Valuing Financial Data

Maryam Farboodi∗ Dhruv Singal†
Laura Veldkamp‡ Venky Venkateswaran§

October 17, 2021¶

Abstract

How should an investor value financial data? The answer is complicated as it not only depends on the investor himself, but also on the characteristics of all other investors. Portfolio size, risk aversions, trading horizon, and investment style affect an investor’s willingness to pay for data and the equilibrium value of data. Directly measuring all these characteristics of all investors is hopeless. Thus, we outline a simple model that gives rise to sufficient statistics that make an investor’s private value of data measurable. Our approach can value data that is public or private, about one or many assets, relevant for dividends or for sentiment. We find that investor characteristics always matter. What tempers the heterogeneity in how investors value data is market illiquidity. When investors’ trades move prices, the value of data falls, especially for the investors who value data most. The high sensitivity of the value of data to market liquidity, for high-data investors, suggests that modest fluctuations in market liquidity can eviscerate the value of financial firms whose main asset is financial data.

∗MIT Sloan, NBER and CEPR; farboodi@mit.edu
†Columbia Business School; dhruv.singal@gsb.columbia.edu
‡Columbia Business School, NBER, and CEPR; lv2405@columbia.edu
§NYU Stern School of Business and NBER; vvenkate@stern.nyu.edu
¶Thanks to Adrien Matray for valuable conversations and suggestions. Keywords: Data valuation, portfolio theory, information choice.
Investment management firms are gradually transforming themselves from users of small data and simple asset pricing models to users of big data and computer-generated statistical models. Amidst this transformation, investors’ strategic focus is shifting from the choice of pricing model to the choice of data they acquire. A key question for modern financial firms is: How much should they be willing to pay for a stream of financial data? This project devises and puts to use a methodology to estimate this dollar value, based the investor’s own characteristics, but without needing to know the characteristics of others.

From information-based theories, we know many qualitative features of firms that make data valuable – large firms, growth stocks, firms with risky payoffs, assets that are sensitive to news, assets that others are uninformed about. After all, data is simply a stream of digitized information. But for an investor who is considering purchasing a data set, knowing the representative investor’s theoretical value for the data is not very useful. An investor with a large portfolio values data more, while an investor who invests in a restricted set of assets values data less. An investor with lots of other data is less willing to pay for additional data, while an investor who trades more frequently might value data more or less. All these effects depend on the asset market equilibrium, which in turn depends on the characteristics of every other investor. Data value also depends on which other investors buy that same data. To make matters more complex, we also know that illiquidity or price impact of a trade make information less valuable. Kacperczyk, Nosal, and Sundaresan (2021), but how this interacts with investor heterogeneity, quantitatively, is less understood.

Our simple procedure to estimate the value of any data series, to an investor with specific characteristics, reveals enormous dispersion in how different investors value the same data. Unlike financial assets, data assets are not equally valuable to all. The dispersion in private valuations for data matters for our understanding of data markets because it suggest a low price elasticity of aggregate data demand.

It is important to point out that our procedure leads to an estimate of private value to an investor, which could be different from a transaction price that one might observe when data
is sold. Knowing the private values of market participants allows one to trace out a demand curve for data. Some investors would have values greater than the equilibrium price, some less. This is like a shopper determining how much they value a sweater. Knowing that the sweater’s market price is $50 does not make that the shopper’s value – it might be the wrong color or size. Alternatively, the shopper might be willing to pay $100 for the sweater and still not buy it because they find a similar sweater for less. Understanding how customers (investors) value a product (a data set) is different from calculating a market clearing or equilibrium price. Valuations are important because they allow us to evaluate consumer surplus and welfare, teach us about demand elasticity, markups and market competition, and allow one to ask if observed transactions prices are efficient.

Our measurement approach relies on sufficient statistics which are easily computable. While our measure is based on a model, we do not need to estimate most model parameters to arrive at a data value. In Section 2, we set up a noisy rational expectations model with rich heterogeneity in investors, assets and data types and derive the expected utility of data in dollar amounts. We show that a few sufficient statistics – average returns, variances and forecast errors – are all that is needed to price a piece or a stream of data. This is true regardless of whether the data is public, private, or known by some. Our sufficient statistics are also a valid measure regardless of how heterogeneous other investors’ preferences, data or investment styles are. They can be used to value data about asset fundamentals or about sentiment. Finally, with a small adjustment, they can be used in imperfectly competitive markets as well.

One could apply this tool to any finance-relevant data series, or any bundle of data series. As long as an investor knows their own characteristics and has access to a history of market prices and data realizations, they can attach a dollar value to any data. We present a small number of examples that highlight the importance of accounting for investor heterogeneity is so important for data valuation. Specifically, we compute the value of median analyst forecasts for earnings growth for investors of various types.
Our first exercise explores the role of investor wealth and risk preferences. We consider an investor who has a relative risk aversion of 2 and with an initial wealth of either a $1 million or a $100 million. The latter case is equivalent to considering an investor with lower absolute risk aversion. Of course, such an investor values information more, but the extent depends greatly on market structure, i.e. on whether their trades have price impact or not. When markets are competitive and a trade has no impact on the market price, data values increase almost linearly with wealth – an investor with 100 times more wealth values data by almost 100 times more. But when trades do move the market price, in line with empirical estimates of price impact, the value of data falls by an order or magnitude. A trader with 100 times larger wealth values data less than 10 times more. This illustrates the general pattern we see of enormous heterogeneity in willingness to pay for data, that is substantially tempered by a modest degree of market illiquidity.

The high sensitivity of data to changes market liquidity is interesting in its own right. It suggests that market liquidity is crucial for the value of financial data. Small changes in market liquidity can lead to large variation in data value. For firms whose main asset is financial data, these small market liquidity changes could represent high volatility in the value of such firms. This suggests a new avenue of liquidity effects in asset markets. As data becomes a more important asset for financial firms, the prices of financial firms may become increasingly sensitive to market liquidity.

Our second exercise considers investors with different investment styles. Specifically, we analyze data value for investors who trade the market (the S&P 500) portfolio, only small firms, only large firms, only growth stocks or only value stocks. The final type of investor trades all five of the previous portfolios. Because each of these types uses a piece of data differently, they value the same piece of information differently. Unsurprisingly, the investor who actively trades all the portfolios values data most. We also find that investors in large firms and growth stocks also value data substantially more than a value or small-firm investor.

Our third exercise quantifies how much the value of analyst forecast data depends on what
other data is in an investor’s database. We find considerable variation in data values when we vary the other data variables used. In general, the more series we add to the investor’s information set, the lower is the value ascribed to additional data. The extent of this change in value is sizable. This intuitive result illustrates the importance of accounting for many facets of investor heterogeneity. It also suggests that this dimension of heterogeneity can induce sizable heterogeneity in data valuations, and in turn, a low price elasticity of data demand.

Our fourth exercise considers investors with a shorter trading horizon. Such differences are easy to accommodate with higher frequency observations on the data series and asset returns. We illustrate this by computing the value of data to an investor who trades over a quarterly horizon. We find that a shorter horizon makes data slightly less valuable. Intuitively, our data are less useful in forecasting returns over a shorter horizon. Of course, it is possible that an investor who trades or rebalances his portfolio more frequently might ascribe a higher value to the data. We do not investigate this conjecture in this paper, in part due to data limitations, but our procedure can be extended for this purpose as well.

In exploring these examples, we also gain new insights about financial asset markets. We learn that the value of data assets is very sensitive to market liquidity. We typically think of market liquidity as something that affects only the value of financial assets, not the real value of a firm. But if illiquidity makes it harder or more expensive to execute profitable trades, the real value of financial data that informs such trades declines. The value of firms whose main asset is such data declines as well. As the importance of data asset grows, this channel through which market liquidity can affect the real value of firm assets grows in importance.

Why do we need to estimate the value of data? Why not look at prices for data directly? One reason is that not all data prices are observed, either because the data is not traded, or it is traded privately. In other words, the data is an asset, and if it is owned by a firm but never traded, it does affect the value of the firm while its price is unknown. But even if all prices were observed, just like assets can be mispriced, data can be mispriced. Finally,
a firm’s willingness to pay for data depends on what data they already own. A market or transaction price for data does not necessarily reflect how any one firm values the data.

Relationship to the literature. Data is information. Therefore, our approach to valuing financial data draws primarily on the literature exploring information in financial markets. A few papers have examined the value of information or skill, for a representative agent or in an economy with one aggregate risk (Kadan and Manela 2019; Savov 2014; Dow, Goldstein, and Guembel 2017; Morris and Shin 2002). Kacperczyk, Nosal, and Sundaresan (2021), Kyle and Lee (2017), and Kyle (1989) add imperfect competition. What we add is a richer asset structure, a richer information structure, but most importantly, heterogeneous investors who value information differently. The investor heterogeneity is essential for an aggregate data demand function.

Enriching the information structure to allow for public, private or correlated signals is also important for real-world measurement. Such rich information structures are commonly studied in settings with quadratic payoffs (Ozdenoren and Yuan 2008; Albagli, Hellwig, and Tsyvinski 2014; Amador and Weill 2010). But they have substantially complicated previous asset market models to the point that most authors assume fully private (Barlevy and Veronesi 2000; Zhiguo 2009; Kondor 2012) or fully common (Grossman and Stiglitz 1980) information. In addition, investors may choose between asset valuation-relevant data or data about other investors’ order flow (Farboodi and Veldkamp 2017). The idea that all these types of information can be valued with one set of sufficient conditions is a new idea that substantially broadens the empirical applicability of these tools.

The main point of the paper is that heterogeneity in investor characteristics matters. Some version of all these characteristics exist in some noisy rational expectations model (Kacperczyk, Nosal, and Sundaresan 2021; Peress 2004; Mondria 2010), most of which look daunting to estimate. This project shows that, despite all these degrees of heterogeneity

1 Exceptions include Goldstein, Ozdenoren, and Yuan (2013) and Sockin (2015).

2 Heterogeneity also arises in micro models like Bergemann, Bonatti, and Smolin (2016), who value information in a bilateral trade, where sellers do not know buyers’ willingness to pay, but without the
among investors, data types and equilibrium effects, there is a simple procedure to compute a value for data.

Measures of the information content of prices, like those in [Bai, Philippon, and Savov (2016)] and [Davila and Paratore (2021)] are used to infer how much the average investor in an asset knows. Such measures are related, in that they arise from a similar noisy rational expectations framework. But they answer a question about the quantity of information, not its value. [Farboodi, Matray, Veldkamp, and Venkateswaran (2019)]’s “initial value” of a unit of precision is not the value a firm would pay, is only valid for private signals about orthogonal assets, and does not account for any particular firm’s preferences, portfolio, existing data set or price impact. Our sufficient statistics approach is more relevant for demand estimation, much simpler to estimate and more robust to heterogeneity.

1 A Framework for Valuing Data

Since data is information, we build on the standard workhorse model of information in financial markets, the noisy rational expectations framework. To the framework, we add long-lived assets, imperfect competition, heterogeneity of preferences, wealth effects, investment styles, public, private or partly public signals and arbitrary correlation between assets and between various signals. We include these features because each one affects the value of information. Model extensions consider data about sentiment or order flow.

