Payoff Complementarities and Financial Fragility: Evidence from Mutual Fund Outflows

Qi Chen, Itay Goldstein, Wei Jiang

This Draft: February 2009

1We thank Franklin Allen, Philip Bond, Markus Brunnermeier, Miguel Cantillo, Amil Dasgupta, Richard Evans, Mark Flannery, Simon Gervais, Gary Gorton, Christopher James, Debbie Lucas, David Musto, Bryan Routledge, Jacob Sagi, Jose Scheinkman, Hyun Song Shin, Chester Spatt, Robert Stambaugh, Ted Temzelides, and Xavier Vives for useful discussions and comments. We also thank seminar participants at Boston College, Columbia, Duke, ECB, Goethe University (Frankfurt), HKUST, Kellogg, Notre Dame, Peking University, Penn State, Philadelphia Fed, Princeton, Stockholm School of Economics, Tsinghua University, Tuck, UBC, University of Massachusetts, University of Minnesota, UNC-Chapel Hill, University of Southern California, Vanderbilt, and Wharton, and participants at the following conferences: Corporate Governance Incubator (China), IESE Conference on Information and Complementarities (Barcelona), WFA annual meeting, NBER Capital Markets and the Economy Workshop, Global Games Workshop at SUNY Stony Brook, FDIC Annual Bank Research Conference, Unicredit Conference on Banking and Finance (Naples), Utah Winter Finance Conference, and Cleveland Fed Conference on Financial Crises. Finally, we thank Suan Foo at Morgan Stanley for sharing his knowledge on the key aspects of flow management in the mutual fund industry. Itay Goldstein gratefully acknowledges financial support from the Rodney White Center at the Wharton School of the University of Pennsylvania.

2The Fuqua School of Business, Duke University, qc2@duke.edu.
3The Wharton School, University of Pennsylvania, itayg@wharton.upenn.edu.
4The Graduate School of Business, Columbia University, wj2006@columbia.edu.

This is a preprint version of the article. The final version may be found at <http://dx.doi.org/10.1016/j.jfineco.2010.03.018>.
Payoff Complementarities and Financial Fragility: Evidence from Mutual Fund Outflows

ABSTRACT

The paper provides empirical evidence that strategic complementarities among investors generate fragility in financial markets. Analyzing mutual-fund data, we find that, consistent with a theoretical model, funds with illiquid assets (where complementarities are stronger) exhibit stronger sensitivity of outflows to bad past performance than funds with liquid assets. We also find that this pattern disappears in funds where the shareholder base is composed mostly of large investors. We present further evidence that these results are not attributable to alternative explanations based on the informativeness of past performance or on clientele effects. We analyze the implications for funds’ performance and policies.

1 Introduction

Financial fragility is often attributed to the presence of strategic complementarities among investors. When investors’ incentive to take a certain action increases in the expectation that other investors will take the same action, a multiplier effect is expected to emerge, amplifying the effect of fundamentals on investors’ behavior, and, when the shock is negative, worsening things further. Despite a large theoretical literature, there is virtually no empirical study in the literature that identifies this relation in data. Our goal in this paper is to provide such empirical evidence.

We conduct our study using (open-end) mutual-fund data. In mutual funds, investors have the right to redeem their shares at the fund’s daily-close Net Asset Value (NAV) on any given day. As shown in previous studies (e.g., Edelen (1999) and Coval and Stafford (2006)), following substantial outflows, funds need to adjust their portfolios and conduct costly and unprofitable trades, which

1This idea is at the core of various theories on bank runs (e.g., Diamond and Dybvig (1983)), currency attacks (e.g., Morris and Shin (1998)), bubbles and crashes in financial markets (e.g., Abreu and Brunnermeier (2003)), and others.
damage the future returns. Since mutual funds conduct most of the resulting trades after the day of redemption, most of the costs are not reflected in the NAV obtained by redeeming investors, but rather are borne by the remaining investors. This leads to strategic complementarities – the expectation that other investors will withdraw their money reduces the expected return from staying in the fund and increases the incentive for each individual investor to withdraw as well – and amplifies the damage to the fund.

