Is There Too Much Benchmarking in Asset Management?

Anil K Kashyap, Natalia Kovrijnykh, Jian Li, and Anna Pavlova

March 2021

Abstract

We propose a model of asset management in which benchmarking arises endogenously, and analyze its unintended welfare consequences. Fund managers’ portfolios are unobservable and they incur private costs in running them. Conditioning managers’ compensation on a benchmark portfolio’s performance partially protects them from risk, and thus boosts their incentives to invest in risky assets. In general equilibrium, these compensation contracts create an externality through their effect on asset prices. Benchmarking inflates asset prices and gives rise to crowded trades, thereby reducing the effectiveness of incentive contracts for others. Contracts chosen by fund investors diverge from socially optimal ones. A social planner, recognizing the crowding, opts for less benchmarking and less incentive provision. We also show that asset management costs are lower with socially optimal contracts, and the planner’s benchmark-portfolio weights differ from the privately optimal ones. Finally, we consider an application of our model to ESG (environmental, social, and governance) investing and show that optimal incentive provision for fund managers should include ESG-tilted benchmarks.

JEL Codes: D82, D86, G11, G12, G23

Keywords: Incentive Contracts, Moral Hazard, Relative Performance, Pecuniary Externality, Asset Management, Benchmark, Index, Welfare, ESG Investing
1 Introduction

Investors worldwide have delegated the investment of almost $100 trillion to asset management firms, which constitutes a large share of global market capitalization. Capital allocation decisions in these firms are made by portfolio managers, who have a principal-agent relationship with investors. Portfolio managers are invariably paid based on how their fund performs relative to a benchmark. The presence of benchmarks in compensation contracts is important because benchmarks are a significant driver of global capital flows and have an effect on the real economy. For example, Calomiris, Larrain, Schmukler, and Williams (2019) document that emerging market firms are able to cut their cost of funds by an astounding 1 percentage point by issuing bonds eligible for inclusion in important international benchmark indices. We provide a model of asset management in which benchmarking arises endogenously. More importantly, we use our model to assess the welfare implications of benchmarking and explore its unintended consequences.

To study these questions, we embed an optimal-contracting problem in a general-equilibrium setting. We show that when the fund managers incur a private cost in managing portfolios, optimally designed contracts for the managers involve benchmarking. Because of this private cost, managers underinvest. Conditioning the managers’ compensation on the performance of a benchmark portfolio partially protects them from risk and thus boosts their incentives to invest. In general equilibrium, the use of such incentive contracts creates a pecuniary externality through their effect on asset prices. Benchmarking inflates asset prices and reduces expected returns. This in turn reduces the marginal benefit of using incentive contracts for others. We show that a constrained social planner, who internalizes this externality, would opt for less incentive provision and less benchmarking.

Finally, we apply our model to the problem of ESG (environmental, social, and governance) investing. The Forum for Sustainable and Responsible Investing estimates that as of the end of 2020, over $17 trillion was invested in ESG funds in the U.S., accounting for over 1/3 of all managed money. Furthermore, the growth in this class of funds has been remarkable, with assets under management surging by 42% between 2018 and 2020. In Europe, flows into ESG funds doubled in 2020 relative to 2019. How these massive

\[\text{For example, Ma, Tang, and Gómez (2019) report that around 80% of U.S. mutual funds explicitly base compensation on performance relative to a benchmark (usually a prospectus benchmark such as the S&P 500, Russell 2000, etc.).}\]


flows will be allocated, however, depends critically on the design of the funds and their benchmarks. Our model implies that incentive provision for fund managers should rely on ESG-tilted benchmarks rather than the common industry practice of imposing portfolio constraints.

Here is how our model works. Some agents in the economy—direct investors—manage their own money and others—fund investors—delegate their investment choice to fund (or portfolio) managers. All agents are risk averse. Critically, the managers’ portfolios are unobservable to fund investors and the cost of managing a portfolio is private. The managers are paid based on incentive contracts designed by the fund investors.\(^4\) We focus on linear contracts, which include a fixed salary, a fee for absolute performance, and potentially a fee for performance relative to a benchmark.\(^5\)

We assume that the managers can potentially generate superior returns (or “alpha”) relative to those of the direct investors through various sophisticated strategies. These include lending securities, conserving on transactions costs (e.g., from crossing trades in-house or by obtaining favorable quotes from brokers) or providing liquidity (i.e., serving as a counterparty to liquidity demanders and earning a premium on such trades). While these activities augment returns, they are associated with a private cost for a portfolio manager. We assume the costs are increasing in the size of the fund’s risky portfolio. The simplest way to justify these assumptions is to appeal to the time costs involved in the activities and to interpret the rising costs as reflecting the additional time required for managing a larger fund/portfolio. An alternative interpretation that we discuss in Section 3 is that the manager has to exert costly effort to augment returns.\(^6\)

Fund investors design the manager’s compensation contracts to incentivize the manager to take the risk associated with the sophisticated strategies. The presence of the private cost calls for a contract that rewards the manager based on fund performance and gives her a larger share of the returns than if risk sharing were all the contract was aimed at achieving. However, this element of the contract exposes the manager to additional risk (because stock returns are stochastic). This risk, if unmitigated, means that the manager will underinvest. Adding a benchmark to the contract partially protects the manager from

---

\(^4\)We abstract from the asset management firm and assume that the firm acts in the interest of the fund investors, so that effectively the fund investors directly control the compensation arrangements for the portfolio managers. This is consistent with the fund trustees having a fiduciary obligation to their investors.

\(^5\)We discuss the rationale for and the benefits of assuming linear contracts at the end of Section 3.

\(^6\)We show in Appendix C that our main insights carry over to this case, however, we cannot get closed-form solutions for that version of the model. So in the main text we proceed with a simpler model that allows us to focus on the role of the essential friction—the unobservability of the portfolio choice—that is responsible for our main results.
this risk and therefore will be used by fund investors to improve the manager’s incentives.

Our paper’s main contribution is analyzing the unintended welfare consequences of benchmarking. When all fund investors use incentive contracts, they change the total demand for assets. In particular, benchmarking leads all managers to invest more in assets that are compatible with the return-augmenting strategies and in assets that are in their benchmarks. The managers’ demand boosts prices of such assets and lowers their expected returns. In other words, benchmarking contracts give rise to crowded trades.

Importantly, individual fund investors in our model take asset prices as given and do not internalize the effects of contracts they design on equilibrium prices. Crowded trades resulting from the contract-induced incentives are a pecuniary externality. Because of the agency frictions, markets are incomplete, so this pecuniary externality leads to an inefficiency. Specifically, the use of benchmarking contracts by a group of investors reduces the effectiveness of contracts designed by other investors through crowded trades. This happens because asset prices enter the fund managers’ incentive constraints. Each manager still has to incur the full private cost of managing assets but the benefits of doing so are reduced because of the crowded trades.

In light of this, a natural question to ask is how does the incentive contract chosen by a social planner, who is subject to the same restrictions as individual investors but recognizes the effect of contracts on prices, differ from the privately optimal one? We show that individual investors underestimate the cost of incentive provision relative to the social planner, who internalizes the negative externality of incentive contracts. As a result, the planner opts for less incentive provision. Specifically, we show that both the performance sensitivity (“skin in the game”) as well as the level of benchmarking are lower in the socially optimal contract than in the privately optimal one. This ameliorates the price pressure that portfolio managers exert and reduces the crowdedness of trades.

Our model informs the debate as to whether costs of asset management are excessive and whether returns delivered by the fund managers justify these costs. We use the model to compare the managers’ costs and expected returns under privately and socially optimal contracts. We find that, from the socially optimal point of view, fund investors excessively rely on contracts and make their managers invest too much at too high a cost. While the cost is borne by the manager, it ultimately gets passed on to the fund investor, who needs to compensate the manager enough to ensure her participation.
externality arising from crowded trades.

We also investigate how benchmarks ought to be designed. We show that both privately and socially optimal benchmarks put more weight on assets for which portfolio management adds more value as well as on assets for which incentive misalignment is most severe. The relative tilt in the weights, however, is different in the privately and socially optimal benchmarks. For example, the planner puts relatively less weight on assets with large costs compared to fund investors. This is because the planner understands that contracts are less effective at providing incentives than fund investors perceive, and is therefore less willing to use benchmark weights for incentive provision.

Finally, we consider an application of our model to ESG investing. While this market segment has been growing rapidly in size and importance, we are unaware of any research showing how to optimally incentivize fund managers to tilt their portfolios towards green and away from brown stocks. Our paper fills this gap. We demonstrate that an optimal contract of such managers should include an ESG-tilted benchmark. This contract dominates the widespread industry practice of targeting an average ESG score for the portfolio.

The remainder of the paper is organized as follows. In the next section, we review the related literature. Section 3 presents our model, and Section 4 analyzes the model and derives our main results. Section 5 considers an application of our model to ESG investing. Section 6 concludes and outlines directions for future research. Omitted proofs, derivations, and extensions are in the appendices.

2 Related Literature

Our work builds on the vast literature on optimal contracts with moral hazard. In a seminal contribution, Holmström (1979) argues that including a signal that is correlated with the output of the manager—in our case, the benchmark’s performance—in a contract is beneficial to the principal. Importantly, in our paper the benefit of including the signal is endogenous through the general-equilibrium effect on prices. To our knowledge, ours is the first paper that endogenizes the effectiveness of including the extra signal in the contract. Holmstrom and Milgrom (1991) introduce a tractable contracting setting with moral hazard, with which our model shares many similarities, and show that increasing the agent’s share in the project’s output helps provide incentives. In the context of delegated asset management though, giving the agent a larger share of portfolio return encourages her to scale down the risk of the (unobservable) portfolio by reducing risky asset holdings. Stoughton (1993) and Admati and Pfleiderer (1997) show that the manager is able to completely “undo”
her steeper incentives to collect information on asset payoffs by such scaling. We design a contract that overcomes this challenge and show that it involves benchmarking. Another notable difference from the aforementioned literature is that we embed optimal (linear) contracts in a general-equilibrium setting and study interactions between contracts and equilibrium prices, and the implications of these interactions on welfare.

Our work is also related to the literature in asset pricing and corporate finance theory that explores the general-equilibrium implications of benchmarking. Brennan (1993) shows that benchmarking leads to lower expected returns on stocks included in the benchmark. In dynamic models, Cuoco and Kaniel (2011) and Basak and Pavlova (2013) show that benchmarking pushes up prices and lowers Sharpe ratios of stocks inside the benchmark. Basak and Pavlova also show that benchmarking leads to excess volatility and excess co-movement of returns on these stocks. Kashyap, Kovrijnykh, Li, and Pavlova (2021) focus on implications of benchmarking portfolio managers for firms’ corporate decisions and demonstrate that firms in the benchmark have a higher valuation for investment projects or merger targets. These papers take the benchmarking contract of managers to be exogenous.

There are several papers with endogenous contracts that study the asset pricing implications of relative performance evaluation in asset management. Kapur and Timmermann (2005) analyze the effects of relative performance evaluation on equity premium. In their paper, managers have exogenously superior information about assets compared to investors, and investors use contracts purely for risk-sharing purposes. In Buffa, Vayanos, and Woolley (2014) and Cvitanic and Xing (2018), benchmarking helps reduce diversion of cash flows by fund managers. Our rationale for benchmarking is to reward activities that generate superior returns. Sockin and Xiaolan (2020) study costly information acquisition by managers, and, like us, highlight the pecuniary externality that emerges because of the effect of contracts on equilibrium prices. In contrast to us, they show that a constrained social planner opts for more incentive provision and more benchmarking.

Our paper also relates to the literature on pecuniary externalities in competitive equi-

---

8 See also Ozdenoren and Yuan (2017) who conduct a related analysis in the context of an industry equilibrium, in a classical moral-hazard setting with many principal-agent pairs. They show that benchmarking is privately optimal but it creates overinvestment and excessive risk-taking at the industry level. Albuquerque, Cabral, and Guedes (2019) present a related model of industry equilibrium, enriched further with strategic interactions among firms in the industry, and show that benchmarking against peer performance induces agents to take correlated actions. Huang, Qiu, and Yang (2020) analyze a model of delegated asset management with asymmetric information and endogenous contracts (but without relative performance) to study the effect of institutional investors on price informativeness. Unlike us, they limit their analysis to privately optimal contracts and do not study welfare implications. Finally, Donaldson and Piacentino (2018) propose a model in which a rationale for benchmarking in managers’ contracts is to attract fund inflows.
librium settings with incomplete markets.\footnote{This literature goes back to Hart (1975), Greenwald and Stiglitz (1986), and Geanakoplos and Polemarchakis (1996).} Lorenzoni (2008) studies a model of credit booms in which a pecuniary externality arises from the combination of limited commitment and asset prices being determined in spot markets. Decentralized equilibria feature over-borrowing relative to what is constrained optimal. Both our setting and mechanism are very different, but we share a similar prediction that asset prices in the decentralized equilibrium fall between those in the constrained and unconstrained optima. He and Kondor (2016) study a model in which individual firms’ liquidity management decisions generate investment waves. These investment waves are constrained inefficient when future investment opportunities are noncontractible, and the social and private value of liquidity differs. In their model, overinvestment occurs during booms and underinvestment during recessions.

Gromb and Vayanos (2002) analyze a model in which competitive financially constrained arbitrageurs supply liquidity to the market, and fail to internalize the fact that changing their positions affects prices. A social planner can achieve a Pareto improvement by either reducing or increasing the arbitrageurs’ position. Davila and Korinek (2018) highlight a distinction between “distributive externalities” that arise from incomplete insurance markets and “collateral externalities” that arise from price-dependent financial constraints. The externality in our paper falls into the second category, broadly defined, although in our case the inefficiency arises from the incentive problem rather than financial constraints. Di Tella (2017) studies optimal contracts in a model where financial intermediaries trade capital on behalf of households and can divert cash flows. He shows that, due to a pecuniary externality, the competitive equilibrium is constrained efficient and can lead to the concentration of aggregate risk on financial intermediaries’ balance sheets.\footnote{In a follow-up paper, Di Tella (2019) characterizes the optimal financial regulation policy in such an economy and shows that the socially optimal allocation can be implemented with a tax on asset holdings.}

Biais, Heider, and Hoerova (2021) analyze a model in which protection buyers trade derivatives with protection sellers and there is moral hazard on the side of protection sellers. In their model, although prices enter incentive constraints, a pecuniary externality does not lead to constrained inefficiency, as it does in our model, because investors can trade insurance against the risk of fire sales. In Acemoglu and Simsek (2012), firms trade off providing insurance to workers and incentivizing them to exert effort. The authors show that, under certain conditions, equilibrium prices can tighten incentive constraints. They mainly focus on inefficient sharing of idiosyncratic risk. Instead, our focus is on the inefficient use of an additional signal—return of the benchmark portfolio—in the incentive contract.

There is some empirical evidence that benchmarking creates crowded trades. Lines...
(2016) observes that in times of high market volatility, portfolio tracking error rises. This leads portfolio managers to rebalance their portfolios towards benchmark stocks. He finds that this trading behavior leads to lower returns for the rebalanced portfolios.

Finally, our work is related to the rapidly growing literature on ESG investing. The closest paper in this strand is Pastor, Stambaugh, and Taylor (2021), who study the effects of ESG investors on stock returns and argue that green stocks should have lower expected returns than brown stocks. We study optimal incentive provision for ESG fund managers, a question that, to our knowledge, has not been addressed in the literature. Our contribution is to show that the managers’ optimal contracts should include ESG-tilted benchmarks.

3 Model

We embed a linear optimal-contracting problem into a general-equilibrium asset-pricing framework. In this section we set up the model and provide justification for our main assumptions.

3.1 Economy

Except for portfolio managers and their clients, our environment is standard. There are two periods, $t = 0, 1$. Investment opportunities are represented by $N$ risky assets (stocks) and one risk-free bond. The risky assets are claims to cash flows $\tilde{D}$, realized at $t = 1$, where $\tilde{D} \sim N(\mu, \Sigma)$. The variables $\tilde{D}$ and $\mu$ are $N \times 1$ vectors and $\Sigma$ is an invertible positive semi-definite $N \times N$ matrix. The risk-free bond pays an interest rate that is normalized to zero. The risky assets are in a fixed supply of $\bar{x} > 0$ shares, where $\bar{x}$ is an $N \times 1$ vector. The bond is in infinite net supply. Let $S$, an $N \times 1$ vector, denote asset prices.

There is a continuum of agents in the economy, of three types. First, there are “direct” investors—constituting a fraction $\lambda_D$ of the population—who manage their own portfolios. There are also portfolio or fund managers—a fraction $\lambda_M$—and fund investors who hire those managers—a fraction $\lambda_F$, with $\lambda_D + \lambda_M + \lambda_F = 1$. We assume for simplicity that each fund investor employs one manager, so that $\lambda_M = \lambda_F$. Fund investors can buy the bond directly, but cannot trade risky assets, so they delegate the selection of their portfolios to managers. Managers can invest the delegated funds in risky assets and the bond, but are restricted to invest their personal wealth in the bond.

Each agent has a constant absolute risk aversion (CARA) utility function over final

\footnote{The extension where one manager is hired by multiple investors acting collectively is straightforward.}
wealth (or compensation) \( W \), \( U(W) = -e^{-\gamma W} \), where \( \gamma > 0 \) is the coefficient of absolute risk aversion. Agents of type \( j \in \{D, F, M\} \) are endowed with \( x_j \) shares of risky assets, where \( \sum_{j \in \{D, F, M\}} \lambda_j x_j = \bar{x} \).

For fund investors, delegating investment to a portfolio manager has costs and benefits. On the one hand, as we will discuss in the next subsection, managers can potentially outperform direct investors. On the other hand, the manager’s portfolio choice is unobservable meaning that fund investors cannot perfectly control it. This is a realistic assumption because even when managers are required to disclose their portfolios at particular points in time, their actual portfolios between the disclosure dates typically differ from their reported portfolios (Kacperczyk, Sialm, and Zheng, 2008), and a fund investor cannot obtain detailed information on the manager’s trades. Furthermore, the managers incur a private cost in managing a portfolio. The combination of the private cost and the portfolios being unobservable will be the central friction in our model.

We do not model an agent’s choice to become a direct investor or a fund investor—the fractions of different investors in the population are exogenous. One could endogenize this choice, for example, by assuming heterogeneous costs of participating in the asset market. In Remark 4 at the end of Section 4 we describe the additional considerations that arise in this kind of extension, but we do not consider it here to maintain our focus on the central message of the paper.

### 3.2 Value Added and Costs of Asset Management

We assume that portfolio managers can potentially outperform direct investors. Throughout, we will work with per-share rather than per-dollar returns. So, the return for a direct investor’s portfolio \( x \) is given by \( x^\top (\tilde{D} - S) \). The manager’s returns are

\[
r_x = x^\top (\Delta + \tilde{D} - S) + \varepsilon,
\]

where \( \Delta \geq 0 \) is an exogenous vector and \( \varepsilon \sim N(0, \sigma_\varepsilon) \) is a (scalar) noise term. The manager incurs a private portfolio-management cost \( x^\top \psi \), where \( \psi > 0 \) is an exogenous vector.\(^\text{12}\)

\(^{12}\)Implicit in our expressions for the returns on the fund in (1) and the portfolio-management cost is that they scale linearly with the size of the portfolio. This is seemingly inconsistent with Berk and Green (2004) who assume that there are decreasing returns to scale in asset management, but it is not. Berk and Green explicitly attribute decreasing returns to scale to the price impact of fund managers. The bigger the portfolio invested in an alpha-opportunity, the smaller the return on a marginal dollar invested. Berk and Green’s model is in partial equilibrium and their price impact is simply an exogenous function of fund size. Ours is a general-equilibrium model, in which the price impact endogenously arises from a higher aggregate demand of portfolio managers for high-\( \Delta \) assets.
So managers in our model incur costs to generate excess returns of $x^\top \Delta + \varepsilon$ that we call “alpha.”