Our contribution is not the modeling. Our contribution lies in showing how to estimate data valuations in such a rich and flexible model. The goal of the model is to show how, despite all the heterogeneity, the value of data can be reduced to a few sufficient statistics that are easy to compute. Later, we justify this rich modeling structure by showing that heterogeneity matters for data valuations.

equilibrium considerations about what others know.
Assets We have N distinct risky assets in the economy indexed by j, with net supply given by \bar{x}. Each of these assets are claims to stream of dividends $\{d_{jt}\}_{t=0}^{\infty}$, where the vector d_t is assumed to follow the auto-regressive process

$$d_{t+1} = \mu + G(d_t - \mu) + y_{t+1}.$$

Here, the exogenous dividend innovation shock $y_{t+1} \sim N(0, \Sigma_d)$ is assumed to be i.i.d. across time. We use subscript t for variables that are known before the end of period t. Thus, the dividend d_{t+1} and its innovation shock y_{t+1} both pertain to assets that are purchased in period t; both these shocks are observed at the end of period t.

Investors and investment styles In each period t, n overlapping generations investors, $i \in [0,1]$, are born, observe data, and make portfolio choices. The number of investors may be finite, which implies that markets are imperfectly competitive. We will also consider the limiting economy as n becomes infinite. In the following period $t+1$, investors sell their assets, consume the dividends and the proceeds of their asset sale and exit the model. Each investor i born at date t has initial endowment \bar{w}_{it} and utility over total, end-of-life consumption c_{it+1}. At date t, investors choose their portfolio of risky assets, which is a vector q_{it} of the number of shares held or each asset. They also choose holdings of one riskless asset with return r, subject to budget constraint

$$c_{it+1} = r (\bar{w}_{it} - q_{it}'p_t) + q_{it}' (p_{t+1} + d_{t+1}). \quad (1)$$

An investor i may also be subject to an investment style constraint, which limits the set of risky assets they purchase. We denote this set of investable assets as Q_i. Following, Koijen and Yogo (2019), we do not model the source of the constraint. However, many investors do describe their strategy as small-firm investing or value investing, which limits the assets they hold. We consider sets Q_i that either set the holdings of some assets to
zero, or allow the entire real line. For example, long-only portfolios would restrict \(Q_i \) to the non-negative realm of \(\mathbb{R}^n \). Of course, it is possible that an investor is unrestricted, in which case \(Q_i = \mathbb{R}^n \).

Data Each investor has access to \(H \) distinct data sources. Signals from each of these data sources (indexed by \(h \)) provides information about dividend innovations \(y_{t+1} \), possibly from a linear combination \(\psi_h \) of assets:

\[
\eta_{ht} = \psi_h y_{t+1} + \Gamma_h e_{it}
\]

Here, \(e_{it} \sim \mathcal{N}(0, I) \) is iid across time, but not necessarily independent across investors or across assets. In other words, data can have public and private signal noise. Public signal noise captures the idea that many data sources are available to, observed and used by many investors. In addition, all investors know the variance and covariance of prices, dividends and the data they observe.

External Demand Some source of noise in prices is necessary to explain why some investors know information that others do not. We assume the economy is populated by a unit measure of noise traders. Their demand could come from hedging demands, estimation error, cognition errors or sentiment. Each noise trader sells \(x_{t+1} \) shares of the asset, where \(x_{t+1} \sim \mathcal{N}(0, \Sigma_x) \) is independent of other shocks in the model and independent over time. The noise can be arbitrarily small, as long as \(\Sigma_x > 0 \). Similar to the dividend \(d_{t+1} \) and its innovation shock \(y_{t+1} \), the shock \(x_{t+1} \) is observed at the end of period \(t \).

Equilibrium An equilibrium is a sequence of prices \(\{p_t\}_{t=0}^{\infty} \) and portfolio choices \(\{q_{it}\}_{t=0}^{\infty} \), such that

3In other words, \(x_{t+1} \) includes whatever is unrelated to payoffs. If it is persistent, and therefore payoff relevant, the persistent component should be included in the payoff structure. In previous work, micro-founded heterogeneous investor hedging demand has been shown to rationalize this trading behavior. See [Kurlat and Veldkamp (2015)](Kurlat_and_Veldkamp_2015).
1. At the beginning of each period t, all investors have information set $\mathcal{I}_t^- = \{\mathcal{I}_{t-1}, y_t, d_t, x_t, z_t\}$, where \mathcal{I}_{t-1} is the information set of the average investor at time $t-1$ (averaged over private signal realizations).

2. Investors use Bayes’ Law to combine prior information \mathcal{I}_t^- with data η_{iht}, and p_t to update beliefs. The information set at the time of portfolio choice is $\mathcal{I}_{it} = \{\mathcal{I}_t^-, \eta_{it}, p_t\}$.

3. Investors choose their risky asset investment q_{it} to maximize $E[U(c_{it+1})|\mathcal{I}_{it}]$, taking the actions of other investors as given, subject to the budget constraint (1) and the investment style constraint $q_{it} \in \mathcal{Q}_i$.

4. At each date t, the risky asset price vector p equates demand plus noise x_{t+1} to a vector \bar{x} units of supply:

$$\int_i q_{it} di + x_{t+1} = \bar{x} \quad \forall t. \quad (2)$$

Equilibrium Solution To solve the model and derive the value of data, we first apply Bayes’ law to investors’ prior beliefs and data to form posterior beliefs about asset payoffs. Appendix A shows that investor i can aggregate her data. Getting this combination of private, public and price information is equivalent to getting an unbiased signal s_{it} about the dividend innovation y_{t+1}, with private signal noise ξ_{it} and public signal noise z_{t+1}.

$$s_{it} = y_{t+1} + \zeta_{it} z_{t+1} + \xi_{it}$$

The term $z_{t+1} \sim \mathcal{N}(0, \Sigma_z)$ comes from the noise in public component of the any data. It is iid across time, with precision Σ_z^{-1}. This public signal noise z_{t+1} pertains to assets that are purchased in period t and is observed at the end of period t. If investor i learned nothing from any public sources of information at date t, then $\zeta_{it} = 0$ and this becomes a standard private signal. Similarly, $\xi_{it} \sim \mathcal{N}(0, K_{it}^{-1})$ is the noise in the private component of the signal (iid across individuals and time), which has the precision K_{it}, orthogonal to the noise of the public component.
Next, we take a second-order approximation to the utility function. This allows us to write the unconditional and conditional expected utility at time t as

$$E[U(c_{it+1})] = \rho_i E[c_{it+1}] - \frac{\rho_i^2}{2} V[c_{it+1}]$$ \hspace{1cm} (3)

$$E[U(c_{it+1}) \mid I_{it}] = \rho_i E[c_{it+1} \mid I_{it}] - \frac{\rho_i^2}{2} V[c_{it+1} \mid I_{it}]$$ \hspace{1cm} (4)

Here, ρ_i denotes the coefficient of absolute risk aversion for investor i, which can be an arbitrary function of their endowment w_{it}.

Finally, we show in the appendix that the exists an equilibrium price schedule that is linear in current dividend d_t, future dividend innovations y_{t+1} that investors learn about through data, demand shocks x_{t+1} and the noise in public data z_{t+1}.

$$p_t = A_t + B(d_t - \mu) + C_t y_{t+1} + D_t x_{t+1} + F_t z_{t+1}$$ \hspace{1cm} (5)

Mapping Data Utility to Sufficient Statistics
Our first result uses the law of iterated expectations to compute unconditional expectation (3) in terms of means and variances of the vector of asset return R_t, defined below. Since we have substituted out the optimal consumption, we replace the direct utility function which takes consumption as its argument, with an indirect expected utility function \bar{U} which takes an information set I_{it} as its argument.

In order to state the main result we need to define R_t, the vector of returns from buying each asset in investor i’s feasible investment set, at time t,

$$R_{it} := \zeta_i (\left(p_{t+1} + d_{t+1} \right) / \bar{p}_t - r)$$ \hspace{1cm} (6)

where $\,/\,$ represents the element-by-element division of two vectors and \bar{p}_t is a reference price for computing returns that has already been realized. The matrix ζ_i is an $m_i \times N$ matrix of zeros and ones, where m_i is the number of investable assets for investor i. Each row of ζ_i
has a single 1 entry, with all other entries zero. If asset \(j \) is in investor \(i \)'s style class, then that asset is investable and there will be one row of \(\zeta_i \) with \(i \)th column entry equal to 1.

Lemma 1. In a competitive market \((n \to \infty) \), investor unconditional expected utility can be expressed as

\[
\hat{U}(I_{it}) = \frac{1}{2} \mathbb{E} [R_{it}] \, \nabla [R_{it} \mid \mathcal{I}_{it}]^{-1} \mathbb{E} [R_{it}] + \frac{1}{2} \text{Tr} [\mathbb{V} [R_{it}] \mathbb{V} [R_{it} \mid \mathcal{I}_{it}]^{-1} - I] + r \rho_i \bar{w}_{it}
\]

where \(\text{Tr} \) is the matrix trace and \(\bar{w}_{it} \) is investor \(i \)'s exogenous endowment.

Proof is in Appendix A.

Equation (7) illustrates the basis for our measurement strategy. The value of data is this expected utility with the piece of data, minus this expected utility without that piece of data.

The first term is the expected profit on individual \(i \)'s portfolio. The role of more or better data is to reduce conditional variance \(\mathbb{V} [R_{it} \mid \mathcal{I}_{it}] \). In other words, an investor’s utility rises with data if she can use the data to make forecasts with smaller squared forecast errors. Smaller forecast errors are valuable because they allow the investor to buy more of assets that will ultimately have higher returns — the first term captures utility gain through expected profit. The second term captures the benefit of data lowering the risk of the portfolio, which increases utility for a risk-averse investor — the second term represents utility gain through variance reduction.

One might object that data should also enter in the expected payoff. Data will affect the conditional beliefs about asset returns \(\mathbb{E} [R_{it} \mid \mathcal{I}_{it}] \), but not the unconditional, ex-ante, expected returns \(\mathbb{E} [R_t] \). The reason data cannot affect our ex-ante expected profit is the following: If before seeing some great data, I firmly believe that such data will make me more optimistic about an asset’s return, then I should raise my expectation of that return right now. In other words, data does not affect \(\mathbb{E} [R_t] \) because beliefs are martingales.

In a imperfectly competitive market, the result takes a similar form, but with price-
impact-adjusted variances.

Lemma 2. *Unconditional expected utility, for an investor with price impact \(\frac{dp}{dq} \) is*

\[
\bar{U}(I_{it}) = \mathbb{E} [R_t] \tilde{V}_i^{-1} \mathbb{E} [R_t] + \text{Tr} \left[(V(R_t) - V(R_t | I_{it})) \tilde{V}_i^{-1} \right] + r \rho_i \bar{w}_{it}. \tag{8}
\]

*where \(\tilde{V}_i^{-1} := \tilde{V}_i^{-1} \left(1 - \frac{1}{2} V(R_t | I_{it}) \tilde{V}_i^{-1} \right) \) and \(\tilde{V}_i := V(R_t | I_{it}) + \frac{1}{\rho_i} \frac{dp}{dq} (\bar{p}_t \bar{p}_t')^{-2} \).

Notice that if \(\frac{dp}{dq} = 0 \), then \(\frac{\tilde{V}}{2} = \tilde{V} = V(R_t | I_{it}) \). The result becomes the same as proposition 1.