Detecting this mechanism in the data is a difficult task. Testing directly whether agents choose the same action as others cannot credibly identify the effects of strategic complementarities because this approach is prone to a missing variable problem, that is, agents may act alike because they are subject to some common shocks or react to information about fundamentals unobserved by the econometrician. Indeed, this so-called “reflection problem” posed a challenge for empiricists trying to detect peer effects for a long time (see Manski (1993) and Glaeser, Sacerdote, and Scheinkman (2003)). Instead, our empirical approach relies on the differences across mutual funds in the level of strategic complementarities faced by their investors. Investors in funds that hold illiquid assets (hereafter, “illiquid funds”) face a higher degree of strategic complementarities than investors in funds that hold liquid assets (hereafter, “liquid funds”). This is because redemptions impose higher costs on the illiquid funds than the liquid funds. Our empirical analysis tests for differences in redemption patterns across these types of funds.

We start by developing a stylized model of mutual-fund redemptions that delivers our basic hypotheses. Given that the basic premise of the model is the presence of strategic complementarities in mutual-fund redemptions, getting empirical predictions is not trivial. This is because models with strategic complementarities typically have multiple equilibria and thus cannot be easily taken to the data. Our theoretical model (detailed in the appendix) uses the global-game framework – assuming that agents do not have common knowledge about some fundamental variable that affects the returns of the fund – to overcome the problem of multiple equilibria and generate clear-

2 Section 2 discusses in detail the institutional background and the magnitude of the damage caused by investors’ withdrawals.

3 In fact, a common view on such models has been that they impose no restrictions on the data, and thus cannot be tested (see Gorton (1988)).
Our main hypothesis is that the sensitivity of outflows to bad past performance will be stronger in illiquid funds than in liquid funds. Intuitively, consider investors holding shares in an emerging-market fund vs. investors who hold shares in a fund that invests in large-cap U.S. stocks. Faced with bad performance, the former will have a stronger tendency to redeem their shares because they know that redemptions by others will impose non-negligible costs on the fund, which will hurt them if they choose to stay in the fund. Our second prediction is based on the idea that large investors are more likely to internalize the externalities in redemptions. Knowing that they control large shares of the fund assets, large investors are less concerned about the behavior of others. Hence, the prediction is that the effect of the illiquidity of fund assets on investors' redemptions will be smaller in funds held primarily by large investors.\(^5\) Using data on the net outflows from U.S. equity mutual funds from 1995 to 2005 and various measures of illiquidity (captured either by the stated investment style or the trading liquidity of the underlying assets), we find strong support for our two hypotheses.

We consider two alternative explanations for our findings. The first one is reminiscent to the empirical literature that attributes banking failures to bad fundamentals (see e.g., Gorton (1988), Calomiris and Mason (1997), Schumacher (2000), Martinez-Peria and Schmukler (2001), and Calomiris and Mason (2003)). In our context, it is possible that illiquid funds see more outflows upon bad performance because their performance is more persistent, and so, even without

\(^4\) The theoretical global-game literature was pioneered by Carlsson and Van Damme (1993). The methodology has been used in recent years to study various finance-related phenomena, such as currency crises (Morris and Shin (1998), Corsetti, Dasgupta, Morris, and Shin (2004)), bank runs (Goldstein and Pauzner (2005), Rochet and Vives (2004)), contagion of financial crises (Dasgupta (2004), Goldstein and Pauzner (2004)), and stock-market liquidity (Morris and Shin (2004), Plantin (2009)). It is also related to the model of Abreu and Brunnermeier (2003) on financial-market bubbles and crashes. Strictly speaking, what we test in the paper is the joint hypothesis about the effect of strategic complementarities and the validity of the global-game structure. Previous attempts to test predictions from a global-game setting were based on laboratory experiments (see: Heinemann, Nagel, and Ockenfels (2004)).