In this formulation, the managers’ alpha has nothing to do with superior information, which gives rise to stock-selection and market-timing abilities. If it did, then any direct investors who happened to buy the same assets or traded at the same time, without any knowledge of the $\Delta$’s, would earn the same returns. So this setup is consistent with the vast literature (e.g., Fama and French, 2010) that casts doubt on the ability to generate abnormal returns by stock picking or market timing.

Instead, the managers’ alpha comes from activities such as lending securities, delivering lower transactions costs (e.g., from crossing trades in-house or by obtaining favorable quotes from brokers) or providing liquidity (i.e., serving as a counterparty to liquidity demanders and earning a premium on such trades). We refer to these opportunities as “return-augmenting” activities.

There is a wealth of evidence establishing that securities lending, trading cost minimization, and liquidity provision are profitable activities for asset managers. For example, securities lending contributed 5% of total revenue of both BlackRock and State Street in 2017. While it has recently become possible for some retail investors to participate in securities lending, they earn lower returns for this activity and do not have the same opportunities as a large asset management firm. It is also well established that portfolio managers can profit from providing immediacy in trades, by either buying assets which are out of favor or selling ones that are in high demand.\footnote{In a classic paper, Keim (1999) estimates an annual alpha of 2.2% earned by liquidity provision activities of a fund. Rinne and Suominen (2016) document that the top decile of liquidity providing mutual funds outperform the bottom decile by about 60 basis points per year. Anand, Jotikasthira, and Venkataraman (2018) find similar estimates using a different sample of funds over a different time period.} It would be prohibitively expensive for retail investors to try to do this. Finally, Eisele, Nefedova, Parise, and Peijnenburg (2020) present evidence that trades crossed internally within a fund complex are executed more cheaply than comparable external trades.

The noise term $\varepsilon$ in (1) captures the fact that the return-augmenting activities do not produce a certain return each period. For example, the demand for liquidity, the opportunities to lend shares and the possibility of crossing trades all fluctuate, so even a very alert and skilled manager will have some randomness in her returns. Also for securities that are lent, there is a risk that they will not be returned in a timely manner or potentially at all.\footnote{One might wonder what happens if the noise is proportional to $x$ (that is, the noise term is $\varepsilon x$ instead of $\varepsilon$). This is a special case of the extension that we analyze in Appendix C. The algebra is more involved in this case, but the main mechanism is the same.}
We close this section by discussing some important assumptions in the model and alternatives that we could have made instead. One is that the manager incurs a private cost in order to deliver the abnormal returns. The existence of the costs seems very clear cut. For instance, to successfully buy and sell at the appropriate times to provide liquidity, the manager has to be actively monitoring market conditions while markets are open. For securities lending, the manager would also have to decide whether to accommodate requests to borrow shares. In some cases, these demands arise because the entity borrowing the shares wants to vote them and the manager must decide whether to pass up that choice.\footnote{Most managers also incur some costs that are observable and can be passed on directly to fund investors. Examples would include custody, audit, shareholder reports, proxies and some external legal fees. Our main results continue to hold in a model in which some costs are observable.}

It is also plausible that the benefits and costs associated with the return-augmenting activities are increasing in the size of the holdings.\footnote{Linearity allows us to solve the model in closed form, but what is important conceptually is that the cost is increasing in $x$. We show in Appendix C that while the algebra is messier, under some assumptions our main analysis extends to the case of more general specifications of the return and cost.} For example, in terms of the liquidity provision and trade-crossing, the wider the range of securities in the portfolio and/or the more a fund holds on any particular security, the easier it would be to provide liquidity or more likely it would be that a trade can be offset. For securities lending, a larger portfolio opens up additional lending opportunities. As mentioned earlier, it is simplest to think of the costs as being tied to the time it takes to undertake the various activities. Thought of this way, if the opportunities to augment returns increase as the portfolio expands, then the costs of realizing them would naturally grow too.

We could instead assume that the private cost arises because the manager needs to exert costly effort to generate the excess returns, as is often done in the contracting literature (e.g., Holmstrom and Milgrom, 1987, 1991). Incorporating effort makes the algebra much more involved.\footnote{Our results trivially extend if effort is bounded from above (e.g., if there is a time constraint), and the optimal solution is at the upper bound.} However, under certain assumptions our main insights extend to this case. Importantly, it is the unobservability of the portfolio holdings and not the unobservability of effort that is central to our mechanism. To make this clear and to focus on the key friction, in our main model we do not include an effort choice. We analyze an extension that incorporates effort in Appendix C and show that our main insights carry over.

Another concern one might have is that because the fund’s abnormal return $\Delta$ is exogenous, we are ignoring market participants who would be on the other side of the transaction. Presumably the other party would have an abnormal return of $-\Delta$ per share. In addition, one might argue that we are ignoring the effects of crowded trades on $\Delta$. To formalize
these considerations, one needs to be more precise on what activity generates $\Delta$. Since we attempt to capture several of them, in the main text we abstract from fully modeling any particular market. In Appendix D, we endogenize $\Delta$ and assume that it comes from securities lending. In this case, we show that when we account for the short sellers and endogenize $\Delta$, all our major insights carry through.

3.3 Managers’ Compensation Contracts

To provide incentives for the managers to invest in the risky assets and to generate alpha, the fund investors design compensation contracts. The managers receive compensation $w$ from fund investors. This compensation has three parts: one is a linear payout based on absolute performance of the manager’s portfolio $x$, the second part depends on the performance relative to the benchmark portfolio, and the third is independent of performance.\textsuperscript{18} Then

$$w = \hat{a}r_x + b(r_x - r_b) + c = ar_x - br_b + c,$$

(2)

where $r_x$ is the performance of the manager’s portfolio defined in (1) and $r_b = \theta^\top (\tilde{D} - S)$ is the performance of the benchmark portfolio $\theta$. The contract for a manager is $(\hat{a}, b, c, \theta)$—or, equivalently, $(a, b, c, \theta)$—where $\hat{a}$ (or $a$), $b$, and $c$ are scalars, and $\theta$ is an $N \times 1$ vector of benchmark weights such that $\sum_i \theta_i = 1$. We refer to $\hat{a}$ as the sensitivity to absolute performance and $b$ as the sensitivity to relative performance. Our main analysis and the intuitions that follow will be in terms of $a$ rather than $\hat{a}$. We refer to the variable $a$ as the manager’s “skin in the game.”\textsuperscript{19} The contract for a particular manager is optimally chosen by the fund investor who employs her. As we mentioned earlier, the manager is restricted to investing her personal wealth in the bond and so she cannot “undo” her contract via trading in her personal account.\textsuperscript{20}

We think of a manager’s contract as a compensation contract between a portfolio manager and her investment-advisor firm (e.g., BlackRock, who we assume is acting in the

\textsuperscript{18}This part captures features such as a fee linked to initial assets under management or a fixed salary or any fixed costs.

\textsuperscript{19}We assume here that returns from dividends and return-augmenting activities are not observed separately. In some cases, e.g., in the case of securities lending, it might be possible to observe them separately. We illustrate in Appendix E that our mechanism still applies in that case.

\textsuperscript{20}In practice, portfolio managers have a fiduciary duty to their investors. This precludes them from taking actions that harm the investors, or engaging in any activity that creates a conflict of interest between the manager and the fund investors. Compliance departments at asset management firms attempt to deal with these problems by requiring pre-approval of many types of trades by the manager or banning them altogether, and restricting when trading can occur. A trade such as shorting a manager’s benchmark would be blocked by these policies. (See U.S. Securities and Exchange Commission, 2004 for details.)
interests of the fund investors). The structure of the contract in (2) is consistent with empirical evidence. For example, Ma, Tang, and Gómez (2019) analyze mandatory disclosures by U.S. mutual funds and find that around 80% of the funds explicitly base managers’ compensation on performance relative to a benchmark (usually the prospectus benchmark, e.g., S&P 500, Russell 2000, etc.). Managers also have a fixed salary component, but the fraction of fund managers whose entire compensation consists of only fixed salary is very small.21

The restriction to linear contracts warrants some discussion. The justification for the use of linear contracts in environments with CARA preferences and normally-distributed returns goes back to the seminal work by Holmstrom and Milgrom (1987). They show that the solution to a general dynamic contracting problem with CARA preferences where the agent exerts effort over time is equivalent to a static one where the principle is constrained to using a linear compensation rule that depends on the final return.22 Intuitively, a linear contract effectively provides dynamic incentives by applying the same incentive pressure on the agent over time and thus precluding him, for example, from only occasionally exerting effort and shirking otherwise.

The restriction to linear contracts also makes our model tractable and allows us to find optimal contracts in closed form. The closed-form solutions allow us to show the reader exactly where the various effects are coming from. However, our main mechanism occurs because individual contracts change demand functions, causing the equilibrium prices to change, which dampens the effect of contracts on demands, and thus makes contracts less effective. Intuitively, this mechanism does not rely on contract linearity. So we have no reason to believe that this mechanism would change with non-linear contracts.

4 Analysis

4.1 Direct Investors’ and Managers’ Problems

At $t = 0$, each direct investor chooses a portfolio of risky assets, $x$, and the risk-free bond holdings to maximize his expected utility $-Ee^{-\gamma W}$. Since his return on the portfolio is

$^{21}$The performance-based bonus exceeds the fixed salary for 68% of the funds in the sample, constituting more than 200% of fixed salary for 35% of funds. In contrast, Ibert, Kaniel, Van Nieuwerburgh, and Vestman (2017) find surprisingly weak sensitivity of manager pay to performance for Swedish mutual funds.

$^{22}$Holmstrom and Milgrom (1987) restrict the agent’s action to affect only the mean of the random process but not the variance, which is not the case in our model (the portfolio choice affects both the mean and the variance of the return). However, Sung (1995) establishes the robustness of the Holmstrom and Milgrom’s linearity result by allowing the agent to also control the variance.
\(x^\top(\tilde{D} - S)\), the resulting time-1 wealth is \(W = \left(x_D^\top \right)^\top S + x^\top(\tilde{D} - S)\). It is well known that a direct investor’s maximization problem is equivalent to the following mean-variance optimization:

\[
\max_x x^\top (\mu - S) - \frac{\gamma}{2} x^\top \Sigma x.
\]

Each portfolio manager chooses a portfolio of risky assets \(x\) and the risk-free bond holdings to maximize \(-E\exp\{ -\gamma [ar_x - br_b + c - x^\top \psi]\}\), where the quantity inside the square brackets is her compensation net of private cost. This maximization problem is equivalent to the following mean-variance optimization:

\[
\max_x ax^\top (\Delta - \psi/a + \mu - S) - b\theta^\top (\mu - S) + c - \frac{\gamma}{2} \left[(ax - b\theta)^\top \Sigma (ax - b\theta) + a^2 \sigma_z^2\right].
\]

Note that the manager receives a fraction \(a\) of the per-share abnormal return on the assets, \(\Delta\), but pays the entire cost \(\psi\) per share. (We later show that \(a < 1\).)

Both the direct investors and managers take asset prices as given. Lemma 1 reports the optimal portfolio choices of the direct investors and managers arising from their optimizations.

**Lemma 1 (Portfolio Choice).** The direct investors’ and managers’ optimal portfolio choices are as follows:

\[
x^D = \Sigma^{-1} \frac{\mu - S}{\gamma},
\]

\[
x^M = \Sigma^{-1} \frac{\Delta - \psi/a + \mu - S}{a\gamma} + \frac{b\theta}{a}.
\]

A direct investor’s portfolio is the standard mean-variance portfolio, scaled by his risk aversion \(\gamma\). A manager’s portfolio choice differs from that of a direct investor in three dimensions. First, managers split their risky-assets investments between two portfolios: the (modified) mean-variance portfolio and the benchmark portfolio. The latter arises because the manager’s compensation is exposed to fluctuations in the benchmark. To mitigate this risk, she holds a hedging portfolio that is (perfectly) correlated with the benchmark, i.e., the benchmark itself.\(^{23}\) The split between the two portfolios is governed by the strength of the relative-performance incentives, captured by \(b\). The higher \(b\) is, the

---

\(^{23}\) This implication is very general, and we share it with other models that analyzed benchmarking, both in two-period and multi-period economies and for other investor preferences specifications. This result first appeared in Brennan (1993) in a two-period model. Cuoco and Kaniel (2011) and Basak and Pavlova (2013), among others, obtain it in dynamic models with different preferences.
closer the manager’s portfolio is to the benchmark. Second, because our managers have access to return-augmenting strategies, they perceive the mean-variance tradeoff differently from the direct investors and tilt their mean-variance portfolios towards high-Δ assets (i.e., they try to produce alpha). Consistent with this result, Johnson and Weitzner (2019) report that fund managers’ portfolios in their sample overweight assets with high securities-lending fees. Finally, the manager scales her (modified) mean-variance portfolio by $\frac{1}{a}$ relative to that of a direct investor. The reason for the scaling is that, as we can see from the first term in (2), for each share that a manager holds, she gets a fraction $a$ of the total return.

Substituting portfolio demands from Lemma 1 into the market-clearing condition for assets, $\lambda_M x^M + \lambda_D x^D = \bar{x}$, we find the expression for the equilibrium asset prices:

$$S = \mu - \gamma \Sigma \Lambda \bar{x} + \gamma \Sigma \Lambda \lambda_M \frac{b \theta}{a} + \Lambda \frac{\lambda_M}{a} \left( \Delta - \frac{\psi}{a} \right),$$

(5)

where $\Lambda \equiv [\lambda_M/a + \lambda_D]^{-1}$ modifies the market’s effective risk aversion.

Because contracts affect the managers’ demand functions, the equilibrium asset prices will depend on these contracts. Benchmarking and the tilt towards high-Δ assets push up prices, thus lowering the expected returns. Unlike the social planner, individual fund investors take prices as given and do not account for this pecuniary externality. We turn to the fund investors’ problem next.

4.2 Fund Investors’ Problem

Each fund investor chooses the contract $(a, b, c, \theta)$ and portfolio $x = x^M$ to maximize his expected utility subject to the manager’s participation and incentive constraints. The latter is the manager’s first-order condition (4), capturing the fact that the portfolio $x$ is the manager’s private choice.

To write the fund investor’s problem formally, it is convenient to express payoffs in terms of the following variables. Denote $y = ax - b \theta$ and $z = x - y$, which are effective allocations of asset holdings to the manager and fund investor, respectively. Then the fund investor’s and manager’s utilities (in the mean-variance form) can be written as follows:

$$U^F \left( a, \frac{b \theta}{a}, y, S \right) = x^\top (1 - a) \Delta + z^\top (\mu - S) - \frac{\gamma}{2} \left[ z^\top \Sigma z + (1 - a)^2 \sigma^2 \epsilon \right] - c + \left[ x_{-1}^F \right]^\top S,$$

$$U^M \left( a, \frac{b \theta}{a}, y, S \right) = x^\top (a \Delta - \psi) + y^\top (\mu - S) - \frac{\gamma}{2} \left[ y^\top \Sigma y + a^2 \sigma^2 \epsilon \right] + c,$$
where $x$ and $z$ are given by

\[
x = \frac{y}{a} + \frac{b\theta}{a},
\]

(6)

\[
z = \frac{1-a}{a}y + \frac{b\theta}{a}.
\]

(7)

Then the fund investor’s problem can then be written as follows:

\[
\max_{a,b,c,\theta,y} U^F
\]

s.t. \( U^M \geq u_0 \),

\[
y = \left( \sum i \Delta \psi/a + \mu - S \right) \gamma
\]

(9)

Constraint (8) is the manager’s participation constraint, where \( u_0 \) is (the mean-variance equivalent of) the value of manager’s outside option.\(^{25}\) Equation (9) is the manager’s (modified) incentive constraint.

We next discuss the roles that the contract parameters \( a, b, \) and \( \theta \) play in the fund investor’s maximization problem.

\subsection*{4.3 Contracts and Incentives}

As a point of reference, consider the first best where the manager’s portfolio choice is observable and contractible. The first-best contract involves efficient risk sharing between the (equally risk-averse) fund investor and manager and no benchmarking, \( a = 1/2 \) and \( b = 0.\(^{26}\) If the manager were facing the first-best contract but chose the portfolio privately, she would underinvest, especially in assets with high \( \psi \). A higher \( a \) reduces the manager’s effective cost \( \psi/a \), which increases her demand for risky assets. However, a higher \( a \) also exposes the manager to more risk, which makes her scale down \( x^M \), as reflected in the denominator(s) of (6). Thus the use of performance pay creates a tension between incentive provision and risk sharing.

The use of benchmarking, together with an appropriate benchmark selection, alleviates

\(^{24}\)The formulation of the fund investor’s problem in terms of the exponential utilities (rather than in the mean-variance form) can be found in Appendix A.

\(^{25}\)We do not model explicitly what this outside option is, as it does not matter for our main results. It can be exogenous, or it can be endogenized. Notice also that because of the contract’s constant component \( c \), in the mean-variance formulation utility becomes transferable, and the fund investor effectively maximizes the total utility of the fund investor and the manager subject to the manager’s incentive constraint. The manager’s participation constraint is then trivially satisfied by adjusting the constant \( c \).

\(^{26}\)See Lemma 6 in Appendix A for the formal analysis.
this tension by mitigating the adverse effect of $a$. Benchmarking shields the manager from risk by reducing variance in her compensation for a given portfolio choice.\textsuperscript{27} As a result, (for the same $a$) the manager invests more. In addition, if the benchmark portfolio puts a relatively higher weight on certain assets, the manager’s exposure to risk is reduced more for those assets, and she will invest proportionally more in them. That is, benchmarking protects the manager from risk, and an appropriate choice of the benchmark portfolio can help to improve incentives for alpha-production.

4.4 Privately Optimal Contracts

Notice that the fund investor fully internalizes the manager’s cost of managing the fund.\textsuperscript{28} But since the manager bears the cost privately and only receives fraction $a$ of the return, for her the effective cost is higher, which is why $\psi/a$ appears in (9). The actual (from the social perspective) and perceived (by the manager) marginal costs, $\psi$ and $\psi/a$, being different plays an important role in our analysis.