This formula explains another important features of our results. Multiplying \(\frac{dp}{dq} \) is an investor’s risk tolerance \(1/\rho_i \). Since this is absolute risk aversion and we know that absolute risk aversion declines in wealth, one can interpret this as a proxy for investor wealth. A wealthier/larger investor has more price impact. An investor with a portfolio that is ten times larger faces ten times the price impact, per share of an asset sold.

The price impact of all investors’ trades would seem to matter for the value of data. It does. But once again, it is captured by the variances. Other investors’ price impact enters this expression through the equilibrium price coefficient \(C \). This, in turn, shows up in the mean and variance of \(R_t \). Since we measure then mean and variance of \(R \) directly, we do not need to know what other firms market power is or work out its effect. That effect is already incorporated in our sufficient statistics.\(^4\) As long as we can measure these sufficient statistics, and we know investor \(i \)’s market power, we can accurately compute the value of investor \(i \)’s data.

As before, we value data as the difference between expected utility with and without the data. When we make this calculation, we are calculating the value of a firm doing a one-time, surprise deviation to a marginally higher level of data. What we are not doing is asking: If all the other firms know that this one firm will acquire slightly more data, how will their own data choices react? We are taking as given the best responses of all other firms.

\(^4\)Market power does change the interpretation of \(C \) as a measure of price informativeness. But how one interprets the price coefficient \(C \), in this case, does not affects its use in assessing data value.
The two key assumptions behind both the competitive and market power results are that price can be approximated as a linear function of innovations as in equation (5), and that individual i maximizes risk-adjusted return. In other words, this calculation is accurate as long as investors use linear factor models and maximize risk-adjusted return, even with potentially heterogeneous prices of risk.

Private, Public and Correlated Information At first pass, this result is unsurprising. This type of expected utility expression shows up in many noisy rational expectations models, dating back to [Grossman and Stiglitz (1980)](https://link). But what is surprising are all the heterogeneous model features that did not complicate this answer.

In particular, this answer suggests that there is no real difference between the value of public and private information. Regardless of who else knows the data, it is valuable only for its ability to change the conditional forecast errors. But that conclusion flies in the face of what we know about information value ([Glode, Green, and Lowery, 2012](https://link)). The reason both can be correct is that the publicity of the data matters for the conditional variance. Private information is typically more valuable. That is picked up by our measure because private information is less likely to be impounded into price. In other words, information that everyone knows is less correlated with $((p_{t+1} + d_{t+1})/\bar{p}_t)$. Public information about $(p_{t+1} + d_{t+1})$ is already impounded in \bar{p}_t. In their ratio, it cancels out. Therefore, public information will be less correlated and less predictive of returns R_t.

In short, who else knows a piece of data matters. But knowing the forecast errors captures the way in which this public knowledge matters. This is an incredibly helpful property because it relieves the econometrician of having to figure out who knows what. Conditional variances, or in other words, the size of forecast errors, are sufficient statistics.

Similarly, the risk preferences of all market participants matter. However, the expected payoff $E[R_t]$ captures the way in which risk preferences and investment mandates matter.
Mapping Utility to a Dollar Value The dollar value of data is the amount of risk-free return an investor would require to be indifferent between having the data, or not having the data but getting the additional riskless wealth. Our utility function takes the form of risk aversion times expected wealth, minus a risk-adjustment. Thus, dividing the difference in utility by the coefficient of absolute risk aversion delivers a certainty equivalent amount:

$$\text{Value of Data}_i = \frac{1}{\rho_i} \left(\tilde{U}(I_{it} \cup \text{data}) - \tilde{U}(I_{it}) \right)$$ \hspace{1cm} (9)$$

Of course, that leaves open the question of what an investor’s absolute risk aversion is. One way to impute such a value is to assume the investor has constant relative risk aversion (CRRA), with a risk aversion coefficient of σ. Then, we can compute the level of absolute risk aversion that corresponds to relative risk aversion of σ. We will use $\sigma = 2$, a conservative level of risk aversion. In order to do so we equate a standard power utility function (CRRA) to a standard exponential utility function (CARA), and then solve for the absolute risk aversion ρ that equates the two functions at relative risk aversion of $\sigma = 2$ and a wealth level of c, which we later calibrate to the wealth of an investor or modest size fund.

Thus, absolute risk aversion is the value of ρ that equates

$$\frac{c^{1-\sigma}}{1-\sigma} = -\exp^{-\rho c}.$$

For a relative risk aversion $\sigma = 2$, the absolute risk aversion is

$$\rho = \frac{1}{c} \ln(c).$$

For an investor with $c = $1 million, $\rho = 13.82 \times 10^{-6}$, while for an investor with $c = $100 million, $\rho = 18.42 \times 10^{-8}$.

An alternative approach to estimating ρ could be to use the market price of risk. Using the formulas for the equilibrium price coefficients, one could map the value of ρ to an equity
premium and choose the value that matches a preferred estimate of the equity premium. We do not follow that approach for two main reasons. First, this would reveal how the market values data, not how an individual investor, with particular characteristics should value data. It is the answer to a different question. Our question is about the individual’s value of data and how investor heterogeneity matters for data valuation. Second, it requires estimating most of the structural parameters of the model. As such, the estimates becomes much more sensitive to the exact model structure and choices of how to estimate each object, and counteracts the advantage of our simple sufficient statistics approach.

Data About Order Flow or Sentiment Many new data sources teach us about how others investors feel about an asset. For example, analyzing a twitter feed is unlikely to turn up new dividend information. But it might well correlate with the current price because it detects sentiment. Sentiment is something unrelated to the fundamental asset value, that affects current demand. In our model, the variable that moves current price in a way that is orthogonal to value is \(x_{t+1} \). So, we interpret sentiment as something that shows up in \(x \), thus sentiment data are time-\(t \) signals about price noise \(x_{t+1} \).

Put differently, our base model is set up to value data which are signals about future cash flows of a firm. But this tool can also be used to value data series about sentiment, order flow, or aspects of demand that are orthogonal to future cash flows but may affect the current price. In fact, Appendix C shows that such data can be valued using (7) and (9), just as if this were cash flow data.

Of course, many structural aspects of this model with sentiment data change. If we were to estimate the underlying parameters from order flow data, many adjustments would be necessary. But the essence of Farboodi and Veldkamp (2020) is to show that such data can be used to remove the noise from the price signal and thus better forecast earnings. Doing this is functionally equivalent to trading against dumb money, a common practice for sophisticated traders with access to retail order flow. The fact that such trading activity can be formally represented as if sentiment/order flow data were being used in a linear combination with
current prices to forecast cash flows, means that estimating cashflows conditional on prices and sentiment data yields a valid estimate of data value.

2 Data and Estimation Procedure

First, we describe the estimation procedure. Then, we describe the data series used in the procedure and how exactly we arrive at data valuations.

Estimation Procedure The first step is to compute asset j’s returns, R_{jt}. The R_{jt} for each asset at each date t is an element of the vector R_t. To get the unconditional expected return $\mathbb{E} [R_t]$, we then average this time series $\mathbb{E} [R_t] = \frac{1}{T} \sum_{t=1}^{T} R_t$. Next, compute the variance of returns $\mathbb{V} [R_t]$.

Next, we regress the sequence of returns R_t’s on any already-owned data and the data being valued. Implementing this in practice would require an investor to be able to access the historical series of the data-set they are considering buying. Then, perform a simple, linear, ordinary least squares regression of returns R_t on all the variables, already owned and new, in the data set. The variance of the OLS residual represents $\mathbb{V} [R_t | Z_t]$. Finally, combining these elements, compute $\mathbb{E} [U(c_{it+1})]$. We then repeat this procedure, excluding the data series of interest. In our empirical implementation, we use a set of observable controls as a proxy for existing data. The difference between the expected utility with and without this data is the value of that data source.

Formally, given data, denoted X_t, and existing data, denoted Z_t, we can estimate the data added precision $V(R_t | X_t, Z_t)^{-1}$ and $V(R_t | Z_t)^{-1}$ by estimating the following two regressions:

\[
R_t = \beta_1 X_t + \beta_2 Z_t + \varepsilon_t^{XZ} \tag{10}
\]

\[
R_t = \gamma_2 Z_t + \varepsilon_t^Z \tag{11}
\]
From these two vector regressions, an estimate for $V[R_t | I_t]$ would be $\hat{\text{Cov}}(\varepsilon_t^{XZ})$. For a data set with observations $1, \ldots, T$, this estimate is $\frac{1}{T-|X|-|Z|} \sum_{t=1}^{T} \varepsilon_t^{XZ} \varepsilon_t^{XZ'}$. Similarly, the estimate for $V[R_t]$ would be $\hat{\text{Cov}}(\varepsilon_t^{Z})$. With a finite sample, the approximate variance-covariance matrix of residuals is $\frac{1}{T-|Z|} \sum_{t=1}^{T} \varepsilon_t^{Z} \varepsilon_t^{Z'}$, where $|X|$ and $|Z|$ are the number of data series that comprise X_t and Z_t, including the constant in Z_t. For most of the calculations that follow, $|X| = |Z| = 2$. Substituting in the mean return and the estimated variance-covariance matrices in Equation 7 yields the estimated value of data, in utils.

One might question how a Bayesian theory corresponds to a procedure that uses OLS. When variables are normal and relationships are linear, Bayesian estimates are the efficient, unbiased estimates. Since OLS estimates are the unique efficient, unbiased linear estimates, they must coincide with the Bayesian ones, in the specific case of normal variables in a linear relationship. Thus, in this case, OLS estimators are Bayesian weights on information. In cases where variables are not normal or the expected relationship between the data and R_t is not linear, there are a few possible solutions: 1) Transform the data to make it normal or linear; 2) use OLS or non-linear least squares as an approximation to the Bayesian forecast, or 3) perform Bayesian estimation.

Data on Asset Prices and Cashflows All data are for the U.S. equity market, over the period 1985–2015. Stock prices come from CRSP (Center for Research in Security Prices). All accounting variables are from Compustat. For our annual calculations, we measure prices at the end of the calendar year and dividends per share paid throughout the calendar year. In line with common practice, we exclude firms in the finance industry (SIC code 6).

The equity valuation measure, i.e. the empirical counterpart for the price p_{jt} in the model, is market capitalization over total assets for the calendar year. Our cash-flow variable, d_{jt}, is proxied using total dividends paid over assets.

We make a couple of adjustments to the raw data. The first is to deal with inflation, which can create predictability in nominal dividends and prices. We adjust all cash-flow variables with a GDP deflator, deflating all nominal values to 2010 USD values. The second
pertains to exiting firms. Our preferred solution is to only consider periods during which a
firm has non-missing information. Next, we winsorize the deflated values for assets, market
capitalization and total dividends at 0.01% level.

Henceforth, we refer to the market capitalization at the end of year for stock j divided
by the assets in that year for stock j as the price p_{jt}, and the total dividends normalized by
assets in that year as d_{jt}. We calculate the excess returns as $R_{jt} = \frac{p_{jt+1} + d_{jt+1} - p_{jt}}{p_{jt}} - r^f_t$, where
we use the yield on Treasury bills (constant maturity rate, hereafter CMT) with one year
maturity as the risk-free rate.