\(^5\) Note that large investors may still redeem more for informational reasons. The feature that we emphasize is that they respond less to the complementarities, which are proxied by the level of illiquidity.
considering the outflows by other shareholders, bad performance increases the incentive to redeem. We entertain this explanation by examining in data whether, absent large outflows, performance in illiquid funds is indeed more persistent than in liquid funds. We find no such evidence, both for open-end funds – after excluding observations with extremely large outflows – and for closed-end funds – where, by definition, outflows do not exist.

The second alternative explanation is based on a clientele effect. Suppose that investors in illiquid funds are more tuned to the market than investors in liquid funds, and thus they redeem more promptly after bad performance. We address this point by analyzing the behavior of one sophisticated clientele – that of institutional investors. We show that in the subsample of retail-oriented funds – where strategic complementarities are expected to have an effect – institutional investors’ redemptions are more sensitive to bad performance in illiquid funds than in liquid funds. Moreover, this result does not hold in the subsample of institutional-oriented funds. These results suggest that the clientele effect is not driving our results. An interesting aspect of the result is that institutional investors behave differently, depending on whether they are surrounded by other institutional investors or by retail investors. These differences provide a key piece of evidence to identify the role of strategic interaction in mutual-fund redemptions.

Finally, we provide two additional pieces of evidence that support the mechanism of our story. First, our story relies on the idea that outflows in illiquid funds cause more damage to future performance. We confirm this premise in the data. Second, given that outflows are much costlier for illiquid funds, one would expect illiquid funds to be more inclined to taking measures to either reduce the frequency of outflows or minimize their impact on fund performance. Such measures include restrictions on redemptions after a recent SEC rule in 2005 and holding more cash reserves. Indeed, we find that illiquid funds are more likely to take each one of the two measures. Hence, the effects we detect in equilibrium are observed after the mitigating effect of these measures.

The institutional features of mutual funds that motivate our study possibly facilitated occasional extreme turbulences, such as the “run” on the money-market funds in the U.S. during the midst of the sub-prime crisis in September 2008.6 We deliberately use a large sample rather than confine

6Other examples of runs on mutual funds include the runs on real-estate funds in Germany in 2006 (see Bannier, Fecht, and Tyrell (2006)) and in the U.K. in 2007 (see “Real-Estate Finance: U.K. Property Funds Prove Difficult
ourselves to short periods and selected funds where extreme turbulences occurred. By this, we benefit from the richness and diversity of the mutual-fund data. In particular, our ability to distinguish between funds with different degrees of strategic complementarities and with different types of investors is crucial for testing our hypotheses and for ruling out the alternative explanations. While looking at a large sample that consists mostly of calm periods reduces the magnitude of the mechanism we are interested in, we are still able to find evidence to support our hypotheses.\(^7\)

Our findings manifest the vulnerability of mutual funds and other open-end financial institutions. The fact that open-end funds offer demandable claims is responsible for the strategic complementarities and their destabilizing consequences. This opens questions on optimal fund policies and regulation. For example, our results suggest that this fragility is tightly linked to the level of liquidity of the fund’s underlying assets, and that funds that invest in highly illiquid assets may be better off operating in closed-end form.\(^8\) Beyond the funds and their investors, this fragility has important implications for the workings of financial markets. Financial fragility prevents open-end funds from conducting various kinds of profitable arbitrage activities (see Stein (2005)) and thus promotes mispricing and other related phenomena.

Our paper also contributes to the mutual-fund literature. There are many papers studying mutual fund flows. A partial list includes papers by Brown, Harlow, and Starks (1996), Chevalier and Ellison (1997), Sirri and Tufano (1998), and Zheng (1999). Our results imply that investors’ redemption decisions are affected by what they believe other investors will do. Also, not knowing what other investors will do, mutual fund investors are subject to a strategic risk due to the externalities from other investors’ redemptions. This brings a new dimension to the literature on fund flows, which thus far has not considered the interaction among fund investors.

\(^7\)For the same reason, we did not choose hedge-fund or bank data, where the magnitude of the effect may be stronger but the quality of the available data is low.