Notice that $b$ enters into the fund investor’s and manager’s problems only though $b\theta/a$. Therefore we take the first-order condition with respect to $b\theta/a$, and later derive the expression for $b$ separately. The first-order condition with respect to $b\theta/a$ is given by\textsuperscript{29}

$$\frac{\partial (U^F + U^M)}{\partial (b\theta/a)} = \Delta - \psi + \mu - S - \gamma \Sigma z = 0. \quad (10)$$

It captures the marginal effect on the total utility of the fund investor and the manager due to a higher demand by the managers in response to more benchmarking. This equation can be rewritten as\textsuperscript{30}

$$\gamma \Sigma b\theta = (2a - 1) (\Delta - \psi + \mu - S) + (1 - a) \left( \frac{1}{a} - 1 \right) $$

$$\psi. \quad (11)$$

The two terms on the right-hand side of equation (11) capture two considerations that fund investors have in mind when designing the benchmark. Note two extreme cases: $a = 1/2$ when efficient risk-sharing is achieved, and $a = 1$ when the private and social costs are aligned. As we will show later, in the optimal contract $a \in (1/2, 1)$, so both terms on

\textsuperscript{27}By reducing the manager’s risk exposure, benchmarking makes it cheaper for the fund investor to implement any particular portfolio choice.
\textsuperscript{28}Formally, this can be seen by taking the first-order condition with respect to $c$, which implies that the Lagrange multiplier on the participation constraint equals one.
\textsuperscript{29}We show in Lemma 8 in Appendix A that the second-order conditions hold in both privately and socially optimal cases.
\textsuperscript{30}See the proof of Lemma 2 in Appendix A for the derivations.
the right-hand side of (11) are positive. The first term, \((2a - 1)(\Delta - \psi + \mu - S)\), arises because the fund investor recognizes that benchmarking increases the total expected surplus net of cost. Since \(a > 1/2\), the manager is exposed to more risk than is efficient, so the fund investor uses benchmarking to make her invest more, in particular in assets with a higher value added \(\Delta - \psi\). The second term, \((1 - a)(1/a - 1)\psi\), reflects the incentive-provision role of \(b\theta\). By protecting the manager from risk, benchmarking provides her with incentives to invest more. Such incentive provision is especially important for high-\(\psi\) assets because the manager is the most reluctant to invest in them.

Next, let us consider the first-order condition with respect to \(a\), which is given by

\[
0 = - (2a - 1)\gamma \sigma^2_x + \frac{1 - a}{a} \psi^T \frac{\partial y}{\partial a} = -(2a - 1)\gamma \sigma^2_x + (1 - a) \frac{\psi^T \Sigma^{-1} \psi}{\gamma a^3}. \tag{12}
\]

Notice the appearance of \(\partial y / \partial a\) in (12). It captures how a marginal increase in \(a\) affects the surplus through the direct response of the manager’s (modified) demand for the risky assets, \(y\). This is the incentive-provision channel. The other terms in (12) govern how risk is split between the fund investor and the manager (and thus also how much of the risky asset the manager buys). This is the risk-sharing channel.

Unlike in (11), the incentive-provision term and the risk-sharing term have different signs. This means that there is a tradeoff between incentive provision and risk sharing. A higher \(a\) is beneficial as it provides incentives for alpha-production, but is also costly because it exposes the manager to too much risk.

Substituting the expression for \(S\), we obtain closed-form expressions for equilibrium contracts given in part (i) of the next lemma.

**Lemma 2.** In the equilibrium with the privately optimal contract,

(i) \(a = a^{\text{private}}\), \(b = b^{\text{private}}\), and \(\theta = \theta^{\text{private}}\) are given by

\[
0 = (1 - a) \frac{\psi^T \Sigma^{-1} \psi}{\gamma a^3} - (2a - 1)\gamma \sigma^2_x, \tag{13}
\]

\[
b = (2a - 1) \mathbf{1}^T \left[ \bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D(\Delta - \psi) \right] + (1 - a) \left[ \frac{1}{a} - \frac{\lambda_M}{a} - \lambda_D \right] \frac{\psi^T \Sigma^{-1} \psi}{\gamma}, \tag{14}
\]

\[
\theta = \frac{2a - 1}{b} \left[ \bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D(\Delta - \psi) \right] + \frac{1 - a}{b} \left[ \frac{1}{a} - \frac{\lambda_M}{a} - \lambda_D \right] \frac{\psi^T \Sigma^{-1} \psi}{\gamma}; \tag{15}
\]
(ii) the asset prices are given by

$$S_{private} = \mu - \gamma \Sigma \bar{x} + \lambda_M \left(2\Delta - \psi - \frac{\psi}{a}\right),$$

(16)

and the fund portfolio is

$$x_{private}^M = 2\bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D \left(2\Delta - \psi - \frac{\psi}{a}\right).$$

(17)

Notice that there is a recursive structure to these conditions. The expression in (13) is a function solely of $a$. Then given $a$, (14) delivers the expression for $b$, and finally, given $a$ and $b$, (15) gives us expression for the benchmark weights $\theta$. Note that it immediately follows from (13) that $a_{private} \in (1/2, 1)$.

It is worth pointing out that as $\sigma^2_\varepsilon$ goes to zero, $a$ in the privately optimal contract approaches 1, and the allocation approaches the first-best one (see Lemma 6 in Appendix A.) Indeed, it is crucial for our results that the fund investor does not “sell the project” to the manager, i.e., $a < 1$. As an alternative to the assumption of $\sigma^2_\varepsilon > 0$, there are other modeling choices that would ensure that $a < 1$, for example, a lower-bound on $c$, the constant part of the contract.

Let us briefly comment on the expression for the equilibrium prices given by (16). Absent fund managers, the equilibrium prices would be $S = \mu - \gamma \Sigma \bar{x}$. Prices are higher in the presence of managers due to their higher demands as they engage in return-augmenting activities, as captured by the last term in (16). Notice that the term in parentheses is a sum of $\Delta - \psi$ and $\Delta - \psi/a$, which are the (marginal) extra expected returns net of costs as perceived by the fund investors and by the managers, respectively. Similarly, the equilibrium asset holdings of managers in (17) are higher when the opportunities for alpha-production are better. Notice that managers hold exactly $2\bar{x}$ when $\lambda_D = 0$. We will discuss this special case further in subsection 4.5.

For some of our results on benchmarking, we will need to impose the following assumptions.

**Assumption 1.** Suppose that

(i) $1^T [\bar{x} + \lambda_D \Sigma^{-1} (\Delta - \psi) / \gamma] > 0,$

(ii) $1^T \Sigma^{-1} \psi > 0.$

These assumptions are mild technical restrictions. They are trivially satisfied when the variance-covariance matrix $\Sigma$ is diagonal or when $\Delta$’s and $\psi$’s are the same for all assets (and
given that $\Delta - \psi \geq 0$). When $\Sigma$ is not diagonal (which implies that cross-price elasticities of the manager’s demand function are not zero), it is useful to interpret Assumption 1 as follows. Part (i) is a necessary and sufficient condition for the sum of shares (over all assets) that the manager holds in the first best to be positive (which is trivially satisfied if, for example, there is no short-selling). Part (ii) means that if the private cost $\psi$ increases by the same percentage for all assets, then the sum of shares (over all assets) that the manager holds in equilibrium goes down. In other words, the manager reduces total holdings when the cost is higher.

Using Assumption 1 and the equilibrium expression for $b$ presented in Lemma 2, we have the following result:

**Proposition 1 (Benchmarking is Optimal).** Suppose that Assumption 1 holds. Then the privately optimal contract involves benchmarking, that is, $b_{\text{private}} > 0$.

Proposition 1 is essentially a version of Holmstrom’s (1979) famous sufficient-statistic result—the use of an additional signal (in this case, the benchmark return) helps the contract designer provide incentives to the manager in a more effective way. Holmstrom’s result is general and does not require contract linearity, so while we have restricted our attention to linear contracts, we would expect that the manager’s compensation would depend on the benchmark return even with more general contracts. While Holmstrom’s result suggests that $b$ is different from zero in general, our Assumption 1 allows us to determine when $b$ is strictly positive, which is the relevant case given this application.

The above proposition helps us understand why benchmarking in the asset management industry is so pervasive. Benchmarking is useful to fund investors because it incentivizes the manager to engage more in risky return-augmenting activities by partially protecting her from risk. In the language of the asset management industry, benchmarked managers are being protected from “beta” (i.e., the fluctuations in the return of the benchmark portfolio) while being rewarded for alpha.

Next, we discuss the properties of the privately optimal benchmark weights. Using equation (15), the lemma below shows how these weights differ across assets with different value added or cost of alpha-production, which are $\Delta - \psi$ and $\psi$ respectively.

**Lemma 3.** Consider two assets, $i$ and $j$, that have the exact same characteristics except $\Delta_i - \psi_i \geq \Delta_j - \psi_j$ and $\psi_i \geq \psi_j$, with at least one inequality being strict. Then in the privately optimal contract, asset $i$ has a larger weight in the benchmark than asset $j$: $\theta_i^{\text{private}} > \theta_j^{\text{private}}$.  

---

31 See the proof of Lemma 6 in Appendix A.
The reason for this result is intuitive: fund investors recognize that manipulating benchmark weights allows them to provide more incentives for investment in assets where alpha-production is the most valuable. The effect of a larger $\psi$ on the benchmark weight is ambiguous, as can be seen from (15). On the one hand, the incentive problem is the most severe for assets with a larger $\psi$, and thus setting higher weight is most valuable for those assets. On the other hand, a larger $\psi$ reduces the total expected return, which reduces the marginal benefit of using $b\theta$ for protecting the manager from extra risk. However, for the same (or a larger) value added, higher-cost assets would have a higher weight in the privately optimal benchmark.

Fund investors design contracts to influence the manager’s demand for risky assets. Through the aggregate demand of the managers, contracts influence equilibrium asset prices, as given by (5). Prices then affect the marginal cost/marginal benefit tradeoff of contracts for all fund investors. Since fund investors take prices as given, they do not internalize how their choices of contracts (once aggregated) change the effectiveness of other fund investors’ contracts. In other words, fund investors impose an externality on each other through their use of contracts. In the next subsection, we ask what contract a planner, who is subject to the same restrictions as fund investors, would choose to internalize this externality.

### 4.5 Socially Optimal Contracts

We define the problem of such a constrained social planner as follows. The planner maximizes the weighted average of fund investors’ and direct investors’ utilities subject to the participation and incentive constraints of the managers, as well as the constraint that direct investors choose their portfolios themselves.\(^{32}\) As before, this problem can be equivalently rewritten in terms of mean-variance preferences.\(^{33}\) Define $U^D = \left(x^D\right)^\top S + \left(x^D\right)^\top (\mu - S) - \frac{\gamma}{2} \left(x^D\right)^\top \Sigma x^D$. Then the social planner’s problem is

$$\max_{a,b,c,\theta,y,x^D} \omega_F U^F + \omega_D U^D$$

subject to (8), (9), and (3).

---

\(^{32}\)Equivalently, instead of imposing the manager’s participation constraint, her utility can be included into the planner’s objective function with a Pareto weight $\omega_M$. For the transfer $c$ to be finite, we must have $\omega_M = \omega_F$. This is analogous to noticing that the Lagrange multiplier on the participation constraint, which effectively acts as the Pareto weight on the manager, equals $\omega_F$.

\(^{33}\)We provide the original formulation in terms of exponential utilities in Appendix A.
The social planner’s first-order condition with respect to $b\theta/a$ is

$$0 = \left[ \omega_F \left( x_F - x^M \right) + \omega_D \left( x_D - x^D \right) \right]^\top \frac{\partial S}{\partial (b\theta/a)}$$

$$+ \omega_F \left[ \frac{\partial (U_F + U_M)}{\partial (b\theta/a)} + \frac{\partial U_F}{\partial y} \frac{\partial S}{\partial (b\theta/a)} \right]. \quad (18)$$

The terms in the first line of (18) capture what we call the redistribution effect. Depending on the initial endowments and the Pareto weights, the social planner has incentives to use benchmarking to move prices so as to benefit one or the other party based on this redistribution motive. We discuss the redistribution effects in Remark 1 at the end of this section. To isolate the planner’s motive to correct the externality, we want to neutralize this redistribution motive. To do this, we set the Pareto weights $\omega_F = \omega_D$.\(^{34}\) Then by market clearing, $\omega_F \left( x_F - x^M \right) + \omega_D \left( x_D - x^D \right) = 0$, so the term in the first line of (18) is zero. Rewriting the term in the second line, (18) yields

$$0 = (\Delta - \psi + \mu - S - \gamma \Sigma z)^\top + \frac{1-a}{a} (\Delta + \mu - S - \gamma \Sigma z)^\top \frac{\partial y}{\partial S} \frac{\partial S}{\partial (b\theta/a)}, \quad (19)$$

or, equivalently,

$$\Delta - \psi \frac{\lambda_M/a + \lambda_D}{\lambda_M + \lambda_D} + \mu - S - \gamma \Sigma z = 0. \quad (20)$$

Compare (19) or (20) with (10). The second term in (19) captures the externality that the planner is trying to correct, and it is negative. The planner realizes that benchmarking inflates prices and thus reduces expected returns. Hence for the social planner the benefit of alpha-production is smaller due to this crowded-trades effect, or, equivalently, the cost is higher for the same unit of benefit: $\psi \left( \lambda_M/a + \lambda_D \right) / \left( \lambda_M + \lambda_D \right) > \psi$ in (20) instead of $\psi$ in (10). So from the planner’s point of view, alpha-production is less beneficial/more expensive, which, as we will see, will make her do less of it.

The planner’s first-order condition with respect to $a$ can be written as

$$(1-a) \psi^\top \Sigma^{-1} \psi \frac{\lambda_D}{\lambda_M + \lambda_D} - (2a-1) \gamma \sigma_z^2 = 0. \quad (21)$$

(See the proof of Lemma 4 in Appendix A for the derivations.) Compare this equation to

\(^{34}\)Choosing Pareto weights to cancel out the redistribution effects is equivalent to allowing the social planner to use transfers. The planner will then use transfers to equate the marginal utilities (weighted by Pareto weights) of different agents.
its analog in the private case, equation (12). Notice that the benefit of incentive provision captured by the first term in (21) is smaller than the corresponding term in (12). It is then easy to see that the social planner will use a lower \( a \) than individual fund investors. We will formalize this result later in Proposition 2. While this result is immediate given equations (12) and (21), the derivation of (21) is quite involved, so the result about the comparison between the coefficients \( a \) in the two cases is rather subtle and crucially relies on the use of benchmarking. We will come back to this in the discussion of Proposition 2.

Substituting the equilibrium prices into the first-order conditions and using the definition of \( z \), we arrive at the following lemma, which describes the equilibrium contract and prices in closed form.

Lemma 4. **In the equilibrium with the socially optimal contract,**

(i) \( a = a^{social} \), \( b = b^{social} \) and \( \theta = \theta^{social} \) are given by

\[
0 = (1 - a) \frac{\psi^\top \Sigma^{-1} \psi}{\gamma a^3} \frac{\lambda_D}{\lambda_M + \lambda_D} - (2a - 1) \gamma \sigma_e^2, \tag{22}
\]

\[
b = (2a - 1) \frac{\bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D (\Delta - \psi)}{1 - a} \left[ \frac{1}{a} - \frac{\lambda_M / a + \lambda_D}{\lambda_M + \lambda_D} \right] 1^\top \frac{\Sigma^{-1}}{\gamma} \psi, \tag{23}
\]

\[
\theta = \frac{2a - 1}{b} \left[ \frac{\bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D (\Delta - \psi)}{1 - a} \left[ \frac{1}{a} - \frac{\lambda_M / a + \lambda_D}{\lambda_M + \lambda_D} \right] \frac{\Sigma^{-1}}{\gamma} \psi \right]; \tag{24}
\]

(ii) the asset prices are given by

\[
S^{social} = \mu - \gamma \Sigma \bar{x} + \lambda_M \left( 2\Delta - \frac{\lambda_M / a + \lambda_D}{\lambda_M + \lambda_D} \psi - \frac{\psi}{a} \right), \tag{25}
\]

and the fund portfolio is

\[
x^{M social} = 2\bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D \left( 2\Delta - \frac{\lambda_M / a + \lambda_D}{\lambda_M + \lambda_D} \psi - \frac{\psi}{a} \right). \tag{26}
\]

Equations (22)–(26) are the analogs of (13)–(17). As expected, the two sets of equations coincide when \( \lambda_M = 0 \), and hence there is no externality. But so long as there are managers, the socially and privately optimal contracts are different. Our analysis below will reveal how exactly they compare to each other.

We are now ready to present the central result of the paper.

**Proposition 2 (Socially vs. Privately Optimal Contracts).** (i) Compared to the
privately optimal contract, the socially optimal contract involves less “skin in the game,” that is, \( a^{\text{social}} < a^{\text{private}} \); (ii) Suppose that Assumption 1 holds. Then compared to the privately optimal contract, the socially optimal contract involves less benchmarking, that is, \( b^{\text{social}} < b^{\text{private}} \).  

As we have seen in our analysis, the use of contracts inflates prices and thus reduces the marginal benefit of incentive provision for everyone else. The social planner internalizes this effect, and opts for less incentive provision than fund investors.

An interesting special case is when there are no direct investors, \( \lambda_D = 0 \). In this case, each fund will hold exactly \( 2\bar{x} \) shares and the total alpha in the economy is fixed, equal to \( 2\bar{x}^\top \Delta \). The planner understands that incentive provision is unnecessary in this case, so there is no tradeoff between incentive provision and risk sharing. Indeed, by substituting \( \lambda_D = 0 \) into (22)–(23), it immediately follows that the socially optimal contract is \( a = 1/2 \) and \( b = 0 \), which coincides with the first-best one (see Lemma 6 in Appendix A). Interestingly, the fund investors ignore the fact that, in equilibrium, their contracts will not help them generate higher returns, and use contracts with \( a > 1/2 \) and \( b > 0 \), as can be seen from (13)–(14).

To further emphasize that benchmarking is crucial for the comparison between privately and socially optimal contracts, consider a case where benchmarking is exogenously set to zero, \( b = 0 \). In this case, all incentive provision and risk sharing has to be done through \( a \). As we discussed earlier, an increase in \( a \) has two opposing effects on the managers’ demands and hence prices. As a result, it can be shown that with \( b = 0 \) the comparison between \( a^{\text{social}} \) and \( a^{\text{private}} \) is ambiguous. Intuitively, both the marginal benefit of \( a \) (incentive provision) as well as its marginal cost (exposing the manager to more risk) are lower for the social planner who internalizes the effect of \( a \) on prices. Depending on which reduction is bigger, the planner can choose a higher or a lower \( a \) than the fund investors do. Thus, only because of benchmarking (\( b \neq 0 \)) can we be sure of the direction of the externality and are able to say that privately optimal contracts deliver excessive incentive provision.

We now show that excessive incentive provision and excessive benchmarking give rise to crowded trades and excessive costs.

**Proposition 3 (Crowded Trades and Excessive Costs of Asset Management).** Compared to the equilibrium corresponding to the privately optimal contract, in the equilibrium corresponding to the socially optimal contract

(i) the asset prices are lower, \( S^{\text{social}} < S^{\text{private}} \);  

---

\(^{36}\)We also show in the proof of Proposition 2 that \( b^{\text{social}}/a^{\text{social}} < b^{\text{private}}/a^{\text{private}} \).
(ii) the managers’ costs are lower, \( \psi^\top x^M_{social} < \psi^\top x^M_{private} \).

As Proposition 3 shows, excessive use of incentive contracts by fund investors inflates prices and reduces returns per share. In addition, the costs of asset management are excessively high. Our model thus contributes to the debate on whether costs of asset management are excessive and whether returns delivered by the managers justify these costs.

Finally, we discuss the benchmark weights. Lemma 3 continues to be valid in the economy with socially optimal contracts. In addition, we can compare the tilts to high value-added and/or high-cost assets in the privately and socially optimal contracts.