Forming Asset Portfolios The procedure described above can be used for any number
and type of assets, including individual stocks. However, for expositional purposes, and
to show more clearly the patterns in data value, we group assets into a small number of
commonly-used portfolios, rather than work with a large number of individual stocks/assets.
We then consider information portfolio choice between these portfolios and data about the
payoff of each portfolio. As a result, we will have a smaller number of data values to consider.

We group firms into Large and Small, based on whether they are above or below the me-
dian value of market capitalization for all firms in our sample, in that year. Next, we classify
firms into Growth and Value based on their book-to-market ratio (defined as the difference
between total assets and long-term debt, divided by the firm’s market capitalization). Firms
above the median value of book-to-market in a year are value firms, while those below the
median are our growth firms. This gives us four portfolios – Small, Large, Growth and Value.
The fifth portfolio is a market index (S&P500). We use value-weighted averages for excess
returns for each portfolio as the return measure, where we weigh each firm’s return by its
market capitalization.

Measuring Price Impact If an investor uses our data valuation tool to measure their
own value of data, then presumably, that investor knows how much the price moves when
they trade, on average. But for the purpose of illustrating the use of our tool, we need a
reasonable price impact estimate.

Appendix B explores estimates of price impact from the literature. Hasbrouck (1991) finds that a $20000 trade moved prices by 0.3% on average. Since the reference price of one share of an asset is normalized to one in the model, a 0.3% price increase corresponds to a price that is 0.003 units higher. Therefore, we explore imperfectly competitive markets where $dp/dq_i = 0.003/20000$. While this is a small number, it is large enough to illustrate a substantial effect.

Publicly Available Information When we value a stream of data, we need to take a stand on what else an investor already knows. Obviously, we as econometricians have no way of knowing that. But this is a tool designed from the investor’s perspective, for the investor to value a stream of data. That investor should know what other data they themselves regularly use.

For the purposes of illustrating the use of the tool, we endow our hypothetical investor with some commonly-used and publicly-available data series. Specifically, we assume that they already observe the dividend yield (D/P ratio) for S&P5005

In additional results, we also consider and investor who also has access to one or more of the following pieces of data: the yield on a 1-year Treasury bill (constant maturity rate)6, the consumption-wealth ratio (CAY) from Lettau and Ludvigson (2001) and a sentiment index from Baker and Wurgler (2006).

The Data Stream We Value: IBES forecasts One could use this tool to value any finance-relevant data stream or bundle of data streams. To explore how variable investors’ valuations can be for a very standard data series, we consider the value of the earnings forecasts provided by the Institutional Brokers Estimate System (IBES)7. Our data contains

5 Obtained from NASDAQ Quandl https://data.nasdaq.com/data/MULTPL/SP500_DIV_YIELD_MONTH-sp-500-dividend-yield-by-month

6 Obtained from FRED series DGS1

7 We use the Summary Statistics series from IBES, accessed through WRDS. https://wrds-www.wharton.upenn.edu/pages/get-data/ibes-thomson-reuters/ibes-academic/summary-history/summary-
earnings forecasts for 5506 unique firms from 1985–2015, with 1018 firm observations per year on average.

We use annual forecasts. In our baseline model, investors have a horizon of a year and use the latest available one-year-ahead earnings forecast at each date. Later, we explore how different trading horizons affect the data value.

For each firm, we use the median consensus analyst forecast for earnings per share (hereafter EPS). We discard all forecast values which have been calculated during or after the calendar year for which the forecast is being made. For example, any forecast we use for earnings in 2015 has to be issued before the year 2015 starts. We then drop all but the latest consensus forecasts for each firm-year observation, which gives us a single consensus forecast for EPS over the next year. Using this consensus forecast, we calculate a forecasted growth rate: the forecasted EPS for the coming year, divided by the realized value of EPS from the last year.

Our goal is to explore a small number of data values, to gain intuition for how large this amount is and what makes it vary. Therefore, we collapse the large number of assets into a few portfolios and explore forecasts about those. We consider five portfolios: small, large, growth, and value firms, as well as the S&P500 index. We find that most of the value of data comes from signals about growth firms and about the S&P500 index.

Therefore, when we value IBES data, we are valuing two signals, one about the earnings per share of all firms in the growth firms bin and one signal about the earnings per share of all firms in the S&P500 index. Specifically, these are the portfolio value-weighted average values of median forecasted growth rates for earnings per share – for the Growth and S&P500 portfolios. Note that we are valuing a forecast of a payoff of a particular portfolio of assets.

We could have performed this calculation under many alternative assumptions. For example, one could value growth firms’ data from the perspective of an investor who invests only in growth firms. In that case, one would regress the growth firm asset payoffs on the relevant data and use means variances and forecast errors of growth asset payoffs. We did not take that approach because if we vary the investment set and the data together, we would not know whether data was more/less valuable because of the data or
Data Timing As discussed above, our return measure for year t for an asset j is the cum-dividend excess return on that asset over the year t – using prices at the end of year t and at the end of year $t-1$, along with dividends paid out over year t. We are interested in understanding the value of data available to an investor *before* year t, in predicting the value of this profit measure for year t.

The value of any control variable used – e.g. S&P500 D/P ratio – for the purpose of this calculation is obtained for year $t-1$, since these values will be in the investor’s information set while predicting the profits for year t. Similarly, the IBES data signal we are valuing needs to be in the information set of the investor *before* year t. We use the IBES forecasted earnings growth rate as our data signals. To predict profits over year t, we use the data signals which are produced *before* year t starts, which give information about growth in earnings of firms between year $t-1$ and year t. We already ensured this while constructing data signals from IBES, as we discarded all forecasts for year t which are made after year t has started.

3 Valuing Financial Data

The results that follow report the additional utility that investors would assign to IBES forecasts, given what they already know. We also convert this into a dollar amount, which is a willingness to pay. In most cases, these private valuations look nothing like a price that any investor actually pays for an IBES subscription. Some valuations are orders of magnitude higher, others much lower. Recall that these are not predicted transactions prices. They are private valuations that trace out a demand curve. The qualitative results are mostly intuitive, which is a good thing. Our contribution is a measurement tool, not a shocking finding. Our tool is a good one if it mostly returns sensible or intuitive results.

the investment restriction. But, it is certainly another dimension of investor heterogeneity that might be interesting to explore.
Table 1: Risk Tolerance. Annual data between 1985–2015. Dependent variables in (10) and (11) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large, Growth, Value, S&P500}. All specifications include a constant and a control variable (the S&P500 D/P ratio). Data variables being valued are the IBES median forecasts for annual value-weighted earnings for Growth and S&P500 portfolios, normalized by assets and growth over last year’s realized earnings for each ticker. The case with price impact assumes Kyle’s Lambda $\lambda = \frac{dp}{dq} = 1.5 \times 10^{-7}$. Dollar values are reported in thousands of 2010 USD.

<table>
<thead>
<tr>
<th></th>
<th>Perfect Competition</th>
<th>With Price Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Gain</td>
<td>0.0919</td>
<td>0.0460</td>
</tr>
<tr>
<td>Expected Profit</td>
<td>0.0365</td>
<td>0.0114</td>
</tr>
<tr>
<td>Variance Reduction</td>
<td>0.0554</td>
<td>0.0346</td>
</tr>
<tr>
<td>Dollar Value (in $000)</td>
<td>6.65</td>
<td>3.33</td>
</tr>
<tr>
<td>Time Periods</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

Panel A: Investor with $1m Wealth.

Panel B: Investor with $100m Wealth.

3.1 Wealth and Risk Tolerances

One obvious dimension along which investors differ is the size of their portfolios. We consider an investor with 1 million and 100 million dollars, each with the same relative risk aversion of $\sigma = 2$. The resulting difference in absolute risk aversion give rise to different willingness to pay for the same data.

To value data for a particular investor, we need to know what else they already know and what they can invest in. The investor whose value we are calculating already knows the previous year’s S&P500 dividend/price ratio. They can invest in any combination of the following five portfolios: S&P500, small, large, growth, and value. However, we make no assumption about what any other investors know or trade.

Table 1 reports the dollar value of the IBES forecasts for a poorer and a richer investor,
with and without price impact. The results illustrate three patterns: 1) Wealthier investors with larger portfolios value data more. In a competitive market, an investor with a portfolio that is 100 times larger values data almost 100-fold more ($499 vs. $6). 2) A small price impact considerably attenuates the value of data. Even for the small investor, the value of data falls by half ($3 instead of $6). 3) The decline in value of data from price impact is amplified for large investors. For large investors, the dollar value of data declines almost 20-fold (from $499 to $27), when trades have price impact.

To better understand the sources data value, Table 1 also reports the expected return and the variance reduction on the investor’s portfolio. The expected profit is the ex-ante expected return on the optimal, diversified portfolio of the five assets the investor can hold. The variance reduction is the difference between the raw variance of this return and the conditional variance, which is the average squared residual of the predicted return, after conditioning on the data. This is a measure of how much one learns from data. Notice that price impact makes data less valuable for two reasons: It reduces the expected return and it reduces the variability of that return. Both make data less valuable.

3.2 Investment Styles

Another dimension along which investors differ is their investment style. In this exercise, we value exactly the same data, the IBES median forecasts for annual value-weighted earnings for Growth and S&P500 portfolios. But we value the data from the perspective of an investor who invests only in a subset of assets. The small stock investor is one who simply buys and sells the portfolio of small stocks that we constructed. Same for the large, growth, value or S&P investor. They each use data to determine when to buy and how much of their respective portfolios. We compare these data values to the value of the investor who can buy or sell any or all of these 5 portfolios. That investor is the same as the one reported in Table 1.

Table 2 shows that among the investors who invest in a single portfolio, data is most
Table 2: Investment Styles. Annual data between 1985–2015. Dependent variables in (10) and (11) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large, Growth, Value, S&P500}. All specifications include a constant and a control variable (the S&P500 D/P ratio). Data variables being valued are the IBES median forecasts for annual value-weighted earnings for Growth and S&P500 portfolios, normalized by assets and growth over last year’s realized earnings for each ticker. The case with price impact assumes Kyle’s Lambda $\lambda = \frac{dp}{dq} = 1.5 \times 10^{-7}$. Dollar values are reported in thousands of 2010 USD.

