv) No spatial frictions (All). Row 1 presents the gap in the average wage per efficiency unit, \(w_j (p) P_j^{1} \). Row 2 displays the average wage paid, \(w_j (p) P_j^{1} Y_j \).

we also consider partial equilibrium counterfactuals, in which we let individuals make choices according to the economy without the corresponding spatial friction but keep the equilibrium wage, vacancy posting, and regional prices of the benchmark economy (dashed lines).

Focusing first on the benchmark economy, we notice that East- and West-born workers climb parallel job ladders starting from unemployment. This outcome is due to the fact that workers mostly remain in their home region, and the West and East regional labor markets function similarly.\(^{42}\) Removing spatial frictions shifts the wage profile up, since spatial frictions similarly affect individuals at any point of their life-cycle. As noted above, the effect for moving costs is negligible due to their small size. When we remove all spatial frictions, East and West-born workers are climbing roughly the same job ladder.\(^{43}\)

Large General Equilibrium Effects. We finally note that accounting for firms’ general equilibrium response is important to understand the overall effects of spatial frictions on wage inequality. Comparing the dashed and the dotted lines in Figure 11, the first panel shows that in partial equilibrium, East-born gains from eliminating home preferences are only approximately half as large as in general equilibrium. While East workers’ wages increase in partial equilibrium due to their willingness to accept more offers from West Germany, a large fraction of their overall wage gains is due to the equilibrium response of East firms, which increase their wages to retain workers. The equilibrium effects are even stronger when we eliminate spatial differences in search efficiency in the third panel. For West-born workers, all the gains come from the fact that firms increase their wages to retain workers since search frictions no longer shield them from competition.

\(^{42}\)This result is consistent with detailed analysis in Dauth, Lee, Findeisen, and Porzio (2019). In Appendix J, we show the share of workers in each region and frequency of cross-region moves.

\(^{43}\)The West-born profile is slightly steeper as they search more intensively due to their higher efficiency units, as explained earlier.
8 Conclusion

This paper has developed a quantitative labor market framework that encompasses frictional reallocation both across firms and across space to quantify the aggregate and distributional effects of spatial frictions. Bringing the model to matched employer-employee data from Germany, we learn three new insights that are relevant beyond our context. First, eliminating even large spatial frictions can have, as in our estimates, only modest effects on aggregate wages and productivity. Second, the aggregate effects of spatial frictions are mediated by their impact on the allocation of labor within regions across firms, which can dominate quantitatively. In fact, in our estimated economy with labor market frictions, the main effect of removing spatial frictions is to change the within-region allocation of labor, rather than generating net flows towards the high productivity region. Third, regional wage gaps and inequality of opportunities by birth region are not necessarily intertwined. Shutting down spatial frictions does not close the wage gap between East and West Germany, as labor market frictions are enough to shield low paying firms in the East from competition. However, it does substantially reduce the wage inequality between East and West-born individuals, as all workers now have equal access to jobs in all regions.

Overall, our analysis shows the importance of studying the labor allocation across firms and space in a unified framework. The model we build in this paper enables us to do so, and may prove helpful for future work on regional wage gaps and on the spatial and distributional consequences of policy interventions.
References