**Proposition 4 (Comparison of Benchmark Weights).** Suppose that Assumption 1 holds. Then the privately optimal benchmark underequals assets with higher value-added and overweights assets with higher costs compared to the socially optimal benchmark. Formally, consider two assets \( i \) and \( j \), that have the exact same characteristics except \( \Delta_i - \psi_i \geq \Delta_j - \psi_j \) and \( \psi_i \leq \psi_j \), with at least one inequality being strict. Then \( \theta^\text{social}_i - \theta^\text{social}_j > \theta^\text{private}_i - \theta^\text{private}_j \).

The intuition behind this result is a little tricky. Compare (15) and (24), and recall that the role of \( b_\theta \) is to protect the manager from risk as well as provide incentives. The first term in each equation captures the insurance consideration, while the second relates to incentive provision. The planner understands that the incentives are less powerful than the fund investors believe. The need to provide incentives is driven by \( \psi \), and hence the planner is more reluctant to use benchmark weights to provide incentives for high-\( \psi \) assets. And as the role of \( b_\theta \) in protecting the manager from risk is relatively more important than incentive provision, the planner will tilt the benchmark more towards high-value-added assets than individual fund investors would.

**Remark 1 (Redistribution Effects).** Through our choice of weights in the social welfare function, we have shut down the contracts’ redistribution effects and isolated the pecuniary externality that the planner desires to correct. For certain applications, such as those related to wealth inequality, however, it could be interesting to analyze the transfers from one set of agents to another that benchmarking generates. Allowing for redistribution changes outcomes depending on whether an agent is a (net) buyer of assets or a (net) seller. As we have argued, benchmarking boosts asset prices. This benefits (net) sellers of the assets at the expense of (net) buyers. If the social planner favors investors who have high endowments of assets and are planning to sell (e.g., the older generations), she has
incentives to use more benchmarking in order to inflate prices to assist them, and vice versa if she favors net buyers (who are typically the younger generations).

**Remark 2 (Prices Relative to the First Best).** According to Proposition 3, $S_{social} < S_{private}$. Surprisingly, the asset prices in the first-best case exceed equilibrium prices under both privately and socially optimal contracts, that is, $S_{social} < S_{private} < S^{FB}$.\(^{37}\) So, equilibrium prices in the constrained optimum are not closer to the unconstrained-optimum prices than the decentralized-equilibrium ones, but are instead further away.\(^{38}\) While this might be surprising at first glance, this result is in fact quite intuitive. Under the first best, the portfolio is observable and it is optimal to choose high-alpha portfolios. This, of course, will push up the asset prices and reduce expected returns. But, crowded trades are not a problem per se, because a pecuniary externality does not lead to an inefficiency in this case. In contrast, when the contract needs to provide incentives because the portfolio cannot be observed, a pecuniary externality does lead to an inefficiency, and crowded trades pose a problem as they reduce the effectiveness of incentive provision. While the comparison to the first best may not be relevant for practical purposes (as the first best is unattainable), it is helpful to highlight how exactly the mechanism that we explore works.

**Remark 3 (Achieving Social Optimum with Taxes).** Given that privately optimal contracts result in an externality, it is natural to ask whether some sort of taxes could implement the constrained social optimum. We provide a detailed analysis of this question in Appendix B. We find the following. First, the manager’s compensation needs to be (proportionally) taxed to make it more costly for the fund investor to provide incentives to the manager. This type of tax mimics the higher cost of incentive provision for the planner, who internalizes the externality. Second, the fund returns net of the manager’s compensation—which is the same as the fund investor’s earnings in our model—should be (proportionally) subsidized. While this might be counterintuitive, the subsidy motivates the fund investor to lower $\alpha$ by increasing the benefit of keeping a larger $1 - \alpha$. An alternative to the subsidy is imposing a cap $\bar{\alpha}$ on the fund manager’s “skin in the game.” Of course, the tax and subsidy rates (or, alternatively, the tax rate and the cap on $\alpha$) has to be chosen at particular levels that depend on the model parameters (see Appendix B for the formulas).

\(^{37}\)The expression for the first-best asset prices is given in Lemma 6 in Appendix A. Comparing it to $S_{private}$ given in Lemma 2 immediately yields the result.

\(^{38}\)This result parallels that in Lorenzoni (2008), where the decentralized equilibrium falls between the constrained and unconstrained optima in terms of amount of borrowing and asset prices. However, in Lorenzoni’s model the inequality signs in the price comparison are reverse—decentralized-equilibrium asset prices are lower than in the constrained optimum (higher in our model) and higher than in the first best (lower in our model).
Remark 4 (Endogenizing the Choice of Becoming a Fund vs. Direct Investor). To zero in on the main mechanism we consider in the paper, we exogenously fixed the fractions of different agents in the population. One could endogenize the choice of becoming a fund investor or a direct investor, for example, by assuming a heterogenous cost of participating in the asset market. This type of extension would introduce another channel through which crowded trades matter. The choices of individual investors of whether to be a fund investor or a direct investor, in the aggregate, would determine the size of the asset management sector. This in turn would affect the strength of the externality that we identify in the paper (i.e., how much contracts affect prices and thus effectiveness of contracts designed by others). When making their decisions, the individual agents ignore this effect while the planner would account for this “extensive margin” of the externality when designing contracts.

5 Application: Incentive Provision for ESG Investing

An important new trend in the asset management industry is a rapid growth of ESG assets under management. It is thus of interest to explore how fund investors should incentivize fund managers to hold portfolios that are optimal not just in terms of risk and return but also their ESG characteristics. In this section, we examine this question and argue that optimal ESG-tilted benchmarks should play a central role in providing incentives to fund managers.

Following Pastor, Stambaugh, and Taylor (2021), we assume that fund investors care not only about returns, but also about ESG characteristics of firms whose stocks they hold, e.g., they derive utility from holdings of green firms and disutility from holdings of brown firms. Formally, their utility function is $-e^{-\gamma(W+x^\top \kappa)}$, where $\kappa$ is an $N \times 1$ vector of nonpecuniary benefits that the agent derives from her stock holdings. We continue to assume that neither fund managers nor direct investors care about ESG characteristics of their portfolios.\textsuperscript{39}

How do optimal contracts change in the presence of ESG investors? The first-order condition with respect to $b\theta/a$ for the privately optimal case is given by

$$\kappa + \Delta - \psi + \mu - S - \gamma \Sigma z = 0,$$

\textsuperscript{39}It is straightforward to extend the model to the case in which direct investors also have ESG preferences. Since managers do not hold risky portfolios directly but only through the fund and only receive their compensation, it seems natural to assume that ESG characteristics do not enter into their utility directly.
which is an analog of equation (10) in Section 4.4. Since neither direct investors nor managers explicitly care about ESG, the equilibrium price $S$ is still given by (5) (although contract parameters will change because of ESG). Using (5), equation (27) can be rewritten as follows:\footnote{See the proof of Lemma 7 in Appendix A for derivations.}\footnote{Recall that} \footnote{Recall that}

$$
\frac{b\theta}{a} = \frac{\Sigma^{-1}}{\gamma \Lambda} \kappa + \left(2 - \frac{1}{a}\right) \left[\bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D (\Delta - \psi)\right] + \left(\frac{1}{a} - 1\right) \left[\frac{1}{a} - \left(\frac{\lambda_M}{a} + \lambda_D\right)\right] \frac{\Sigma^{-1}}{\gamma} \psi. \tag{28}
$$

The analogous condition in the socially optimal case is

$$
\frac{b\theta}{a} = \frac{\Sigma^{-1}}{\gamma \Lambda} \kappa + \left(2 - \frac{1}{a}\right) \left[\bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D (\Delta - \psi)\right] + \left(\frac{1}{a} - 1\right) \left[\frac{1}{a} - \frac{\lambda_M/a + \lambda_D}{\lambda_M + \lambda_D}\right] \frac{\Sigma^{-1}}{\gamma} \psi. \tag{29}
$$

Expressions (28) and (29) capture the equilibrium benchmark portfolio—the hedging portfolio that the manager holds.\footnote{Recall that $x^M = \Sigma^{-1} \frac{\Delta - \psi/a + \mu - S}{a \gamma} + \frac{b\theta}{a}$.} It has the same form as before plus an additional term $\Sigma^{-1} \kappa / (\gamma \Lambda)$. Fund investors with ESG preferences seek to tilt the fund portfolio towards green and away from brown stocks, and they do so through their choice of an optimal benchmark. Recall from our previous discussion that the role of the benchmark in incentive provision to the manager is to fine-tune incentive provision for selecting individual stocks. Accordingly, optimal ESG benchmarks for both private and social cases satisfying (28) and (29) underweight brown and overweight green stocks. The analogs Lemma 3 and Proposition 4 below derive these results formally.

**Proposition 5. (Optimal ESG Benchmarks)** Consider two assets, $i$ and $j$, that have the exact same characteristics except $\kappa_i > \kappa_j$. Then in the privately optimal contract, asset $i$ has a larger weight in the benchmark than asset $j$: $\theta_{i\text{private}} > \theta_{j\text{private}}$.

**Lemma 5.** The privately optimal benchmark underweights assets with higher ESG characteristics compared to the socially optimal benchmark. Formally, consider two assets $i$ and $j$, that have the exact same characteristics except $\kappa_i > \kappa_j$. Then $\theta_{i\text{social}} - \theta_{j\text{social}} > \theta_{i\text{private}} - \theta_{j\text{private}}$.

The intuition for Lemma 5 is the same as for Proposition 4. The private cost for the manager in generating returns is perceived differently by the social planner and the private agents. Now the ESG considerations give another reason for why the weights differ...
across stocks for both the planner and the agents, and the difference in perceived incentive provision effectiveness amplifies the difference in weights.

5.1 Including ESG Score in the Manager’s Compensation

Our model reveals that incentive provision for ESG funds should include an ESG-tilted benchmark. Yet, in practice ESG fund managers are often benchmarked to standard market indices and the so-called ESG integration into fund portfolios is achieved through a constraint on the overall ESG score of the portfolios. In what follows, we assess the effectiveness of imposing such an ESG constraint and compare it to using the ESG benchmark.

Suppose that the manager operates under the constraint that the average ESG score must be no smaller than some lower bound $e^*$. That is, the manager’s problem is subject to the constraint

$$x^\top \kappa \geq e^*. \quad (30)$$

Denoting the Lagrange multiplier on (30) by $d$, the manager’s problem can be written as

$$\max_x d \left( x^\top \kappa - e^* \right) + ax^\top \left( \Delta - \frac{\psi}{a} + \mu - S \right) - b\theta^\top (\mu - S) + c$$

$$- \frac{\gamma}{2} \left[ (ax - b\theta)^\top \Sigma (ax - b\theta) + a^2 \sigma^2 \right].$$

The manager’s optimal portfolio is then given by

$$x^M = \Sigma^{-1} \frac{\Delta - \psi/a + \mu - S}{a\gamma} + \frac{b\theta}{a} + \frac{d}{a^2} \Sigma^{-1} \kappa. \quad (31)$$

The fund investor can be thought of as choosing $d$ directly rather than $e^*$, as there is a one-to-one relationship between the two. The fund investor then optimally chooses a contract $(a, b, c, d, \theta)$. His first-order condition with respect to $d/a^2$ is

$$(\kappa + \Delta - \psi + \mu - S - \gamma \Sigma z) \frac{\Sigma^{-1}}{\gamma} \kappa = 0, \quad (32)$$

which is satisfied automatically given (27). This tells us that any outcome that can be achieved through setting $d$ can also be achieved through the choice of the benchmark $(b\theta/a)$, and so the optimal level of $d$ is not pinned down separately from the benchmark. Indeed, as can be seen from the last two terms in (31), the effects of the benchmark and the ESG constraint on manager’s demand are interchangeable.

Thus, including a constraint on the average ESG score of the fund portfolio is redundant.
(i.e., brings no additional benefit to the fund investor) so long as the benchmark is chosen optimally. However, whenever the benchmark is not optimally chosen, including the ESG score in the compensation cannot generate incentives that are as effective as those provided by an optimally chosen benchmark. To see this, note that (32) does not imply (27) (unless we have only one risky asset).

To summarize, well-designed benchmarks give managers proper incentives to internalize investors’ ESG preferences. Furthermore, using a portfolio constraint is dominated by using the ESG-tilted benchmark.

6 Conclusions

We consider the problem of optimal incentive provision for portfolio managers in a general-equilibrium asset-pricing model. The optimal contacts involve benchmarking. We show that by ignoring the effects of contracts on equilibrium prices, fund investors impose an externality on each other—the effectiveness of their incentive contracts is lower than they perceive it to be. The reason is that contracts incentivize the managers to invest more in stocks with higher alpha as well as stocks in the benchmark. This boosts prices and lowers returns, making the marginal benefit of alpha-production lower for everyone. The social planner, who internalizes the effects of contracts on equilibrium prices, opts for less incentive provision, less benchmarking, and lower asset management costs.

We apply the model to analyze ESG investing, one of the fastest growing segments in asset management. Our model makes a novel prediction about the best way to incentivize this type of investing. Current industry practices tend to force the managers to have an average ESG score for their portfolio. Our model implies that it would be more efficient to use ESG-tilted benchmarks to provide incentives.

The use of a benchmark also contrasts with the ambitious plan announced by the Net Zero Asset Managers initiative to achieving ESG goals. The signatories of this plan intend to work with companies to reduce greenhouse gas emissions in order to stem climate change. While the benefit of doing so is clear, the cost of this approach is difficult to assess. Our past work (Kashyap, Kovrijnykh, Li, and Pavlova, 2021) suggests that firms inside benchmarks receive cost-of-capital subsidies. The use of benchmarks would be an alternative way of achieving the ESG goals.

In future work, it would be interesting to incorporate passive asset managers into the model. However, such an extension does present challenges. The existing evidence on

---

42See the Net Zero Asset Managers commitment at https://www.netzeroassetmanagers.org/.
the compensation contracts in the asset management industry covers only active funds. Very little is known about contracts of managers in passive funds. Before engaging in modeling of passive managers, it would be important to collect such evidence. A natural starting point would be to analyze the Statements of Additional Information filed by the U.S. mutual funds with the Securities and Exchange Commission, which contain information on managers’ compensation structure. If contracts of passive managers turn out to be incentive contracts, it would be interesting to understand the incentive problem they solve. It is not obvious what kind of incentive problem would result in optimal contracts that make the managers closely follow the benchmark. We leave this problem for future work.

References


Appendix A: Proofs

**Proof of Lemma 1.** Equation (3) immediately follows from taking the first-order condition of the direct investor’s problem with respect to $x$. Similarly, (4) follows from taking the first-order condition of the manager’s problem with respect to $x$. □

**Lemma 6 (First Best).** If $x$ is observable or if $\psi = 0$, then the optimal contract is $a = 1/2$ and $b = 0$, and the asset prices are given by $S^{FB} = \mu - \gamma \Sigma \bar{x} + 2\lambda M (\Delta - \psi)$.

**Proof of Lemma 6.** When $x$ is observable, the problem of the fund investor is simply to maximize $U^F + U^M$, or

$$\max_{a,b,\theta,x} x^T(\Delta - \psi + \mu - S)$$

$$- \frac{\gamma}{2} \left\{ (ax - b\theta)^T \Sigma (ax - b\theta) + [(1 - a)x + b\theta]^T \Sigma [(1 - a)x + b\theta] + \left[ a^2 + (1 - a)^2 \right] \sigma^2 \right\}.$$
The first-order condition with respect to $x$ is

$$x^M = \Sigma^{-1} \frac{\Delta - \psi + \mu - S}{\gamma [a^2 + (1-a)^2]} + (2a - 1) \frac{b\theta}{a^2 + (1-a)^2}. $$

The first-order condition with respect to $b\theta/a$ is given by (10).

Using (7) and (9), it can be rewritten as

$$0 = \Delta - \psi + \mu - S - \gamma \Sigma [\Sigma^{-1} \frac{\Delta - \psi/a + \mu - S}{\gamma} \frac{1}{a} - 1] + \frac{b\theta}{a},$$

$$\gamma \frac{b\theta}{a} = \left(2 - \frac{1}{a}\right) (\Delta - \psi + \mu - S) + \left(1 - \frac{1}{a}\right) \left(1 - \frac{1}{a}\right) \psi.\quad\quad (33)$$

where $\hat{u}_0$ is the exponential-utility version of $u_0$.\textsuperscript{43} It is well known that CARA utility with normally-distributed returns can be rewritten in a mean-variance form, leading to the problem described in Section 4.2.

**Proof of Lemma 2.** (i) The first-order condition with respect to $b\theta/a$ is given by (10).

Using (7) and (9), it can be rewritten as

$$0 = \Delta - \psi + \mu - S - \gamma \Sigma \left[\Sigma^{-1} \frac{\Delta - \psi/a + \mu - S}{\gamma} \frac{1}{a} - 1\right] + \frac{b\theta}{a},$$

$$\gamma \frac{b\theta}{a} = \left(2 - \frac{1}{a}\right) (\Delta - \psi + \mu - S) + \left(1 - \frac{1}{a}\right) \left(1 - \frac{1}{a}\right) \psi.\quad\quad (33)$$

\textsuperscript{43}In particular, if the manager’s outside option is risk-free, then $\hat{u}_0 = - \exp(-\gamma u_0)$. 

34
Using the expression for prices given in (5), this implies
\[ \gamma \sum b^\theta \frac{\theta}{a} = \left(2 - \frac{1}{a}\right) \left[\Delta - \psi + \gamma \sum \Lambda \left(\bar{x} - \lambda_M \frac{\theta}{a}\right) - \frac{\lambda_M}{a} \Lambda \left(\Delta - \frac{\psi}{a}\right)\right] + \left(1 - \frac{1}{a}\right) \left(\psi - \frac{\psi}{a}\right). \]

Rearranging terms and using the expression for \( \Lambda \) gives
\[ \gamma \sum \left[1 + \left(2 - \frac{1}{a}\right) \Lambda \lambda_M\right] \frac{\theta}{a} = \gamma \sum \Lambda \left(2 - \frac{1}{a}\right) \bar{x} + \left(2 - \frac{1}{a}\right) \lambda_D \Lambda \left(\Delta - \psi\right) + \left[1 - \frac{1}{a} - \left(2 - \frac{1}{a}\right) \frac{\lambda_M}{a} \Lambda\right] \left(\psi - \frac{\psi}{a}\right), \]
\[ \gamma \sum \Lambda \frac{\theta}{a} = \Lambda \left(2 - \frac{1}{a}\right) \left[\gamma \sum \bar{x} + \lambda_D \left(\Delta - \psi\right)\right] - \left[\frac{\lambda_M}{a} + \lambda_D \left(\frac{1}{a} - 1\right)\right] \Lambda \left(\psi - \frac{\psi}{a}\right), \] (34)
or
\[ b^\theta = (2a - 1) \left[\bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D \left(\Delta - \psi\right)\right] + (1 - a) \left[\frac{1}{a} - \frac{\lambda_M}{a} - \lambda_D\right] \frac{\Sigma^{-1}}{\gamma} \psi. \]

The expressions for \( b \) and \( \theta \) separately are then given by (14) and (15), respectively.