<table>
<thead>
<tr>
<th>Portfolio Type</th>
<th>Small</th>
<th>Large</th>
<th>Growth</th>
<th>Value</th>
<th>S&P500</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Perfect Competition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E[R]$</td>
<td>0.2058</td>
<td>0.0802</td>
<td>0.1047</td>
<td>0.0273</td>
<td>0.0350</td>
<td>–</td>
</tr>
<tr>
<td>$V[R]$</td>
<td>0.1333</td>
<td>0.0223</td>
<td>0.0255</td>
<td>0.0269</td>
<td>0.0144</td>
<td>–</td>
</tr>
<tr>
<td>$V[R]$ (controls)</td>
<td>0.1371</td>
<td>0.0231</td>
<td>0.0263</td>
<td>0.0270</td>
<td>0.0145</td>
<td>–</td>
</tr>
<tr>
<td>$V[R]$ (controls+data)</td>
<td>0.1375</td>
<td>0.0215</td>
<td>0.0241</td>
<td>0.0264</td>
<td>0.0133</td>
<td>–</td>
</tr>
<tr>
<td>Utility Gain</td>
<td>0.0000</td>
<td>0.0438</td>
<td>0.0653</td>
<td>0.0127</td>
<td>0.0498</td>
<td>0.0919</td>
</tr>
</tbody>
</table>

Dollar Value (in $000) for Investor with:						
$1m Wealth	0.00	3.17	4.73	0.92	3.60	6.65
$100m Wealth	0.00	237.84	354.43	69.16	270.25	499.05
Time Periods	31	31	31	31	31	31

Panel B: With Price Impact

Investor with $1m Wealth:						
Utility Gain	0.0000	0.0377	0.0568	0.0116	0.0389	0.0460
Dollar Value (in $000)	0.00	2.73	4.11	0.84	2.82	3.33

Investor with $100m Wealth:						
Utility Gain	0.0000	0.0018	0.0027	0.0008	0.0015	0.0050
Dollar Value (in $000)	0.00	9.81	14.77	4.18	7.97	27.37
Time Periods	31	31	31	31	31	31

valuable for investors in growth firms and large or S&P500 firms. While the investor’s wealth and price impact raise and lower the dollar value of the data, respectively, the pattern of growth and large or S&P500 investors valuing data by more emerges consistently. Small firms have high expected returns. But this data teaches the investor almost nothing about when to buy small firms. Value firms have low returns and low data relevance. Large and growth firms have medium expected returns, but are well predicted by the IBES forecast data. We can see that in the difference between $V[R]$ with and without data, in rows 3 and 4. Therefore, this data is most valuable to those who invest in growth and large-firm equities.
As we saw in the previous set of results, price impact reduces the value of data, but also reduces the valuation dispersion. The investors who value data most are the same investors who would like to trade aggressively on the data, but are prevented from doing so when price impact is large.

3.3 Previously Purchased Data

A third dimension along which investors differ enormously is in the data they already own. While large, institutional investors have access to enormous libraries of data, households may know only a few summary statistics about each asset. We illustrate both how to incorporate differences in existing data sets and their quantitative importance through a simple exercise. So far, we have valued the IBES data assuming that investors already have access to S&P500 dividend/price ratio. In this set of results, we ask: How valuable would the same IBES forecasts be if, instead of the S&P500 dividend/price ratio, the investor had some other variable in his or her existing data set? Of course, that does not nearly capture the extent of the difference between the knowledge of investors. But even these minor differences in which macro variable the investor already knows can significantly change the value of a new data stream.

In Table 3, the first column reports the value of the IBES forecasts to $1 and $100 million investors, who have no other sources of information. The next four columns report the value of data when investors already have access to a single prior data series: Real CMT-1y, BW Sentiment, cay, and S&P500 D/P ratio, respectively. In the last column, the investor already has access to all five of these data series.

Unsurprisingly, access to prior data decreases the value of IBES data for investors. The IBES forecasts are more than twice as valuable to the investor who knows nothing, relative to the investor who already knows all five series. This is just an illustration of the diminishing marginal returns to data. However, Table 3 shows that value of the IBES data is relatively insensitive to knowledge of Real CMT-1y and BW Sentiment data. This insensitivity means
Table 3: Previously Purchased Data. Annual data between 1985–2015. Dependent variables in (10) and (11) are excess returns (over CMT-1yr) for five portfolios – {Small, Large, Growth, Value, S&P500}. All specifications include a constant. Data variables being valued are the IBES median forecasts for annual value-weighted earnings for Growth and S&P500 portfolios, normalized by assets and growth over last year’s realized earnings for each ticker. Values in each column represent the additional value of IBES data on top of the control variable(s) listed in the header. Higher value for data indicates IBES data adds more value over the control variable. Dollar values are reported in thousands of 2010 USD.

<table>
<thead>
<tr>
<th>No Controls</th>
<th>Real CMT-1yr</th>
<th>BW Sentiment</th>
<th>cay</th>
<th>S&P500 D/P ratio</th>
<th>All Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Gain</td>
<td>0.163</td>
<td>0.147</td>
<td>0.145</td>
<td>0.104</td>
<td>0.092</td>
</tr>
<tr>
<td>Expected Profit</td>
<td>0.065</td>
<td>0.066</td>
<td>0.060</td>
<td>0.045</td>
<td>0.037</td>
</tr>
<tr>
<td>Variance Reduction</td>
<td>0.098</td>
<td>0.080</td>
<td>0.086</td>
<td>0.059</td>
<td>0.055</td>
</tr>
<tr>
<td>Time Periods</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Dollar Value (in $000) for:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investor with $1m Wealth</td>
<td>11.79</td>
<td>10.64</td>
<td>10.53</td>
<td>7.52</td>
<td>6.65</td>
</tr>
<tr>
<td>Investor with $100m Wealth</td>
<td>884.57</td>
<td>797.83</td>
<td>789.78</td>
<td>563.98</td>
<td>499.05</td>
</tr>
</tbody>
</table>

that IBES contains information that is not highly correlated with the information in either series. On the other hand, data about cay and S&P500 D/P ratio attenuate the value of IBES data more visibly. These series are closer substitutes for IBES.

Among the alternative pieces of data that the investors can use, S&P500 D/P ratio is by far the most informative one. The additional IBES data has the lowest value to investors who already have access to S&P500 D/P ratio. Furthermore, for investors who have S&P500 D/P ratio prior data, access to the rest of the macroeconomic data series does not attenuate the value of the IBES data much more.

3.4 Trading Horizon

Finally, investors differ in their trading horizons. Our data valuation tool can be applied to various trading horizons. However, for the data we are exploring, this dimension of investor heterogeneity seems to matter less than the others.

Our calculations so far have assumed that investors trade over an annual horizon. Next, we measure the value of the same data – the median IBES forecast – for an investor who
Table 4: Trading Horizon. Data between 1985–2015. Dependent variables in (10) and (11) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large, Growth, Value, S&P500}. All specifications include a constant and the S&P500 D/P ratio. Data variables \((X_t \text{ in (10)})\) are the IBES median forecasts, in growth rates, for annual value-weighted earnings for Growth and S&P500 portfolios, normalized by assets. Numbers reported in each column represent the additional value of annual IBES data \((9)\) on top of the control variable (S&P500 D/P ratio) for an investor trading at the trading horizon listed in the table header. Dollar values are reported in annualized thousands of 2010 USD.

<table>
<thead>
<tr>
<th></th>
<th>Annual</th>
<th>Quarterly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Gain (ann.)</td>
<td>0.092</td>
<td>0.067</td>
</tr>
<tr>
<td>Dollar Value (in $000, ann.) for Investor with $1m Wealth</td>
<td>6.65</td>
<td>4.83</td>
</tr>
<tr>
<td>Dollar Value (in $000, ann.) for Investor with $100m Wealth</td>
<td>499.05</td>
<td>362.14</td>
</tr>
<tr>
<td>Time Periods</td>
<td>31</td>
<td>124</td>
</tr>
</tbody>
</table>

trades the same portfolio but with a quarterly horizon. This does not change the data value formula; it does change how we implement it. The procedure is to compute residuals from (10) and (11) where \(R_t\) is quarterly return, the prior information \(Z_t\) is a constant and quarterly dividend-price ratios, and where \(X_t\) is the median forecast of the earnings growth for Growth and S&P500 portfolios over the year.\(^7\) The resulting regression residuals \((\varepsilon^{xz}_t\text{ and } \varepsilon^Z_t)\) are then used to construct the variance matrices and substitute these variances, along with expected quarterly returns, into the expected utility formula (7). We convert expected utility to data value as before, using (9).

The expected asset payoff and its variance will typically be smaller for shorter horizons. This just reflects the fact that there is less asset appreciation and smaller changes over a shorter period of time. The utility of an equally precise forecast is smaller because that information will be used only for a lower potential payoff. Therefore, in order to facilitate comparison with our baseline annual horizon numbers, we annualize our estimated quarterly horizon data values by multiplying them by four.

Table 4 reports the value of the IBES forecasts for both annual and quarterly investors.\(^9\) We also re-did the estimation using forecasts of quarterly earnings growth. It produced similar, but somewhat smaller, data value estimates.
The first column is the same values reported in Table 1. The second column shows that investors who trade more frequently, on a quarterly basis, would be less willing to pay for data each year. The reason for the lower quarterly valuation is that quarterly returns are considerably more noisy. Earnings data is not very useful for quarterly portfolio adjustment. Trading on this data only creates more noise.

The effect of trading horizon surely depends on the data source. For example, high-frequency data is useful for high-frequency traders, but will likely be worthless after a year. The more important take-away is that trading horizon can matter for how an investor values their data. By adjusting the input data and the interpretation of the results, our data valuation tool can be used to value data used by investors who trade at various frequencies.

3.5 Liquidity Affects the Real Value of Data

One consistent theme throughout our results was the importance of price impact. Our results consider price impact as a single number. In reality, the price impact of a trade fluctuates with market liquidity. These results teach us that such fluctuations will have a dramatic impact of the value of data for large investors. Now consider a financial firm whose business model revolves around the use or sale of data. That firm’s valuation is based largely on the value of their data. Changes in market liquidity will greatly affect the real value of this firm’s data assets.

As firms’ data stocks grow larger, the magnitude of liquidity shocks to data values should grow. The reason is that price impact enters additively with conditional variance. This additive form comes from first order condition for the optimal portfolio choice of investor \(i \):

\[
q_i = \frac{1}{\rho_i} \left[\sqrt{V[p_{t+1} + d_{t+1}|I_t]} + dp/dq_i \right]^{-1} \left[\mathbb{E}[p_{t+1} + d_{t+1}|I_t] - rp_{t} \right].
\]

If the conditional variance \(\sqrt{V[p_{t+1} + d_{t+1}|I_t]} \) is large (high uncertainty), then small changes in price impact \(dp/dq_i \) have little effect. Those changes are swamped by the variance term and the inverse of this large number is small. However, if conditional variance is small, meaning that asset payoff forecasts are precise, then that first term, the inverse of a potentially small number, may be large. In
this case, the effects of price impact can be substantial. Over time, if firms have more data and thus smaller forecast errors, their data valuations become more and more susceptible to changes in the price impact of a trade.

The high and growing sensitivity of data value to market liquidity suggests a new channel through which market liquidity matters. Since the value of a financial firm depends on its ability to trade profitably, the value of data is an input into the valuation of a financial firm. As financial firms become more data-centric, the firm’s value becomes more sensitive to the value of its data. At the same time, growing data abundance makes the value of data more sensitive to market liquidity. These two margins of increasing sensitivity amplify each other. This suggests that changes in market liquidity may affect the real value and the equity value of financial firms through a new channel, through the value of their data. In a world in which data is becoming increasingly abundant, this new liquidity-data effect could grow much stronger. These findings suggest that, because of the rising abundance and importance of data for financial firms, market liquidity may become more important than ever before.

4 Conclusion

Data is one of the most valuable assets in the modern economy. Yet the tools we have to quantify that value are scant. We offer a tool that a financial firm can use to value its existing data, or a potential stream of data that it is considering to acquire. Given knowledge of the distribution of investor characteristics, researchers can use this tool to trade out the demand curve for data.

We uncover important investor wealth and trading style effects, the importance of an investor’s existing data, and the role of trading horizon. Jointly, these effects point toward enormous heterogeneity, spanning multiple orders of magnitude, in the value different investors assign to the same data. The dispersion in valuations suggests that marginal changes
in the price of data will have little effect on demand. With such dispersed valuations, few data customers would be on the margin. This low price elasticity of demand is significant because it points to one reason why data markets might not evolve to be very competitive.

We further uncover a new channel through which market liquidity matters for the real value of data, which is an important new class of assets. As firms accumulate more data and data technologies improve, more and more of the value of a financial firm will depend on the value of the data it possess. The sensitivity of the value of data to price impact of a trade could introduce a new source of financial fragility, brought on by data accumulation, and exacerbated by data technologies that improve financial forecasting.

The advantage of our measurement tool is its simplicity. While our measure of the value of data is derived from a structural model, computing it does not require estimating structural parameters. Instead, the relevant sufficient statistics are simple means and variances of linear regression residuals. No matter whether the data is public, private, or known only to a fraction of investors, these methods are valid. Even if the data is about sentiments or order flows, as long as it is measured along with the market prices in the observable data set, our data value measure offers a meaningful assessment of its value to an investor.
References

32

Appendix

A Model Solution

Portfolio Choice Since we have a linear Gaussian system, we conjecture an equilibrium price which is linear in the aggregate shocks,

\[p_t = A_t + B(d_t - \mu) + C_t y_{t+1} + D_t x_{t+1} + F_t z_{t+1} \]

(12)

In equilibrium, investor \(i \) selects the optimal portfolio \(q_{it} \) given by the first order condition,

\[q_{it} = \frac{1}{\rho_i} V (p_{t+1} + d_{t+1} \mid \mathcal{I}_{it})^{-1} \{ E [p_{t+1} + d_{t+1} \mid \mathcal{I}_{it}] - r p_t \} \]

Assuming price of the form given in Equation (12), the investor derives an unbiased signal \(\eta_{pt} \) of \(y_{t+1} \) from the price as,

\[\eta_{pt} \equiv C^{-1}_t (p_t - A_t - B(d_t - \mu)) = y_{t+1} + C^{-1}_t D_t x_{t+1} + C^{-1}_t F_t z_{t+1} \]

This price signal has the conditional variance,

\[V (\eta_{pt} \mid \mathcal{I}_{it}) \equiv \Sigma_{pt} = C^{-1}_t D_t \Sigma_x D_t' C^{-1}_t + C^{-1}_t F_t \Sigma_z F_t' C^{-1}_t \]

Note that the variance of this price signal is a fixed quantity (since the coefficients are artifacts of the model, known ex ante to all investors). Given the information set \(\mathcal{I}_{it} \), the investors update their beliefs of the dividend innovation \(y_{t+1} \) as per Bayesian updating to get,

\[V (y_{t+1} \mid \mathcal{I}_{it}) \equiv \Sigma_{it} = \{ \Sigma^{-1}_d + \Sigma^{-1}_{pt} + (\zeta_{it}^2 \Sigma_z + K_{it}^{-1})^{-1} \}^{-1} \]

\[E [y_{t+1} \mid \mathcal{I}_{it}] \equiv \mu_{it} = \Sigma_{it} (\Sigma^{-1}_d \times 0 + \Sigma^{-1}_{pt} \eta_{pt} + (\zeta_{it}^2 \Sigma_z + K_{it}^{-1})^{-1} s_{it}) \]

\[= \Sigma_{it} (\Sigma^{-1}_{pt} \eta_{pt} + (\zeta_{it}^2 \Sigma_z + K_{it}^{-1})^{-1} s_{it}) \]

Further, we can express the gross payout at the end of period \(t + 1 \) as,

\[p_{t+1} + d_{t+1} = A_{t+1} + B(d_{t+1} - \mu) + C_{t+1} y_{t+2} + D_{t+1} x_{t+2} + F_{t+1} z_{t+2} + d_{t+1} \]

\[= A_{t+1} + \mu + (B + I) (d_{t+1} - \mu) + C_{t+1} y_{t+2} + D_{t+1} x_{t+2} + F_{t+1} z_{t+2} \]

\[= A_{t+1} + \mu + (B + I) [G(d_t - \mu) + y_{t+1}] + C_{t+1} y_{t+2} + D_{t+1} x_{t+2} + F_{t+1} z_{t+2} \]
Hence, the conditional moments of the gross payout can be expressed as,

\[\mathbb{E} [p_{t+1} + d_{t+1} | I_{it}] = A_{t+1} + \mu + (B + I)G(d_t - \mu) + (B + I)\mu_{it} \]

\[V(p_{t+1} + d_{t+1} | I_{it}) = (B + I)\Sigma_{it}(B + I)' + C_{t+1}\Sigma_{dC'_{t+1}} + D_{t+1}\Sigma_{zD'_{t+1}} + F_{t+1}\Sigma_{zF'_{t+1}} \]

We first note that the shocks \(y_{t+2}, x_{t+2} \) and \(z_{t+2} \) do not contribute towards the conditional expectation, but are driving the conditional variance of the gross payout. On the other hand, investors form imprecise estimate for the end-of-period shock \(y_{t+1} \), resulting in a contribution in both the conditional moments.

Hence, the optimal portfolio is given as,

\[q_{it} = \frac{1}{\rho_i} \left\{ (B + I)\Sigma_{it}(B + I)' + C_{t+1}\Sigma_{dC'_{t+1}} + D_{t+1}\Sigma_{zD'_{t+1}} + F_{t+1}\Sigma_{zF'_{t+1}} \right\}^{-1} \times \]

\[\left[A_{t+1} + \mu + (B + I)G(d_t - \mu) + (B + I)\mu_{it} - rp_t \right] \]

Market Clearing

We now impose market clearing, \(\int_i q_{it}di = \bar{x} + x_{t+1} \). First, note that the terms in red in Equation 13 are constants for the integration. Hence, we define the factor multiplying these terms – the risk tolerance weighted average precision of the gross payout,

\[\Omega_t \equiv \int_i \rho_i^{-1} (B + I)\Sigma_{it}(B + I)' + C_{t+1}\Sigma_{dC'_{t+1}} + D_{t+1}\Sigma_{zD'_{t+1}} + F_{t+1}\Sigma_{zF'_{t+1}}^{-1} di \]

We next simplify the remaining term in blue in the integration in Equation 13 as,

\[\int_i \rho_i^{-1}V(p_{t+1} + d_{t+1} | I_{it})^{-1} (B + I)\mu_{it} di \]

\[= \int_i \rho_i^{-1}V(p_{t+1} + d_{t+1} | I_{it})^{-1} (B + I)\Sigma_{it} \left(\Sigma_{pt}^{-1}\eta_{pt} + (\zeta_{it}^2\Sigma_{z}K_{it}^{-1})^{-1} s_{it} \right) di \]

\[= \left\{ \int_i \rho_i^{-1}V(p_{t+1} + d_{t+1} | I_{it})^{-1} (B + I)\Sigma_{it} di \right\} \Sigma_{pt}^{-1}\eta_{pt} \]

\[+ \int_i \rho_i^{-1}V(p_{t+1} + d_{t+1} | I_{it})^{-1} (B + I)\Sigma_{it} \left(\zeta_{it}^2\Sigma_{z}K_{it}^{-1} \right)^{-1} (y_{t+1} + \zeta_{it}z_{t+1} + \xi_{it}) di \]

\[= \Gamma_t\Sigma_{pt}^{-1}\eta_{pt} + \Phi_t y_{t+1} + \Psi_t z_{t+1} \]
Here, we used the fact that \(\xi_{it} \) is distributed independently of all other variables with mean zero, and defined the additional covariance terms \(\Omega_t, \Phi_t \) (with \(\Omega_t \) duplicated for reference) as,

\[
\begin{align*}
\Omega_t &\equiv \int \rho_t^{-1} \left((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}' \right)^{-1} \, di \\
\Gamma_t &\equiv \int \rho_t^{-1} \left((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}' \right)^{-1} (B + I) \Sigma_{it} \, di \\
\Phi_t &\equiv \int \rho_t^{-1} \left((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}' \right)^{-1} \\
&\quad \times (B + I) \Sigma_{it} \left(\zeta_{it} \Sigma_z + K_{it}^{-1} \right)^{-1} \, di \\
\Psi_t &\equiv \int \rho_t^{-1} \left((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}' \right)^{-1} \\
&\quad \times (B + I) \Sigma_{it} \left(\zeta_{it} \Sigma_z + K_{it}^{-1} \right)^{-1} \zeta_{it} \, di
\end{align*}
\]

As noted before, \(\Omega_t \) is the risk tolerance weighted average precision of the gross payout. The terms in red indicate the additional terms in the subsequent covariance terms. First, \(\Gamma_t \) is the covariance of the gross payout precision with the posterior variance of the dividend shock \(y_{t+1} \). Similarly, \(\Phi_t \) is the covariance of the gross payout precision with the posterior variance of the dividend shock \(y_{t+1} \) and the signal precision \(\left(\zeta_{it} \Sigma_z + K_{it}^{-1} \right)^{-1} \). Lastly, \(\Psi_t \) is the covariance of the gross payout precision with the posterior variance of the dividend shock \(y_{t+1} \), the signal precision and the exposure to the public signal \(\zeta_{it} \).

We can now substitute the covariance terms \(\Omega_t, \Gamma_t, \Phi_t, \Psi_t \) and the price signal \(\eta_{pt} = C_t^{-1} (p_t - A_t - B(d_t - \mu)) \) in the market clearing equation to get,

\[
\begin{align*}
\bar{x} + x_{t+1} &= \Gamma_t \Sigma_{pt}^{-1} C_t^{-1} \left(p_t - A_t - B(d_t - \mu) \right) + \Phi_t y_{t+1} + \Psi_t z_{t+1} \\
&\quad + \Omega_t [A_{t+1} + \mu + (B + I)G(d_t - \mu) - r p_t] \\
\implies \quad \left(\Gamma_t \Sigma_{pt}^{-1} C_t^{-1} - r \Omega_t \right) p_t &= \Gamma_t \Sigma_{pt}^{-1} C_t^{-1} A_t + \Gamma_t \Sigma_{pt}^{-1} C_t^{-1} B(d_t - \mu) \\
&\quad - \Omega_t A_{t+1} - \Omega_t \mu - \Omega_t (B + I)G(d_t - \mu) \\
&\quad - \Phi_t y_{t+1} - \Psi_t z_{t+1} + \bar{x} + x_{t+1}
\end{align*}
\]

Let \(M_t = \Gamma_t \Sigma_{pt}^{-1} C_t^{-1} - r \Omega_t \). Using the linear conjecture for the price \(p_t \), we match coefficients as follows:

- \(A_t \) to all the constant terms: \(A_t = M_t^{-1} \left[\Gamma_t \Sigma_{pt}^{-1} C_t^{-1} A_t - \Omega_t A_{t+1} - \Omega_t \mu + \bar{x} \right] \)
- \(B \) to all terms with \(d_t - \mu \): \(B = M_t^{-1} \left[\Gamma_t \Sigma_{pt}^{-1} C_t^{-1} B - \Omega_t (B + I)G \right] \)
- \(C_t \) to all terms with \(y_{t+1} \): \(C_t = -M_t^{-1} \Phi_t \)
- \(D_t \) to all terms with \(x_{t+1} \): \(D_t = M_t^{-1} \)
- \(F_t \) to all terms with \(z_{t+1} \): \(F_t = -M_t^{-1} \Psi_t \)
Solving this yields,

\[
\begin{aligned}
A_t &= \frac{1}{t} \left\{ A_{t+1} + \mu - \Omega_t^{-1} \bar{x} \right\} \\
B &= (r - G)^{-1} G \\
C_t &= -M_t^{-1} \Phi_t \\
D_t &= M_t^{-1} \\
F_t &= -M_t^{-1} \Psi_t
\end{aligned}
\]

(14)

Special Cases We consider some special cases, where our expressions should reduce to more familiar forms.