The first-order condition with respect to \( a \) is given by
\[ 0 = \frac{\partial(U^F + U^M)}{\partial a} + \frac{\partial U^F}{\partial y} \frac{\partial y}{\partial a} \]
\[ = -(2a - 1) \gamma \sigma_v^2 - (\Delta - \psi + \mu - S - \gamma \Sigma z)^\top \frac{y}{a^2} + \frac{1}{a} \left(\Delta + \mu - S - \gamma \Sigma z\right)^\top \frac{\partial y}{\partial a} \]
\[ = -(2a - 1) \gamma \sigma_v^2 + \frac{1}{a} \psi^\top \frac{\partial y}{\partial a}, \] (35)
where the last equality follows from (10). Using \( \partial y/\partial a = \Sigma^{-1} \psi/(\gamma a^2) \) (obtained by differentiating (9) with respect to \( a \) \), we arrive at (13).

(ii) Plugging (34) into the expression for prices (5), yields
\[ S_{\text{private}} = \mu - \gamma \Sigma \Lambda \bar{x} \left[1 - \lambda_M \left(2 - \frac{1}{a}\right)\right] + \lambda_M (\Delta - \psi) + \frac{\lambda_M}{a} \Lambda \left[\lambda_M + a \lambda_D\right] \left(\Delta - \frac{\psi}{a}\right) \]
\[ = \mu - \gamma \Sigma \bar{x} + \lambda_M \left(2\Delta - \psi - \frac{\psi}{a}\right). \]

Substituting (11) into (4) and rearranging terms, implies \( \gamma \sum x^M = (\Delta - \psi + \mu - S) + (\Delta - \psi/a + \mu - S) \). Substituting the expression for prices \( S = S_{\text{private}} \) derived above and rearranging terms yields (17). \[ \square \]

\[ ^{44} \text{Since the manager’s utility is maximized with respect to } y, (\partial U^M/\partial y)(\partial y/\partial a) \text{ does not appear in (35).} \]
Proof of Proposition 1. Immediately follows from (14) and Assumption 1. □

Proof of Lemma 3. Denote the \((k, \ell)\)-th element of matrix \(\Sigma^{-1}\) by \(e_{k,\ell}\), where \(e_{k,\ell} = e_{\ell,k}\) by symmetry. Since assets \(i\) and \(j\) are assumed to be identical (except for \(\Delta\)'s and \(\psi\)'s), we have \(e_{i,i} = e_{j,j}\) and \(e_{i,k} = e_{j,k}\) for all \(k \neq i, j\) (i.e., assets \(i\) and \(j\) have the same variance and covariance with other assets). As a result,

\[
\theta_i - \theta_j = [e_{i,i} - e_{i,j}] \left\{ \frac{2a - 1}{b\gamma} \lambda_D [\Delta_i - \psi_i - \Delta_j + \psi_j] + \frac{1 - a}{b\gamma} \left[ \frac{1}{a} - \frac{\lambda_M}{\lambda_D} \right] (\psi_i - \psi_j) \right\}.
\]

Because \(\Sigma^{-1}\) is positive definite, we have \(e_{i,i} > 0\), \(e_{i,i} e_{j,j} - e_{i,j}^2 > 0\), \(e_{i,i} > |e_{i,j}|\). As a result, \(e_{i,i} - e_{i,j} > 0\), and thus \(\theta_i > \theta_j\) whenever \(\Delta_i - \psi_i \geq \Delta_j - \psi_j\), \(\psi_i \geq \psi_j\), and at least one of the inequalities is strict. With a slight modification, this proof also applies to the socially optimal contract. □

The Social Planner’s Problem in Terms of Exponential Utilities:

\[
\max_{a,b,\theta,c,x:x=XM,XD} \tilde{\omega}_F E \exp \left\{ -\gamma \left[ (x^F_1)\top S + r_x - (ar_x - br_b) - c \right] \right\} - \tilde{\omega}_D E \exp \left\{ -\gamma \left[ (x^D_1)\top S + (xD)\top (D - S) \right] \right\}
\]

subject to (3), (4), and (33), where \(\tilde{\omega}_i, i = S, C\), are the modified Pareto weights.

From the first-order condition with respect to \(c\) it follows that the Lagrange multiplier on the participation constraint equals \(\tilde{\omega}_F MU_F / MU_M\), where \(MU_i\) denotes the expected marginal utility of agent \(i\). This value is the effective Pareto weight on the manager’s utility given that transfers between the fund investor and manager are allowed. Similarly, if transfers between fund investors and direct investors are allowed, then \(\tilde{\omega}_F MU_F = \tilde{\omega}_D MU_D\), and the redistribution effects is zero. Without transfers, the Pareto weights that cancel out the redistribution effects (in the formulation with exponential utilities) are equal to inverse marginal utilities, \(\tilde{\omega}_i = 1/MU_i\).

Rewriting the objective function and the participation constraint in the mean-variance form gives the problem described in Section 4.5.
Proof of Lemma 4. (i) The planner’s first-order condition with respect to \( bθ/a \) is

\[
\left[ \omega_F \left( x_{-1}^F - x^M \right)^\top + \omega_D \left( x_{-1}^D - x^D \right)^\top \right] \frac{∂S}{∂(bθ/a)} + \omega_F \left[ (Δ - ψ + μ - S - γΣz)^\top + (Δ + μ - S - γΣz)^\top \left( \frac{1}{a} - 1 \right) \frac{∂y}{∂S} \frac{∂S}{∂y} \right] = 0.
\]

Canceling out the redistribution effects, using \( \frac{∂y}{∂S} = -Σ^{-1}/γ \) and \( \frac{∂S}{∂(bθ/a)} = γΣΛM, \)
and the expression for \( z \), the above equation (or (19)) becomes

\[
0 = Δ - ψ + μ - S - γΣz - (Δ + μ - S - γΣz) \left( \frac{1 - a}{a} ΛM, \right.
\]

\[
0 = Δ - ψ + μ - S - γΣ \left[ \frac{1}{a} Δ - ψ/a + μ - S \right] + bθ/a - (1/a - 1)ΛM/M).
\]

Rearranging terms,

\[
γΣbθ/a = Δ - ψ + μ - S + \left( 1 - \frac{1}{a} \right) \left( Δ - ψ/a + μ - S \right) - ψ \frac{(1 - a)/aΛM}{1 - (1/a - 1)ΛM} = \gamma Σbθ/a = (2a - 1) \left( Δ - ψ + μ - S \right) + (1 - a) \left( 1 - \frac{1}{a} \right) \left( Δ - ψ + μ - S \right).
\]

(36)

Alternatively, from (20),

\[
γΣbθ/a = Δ - \frac{λM/a + λD}{λM + λD} + μ - S + \left( 1 - \frac{1}{a} \right) \left( Δ - ψ/a + μ - S \right),
\]

\[
γΣbθ/a = (2a - 1) \left[ Δ - \frac{λM/a + λD}{λM + λD} + μ - S \right] + (1 - a) \left( 1 - \frac{1}{a} \right) \left( Δ - ψ/a + μ - S \right).
\]

(37)

Substituting the expression for prices into (36) leads to

\[
bθ = (2a - 1) \left[ \bar{x} + \frac{Σ^{-1}}{γ} λD(Δ - ψ) \right] + (1 - a) \left[ 1 - \frac{λM/a + λD}{λM + λD} \right] \frac{Σ^{-1}}{γ} ψ.
\]

The expressions for \( b \) and \( θ \) separately are then given by (23) and (24).

\[\text{\textsuperscript{45}Because the manager’s and direct investor’s utilities are maximized with respect to } y \text{ and } x^D, \text{ respectively, by the Envelope theorem the only terms from their payoffs that enter the first-order conditions are those entering the redistribution term.}\]
The planner’s first-order condition with respect to $a$ is

$$
0 = \frac{\partial (U^F + U^M)}{\partial a} + \frac{\partial U^F}{\partial y} \left[ \frac{\partial y}{\partial a} + \frac{\partial y}{\partial S} \frac{\partial S}{\partial a} \right]
$$

$$
= (1 - 2a)\gamma \sigma^2 - (\Delta - \psi + \mu - S - \gamma \Sigma z)^\top \frac{y}{a^2} + \frac{1 - a}{a} (\Delta + \mu - S - \gamma \Sigma z)^\top \left[ \frac{\partial y}{\partial a} + \frac{\partial y}{\partial S} \frac{\partial S}{\partial a} \right].
$$

Compared to (35), there is an additional term containing $(\partial y/\partial S)(\partial S/\partial a)$. It reflects the planner’s understanding that the contract affects prices, which in turn affect the managers’ demands and thus the marginal benefit of alpha-production. However, unlike in the first-order condition with respect to $b\theta/a$, we cannot sign this extra term—recall that the effect of $a$ on the manager’s incentives is ambiguous. That is, for a given $b\theta/a$, the planner’s benefit of using $a$ can be higher or lower than that of an individual fund investor. Nonetheless, once the planner takes into account the adjustment in the optimal $b\theta$, the effect of $a$ that reduces $x^M$ (and thus lowers prices) is exactly offset by this adjustment. Thus the additional term that remains in the first-order condition with respect to $a$ is only the part that takes into account how a higher $a$ increases incentives for $x^M$, which in turn increases prices and reduces returns. Hence, the marginal benefit of $a$ for the planner is lower than for fund investors, and the possibility of benchmarking is crucial for this result.

To see this formally, use (19) to rewrite the above equation as follows:\(^{46}\)

$$
0 = -2a - (2a - 1)\gamma \sigma^2 + \frac{1 - a}{a} \left( \frac{\lambda_M}{a} + \frac{\lambda_D}{a} \right) \frac{\psi}{\gamma} \left[ \frac{\partial y}{\partial a} + \frac{\partial y}{\partial S} \frac{\partial S}{\partial a} + \frac{y}{a^2} \frac{\partial y}{\partial S} \frac{\partial S}{\partial (b\theta/a)} \right]
$$

$$
= -2a - (2a - 1)\gamma \sigma^2 + \frac{1 - a}{a} \left( \frac{\lambda_M}{a} + \frac{\lambda_D}{a} \right) \frac{\psi}{\gamma} \left[ \frac{\partial y}{\partial a} - \frac{\partial y}{\partial a} \frac{\lambda_M}{a} \frac{\lambda_M}{a} + \frac{\lambda_M}{a} \right].
$$

We can see that the effectiveness of incentive provision for the planner, captured by the term proportional to $\partial y/\partial a$, is smaller than for private fund investors in equation (12). Finally, using $\partial y/\partial a = \Sigma^{-1}\psi/(\gamma a^2)$, we obtain (22).

\(^{46}\)To get the second line, differentiate the market-clearing condition $\lambda_M(y/a + b\theta/a) + \lambda_D x^D = 0$ with respect to $b\theta/a$ and $a$ and use $\partial x^D/\partial S = \partial y/\partial S$ to get $\left( \frac{\lambda_M}{a} + \lambda_D \right) \frac{\partial y}{\partial S} \frac{\partial S}{\partial (b\theta/a)} = 0$ and $(\lambda_M + \lambda_D) \frac{\partial y}{\partial S} / \partial a - \lambda_M \frac{\partial y}{\partial a} + \lambda_M \frac{\partial y}{\partial a} = 0$ so that $\left( \frac{\lambda_M}{a} + \lambda_D \right) \left[ \frac{\partial y}{\partial S} / \partial a + \frac{y^2}{a^2} \frac{\partial y}{\partial S} / \partial (b\theta/a) \right] + \lambda_M \frac{\partial y}{\partial a} = 0$.\(^{38}\)
(ii) Following the same steps as in the proof of Lemma 2,

\[
S_{social} = \mu - \gamma \Sigma \bar{x} + \lambda_M (\Delta - \psi) + \lambda_M \left( \Delta - \frac{\psi}{a} \right) - \left( \frac{1}{a} - 1 \right) \frac{\lambda_M^2}{\lambda_M + \lambda_D} \psi
\]

\[
= \mu - \gamma \Sigma \bar{x} + \lambda_M \left( 2\Delta - \frac{\lambda_M a + \lambda_D \psi}{\lambda_M + \lambda_D} \right) - \left( \frac{1}{a} - 1 \right) \lambda_M \frac{\lambda_M}{a} + \lambda_D \left( \lambda_M + \lambda_D \right) \psi.
\] (38)

Substituting (37) into (4) and rearranging terms, gives

\[
\gamma \Sigma \bar{x}^M = \left[ \Delta - \frac{\lambda_M a + \lambda_D \psi}{\lambda_M + \lambda_D} \right] + \left[ \Delta - \frac{\psi}{a} + \mu - S \right].
\]

Substituting (38) and rearranging terms yields (26).

\[\Box\]

**Proof of Proposition 2.** (i) Comparison \(a_{social} < a_{private}\) follows straightforwardly from comparing (13) and (22).

(ii) Denote \(a_1 = a_{private}\) and \(a_2 = a_{social}\). We first prove that \(b_{social}/a_{social} < b_{private}/a_{private}\).

From (14) and (23),

\[
\frac{b_1}{a_1} = \left( 2 - \frac{1}{a_1} \right) 1^\top \left[ \bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D (\Delta - \psi) \right] + \left( \frac{1}{a_1} - 1 \right) \left[ \frac{1}{a_1} - \frac{\lambda_M}{a_1} - \lambda_D \right] 1^\top \frac{\Sigma^{-1}}{\gamma} \psi,
\]

\[
\frac{b_2}{a_2} = \left( 2 - \frac{1}{a_2} \right) 1^\top \left[ \bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda_D (\Delta - \psi) \right]
\]

\[
+ \left( \frac{1}{a_2} - 1 \right) \left[ \frac{1}{a_2} - \frac{1}{\lambda_M + \lambda_D} \right] \frac{\lambda_M}{a_2} + \lambda_D \right] 1^\top \frac{\Sigma^{-1}}{\gamma} \psi.
\]

Under Assumption 1, in order to show that \(b_1/a_1 > b_2/a_2\), it is sufficient to show that

\[
\left( \frac{1}{a_1} - 1 \right) \left[ \frac{1}{a_1} - \frac{\lambda_M}{a_1} - \lambda_D \right] > \left( \frac{1}{a_2} - 1 \right) \left[ \frac{1}{a_2} - \frac{1}{\lambda_M + \lambda_D} \right] \frac{\lambda_M}{a_2} + \lambda_D \right],
\]

which (given that both sides of the above inequality are positive) is equivalent to

\[
\frac{(1 - a_1)/a_1^2}{(1 - a_2)/a_2^2} \frac{\lambda_M + a_1 \lambda_D + (1 - 2a_1) \lambda_D}{(\lambda_M + a_2 \lambda_D) \lambda_M/(\lambda_M + \lambda_D) + (1 - 2a_2) \lambda_D} > 1.
\] (39)

From (13) and (22) we have

\[
\frac{1 - a_1}{a_1^2(2a_1 - 1)} = \frac{1 - a_2}{a_2^2(2a_2 - 1)} \frac{\lambda_M}{\lambda_M + \lambda_D}.
\] (40)

39
Substituting this into inequality (39), obtain
\[
\frac{a_1(2a_1 - 1)}{a_2(2a_2 - 1)} \frac{\lambda_D}{\lambda_M} + \frac{\lambda_M + a_1 \lambda_D + (1 - 2a_1) \lambda_D}{(\lambda_M + a_2 \lambda_D) \lambda_D / (\lambda_M + \lambda_D) + (1 - 2a_2) \lambda_D} > 1.
\]

Since \(a_1 > a_2\), it suffices to show that
\[
\frac{\lambda_M + a_1 \lambda_D + (1 - 2a_1) \lambda_D}{(\lambda_M + a_2 \lambda_D) \lambda_D / (\lambda_M + \lambda_D) + (1 - 2a_2) \lambda_D} > \frac{\lambda_D + \lambda_M}{\lambda_D},
\]

which is equivalent to
\[
\frac{\lambda_M(2a_2 - 1)}{\lambda_D(a_1 - a_2)} > 1. \tag{41}
\]

To show (41), we will use equation (40). Rearranging (40) yields
\[
\frac{1 - a_1}{a_1(2a_1 - 1)} \frac{\lambda_M}{\lambda_D} = \frac{1 - a_2}{a_2(2a_2 - 1)} - \frac{1 - a_1}{a_1(2a_1 - 1)},
\]

or, equivalently,
\[
\frac{\lambda_M(2a_2 - 1)}{\lambda_D} = \frac{a_1^3}{1 - a_1} \left[ \frac{(1 - a_2)(2a_1 - 1)}{a_2^3} - \frac{(1 - a_1)(2a_2 - 1)}{a_1^3} \right].
\]

The right-hand side of the above equation equals
\[
-\frac{a_1^3 + 2a_1^4 - 2a_1^4 a_2 + a_2 a_1^3 - (-a_2^3 + 2a_2^4 - 2a_2^3 a_1 + a_1 a_2^3)}{(1 - a_1) a_2^3}
= \frac{(a_1 - a_2)}{(1 - a_1) a_2^3} \left[ (1 + 2a_1 a_2)(a_1^2 + a_1 a_2 + a_2^2) + 2(a_1 + a_2)(a_1^2 + a_2^2) + a_1 a_2(a_1 + a_2) \right].
\]

Rearranging terms and doing some more algebra, yields
\[
\frac{\lambda_M(2a_2 - 1)}{\lambda_D(a_1 - a_2)} = \frac{(2a_1 - 1)a_1^2 (1 - a_2) + (2a_2 - 1)a_2^2 (1 - a_1) + (2a_1 - 1)a_1 a_2 + 2a_1 a_2^2 (1 - a_1)}{a_2^3 (1 - a_1)}. \]
Since $1/2 < a_2 < a_1 < 1$,
\[
\frac{\lambda_M(2a_2 - 1)}{\lambda_D(a_1 - a_2)} > \frac{(2a_1 - 1)a_1^2(1 - a_2) + (2a_2 - 1)a_2^2(1 - a_1) + (2a_1 - 1)a_1a_2 + a_2^2(1 - a_1)}{a_2^2(1 - a_1)} > 1,
\]
and thus (41) holds. Therefore $b_1/a_1 > b_2/a_2$. Using this and $a_1 > a_2(> 1/2)$, it follows that $b_1 > b_2$. □

Proof of Proposition 3. (i) The result follows immediately from comparing (16) and (25) and using part (i) of Proposition 2:
\[
S_{\text{private}} - S_{\text{social}} = \lambda_M \left( \frac{1}{a_{\text{social}}} - \frac{1}{a_{\text{private}}} \right) \psi + \left( \frac{1}{a_{\text{social}}} - 1 \right) \frac{\lambda_M^2}{\lambda_M + \lambda_D} \psi.
\]
Since both terms on the right-hand side are strictly positive, $S_{\text{private}} > S_{\text{social}}$.