1. $K_{it} = K$: In case all investors share the same precision of the private component of signal, none of the expressions change substantially.

\[
\begin{align*}
\Sigma_{it} &= \left\{ \Sigma_d + \Sigma_{pt}^{-1} + (\zeta_{it}^2 \Sigma_z + K^{-1})^{-1} \right\}^{-1} , \quad \mu_{it} = \Sigma_{it} \left(\Sigma_{pt}^{-1} \eta_{pt} + (\zeta_{it}^2 \Sigma_z + K^{-1})^{-1} \right) s_{it} \\
\Omega_t &= \int_i \rho_{i}^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}')^{-1} \, di \\
\Gamma_t &= \int_i \rho_{i}^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}')^{-1} (B + I) \Sigma_{it} d_i \\
\Phi_t &= \int_i \rho_{i}^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}')^{-1} \times (B + I) \Sigma_{it} \left(\zeta_{it}^2 \Sigma_z + K^{-1} \right)^{-1} \, di \\
\Psi_t &= \int_i \rho_{i}^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}')^{-1} \times (B + I) \Sigma_{it} \left(\zeta_{it}^2 \Sigma_z + K^{-1} \right)^{-1} \, \zeta_{it} d_i
\end{align*}
\]

2. $\zeta_{it} = 0$: In case none of the investors read the public signal, some of our expressions change to indicate that the public signal noise is no longer relevant to the problem.

\[
\begin{align*}
\Sigma_{it} &= \left\{ \Sigma_d + \Sigma_{pt}^{-1} + K_{it} \right\}^{-1} , \quad \mu_{it} = \Sigma_{it} \left(\Sigma_{pt}^{-1} \eta_{pt} + K_{it} s_{it} \right) \\
\Omega_t &= \int_i \rho_{i}^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}')^{-1} \, di \\
\Gamma_t &= \int_i \rho_{i}^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}')^{-1} (B + I) \Sigma_{it} d_i \\
\Phi_t &= \int_i \rho_{i}^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_x D_{t+1}')^{-1} (B + I) \Sigma_{it} K_{it} d_i \\
\Psi_t &= 0
\end{align*}
\]

3. $\zeta_{it} = 1$: In case all investors read the public signal, some of our expressions change to indicate that the investors do not fully disentangle the public signal noise from the dividend innovation.
(since the private signal is essentially an unbiased signal for \(y_{t+1} + z_{t+1} \) in this case).

\[
\Sigma_{it} = \left\{ \Sigma_d + \Sigma_{p1}^{-1} + (\Sigma_z + K_{it}^{-1}) \right\}^{-1}, \quad \mu_{it} = \Sigma_{it} \left(\Sigma_{p1}^{-1} \eta_{pt} + (\Sigma_z + K_{it}^{-1})^{-1} s_{it} \right)
\]

\[
\Omega_t = \int_i \rho_i^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_z D_{t+1}' + F_{t+1} \Sigma_z F_{t+1}')^{-1} \, di
\]

\[
\Gamma_t = \int_i \rho_i^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_z D_{t+1}' + F_{t+1} \Sigma_z F_{t+1})^{-1} (B + I) \Sigma_{it} \, di
\]

\[
\Phi_t = \int_i \rho_i^{-1} ((B + I) \Sigma_{it}(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_z D_{t+1}' + F_{t+1} \Sigma_z F_{t+1})^{-1} (B + I) \Sigma_{it} \, di
\]

\[
\Psi_t = \Phi_t \zeta
\]

For the remaining exposition, we consider the special case where all investors have the same exposure to the public signal \(\zeta_{it} = \zeta \) and the same precision of the orthogonal private component of the signal \(K_{it} = K \). The only source of individual level variation in the model solution remains in the risk tolerance and the signal realization. Hence, the covariance expressions simplify to reflect this, only aggregating across individuals using the average risk tolerance (since the signal realizations don’t affect the covariances).

\[
\Sigma_{it} = \Sigma_t = \left\{ \Sigma_d + \Sigma_{p1}^{-1} + (\zeta^2 \Sigma_z + K^{-1}) \right\}^{-1}, \quad \mu_{it} = \Sigma_t \left(\Sigma_{p1}^{-1} \eta_{pt} + (\zeta^2 \Sigma_z + K^{-1})^{-1} s_{it} \right)
\]

\[
\Omega_t = \bar{\rho}^{-1} ((B + I) \Sigma_t(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_z D_{t+1}' + F_{t+1} \Sigma_z F_{t+1})^{-1}
\]

\[
\Gamma_t = \bar{\rho}^{-1} ((B + I) \Sigma_t(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_z D_{t+1}' + F_{t+1} \Sigma_z F_{t+1})^{-1} (B + I) \Sigma_t
\]

\[
\Phi_t = \bar{\rho}^{-1} ((B + I) \Sigma_t(B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_z D_{t+1}' + F_{t+1} \Sigma_z F_{t+1})^{-1} (B + I) \Sigma_t
\]

\[
\Psi_t = \Phi_t \zeta
\]

Here, we use the average risk tolerance \(\bar{\rho} = (\int_i \rho^{-1} \, di)^{-1} \), which is simply the harmonic mean of the risk tolerance across individuals.

B Proofs

In order to prove our main result, we first state and prove an interim utility result. This lemma states the expected conditional (interim) utility in terms of profits.

Lemma 3. Investor expected utility at date \(t \), conditional on all date- \(t \) data is

\[
\mathbb{E} [U(c_{it+1}) \mid \mathcal{I}_it] = r \overline{w}_{it} \rho_i + \frac{1}{2} \mathbb{E} [\Pi_t \mid \mathcal{I}_it]' \mathbb{V} [\Pi_t \mid \mathcal{I}_it]^{-1} \mathbb{E} [\Pi_t \mid \mathcal{I}_it] \quad (15)
\]

Proof of Lemma 3.
Using \(\Pi_t \), end-of-period consumption for an investor can be represented as

\[
c_{it+1} = r(w_{it} - q_{it}'pt) + q_{it}'(pt_{t+1} + d_{t+1}) = r\bar{w}_{it} + q_{it}'\Pi_t.
\]

The ex ante utility of the investor is,

\[
\mathbb{E} \left[U(c_{it+1}) \mid \mathcal{I}_t^- \right] = \mathbb{E} \left[\mathbb{E} \left[U(c_{it+1}) \mid \mathcal{I}_{it} \right] \mid \mathcal{I}_t^- \right]
\]

That is, we calculate the ex ante utility from the interim utility using the law of iterated expectations. Here, the interim utility is given as

\[
\mathbb{E} \left[U(c_{it+1}) \mid \mathcal{I}_t \right] = \rho_i \mathbb{E} \left[r\bar{w}_{it} + q_{it}'\Pi_t \mid \mathcal{I}_t \right] - \frac{\rho_i^2}{2} V(r\bar{w}_{it} + q_{it}'\Pi_t \mid \mathcal{I}_{it}).
\]

We will further use the fact that \(q_{it} = \rho_i^{-1}V(pt_{t+1} + d_{t+1} \mid \mathcal{I}_{it})^{-1} \mathbb{E} [\Pi_t \mid \mathcal{I}_{it}] \). The first term of the interim utility is,

\[
\rho_i \mathbb{E} \left[c_{it+1} \mid \mathcal{I}_t \right] = \rho_i r\bar{w}_{it} + \mathbb{E} [\Pi_t \mid \mathcal{I}_{it}]' V (pt_{t+1} + d_{t+1} \mid \mathcal{I}_{it})^{-1} \mathbb{E} [\Pi_t \mid \mathcal{I}_{it}] = r\bar{w}_{it}\rho_i + \mathbb{E} [\Pi_t \mid \mathcal{I}_{it}]' V (\Pi_t \mid \mathcal{I}_{it})^{-1} \mathbb{E} [\Pi_t \mid \mathcal{I}_{it}]
\]

For the last equation, we used the fact that the only variable term in \(\Pi_t \) is \(pt_{t+1} + d_{t+1} \) at the interim stage.

The second term of the interim utility can be written as

\[
\frac{\rho_i^2}{2} V(c_{it+1} \mid \mathcal{I}_t) = \frac{1}{2} \mathbb{E} [\Pi_t \mid \mathcal{I}_{it}]' V (pt_{t+1} + d_{t+1} \mid \mathcal{I}_{it})^{-1} V (\Pi_t \mid \mathcal{I}_{it}) V (pt_{t+1} + d_{t+1} \mid \mathcal{I}_{it})^{-1} \mathbb{E} [\Pi_t \mid \mathcal{I}_{it}]
\]

Taking the difference of the first term and the second term yields the result in Lemma 3.

Proof of Lemma We start from the expression of interim expected utility in Lemma 3. Expand the expression for profit \(\Pi_t \) as,

\[
\Pi_t = pt_{t+1} + d_{t+1} - rp_t
\]

\[
= A_{t+1} + B(d_{t+1} - \mu) + C_{t+1}y_{t+2} + D_{t+1}x_{t+2} + F_{t+1}z_{t+2} + (d_{t+1} - \mu) + \mu - rp_t
\]

\[
= A_{t+1} + \mu + (B + I)(G(d_t - \mu) + y_{t+1}) + C_{t+1}y_{t+2} + D_{t+1}x_{t+2} + F_{t+1}z_{t+2} - rp_t
\]

\[
= A_{t+1} + \mu + (B + I)G(d_t - \mu) + (B + I)y_{t+1} + C_{t+1}y_{t+2} + D_{t+1}x_{t+2} + F_{t+1}z_{t+2} - rp_t
\]
Similarly, the interim variance of the profit is given as,

\[V\left(\Pi_t \mid \mathcal{I}_{it} \right) = (B + I) \Sigma_t (B + I)' + C_{t+1} \Sigma_d C_{t+1}' + D_{t+1} \Sigma_d D_{t+1}' + F_{t+1} \Sigma_d F_{t+1}' \] \hfill (16)

Here, we use the posterior variance of the dividend innovation \(\Sigma_t = V(y_{it+1} \mid \mathcal{I}_{it}) \). Further, it is clear from Equation (16) that the interim variance of consumption \(V(\Pi_t \mid \mathcal{I}_{it}) \) is a known quantity – it is only a function of \(\zeta_{it} \) and \(K_{it} \) (in our case, \(\zeta \) and \(K \)), and not a function of information revealed at the interim stage \(p_t \) or \(s_{it} \). That is, it is a function only of the model primitives and the information set \(\mathcal{I}_0 \).

In order to do so, we decompose the conditional expected profit (4) into an expected \(E[\Pi_t] \) and a surprise component \(E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t] \),

\[
E[U(c_{it+1})] = E[E[U(c_{it+1} \mid \mathcal{I}_{it})]]
\]

\[
= \frac{1}{2} E \left[(E[\Pi_t]' + (E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t]')) V[\Pi_t \mid \mathcal{I}_{it}]^{-1} (E[\Pi_t] + (E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t])) \right] + r\overline{w}_{it}\rho_i
\]

\[
= \frac{1}{2} E[\Pi_t]' V[\Pi_t \mid \mathcal{I}_{it}]^{-1} E[\Pi_t] + E \left[\frac{1}{2} \left(E[\Pi_t]' V[\Pi_t \mid \mathcal{I}_{it}]^{-1} (E[\Pi_t] \mid \mathcal{I}_{it}] - E[\Pi_t]) \right) \right] = 0
\]

\[
+ \frac{1}{2} \mathbb{E} \left[(E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t])' V[\Pi_t \mid \mathcal{I}_{it}]^{-1} (E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t]) \right] + r\overline{w}_{it}\rho_i
\] \hfill (17)

We are interested in the second term of the ex ante expected utility in Equation (17). We will use the fact that the mean of a central chi-square is the trace of the covariance matrix of the underlying normal variable,

\[
E[U(c_{it+1})] = \frac{1}{2} E[\Pi_t]' V[\Pi_t \mid \mathcal{I}_{it}]^{-1} E[\Pi_t] + \frac{1}{2} \text{tr} \left(V(\Upsilon_t) \right) + r\overline{w}_{it}\rho_i
\] \hfill (18)

where, \(\Upsilon_t = (E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t])' V[\Pi_t \mid \mathcal{I}_{it}]^{-\frac{1}{2}} \) \hfill (19)

We can express \(V(\Upsilon_t) \) as,

\[
V(\Upsilon_t) = V \left(\{E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t] \}' V(\Pi_t \mid \mathcal{I}_{it})^{-\frac{1}{2}} \right)
\]

\[
= V \left(E[\Pi_t \mid \mathcal{I}_{it}] - E[\Pi_t] \right) V(\Pi_t \mid \mathcal{I}_{it})^{-1}
\]

Hence, the term of interest is the prior variance of the ex ante stochastic quantity \(E[\Pi_t \mid \mathcal{I}_{it}] \), since the prior expectation of this quantity \(E[\Pi_t] \) is a known variable ex ante. Hence, we can use the law of total variance, which says that the prior variance of the posterior expectation \(E[\Pi_t \mid \mathcal{I}_{it}] \) is equal to the prior variance minus the posterior variance for \(\Pi_t \),

\[
V(\Upsilon_t) = \{V(\Pi_t) - E[V(\Pi_t \mid \mathcal{I}_{it})] \} V(\Pi_t \mid \mathcal{I}_{it})^{-1}
\]

\[
= V(\Pi_t)V(\Pi_t \mid \mathcal{I}_{it})^{-1} - I
\] \hfill (19)
Hence, we can express the ex ante expected utility as,

$$E[U(c_{it+1})] = \frac{1}{2} E[\Pi_t'] V [\Pi_t | I_{it}]^{-1} E[\Pi_t] + \frac{1}{2} \text{tr} \left[V [\Pi_t] V [\Pi_t | I_{it}]^{-1} - I \right] + r\overline{\pi}_{it}\rho_i$$

The posterior variance $V(\Pi_t | I_{it})$ is given in Equation [16].

This result is stated in terms of asset payoff. To restate it in terms of returns, simply divide each Π term by p_t. The result remains unchanged.

Proof of Lemma

Differentiating expected utility, when price p_t depends on investor i’s demand yields a first order condition,

$$q_{it} = \left[\rho_i V (p_t + d_{t+1} | I_{it}) + \frac{dp}{dq_i} \right]^{-1} \left\{ E[p_{t+1} + d_{t+1} | I_{it}] - rp_t \right\}.$$

The term dp/dq_i, often referred to as “Kyle’s lambda” is the measure of how much effect investor i’s demand has on the market price of an asset.

Interim utility still takes the form

$$E[U(c_{it+1}) | I_{it}] = \rho_i E \left[r\overline{\pi}_{it} + q_{it}' \Pi_t | I_{it} \right] - \frac{\rho_i^2}{2} V (r\overline{\pi}_{it} + q_{it}' \Pi_t | I_{it}).$$

However, substituting in the new expression for q_{it}, the first term of the interim utility is now

$$\rho_i E[c_{it+1} | I_{it}] = \rho_i r\overline{\pi}_{it} + E[\Pi_t | I_{it}]' \left[V (p_t + d_{t+1} | I_{it}) + \frac{dp}{\rho_i dq_i} \right]^{-1} E[\Pi_t | I_{it}]$$

$$= r\overline{\pi}_{it}\rho_i + E[\Pi_t | I_{it}]' \left[V(\Pi_t | I_{it}) + \frac{dp}{\rho_i dq_i} \right]^{-1} E[\Pi_t | I_{it}]$$

The second term of the interim utility can be written as

$$\frac{\rho_i^2}{2} V (c_{it+1} | I_{it}) = \frac{\rho_i^2}{2} q_{it}' V (\Pi_t | I_{it}) q_{it}$$

$$= \frac{1}{2} E[\Pi_t | I_{it}]' \left[V(\Pi_t | I_{it}) + \frac{dp}{\rho_i dq_i} \right]^{-1} V(\Pi_t | I_{it}) \left[V(\Pi_t | I_{it}) + \frac{dp}{\rho_i dq_i} \right]^{-1} E[\Pi_t | I_{it}]$$

Let $\tilde{V}_i := V(\Pi_t | I_{it}) + \frac{1}{\rho_i} \frac{dp}{dq_i}.$

Then taking the difference of the first term and the second term yields interim expected utility

$$E[U(c_{it+1}) | I_{it}] = r\overline{\pi}_{it}\rho_i + E[\Pi_t | I_{it}]' \tilde{V}_i^{-1} \left(1 - \frac{1}{2} V(\Pi_t | I_{it}) \tilde{V}_i^{-1} \right) E[\Pi_t | I_{it}]$$

(20)

To compute ex-ante utility, we follow the same steps as in Lemma 3. The answer is the same, except that we replace $V(\Pi_t | I_{it})$ with $\tilde{V}_i := \tilde{V}_i \left(1 - 1/2 V(\Pi_t | I_{it}) \tilde{V}_i^{-1} \right)^{-1}$ in (18) and in (19).
In this case,

\[
V(\Upsilon_t) = V \left(\mathbb{E} [\Pi_t \mid I_{it}] - \mathbb{E} [\Pi_t] \right) \tilde{V}_i^{-1/2}
\]

\[
= V \left(\mathbb{E} [\Pi_t \mid I_{it}] - \mathbb{E} [\Pi_t] \right) \tilde{V}_i^{-1}
\]

Applying the same law of total variance,

\[
V(\Upsilon_t) = (V(\Pi_t) - V(\Pi_t \mid I_{it})) \tilde{V}_i^{-1}.
\]

Substituting \(\tilde{V}_i \) for \((1/2)V(\Pi_t \mid I_{it})\) in (18) and using the new expression for \(V(\Upsilon_t) \) yields the result in terms of profits. To restate the result in terms of returns, as in Lemma 2, simply divide each \(\Pi \) term by \(p_t \).

Quantifying Price Impact [Hasbrouck (1991)] measures the price impact of a trade, for an average asset in his sample. When 1000 shares are purchased, such a purchase is on average $19,460 trade (i.e. $19 per share), on $1.087 billion of market capitalization. This average size trade raises the price of the asset by 0.299%.

The question is how to map this finding into \(dp/dx \) in our model. The variable \(x \) in the model is in dollars of assets. Hasbrouck’s number is in terms of market value, so we need to turn it into dollars of assets, by using the average price of a dollar’s worth of capital, denoted Pbar. A $20,000 trade in mkt value = $20,000/Pbar trade in dollars of assets. And 0.3% price impact = (0.003) Pbar in absolute terms.

This logic implies that \((0.003)Pbar = dP/dx(20,000/Pbar)\), which implies \(dP/dx = 0.003(Pbar)^2 \times 1/20000 \).

\(Pbar \) is approximately 3 for growth firms. It would be closer to 0.3, for value firms. If we plug 3 in, we get

\[
dP/dx = 0.003 \times 9/20000 = 10^{-6},
\]

which is even larger than the estimate we use in the main results. Thus, our results are conservative.

C Valuing Order Flow Data

Consider an extension of the model where investors can observe data on sentiment shocks from \(H \) different data sources. Investors have the same preference and choose their risky asset investment \(q_{it} \) to maximize \(E[U(c_{it+1}) \mid I_{it}] \), taking the asset price and the actions of other investors as given, subject to the budget constraint ([1]). A given piece of data \(m \) from data source \(h \) is now a signal about \(x_{t+1} \):

\[\eta_{ith}^{\text{new}} = \psi_h x_{t+1} + \Gamma_h e_{it}^x, \text{ with } e_{it}^x \sim i.i.d. N(0, I). \]

Information on sentiment shocks allows an investor \(i \) to extract a more precise signal about dividends from prices \(s_{it}^p = y_{t+1} + C_t^{-1} D_t (x_{t+1} - E[x_{t+1} \mid s_{it}^x]) \). While investors probably do not...
think about using order flow data to learn about fundamentals, they often trade against uniformed order flow (sentiment). This is mathematically equivalent to using sentiment to extract clearer fundamental information from price and then trading on that fundamental information.

The solution of this model is a straightforward n-asset extension of the model with order flow information in Farboodi and Veldkamp (2017). Given an $N \times 1$ unbiased signal s^y_{it} about the dividend innovations y_{t+1} with precision matrix k^{y}_{it} and an $N \times 1$ unbiased signal s^x_{it} about the sentiment shocks y_{t+1} with precision matrix k^{x}_{it}, investors apply Bayes’ law. They combine their prior, information in the sentiment-adjusted market price, and information on dividend innovation obtained from the data to form a posterior view about the $(t + 1)$-period dividend d_{t+1}. The posterior precision is $V \left[d_{t+1} \mid I_{it} \right]^{-1} = \Sigma^{-1}_{0} + C^{-1}_{t} D_{t} \left(\Sigma_{x} + (k^{x}_{it})^{-1} \right)^{-1} D_{t}' C^{-1}_{t} + k^{y}_{it}$.

At each date t, the risky asset price equates demand with noise trades plus one unit of supply, as described by equation (2). The equilibrium price is still a linear combination of past dividends d_{t}, the t-period dividend innovation y_{t+1}, and the sentiment shock x_{t+1}, as in (2).

Ex-ante utility is still given by (3). The precision variables k^{y}_{it} and k^{x}_{it} enter through the posterior variance $V \left[d_{t+1} \mid I_{it} \right]$ and $V \left[\Pi_{t} \mid I_{it} \right]$. The uncertainty about dividends is a sufficient statistic, and the formulation of Bayes’ law for posterior precision (the inverse of uncertainty), implies that k^{y}_{it} and k^{x}_{it} affect utility in the same way, except that k^{x}_{it} is multiplied by $C^{-1}_{t} D_{t} D_{t}' C^{-1}_{t}$. This ratio of price coefficients represents the squared signal-to-noise ratio in prices, where C is the price coefficient on the signal (future dividend) and D is the coefficient on noise (sentiment). The bottom line is that the value of sentiment data is exactly the same as the value of fundamental data, after adjusting for the signal-to-noise ratio in prices. That signal-to-noise adjustment is exactly what an OLS procedure does.