(ii) Using (17) and (26),
\[
\psi^\top (x_{M,\text{social}} - x_{M,\text{private}}) = \lambda_D \psi^\top \Sigma^{-1} \psi \left[ 1 - \frac{\lambda_M/a_{\text{social}} + \lambda_D}{\lambda_M + \lambda_D} + \frac{1}{a_{\text{social}}} - \frac{1}{a_{\text{private}}} \right].
\]
Since $\Sigma^{-1}$ is positive definite and the expression in square brackets is negative (because $a_{\text{social}} < a_{\text{private}} < 1$), we have $\psi^\top (x_{M,\text{social}} - x_{M,\text{private}}) < 0$. □

Proof of Proposition 4. Denote $a_1 = a_{\text{private}}$ and $a_2 = a_{\text{social}}$, and let $e_{i,j}$ be the $(i, j)$-th element of matrix $\Sigma^{-1}$ as defined in the proof of Lemma 3. Then
\[
\theta^\text{private}_i - \theta^\text{private}_j = \frac{2a_1 - 1}{b_1 \gamma} \lambda_D (e_{i,i} - e_{i,j}) \left[ \Delta_i - \Delta_j - (\psi_i - \psi_j) \right] + \frac{1 - a_1}{b_1 \gamma} \left( \frac{1}{a_1} - \frac{\lambda_M}{a_1} - \lambda_D \right) (e_{i,i} - e_{i,j})(\psi_i - \psi_j),
\]
\[
\theta^\text{social}_i - \theta^\text{social}_j = \frac{2a_2 - 1}{b_2 \gamma} \lambda_D (e_{i,i} - e_{i,j}) \left[ \Delta_i - \Delta_j - (\psi_i - \psi_j) \right] + \frac{1 - a_2}{b_2 \gamma} \left( \frac{1}{a_2} - \frac{\lambda_M/a_2 + \lambda_D}{\lambda_M + \lambda_D} \right) (e_{i,i} - e_{i,j})(\psi_i - \psi_j).
\]
Using similar steps as in the proof of $b_1 > b_2$ in part (ii) of Proposition 2 we can show that
\[ b_1/(2a_1 - 1) > b_2/(2a_2 - 1) \] and thus \((2a_1 - 1)/b_1 < (2a_2 - 1)/b_2\). Furthermore,

\[
\frac{1 - a_1}{b_1} \left[ \frac{1}{a_1} - \frac{\lambda_M}{a_1} - \lambda_D \right] = \left[ 1^\top \frac{\Sigma^{-1}}{\gamma} \psi + \frac{2a_1 - 1}{(1 - a_1)(1/a_1 - \lambda_M/a_1 - \lambda_D)} \right]^{-1},
\]

\[
\frac{1 - a_2}{b_2} \left[ \frac{1}{a_2} - \frac{\lambda_M}{a_2 + \lambda_D} \right] = \left[ 1^\top \frac{\Sigma^{-1}}{\gamma} \psi + \frac{2a_2 - 1}{(1 - a_2)[(1/a_2 - (\lambda_M/a_2 + \lambda_D)/(\lambda_M + \lambda_D)]} \right]^{-1}.
\]

From the proof of \(b_1 > b_2\) in part (ii) of Proposition 2 we know that

\[
\frac{2a_1 - 1}{(1 - a_1)(1/a_1 - \lambda_M/a_1 - \lambda_D)} < \frac{2a_2 - 1}{(1 - a_2)[(1/a_2 - (\lambda_M/a_2 + \lambda_D)/(\lambda_M + \lambda_D)]},
\]

so that

\[
\frac{1 - a_1}{b_1} \left[ \frac{1}{a_1} - \frac{\lambda_M}{a_1} - \lambda_D \right] > \frac{1 - a_2}{b_2} \left[ \frac{1}{a_2} - \frac{\lambda_M}{a_2 + \lambda_D} \right].
\]

Hence when \(\Delta_i - \psi_i \geq \Delta_j - \psi_j\) and \(\psi_i \leq \psi_j\), and at least one inequality is strict, we have \(\theta_i^{social} - \theta_j^{social} > \theta_i^{private} - \theta_j^{private}\). And conversely, if \(\Delta_i - \psi_i \leq \Delta_j - \psi_j\) and \(\psi_i \geq \psi_j\), and at least one inequality is strict, then we have \(\theta_i^{social} - \theta_j^{social} < \theta_i^{private} - \theta_j^{private}\). That is, the socially optimal contract puts relatively less weight on incentive provision (compared to the privately optimal contract) and thus relatively more weight on protecting the manager from risk. \(\Box\)

**Lemma 7.** In the case with ESG preferences considered in Section 5, the expression for the privately and socially optimal \(b\theta/a\) is given by (28) and (29), respectively.

**Proof of Lemma 7.** The fund investor’s mean-variance utility is now

\[
U^F = x^\top \kappa + x^\top (1 - a)\Delta + z^\top (\mu - S) - \frac{\gamma}{2} \left[ z^\top \Sigma z + (1 - a)^2 \sigma_x^2 \right] - c + \left[ x_{-1}^F \right]^\top S.
\]

The first-order condition with respect to \(b\theta/a\) is given by (27). The rest of the proof follows.
the same steps as the proof of Lemma 2. Using (7) and (9), (27) can be rewritten as

\[ 0 = \kappa + \Delta - \psi + \mu - S - \gamma \Sigma \left[ \Sigma^{-1} \frac{\Delta - \psi}{a} + \mu - S \right] \left( \frac{1}{a} - 1 \right) + \frac{b \theta}{a}, \]

\[ \gamma \Sigma \frac{b \theta}{a} = \kappa + \left( 2 - \frac{1}{a} \right) \left( \Delta - \psi + \mu - S \right) + \left( 1 - \frac{1}{a} \right) \left( 1 - \frac{1}{a} \right) \psi. \]

Using the expression for prices given in (5), this implies

\[ \gamma \Sigma \frac{b \theta}{a} = \kappa + \left( 2 - \frac{1}{a} \right) \left[ \Delta - \psi + \gamma \Sigma \lambda \left( \bar{x} - \lambda M \frac{b \theta}{a} \right) - \frac{\lambda M}{a} \Lambda \left( \Delta - \psi a \right) \right] + \left( 1 - \frac{1}{a} \right) \left( \psi - \psi a \right). \]

Rearranging terms and using the expression for \( \Lambda \) gives

\[ \gamma \Sigma \left[ 1 + \left( 2 - \frac{1}{a} \right) \Lambda \lambda M \right] \frac{b \theta}{a} = \kappa + \gamma \Sigma \lambda \left( 2 - \frac{1}{a} \right) \bar{x} + \left( 2 - \frac{1}{a} \right) \lambda D \Lambda (\Delta - \psi) + \left[ 1 - \frac{1}{a} - \left( 2 - \frac{1}{a} \right) \frac{\lambda M}{a} \Lambda \right] \left( \psi - \psi a \right), \]

\[ \gamma \Sigma \Lambda \frac{b \theta}{a} = \kappa + \Lambda \left( 2 - \frac{1}{a} \right) \left[ \gamma \Sigma \bar{x} + \lambda D (\Delta - \psi) \right] - \left[ \frac{\lambda M}{a} + \lambda D \left( \frac{1}{a} - 1 \right) \right] \Lambda \left( \psi - \psi a \right), \]

or

\[ \frac{b \theta}{a} = \frac{\Sigma^{-1}}{\gamma \Lambda} \kappa + \left( 2 - \frac{1}{a} \right) \left[ \bar{x} + \frac{\Sigma^{-1}}{\gamma} \lambda D (\Delta - \psi) \right] + \left( \frac{1}{a} - 1 \right) \left[ \frac{1}{a} - \left( \frac{\lambda M}{a} + \lambda D \right) \right] \frac{\Sigma^{-1}}{\gamma} \psi. \]

The derivations of (29) is an analogous modification of the proof of Lemma 4. 

**Proof of Proposition 5.** Let \( e_{i,j} \) be the \((i, j)\)-th element of matrix \( \Sigma^{-1} \) as defined in the proof of Lemma 3. Using the same steps as the proof of Lemma 3,

\[ \theta_i - \theta_j = (e_{i,i} - e_{i,j})(\kappa_i - \kappa_j) \frac{a}{b \gamma \Lambda}. \]

Because \( \Sigma^{-1} \) is positive definite, we have \( e_{i,i} > 0, e_{i,i} e_{j,j} - e_{i,j}^2 > 0, e_{i,i} > |e_{i,j}| \). As a result, \( e_{i,i} - e_{i,j} > 0 \), and thus \( \theta_i > \theta_j \) whenever \( \kappa_i > \kappa_j \). The same proof goes through for the socially optimal contract. 

**Proof of Lemma 5.** We have

\[ \theta_{i_{private}} - \theta_{j_{private}} = (e_{i,i} - e_{i,j})(\kappa_i - \kappa_j) \frac{a_{private}}{\gamma \Lambda}, \]

\[ \theta_{i_{social}} - \theta_{j_{social}} = (e_{i,i} - e_{i,j})(\kappa_i - \kappa_j) \frac{a_{social}}{\gamma \Lambda}. \]
Similar to the case without ESG preferences, it can be shown that \((b/a)^{social} < (b/a)^{private}\). It then immediately follows that \(\theta_i^{social} - \theta_j^{social} > \theta_i^{private} - \theta_j^{private}\). □

**Lemma 8.** In both private and social optima, the second-order conditions are satisfied.

**Proof of Lemma 8.** Denote by \(F_{b\theta/a}\) and \(F_a\) (the left-hand sides of) the first-order conditions with respect to \(b\theta/a\) and \(a\), respectively. From the proofs of Lemmas 2 and 4, once we plug in the first-order condition with respect to \(b\theta/a\) in the first-order condition with respect to \(a\), the remaining terms only depend on \(a\). Thus we can write \(F_a\) in the following form: \(F_a = g(a) + h(a, b\theta/a)\top F_{b\theta/a}\). The function \(g(a)\) is given by (the right-hand sides of) equations (13) and (22) in the privately and socially optimal cases, respectively.

Differentiating \(F_a\) with respect to \(a\) and \(b\theta/a\),

\[
F_{aa} = \frac{\partial F_a}{\partial a} = g'(a) + \frac{\partial h}{\partial a}(a, b\theta/a) F_{b\theta/a} + h\top(a, b\theta/a) F_{b\theta/a, a, a},
\]

\[
F_{a, b\theta/a} = \frac{\partial F_a}{\partial (b\theta/a)} = \frac{\partial h}{\partial (b\theta/a)} F_{b\theta/a} + h\top(a, b\theta/a) F_{b\theta/a, a, b\theta/a}.
\]

Notice that \(g'(a) < 0\) (this follows from (13) in the privately optimal case and from (22) in the socially optimal case). Suppose we knew that \(F_{b\theta/a, b\theta/a}\) is negative semi-definite. Then we can show that the following determinant has opposite sign of \(\det(F_{b\theta/a, b\theta/a})\):

\[
\det \begin{pmatrix} F_{b\theta/a, b\theta/a} & F_{b\theta/a, a, b\theta/a} h \\ h\top F_{b\theta/a, a, b\theta/a} & g'(a) + h\top F_{b\theta/a, a, b\theta/a} h \end{pmatrix} = \det(F_{b\theta/a, b\theta/a}) \det \left[ h\top F_{b\theta/a, a, b\theta/a} h + g'(a) - h\top F_{b\theta/a, a, b\theta/a} (F_{b\theta/a, b\theta/a})^{-1} F_{b\theta/a, a, b\theta/a} h \right]
\]

\[
= g'(a) \det(F_{b\theta/a, a, b\theta/a}) = - \det(F_{b\theta/a, a, b\theta/a}),
\]

where the first equality follows from \(\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B)\).

It remains to prove that \(F_{b\theta/a, b\theta/a}\) is negative semi-definite. In the privately optimal case, \(F_{b\theta/a, b\theta/a} = -\gamma \Sigma /a\). Since \(\Sigma\) is positive semi-definite, \(F_{b\theta/a, b\theta/a}\) is negative semi-definite. Similarly, in the socially optimal case, \(F_{b\theta/a, b\theta/a} = -\gamma \Sigma \Lambda M - \gamma \Sigma /a\), also negative semi-definite. □
Appendix B: Achieving the Social Optimum with Taxes
(for Online Publication)

This appendix analyzes how imposing taxes can implement the constrained socially optimal allocation and prices in the equilibrium in which contracts are chosen by fund investors. There are multiple ways of doing that, and we consider two alternatives here—one with proportional income taxes (or subsidies) on the managers and fund investors, the other with an income tax on the managers and a cap on $a$.

First, suppose there are proportional tax rates on the fund investors’ and managers’ incomes, denoted by $t$ and $t'$, respectively. The tax revenue—which is uncertain, given that the incomes are uncertain—is distributed to the fund investors as a lump-sum transfer $T$. Denote the constant and stochastic part of the transfer by $\tau_0$ and $\tau$ so that $T = \tau_0 + \tau^\top (\tilde{D} - S)$. How $\tau_0$ and $\tau$ are determined is discussed later.

Since we want to implement the constrained optimal allocation, the taxes and the lump-sum transfer will be such that $y = (1 - t')[ax - b\theta]$ and $z = (1 - t)[(1 - a)x + b\theta] + \tau$ are the same as in the constrained social optimum.

The utilities of the fund investor and manager with taxes can be written as

$$ U^F = (1 - t)(1 - a)x^\top \Delta + z^\top (\mu - S) - c(1 - t) + \tau_0 - \frac{\gamma}{2} \left[ z^\top \Sigma z + (1 - t)^2 (1 - a)^2 \sigma^2 \right], $$
$$ U^M = (1 - t')ax^\top \Delta - x^\top \psi + y^\top (\mu - S) + c(1 - t') - \frac{\gamma}{2} \left[ y^\top \Sigma y + (1 - t')^2 a^2 \sigma^2 \right]. $$

The manager’s demand function is

$$ x^M = \Sigma^{-1} \Delta - \psi/[a(1 - t')] + \mu - S + \frac{b\theta(1 - t')}{a(1 - t')} \theta. \quad (42) $$

To implement the social optimum, we need $a(1 - t') = a^{social}$ and $b\theta(1 - t') = (b\theta)^{social}$.

From the first-order condition with respect to $c$, the Lagrange multiplier on the manager’s participation constraint is $\xi = (1 - t)/(1 - t')$. The fund investor maximizes

$$ U^F + \xi U^M = [(1 - t)x + \tau]^\top (\Delta + \mu - S) + \tau_0 - \frac{1 - t}{1 - t'} x^\top \psi $$
$$ - \frac{\gamma}{2} \left\{ z^\top \Sigma z + \frac{1 - t}{1 - t'} y^\top \Sigma y + (1 - t) \left[ (1 - t)(1 - a)^2 + (1 - t')^2 \sigma^2 \right] \right\} \sigma^2. $$

45
subject to the manager’s incentive constraint (42),
\[ y = (1 - t')[ax - b\theta] + \tau. \]

The first-order condition with respect to \( b\theta/a \) is
\[ (1 - t)(\Delta + \mu - S - \gamma\Sigma z) - \frac{1 - t}{1 - t'} \psi = 0, \quad \Delta + \mu - S - \gamma\Sigma z - \frac{1}{1 - t'} \psi = 0. \] (43)

Recall that the planner’s first-order condition with respect to \( b\theta/a \) is
\[ \Delta + \mu - S - \gamma\Sigma z - \psi\lambda_M/a^{social} + \lambda_D = 0. \]

To equate the two, we need
\[ 1 - t' = (\lambda_M + \lambda_D)(\lambda_M/a^{social} + \lambda_D), \]

or
\[ t' = \frac{\lambda_M}{\lambda_M/a^{social} + \lambda_D} \frac{1 - a^{social}}{a^{social}}. \] (44)

Intuitively, the positive tax on the manager’s income inflates his costs relative to returns, which discourages him from investing in risky assets.

Notice, quite interestingly, that one tax rate, \( t' \) equates \( N \) first-order conditions (provided that \( a(1 - t') = a^{social} \)), since \( \theta \) is an \( N \times 1 \) vector.

The first-order condition with respect to \( a \) is
\[ (1 - t)[(1 - t)(1 - a) - (1 - t')a] \gamma\sigma_\varepsilon^2 + (\Delta + \mu - S + \gamma\Sigma z) \frac{1 - t}{1 - t'} \frac{1 - a}{a} \frac{\partial y}{\partial a} = 0. \]

Dividing by \( 1 - t \) and using (43), \( \partial y/\partial a = \Sigma^{-1} \psi/(\gamma a^2(1 - t')) \), and \( a(1 - t') = a^{social} \), the above condition can be rewritten as
\[ [(1 - t)(1 - a) - (1 - t')a] \gamma\sigma_\varepsilon^2 + \frac{1 - a}{(a^{social})^3} \frac{\psi^\top \Sigma^{-1} \psi}{\gamma} = 0. \]

Recall that the planner’s first-order condition with respect to \( a \) is
\[ (1 - 2a^{social}) \gamma\sigma_\varepsilon^2 + \frac{1 - a^{social}}{(a^{social})^3} \frac{\psi^\top \Sigma^{-1} \psi}{\gamma} \frac{\lambda_D}{\lambda_M + \lambda_D} = 0. \]
To equate the two, we need
\[
\frac{1-a}{(1-t)(1-a)-(1-t')a} = \frac{\lambda_D}{\lambda_M + \lambda_D} \frac{1-a^{social}}{1-2a^{social}}, \tag{45}
\]
From \(a = a^{social} / (1-t') = a^{social} (\lambda_M / a^{social} + \lambda_D) / (\lambda_M + \lambda_D)\), \(1-a = (1-a^{social}) \lambda_D / (\lambda_M + \lambda_D)\), and (45) simplifies to \((1-t)(1-a) - (1-t')a = 1 - 2a^{social}\), or
\[
t(1-a) + t'a = 0. \tag{46}
\]
Using the expression for \(t'\) given in (44) and \(a = a^{social} / (1-t')\), we have
\[
t = -\frac{\lambda_M}{\lambda_D}.
\]
That is, in order to implement the constrained social optimum, the fund manager’s income tax rate should be negative. Intuitively, in order to discourage the fund investor from setting \(a\) too high, the subsidy should be used so that the fund investor effectively retains a larger share of the return for himself. His after-tax share of the return equals \((1-t)(1-a) = 1 - (1-t')a\). That is, it is as if he only has to give \((1-t')a\) instead of \(a\) to the manager. Thus the income tax rates \(t\) and \(t'\) considered here effectively translate into the tax rates of \(t'\) imposed directly on \(a\) and \(b\theta\) such that \((1-t')a = a^{social}\) and \((1-t')b\theta = (b\theta)^{social}\).

Finally, the transfer to the fund investor that balances the budget is
\[
T = [t(1-a) + t'a]^{\top} (\Delta + \tilde{D} - S) + (t-t') [b\theta^{\top} (\tilde{D} - S) - c] \\
= (t-t') [b\theta^{\top} (\tilde{D} - S) - c],
\]
where the last equality follows from (46), and so \(\tau_0 = (t-t')c\) and \(\tau = (t-t')b\theta\). Note that while \(t-t' < 0\), the expected lump-sum transfer \((t-t') [b\theta^{\top} (\mu - S) - c]\) can be negative or positive depending on the value of the manager’s outside option, which pins down \(c\).

An alternative scheme that achieves the social optimum is a combination of the income tax rate \(t'\) given by (44) imposed on the manager together with a cap (an upper bound) on the sensitivity of the manager’s compensation with respect to the fund performance, \(a\), at \(\bar{a} = a^{social} / (1-t')\), so that \(a \leq \bar{a} = (\lambda_M + a^{social} \lambda_D) / (\lambda_M + \lambda_D)\). As before, the total amount of tax revenue should be paid to the fund investor as a lump-sum transfer.
Appendix C: Incorporating the Manager’s Effort Choice
(for Online Publication)

In this appendix we extend the model in the main text to incorporate the manager’s choice of effort. We will assume here that the effort choice is unobservable to the fund investor (the analysis of the case with observable effort is similar). We still assume, as in the main text, that the manager’s portfolio choice is unobservable as well. We will demonstrate that our main insights extend in this case. In particular, the individual fund managers overestimate the effectiveness of incentive provision relative to the planner, which results in crowded trades.

For simplicity, we consider the case with one risky asset (and one risk-free bond). Consider general functional forms, namely, suppose the benefit function is \( \tilde{\Delta}(x, e) \), the cost function is \( \tilde{\psi}(x, e) \), and the variance of the noise term is \( \tilde{\varepsilon}(x, e) \).

The manager’s problem is

\[
\max_{x, e} \ a \tilde{\Delta}(x, e) - \tilde{\psi}(x, e) + (ax - b)(\mu - S) - \frac{\gamma}{2} \sigma^2 (ax - b)^2 - \frac{\gamma}{2} a^2 \tilde{\varepsilon}(x, e) + c.
\]

The first-order conditions with respect to \( e \) is

\[
\frac{\partial \tilde{\Delta}}{\partial e} - \frac{1}{a} \frac{\partial \tilde{\psi}}{\partial e} - \frac{\gamma}{2} \frac{\partial \tilde{\varepsilon}}{\partial e} = 0.
\]

(47)

Think of the optimal effort solving (47) as \( e^*(x, a) \).

We impose the following assumptions.

**Assumption 2.** Suppose that for each \( a \in [1/2, 1] \), the function

\[
a \tilde{\Delta}(x, e) - \tilde{\psi}(x, e) - \frac{\gamma a^2}{2} \left[ x^2 + \varepsilon(x, e) \right]
\]

is concave in \((x, e)\). Moreover, denote

\[
\frac{df(x, e^*(x, a))}{dx} = \frac{\partial f}{\partial e} \frac{\partial e^*}{\partial x} + \frac{\partial f}{\partial x},
\]

where function \( f \) is either \( \tilde{\Delta}, \tilde{\psi}, \) or \( \tilde{\varepsilon} \), and \( e^*(x, a) \) is implicitly defined by (47). Suppose that for each \( a \in [1/2, 1] \),

\[
\frac{d\psi}{dx} > \frac{\gamma}{2} \left| \frac{d\varepsilon}{dx} \right|, \quad \frac{d^2 \psi}{dx^2} \geq \frac{\gamma}{2} \left| \frac{d^2 \varepsilon}{dx^2} \right|.
\]
The above inequalities require that the manager’s private cost is sufficiently increasing and sufficiently convex in \( x \) (once the optimal effort choice is taken into account).

We now proceed with the analysis of the manager’s problem. The manager’s first-order condition with respect to \( x \) (taking into account the fact that \( x \) affects the optimal choice of effort according to \( e^*(x,a) \)) is

\[
\mu - S - \gamma \sigma^2 (ax - b) + \frac{d\Delta}{dx} - \frac{1}{a} \frac{1}{a dx} - \frac{\gamma}{2} \frac{d\bar{\epsilon}}{dx} = 0. 
\]

(48)

Assumption 2 implies that the second-order conditions are satisfied, in particular,

\[
SOC_x \equiv -\gamma \sigma^2 a + \frac{d^2 \Delta}{dx^2} - \frac{1}{a} \frac{1}{a dx^2} - \frac{\gamma}{2} \frac{a^2 \bar{\epsilon}}{dx^2} < 0. 
\]

In what follows, we will use expressions for the effects of \( b \) and \( a \) on \( x \) that we derive below. Differentiating (48) with respect to \( b \),

\[
\gamma \sigma^2 + SOC_x \frac{dx}{db} = 0,
\]

\[
\frac{dx}{db} = -\frac{\gamma \sigma^2}{SOC_x} = \frac{\gamma \sigma^2}{\gamma \sigma^2 a - \frac{d^2 \Delta}{dx^2} + \frac{1}{a} \frac{1}{a dx^2} + \frac{\gamma}{2} \frac{a^2 \bar{\epsilon}}{dx^2}} > 0.
\]

Denote \( \frac{dx}{di} \equiv \frac{dx}{di} + \frac{dx}{S \frac{S}{di}} \), \( i \in \{a,b\} \). Taking a full derivative of (48) with respect to \( b \),

\[
\gamma \sigma^2 - \frac{\partial S}{\partial b} + SOC_x \frac{dx}{db} = 0. 
\]

(49)

Differentiating the market-clearing condition \( \lambda_M x + \lambda_D x^D = \bar{x} \) with respect to \( b \) (and using the expression for \( x^D \) in the main text),

\[
\lambda_M \frac{dx}{db} + \lambda_D \frac{dx^D}{db} = \lambda_M \frac{dx}{db} - \lambda_D \frac{1}{\gamma \sigma^2} \frac{\partial S}{\partial b} = 0,
\]

\[
\frac{\partial S}{\partial b} = \gamma \sigma^2 \frac{\lambda_M}{\lambda_D} \frac{dx}{db}.
\]

Substituting this into (49),

\[
\frac{dx}{db} = \frac{\gamma \sigma^2}{\gamma \sigma^2 \frac{\lambda_M}{\lambda_D} - SOC_x} = \frac{\gamma \sigma^2}{\gamma \sigma^2 \left( a + \frac{\lambda_M}{\lambda_D} \right) - \frac{\gamma \sigma^2}{\frac{d^2 \Delta}{dx^2} + \frac{1}{a} \frac{1}{a dx^2} + \frac{\gamma}{2} \frac{a^2 \bar{\epsilon}}{dx^2}}. 
\]

49
Notice that \( \frac{dx}{db} \leq \frac{\partial x}{\partial b} \), with strict inequality if \( \lambda_M > 0 \).

Similarly, differentiating (48) with respect to \( a \),

\[
\frac{\partial x}{\partial a} = \frac{1}{\gamma \sigma^2 a - \frac{d^2 \Delta}{dx^2} + \frac{1}{a} \frac{d^2 \psi}{dx^2} + \frac{\gamma}{2} a \frac{d^2 \tilde{\varepsilon}}{dx^2}} \left[ \frac{1}{a^2} \frac{d^\tilde{\psi}}{dx} - \frac{\gamma}{2} \frac{d \tilde{\varepsilon}}{dx} \right] - x \frac{\partial x}{\partial b}. \quad (50)
\]

The last term captures the negative effect of \( a \) on \( x \) because the manager is exposed to too much aggregate risk—the effect which \( b \) offsets. There is a new effect that we did not have before—a larger \( a \) reduces \( x \) if \( \tilde{\varepsilon} \) is increasing in \( x \) because it exposes the manager to more idiosyncratic risk, and this risk cannot be offset by an increase in \( b \). Notice that without it (as in the main text), we would have \( \frac{\partial x}{\partial a} + x \frac{\partial x}{\partial b} > 0 \), which captures the fact with \( b \) offsetting the negative effect of \( a \) on \( x \), we are only left with the positive effect that is coming from reducing the effective cost. We want to make sure that \( \frac{\partial x}{\partial a} + x \frac{\partial x}{\partial b} > 0 \).

Notice that if this was not the case, it would not be optimal for the fund investor to use \( a \) for incentive provision purposes. Assumption 2 ensures that, and we have

\[
\frac{\partial x}{\partial a} + x \frac{\partial x}{\partial b} = \frac{1}{\gamma \sigma^2 a - \frac{d^2 \Delta}{dx^2} + \frac{1}{a} \frac{d^2 \psi}{dx^2} + \frac{\gamma}{2} a \frac{d^2 \tilde{\varepsilon}}{dx^2}} \left[ \frac{1}{a^2} \frac{d^\tilde{\psi}}{dx} - \frac{\gamma}{2} \frac{d \tilde{\varepsilon}}{dx} \right] > 0.
\]

Similarly, we have

\[
\frac{dx}{da} + x \frac{dx}{db} = \frac{1}{\gamma \sigma^2 \left( a + \frac{\lambda_D}{\lambda_M} \right) - \frac{d^2 \Delta}{dx^2} + \frac{1}{a} \frac{d^2 \psi}{dx^2} + \frac{\gamma}{2} a \frac{d^2 \tilde{\varepsilon}}{dx^2}} \frac{1}{a^2} \frac{d^\tilde{\psi}}{dx} - \frac{\gamma}{2} \frac{d \tilde{\varepsilon}}{dx},
\]

which is smaller than \( \frac{\partial x}{\partial a} + x \frac{\partial x}{\partial b} \).

We now turn to the analysis of the fund investor's problem. Denoting \( y = ax - b \) and \( z = x - y \), this problem is

\[
\max_{a,b,c,x} (1 - a) \tilde{\Delta}(x, e^*(x,a)) + z(\mu - S) - \frac{\gamma \sigma^2}{2} z^2 - \frac{\gamma(1 - a)^2}{2} \tilde{\varepsilon}^2(x, e^*(x,a)) - c
\]

subject to the manager's participation constraint and incentive constraint (48) (in which we substituted \( e^*(x,a) \) implicitly defined by (47)).
The fund investor’s first-order condition with respect to $b$ is

$$\frac{d(U^F + U^M)}{db} = \frac{\partial U^F}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial U^M}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial (U^F + U^M)}{\partial b} = 0. \quad (51)$$

The last term captures how $b$ directly affects the social welfare by linearly transferring from $y$ to $z$. The first term captures the indirect effect of $b$ on social welfare through its effect on the manager’s demand $x$. Intuitively, notice that $\frac{\partial U^F}{\partial x}$ should be positive, otherwise $b$ would not be positive. We will show that $\frac{\partial U^F}{\partial x} > 0$ formally below. The last term in (51) is

$$\frac{\partial (U^F + U^M)}{\partial b} = -\frac{\gamma \sigma^2}{2} \frac{\partial (y^2 + z^2)}{\partial b} = \gamma \sigma^2 (y - z) = \gamma \sigma^2 [(2a - 1)x - 2b].$$

We will show below that this term is negative (notice that this term would be zero under perfect risk sharing $a = 1/2$ and $b = 0$.)

Using (48),

$$\frac{\partial U^F}{\partial x} = (1 - a) \left[ \frac{d \tilde{\Delta}}{dx} + \mu - S - \gamma \sigma^2 z - \frac{\gamma}{2} (1 - a) \frac{d \tilde{\varepsilon}}{dx} \right]$$

$$= (1 - a) \left[ \gamma \sigma^2 (y - z) + \frac{1}{a} \frac{d \tilde{\psi}}{dx} + \frac{\gamma}{2} (2a - 1) \frac{d \tilde{\varepsilon}}{dx} \right].$$

Then the investor’s first-order condition with respect to $b$ becomes

$$(1 - a) \left[ \gamma \sigma^2 (y - z) + \frac{1}{a} \frac{d \tilde{\psi}}{dx} + \frac{\gamma}{2} (2a - 1) \frac{d \tilde{\varepsilon}}{dx} \right] \frac{\partial x}{\partial b} + \gamma \sigma^2 (y - z) = 0, \quad (52)$$

or equivalently

$$\frac{(1 - a) \frac{\partial x}{\partial b}}{(1 - a) \frac{\partial x}{\partial b} + 1} \left[ \frac{1}{a} \frac{d \tilde{\psi}}{dx} + \frac{\gamma}{2} (2a - 1) \frac{d \tilde{\varepsilon}}{dx} \right] + \gamma \sigma^2 (y - z) = 0. \quad (53)$$

Notice that since the first term is strictly positive by Assumption 2, the second term is strictly negative. It then also follows that the term in the square brackets in 52 must be strictly positive, that is, $\frac{\partial U^F}{\partial x} = \frac{\partial (U^F + U^M)}{\partial x} > 0$. Intuitively, it means that it is optimal for the fund investor to use contracts to provide incentives. It also then follows that $b > 0$. Indeed, notice that at $b = 0$ and $a \in [1/2, 1]$, the left-hand side of (53) is strictly
positive given Assumption 2, and thus \( b \leq 0 \) cannot be optimal.

We will now compare the social planner’s first-order condition with respect to \( b \) to that of an individual fund investor. The planner’s first-order condition with respect to \( b \) (after canceling out the redistribution effects, as in the main text) is the same as the corresponding first-order condition for an investor, but \( \partial x / \partial b \) is being replaced with \( dx/db \), namely

\[
\frac{\partial U^F}{\partial x} \frac{dx}{db} + \frac{\partial(U^F + U^M)}{\partial b} = 0,
\]

or

\[
\frac{(1 - a) \frac{dx}{db}}{(1 - a) \frac{dx}{db} + 1} \left[ \frac{1}{a} \frac{d\tilde{\psi}}{dx} + \frac{\gamma}{2} (2a - 1) \frac{d\tilde{\varepsilon}}{dx} \right] + \gamma \sigma^2 (y - z) = 0.
\]

Since \( dx/db < \partial x / \partial b \) as long as \( \lambda_M > 0 \),

\[
\frac{(1 - a) \frac{dx}{db}}{(1 - a) \frac{dx}{db} + 1} < \frac{(1 - a) \frac{\partial x}{\partial b}}{(1 - a) \frac{\partial x}{\partial b} + 1}.
\]

It then follows that under Assumption 2, the additional terms in the planner’s first-order condition relative to the investor’s first-order condition are strictly negative.

Now consider the first-order condition with respect to \( a \). In the privately optimal case, it is

\[
d(U^F + U^M) = \frac{\partial U^F}{\partial x} \frac{dx}{da} + \frac{\partial U^F}{\partial e} \frac{de}{da} + \frac{\partial(U^F + U^M)}{da} = 0.
\]

Rewrite this to get

\[
d(U^F + U^M) = (1 - a) \left[ \gamma \sigma^2 (y - z) + \frac{1}{a} \frac{d\tilde{\psi}}{dx} + \frac{\gamma}{2} (2a - 1) \frac{d\tilde{\varepsilon}}{dx} \right] \frac{dx}{da}
+ (1 - a) \left[ \frac{\delta A}{\partial e} - \frac{\gamma}{2} (1 - a) \frac{de}{\partial e} \right] \frac{de}{da} - \gamma \sigma^2 (y - z)x - \gamma \varepsilon^2 (2a - 1).
\]

\[
= (1 - a) \left[ \gamma \sigma^2 (y - z) + \frac{1}{a} \frac{d\tilde{\psi}}{dx} + \frac{\gamma}{2} (2a - 1) \frac{d\tilde{\varepsilon}}{dx} \right] \frac{dx}{da}
+ (1 - a) \left( \frac{1}{a} \frac{\partial \tilde{\psi}}{\partial e} + \frac{\gamma}{2} (2a - 1) \frac{\partial \tilde{\varepsilon}}{\partial e} \right) \frac{de}{da} - \gamma \sigma^2 (y - z)x - \gamma \varepsilon^2 (2a - 1) = 0.
\]
where the second equality uses (47). Then using (52), we can rewrite the above condition as follows:

\[
(1 - a) \left[ \gamma \sigma^2 (y - z) + \frac{1}{a} \frac{d \tilde{\psi}}{d x} + \frac{\gamma}{2} (2a - 1) \frac{d \tilde{\varepsilon}}{d x} \right] \left( \frac{\partial x}{\partial a} + x \frac{\partial x}{\partial b} \right) + (1 - a) \left[ \frac{1}{a} \frac{\partial \tilde{\psi}}{\partial e} + \frac{\gamma}{2} (2a - 1) \frac{\partial \tilde{\varepsilon}}{\partial e} \right] \frac{\partial e}{\partial a} - \gamma \varepsilon^2 (2a - 1) = 0.
\]

Using (53), the fund investor’s first-order condition with respect to \( a \) becomes

\[
(1 - a) \left( \frac{\partial x}{\partial a} + x \frac{\partial x}{\partial b} \right) \left[ \frac{1}{a} \frac{d \tilde{\psi}}{d x} + \frac{\gamma}{2} (2a - 1) \frac{d \tilde{\varepsilon}}{d x} \right] + (1 - a) \left[ \frac{1}{a} \frac{\partial \tilde{\psi}}{\partial e} + \frac{\gamma}{2} (2a - 1) \frac{\partial \tilde{\varepsilon}}{\partial e} \right] \frac{\partial e}{\partial a}
\]

\[
- \gamma \varepsilon^2 (2a - 1) = 0.
\]

Notice that we need \( d \tilde{\psi}/d x > 0 \) or \( \partial \tilde{\psi}/\partial e > 0 \), otherwise \( a = 1/2 \) is optimal. This is guaranteed by Assumption 2.

The social planner’s first-order condition with respect to \( a \) is obtained from (54) by replacing

\[
(1 - a) \left( \frac{\partial x}{\partial a} + x \frac{\partial x}{\partial b} \right) \left[ \frac{1}{a} \frac{d \tilde{\psi}}{d x} + \frac{\gamma}{2} (2a - 1) \frac{d \tilde{\varepsilon}}{d x} \right] = \left( \frac{1}{a} - 1 \right) \left( \frac{1}{a} \frac{d \tilde{\psi}}{d x} - \frac{\gamma}{2} \frac{d \tilde{\varepsilon}}{d x} \right)
\]

\[
\gamma \sigma^2 - \frac{d^2 \Delta}{d x^2} + \frac{1}{a} \frac{d^2 \tilde{\psi}}{d x^2} + \frac{\gamma}{2} \frac{d^2 \tilde{\varepsilon}}{d x^2}
\]

by a strictly smaller term,

\[
(1 - a) \left( \frac{d x}{d a} + x \frac{d x}{d b} \right) = \left( \frac{1}{a} - 1 \right) \left( \frac{1}{a} \frac{d \tilde{\psi}}{d x} - \frac{\gamma}{2} \frac{d \tilde{\varepsilon}}{d x} \right)
\]

\[
\gamma \sigma^2 \left( 1 + \frac{\lambda_D}{\lambda_M} \right) - \frac{d^2 \Delta}{d x^2} + \frac{1}{a} \frac{d^2 \tilde{\psi}}{d x^2} + \frac{\gamma}{2} \frac{d^2 \tilde{\varepsilon}}{d x^2}.
\]

Recall that the term in square brackets in (54) is strictly positive (by Assumption 2). Therefore in the socially optimal case, there are additional negative terms (or the positive terms are smaller) in the first-order condition with respect to \( a \) relative to that in the privately optimal case.

As in the main model in the text, the planner recognizes that incentive provision is weaker than how individual fund investors perceive it. This is captured by additional negative terms in the first-order conditions for \( a \) and \( b \). Establishing that this implies that both \( a \) and \( b \) in the socially optimal case are smaller than those in the privately optimal case.
is no longer straightforward, and requires imposing additional assumptions on the cross-
derivatives and third derivatives of the functions $\tilde{\Delta}$, $\tilde{\psi}$ and $\tilde{\epsilon}$, which are hard to interpret.

Intuitively though, $b$ is used to undo some costs that arise from using a larger $a$, so we would expect that the planner sets both $a$ and $b$ lower than those in the privately optimal case.

We can still prove the crowded trades result, namely, $S^{\text{social}} < S^{\text{private}}$. Define $k = (a, b)$, $W(k, S) = U^F(k, S, x(k, S), e^*(k, x(k, S))) + U^M(k, S, x(k, S), e^*(k, x(k, S)))$. The fund investor’s problem is to maximize $W(k, S)$ with respect to $k$ taking $S$ as given. Since we cancel out redistribution effects in the social planner’s problem, it is equivalent to maximizing $W(k, S(k))$ with respect to $k$.

Denote the optimal solutions in the privately and socially optimal cases by $k^{\ast}_{\text{private}}$ and $k^{\ast}_{\text{social}}$, respectively. Notice that

$$W(k^{\ast}_{\text{social}}, S(k^{\ast}_{\text{social}})) > W(k^{\ast}_{\text{private}}, S(k^{\ast}_{\text{private}})) > W(k^{\ast}_{\text{social}}, S(k^{\ast}_{\text{private}}))$$

implying

$$W(k^{\ast}_{\text{social}}, S(k^{\ast}_{\text{social}})) > W(k^{\ast}_{\text{social}}, S(k^{\ast}_{\text{private}})).$$

Differentiating $W$ with respect to $S$ (and canceling the redistribution effects),

$$\frac{dW}{dS} = \frac{\partial U^F}{\partial x} \frac{dx}{dS} = (1 - a) \left\{ \gamma \sigma^2 [(2a - 1)x(S) - 2b] + \frac{1}{a} \frac{d\tilde{\psi}}{dx} + \frac{\gamma}{2} (2a - 1) \frac{d\tilde{\epsilon}}{dx} \right\} \frac{dx}{dS} < 0.$$

Differentiating with respect to $S$ one more time,

$$\frac{d^2W}{dS^2} = \frac{dW_S}{dx} \left( \frac{dx}{dS} \right)^2 + W_S \left( \frac{d^2x}{dS^2} \right)_{=0}$$

$$= \left[ \gamma \sigma^2 (2a - 1)x + \frac{1}{a} \frac{d^2\tilde{\psi}}{dx^2} + \frac{\gamma}{2} (2a - 1) \frac{d^2\tilde{\epsilon}}{dx^2} \right] \left( \frac{dx}{dS} \right)^2 > 0$$

by Assumption 2. Since $dW(k^{\ast}_{\text{social}}, S)/dS < 0$ at $S = S^{\ast}_{\text{social}}$, this implies that $W(k^{\ast}_{\text{social}}, S(k^{\ast}_{\text{social}})) < W(k^{\ast}_{\text{social}}, S)$ for $S < S(k^{\ast}_{\text{social}})$. Given inequality 55, it must be the case $S(k^{\ast}_{\text{social}}) < S(k^{\ast}_{\text{private}})$. It then also follows that $x(k^{\ast}_{\text{social}}) < x(k^{\ast}_{\text{private}})$. So the crowded trade results from the main text extends to the case with unobservable effort.
Appendix D: Endogenous $\Delta$ (for Online Publication)

In this appendix we consider the case in which $\Delta$ is determined in equilibrium in the market for securities lending. We add to the model a class of investors who wish to borrow stocks from fund managers so that they could sell them short. These investors therefore incur a borrowing cost of $\Delta$ per share, which allows the fund managers to earn revenue of $\Delta$ per share. Typical motives for shorting considered in the literature are (i) hedging and (ii) speculation. We choose the first one, so that the resulting model is not too far from our baseline setting. We believe that the insights of this appendix go through in alternative settings, so long as one is not adding market frictions together with additional classes of agents.

We consider a new group of agents, hedgers, $H$ (measure $\lambda_H$), endowed with $e^\top D$ units of consumption in period 1. They engage in short selling in period 0 for hedging purposes. Their utility (converted into the mean-variance form) is

$$\max_x (x + e)^\top \mu - x^\top S + x^\top \Delta 1_{x \leq 0} - \frac{\gamma}{2} (x + e)^\top \Sigma (x + e),$$

where $\Delta$ is the borrowing cost and it is incurred only when the hedgers’ demand is negative. It is easy to show that the hedgers’ portfolio demand is given by

$$x^H = \Sigma^{-1} \mu - S + \Delta \gamma - e.$$  \tag{56}  

We focus on the case when $e$ is large enough so that $x^H$ is negative element-by-element.

In practice, a fund manager would not be permitted to lend out the entire portfolio and would lend out only a fraction of it. We assume that the number of stocks lent out by the manager is $\ell x^M$, where $\ell \in (0, 1]$ is exogenous. The fund’s augmented return is now $\ell \Delta^\top x^M$ and the manager’s cost is $\ell \psi^\top x^M$. The manager’s holdings are then

$$x^M = \Sigma^{-1} \mu - S + \ell \Delta - \ell \psi/a \gamma + b \theta/a.$$  \tag{57}  

Substituting (56) and (57) into the securities lending market clearing condition,

$$\ell \lambda_M x^M + \lambda_H x^H = 0,$$  \tag{58}  

\footnote{Without loss of generality, we assume that the hedgers are endowed with zero shares at time zero.}
leads to the following expression for $S - \ell \Delta$:

$$S - \ell \Delta = \mu - \frac{1}{\lambda_H + \ell \lambda_M/a} \left[ \gamma \Sigma \left( \lambda_H e - \ell \lambda_M \frac{b \theta}{a} \right) + \ell \lambda_M \frac{\ell \psi}{a^2} - (1 - \ell) \lambda_H \Delta \right]. \quad (59)$$

With the new class of agents, the market clearing condition in the asset market becomes

$$\lambda_M x^M + \lambda_H x^H + \lambda_D x^D = \bar{x},$$

which, using (58), becomes

$$(1 - \ell)\lambda_M x^M + \lambda_D x^D = \bar{x}. \quad (60)$$

Substituting (3) and (57) and solving for $S - \ell \Delta$ yields

$$S - \ell \Delta = \mu - \frac{1}{\lambda_D + (1 - \ell)\lambda_M/a} \left[ \gamma \Sigma \left( \bar{x} - (1 - \ell) \lambda_M \frac{b \theta}{a} \right) + \lambda_D \ell \Delta - \frac{(1 - \ell) \lambda_M \ell \psi}{a} \right]. \quad (61)$$

Next, we will illustrate that the comparison between privately and socially optimal contracts is the same as before. To do this, we consider first-order conditions with respect to $b \theta / a$ and $a$. The first-order condition for the privately optimal case with respect to $b \theta / a$ and $a$ are

$$\ell \Delta - \ell \psi + \mu - S - \gamma \Sigma z = 0 \quad (62)$$

and

$$0 = -(2a - 1)\gamma \sigma_z^2 + \frac{1 - a}{a} (\ell \Delta + \mu - S - \gamma \Sigma z) \top \frac{\partial y}{\partial a}$$

$$= -(2a - 1)\gamma \sigma_z^2 + (1 - a)\ell \psi \Sigma^{-1} \psi \frac{1}{\gamma a^3}, \quad (63)$$

respectively.

Now consider the socially optimal case. Define $U^H = \left( x^H \right) \top (\Delta + \mu - S) + e \top \mu - \frac{\gamma}{2} \left( x^H + e \right) \top \Sigma \left( x^H + e \right)$. The social planner’s problem is

$$\max_{a, b, c, \theta, y, x^D} \omega_F U^F + \omega_D U^D + \omega_H U^H$$

56
subject to (3), (8), (56), and (57). Denote

\[ y = ax^M - b\theta = \Sigma^{-1} \mu - S + \ell\Delta - \ell\psi/a. \]

The social planner’s first-order condition with respect to \( b\theta/a \) is

\[
0 = \left[ \omega_F \left( x_F - x^M \right) + \omega_D \left( x_D - x^D \right) - \omega_H x^H \right]^\top \frac{\partial S}{\partial (b\theta/a)} + \left[ \omega_F \ell x^M + \omega_H x^H \right]^\top \frac{\partial \Delta}{\partial (b\theta/a)} + \left[ \ell\Delta - \ell\psi + \mu - S - \gamma \Sigma z \right]^\top \left[ \frac{1}{a} - 1 \right] \frac{\partial y}{\partial (S - \ell\Delta)} \frac{\partial (S - \ell\Delta)}{\partial (b\theta/a)} .
\]

As in the main text, we choose the Pareto weights to eliminate the redistribution effect. Specifically, if \( \omega_F = \omega_D = \omega_H \), then the terms in the first line of (64) are zero by market clearing. Thus the planner’s first-order with respect to \( b\theta/a \) becomes

\[
[\ell\Delta - \ell\psi + \mu - S - \gamma \Sigma z]^\top + [\ell\Delta + \mu - S - \gamma \Sigma z]^\top \left[ \frac{1}{a} - 1 \right] \frac{\partial y}{\partial (S - \ell\Delta)} \frac{\partial (S - \ell\Delta)}{\partial (b\theta/a)} = 0.
\]

(64)

Differentiating (59) and (61) with respect to \( b\theta/a \), we can solve for \( \frac{\partial (S - \ell\Delta)}{\partial (b\theta/a)} \):

\[
\frac{\partial (S - \ell\Delta)}{\partial (b\theta/a)} = \Gamma \gamma \Sigma ,
\]

where

\[
\Gamma = \frac{[\ell^2 \lambda_D + (1 - \ell)^2 \lambda_H] \lambda_M}{\lambda_D \lambda_H + [\ell^2 \lambda_D + (1 - \ell)^2 \lambda_H] \lambda_M/a} \in (0, 1).
\]

and using \( \partial y/\partial (S - \ell\Delta) = -\Sigma^{-1}/\gamma \), we can rewrite the social planner’s first-order condition with respect to \( b\theta/a \) as

\[
\ell\Delta - \frac{\ell\psi}{1 - (1/a - 1) \Gamma} + \mu - S - \gamma \Sigma z = 0 .
\]

(65)

The planner’s first-order condition with respect to \( a \) (after canceling out the redistribution effect) is

\[
0 = -2a - 1) \gamma \sigma^2 - (\ell\Delta - \ell\psi + \mu - S - \gamma \Sigma z)^\top \frac{y}{a^2} + \frac{1 - a}{a} \ell\Delta + \mu - S - \gamma \Sigma z)^\top \left( \frac{\partial y}{\partial a} + \frac{\partial y}{\partial (S - \ell\Delta)} \frac{\partial (S - \ell\Delta)}{\partial a} \right) ,
\]

57
which, using (64), becomes
\[
0 = -(2a - 1)\gamma\sigma_e^2 + \frac{1 - a}{a}(\ell\Delta + \mu - S - \gamma\Sigma z)^\top \left( \frac{\partial y}{\partial a} + \frac{\partial (S - \ell\Delta)}{\partial a} + \frac{y}{a^2} \frac{\partial y}{\partial (S - \ell\Delta)} \frac{\partial (S - \ell\Delta)}{\partial (b\theta/a)} \right).
\]

As in the main model, differentiating (60) with respect to \(b\theta/a\) and \(a\), we can show that
\[
\frac{\partial y}{\partial (S - \ell\Delta)} \frac{\partial (S - \ell\Delta)}{\partial a} + \frac{y}{a^2} \frac{\partial y}{\partial (S - \ell\Delta)} \frac{\partial (S - \ell\Delta)}{\partial (b\theta/a)} = -\Gamma a \frac{\partial y}{\partial a}.
\]

Thus the planner’s first-order condition with respect to \(a\) is
\[
0 = -(2a - 1)\gamma\sigma_e^2 + \frac{1 - a}{a}(\ell\Delta + \mu - S - \gamma\Sigma z)^\top \left( 1 - \frac{\Gamma}{a} \right) \frac{\partial y}{\partial a}
\]
\[
= -(2a - 1)\gamma\sigma_e^2 + (1 - a)\ell \frac{\psi^\top \Sigma^{-1}\psi}{\gamma a^3} \frac{1 - \Gamma/a}{1 - \Gamma/a + \Gamma}.
\]

Comparing (65) with (62) and (66) with (63), we can see that the benefit of incentive provision is lower for the planner than for private agents, just as in the main text. The same proofs as in the main model go through for this case and thus our main results continue to hold.

The intuition for why our results go through in the setting considered in this appendix is the following. First, all the frictions from the main model are still present. Second, the addition of hedgers and a motive for short selling does not create any additional sources of inefficiency. In particular, adding the hedgers does not complicate the contracting problem. Just as with direct investors, contracts only affect hedgers through the redistributional effect. The pecuniary externality occurs because prices (now both \(S\) and \(\Delta\)) enter the manager’s incentive constraint. So all the forces will be the same as in the main model. The mechanism for alleviating the friction is the same as in the main text, i.e., involves skin-in-the-game and benchmarking. The (qualitative) comparison of the privately and socially optimal contracts is also the same.

Appendix E: Contractible Revenues of Return-Augmenting Activities (for Online Publication)

In this appendix we consider what happens if the revenue from the return-augmenting activities, \(x^\top \Delta + \varepsilon\), is contractible. We will show that our main results extend, namely,
benchmarking is still optimal, and socially and privately optimal contracts differ as the planner recognizes that incentive provision is less effective than how fund investors perceive it. This holds unless there is only one risky stock or all stocks are identical. Intuitively, while the investors have one more instrument, this instrument is not enough to fine-tune incentives for multiple stocks and reach the first best.

Suppose the manager receives a fraction $\tilde{a}$ of it, so that her compensation is

$$w = (ax^\top - b\theta^\top)(\tilde{D} - S) + \tilde{a}(x^\top \Delta + \varepsilon) + c.$$  

As in the main text, denote $y = ax^\top - b\theta^\top$. Then the manager’s problem can be written as follows:

$$\max_y \left( \frac{y + b}{a} \right)^\top (\tilde{a}\Delta - \psi) + c + y^\top (\mu - S) - \frac{\gamma}{2} y^\top \Sigma y + c - \frac{\gamma \tilde{a}^2 \sigma^2}{2}.$$  

The manager’s first-order condition with respect to $y$ is

$$y = \Sigma^{-1} (\tilde{a}\Delta - \psi)/a + \mu - S,$$

and the equilibrium prices are

$$S = \mu - \gamma \Sigma \Lambda \left( \bar{x} - \lambda_M \frac{b}{a} \right) - \Lambda \frac{\lambda_M}{a} \tilde{a}\Delta - \psi.$$

Denoting $z = y(1 - a)/a + \theta b/a$, the fund investor’s problem is

$$\max_{a, \tilde{a}, b, c, y} \left( \frac{y + b}{a} \right)^\top (1 - \tilde{a})\Delta + z^\top (\mu - S) - \frac{\gamma}{2} z^\top \Sigma z - \frac{\gamma (1 - \tilde{a})^2 \sigma^2}{2} + c$$

s.t.

$$y = \Sigma^{-1} (\tilde{a}\Delta - \psi)/a + \mu - S.$$  

As in the main text, the first-order condition with respect to $b\theta/a$ is

$$\frac{\partial(U^F + U^M)}{\partial(b\theta/a)} + \frac{\partial U^F}{\partial y} \frac{\partial y}{\partial(b\theta/a)} = 0,$$

$$\Delta - \psi + \mu - S - \gamma \Sigma z = 0.$$  

This is a vector, which is equal to zero element by element.
The planner’s first-order condition with respect to $b\theta/a$ (after canceling out redistribution effects, as in the main text) is

$$\frac{\partial(U_F + U_M)}{\partial(b\theta/a)} + \frac{\partial U_F}{\partial y} \left[ \frac{\partial y}{\partial (b\theta/a)} + \frac{\partial y}{\partial S} \frac{\partial S}{\partial (b\theta/a)} \right] = 0,$$

$$(\Delta - \psi + \mu - S - \gamma \Sigma z)^\top + [(1 - \tilde{a})\Delta + (1 - a)(\mu - S - \gamma \Sigma z)]^\top \frac{1}{a} \frac{\partial y}{\partial S} \frac{\partial S}{\partial (b\theta/a)} = 0.$$ 

The additional terms in the planner’s first-order condition with respect to $b\theta/a$ evaluated at the privately optimal contract are

$$\frac{1}{a} [(1 - a)\psi + (a - \tilde{a})\Delta]^\top \frac{\partial y}{\partial a} \frac{\partial S}{\partial S} \frac{\partial S}{\partial (b\theta/a)} = \frac{1 - a}{a^2} \Delta \lambda_M [(1 - a)\psi + (a - \tilde{a})\Delta]^\top. \quad (67)$$

Notice that this is a vector; for the additional terms to be zero, this vector would have to be zero element by element.

The first-order condition with respect to $a$ in the privately optimal contract (after substituting the first-order condition with respect to $b\theta/a$) is

$$0 = [(1 - a)\psi + (a - \tilde{a})\Delta]^\top \frac{\partial y}{\partial a} = [(1 - a)\psi + (a - \tilde{a})\Delta]^\top \frac{1}{a} \frac{1}{\gamma} \Sigma^{-1} \left( \frac{\tilde{a}\Delta}{a} - \frac{\psi^\top}{a} \right). \quad (68)$$

The right-hand side is a number. Notice that this equality does not imply that (67) is zero element by element unless there is only one stock, or all stocks are identical. The first-order condition with respect to $a$ in the socially optimal contract is

$$\frac{\partial(U_F + U_M)}{\partial a} + \frac{\partial U_F}{\partial y} \left[ \frac{\partial y}{\partial a} + \frac{\partial y}{\partial S} \frac{\partial S}{\partial a} \right] = 0,$$

which can be rewritten as

$$0 = [(1 - a)\psi + (a - \tilde{a})\Delta]^\top \frac{\partial y}{\partial a} = [(1 - a)\psi + (a - \tilde{a})\Delta]^\top \frac{1}{a} \frac{1}{\gamma} \Sigma^{-1} \left( \frac{\tilde{a}\Delta}{a} - \frac{\psi^\top}{a} \right) \frac{\lambda_D}{\lambda_M + \lambda_D}.$$

Compared to (68), the right-hand side is only scaled down by a constant, so for the same $\tilde{a}$, the planner’s choice of $a$ coincides with the fund investor’s. However, we will see that $\tilde{a}_{social} \neq \tilde{a}_{private}$. 

60
The first-order condition with respect to \( \tilde{a} \) in the privately optimal case is

\[
0 = \left[ (1 - a)\psi + (a - \tilde{a})\Delta \right]^\top \frac{\partial y}{\partial \tilde{a}} + (1 - 2\tilde{a})\gamma \sigma_\varepsilon^2
\]

\[
= \left[ (1 - a)\psi + (a - \tilde{a})\Delta \right]^\top \frac{1}{a\gamma} \Sigma^{-1} \Delta + (1 - 2\tilde{a})\gamma \sigma_\varepsilon^2.
\]

Notice that because the vectors \( \partial y/\partial \tilde{a} \) and \( \partial y/\partial a \) are different from each other, \( \tilde{a} = 1/2 \) generally does not solve the above equation. The corresponding first-order condition in the socially optimal contract is

\[
\frac{\partial (U^F + U^M)}{\partial \tilde{a}} + \frac{\partial U^F}{\partial y} \left[ \frac{\partial y}{\partial \tilde{a}} + \frac{\partial y}{\partial S} \frac{\partial S}{\partial \tilde{a}} \right] = 0.
\]

This can be rewritten as

\[
0 = \left[ (1 - a)\psi + (a - \tilde{a})\Delta \right]^\top \frac{1}{a\gamma} \Sigma^{-1} \Delta \frac{\lambda_D}{\lambda_M + \lambda_D} + (1 - 2\tilde{a})\gamma \sigma_\varepsilon^2.
\]

Notice that this implies that there are additional negative terms in the planner’s first-order condition with respect to \( \tilde{a} \) as compared to the privately optimal first-order condition. As we saw above, the same is true for the first-order condition with respect to \( b\theta/a \), while the first-order condition with respect to \( a \) is undistorted.

Thus we conclude that, as in the main model, benchmarking is optimal and privately and socially optimal contracts differ.