\(^8\)This idea underlies the model of Cherkes, Sagi, and Stanton (2006). A complete evaluation of this issue should, of course, consider the reasons that lead financial institutions to offer demandable claims to begin with. Two such reasons are the provision of liquidity insurance (see Diamond and Dybvig (1983)) and the role of demandable claims in monitoring (see Fama and Jensen (1983), Calomiris and Kahn (1991), Diamond and Rajan (2001), and Stein (2005)).
The remainder of the paper is organized as follows. In Section 2, we describe the institutional details that support the design of our study and present the main hypotheses (the model on which the hypotheses are based is provided in the appendix). In Section 3, we describe the data used for our empirical study. In Section 4, we test our hypotheses regarding the effect of funds’ liquidity and investor base on outflows. Section 5 considers the potential alternative explanations and provides evidence to rule them out. In Section 6, we provide robustness checks and further evidence. Section 7 concludes.

2 Institutional Background and Hypotheses

2.1 Institutional background

Two important ingredients give rise to payoff complementarities in mutual-fund redemptions. The first one is that redemptions are costly to the mutual funds. The costs stem mostly from the trades that funds make in response to outflows, including both direct costs such as commissions, bid-ask spreads and price impact, and indirect costs that result when redemptions force fund managers to deviate from their optimal portfolios.

These costs, as documented and analyzed in a large body of literature (for example, Chordia (1996), Edelen (1999), Wermers (2000), Greene and Hodges (2002), Johnson (2004), Coval and Stafford (2006), Alexander, Cici, and Gibson (2007), and Christoffersen, Keim, and Musto (2007)), are quite substantial. For example, Edelen (1999) estimates that for every dollar of outflow, approximately $0.76 goes to a marginal increase in the fund’s trading volume. He estimates that the average transaction cost on these tradings is 2.2% per unit of trading and these costs contribute to a significant negative abnormal fund return of up to −1.4% annually. Similarly, Wermers (2000) estimates that the total expenses and transaction costs of mutual funds amount to 1.6% annually. Relatedly, Alexander, Cici, and Gibson (2007) find that stocks sold by mutual funds for liquidity reasons (because of outflows) outperform those sold at discretion by 1.55% annually. Our hypotheses are based on the notion that redemptions impose larger costs on illiquid funds due to their higher trading costs (see Coval and Stafford (2006)).
The second ingredient for payoff complementarities in mutual fund redemptions is that the costs imposed by redemptions are generally not reflected in the price (NAV) investors get when investors redeem their shares. Rather, they are mostly imposed on investors who keep their money in the fund. The reason is that the NAV at which investors can buy and sell their shares in the funds is calculated using the same-day market close prices of the underlying securities. It is determined at 4:00pm and reported to the NASD by 6:00pm. In many cases, however, the trades made by mutual funds in response to redemptions happen only after the day of the redemptions and thus their costs are not reflected in the NAV of that day. This happens for two reasons. First, in most funds during our sample period, investors can submit their redemption orders until just before 4:00pm of a trading day. Because it takes time for the orders (especially those from the omnibus accounts at the brokerage firms) to be aggregated, mutual funds usually do not know the final size of daily flows until the next day. Second, even if mutual funds know the size of flows in some cases, they may still prefer to conduct the resulting trades at later dates. The timing of the trades depends on the funds’ assessment of optimal trading strategies in light of investment opportunities and trading costs.9

On the quantitative side, a simple calculation, based on the estimates from the literature, suggests that investors’ redemptions can cause substantial costs to induce other investors to redeem their own shares. According to data from Christoffersen, Evans, and Musto (2007), the 95th and 99th percentile values of monthly redemption at U.S. mutual funds from 1996 to 2003 are 20% and 37% of the total assets, respectively.10 Combining these numbers with the estimated parameters from Edelen (1999) — that on average 76% of gross outflows lead to forced sales and that forced trading is on average associated with 2.2% lowered return – the total damage from investors’

9It should be noted that mutual fund investors can impose externalities on their fellow shareholders through channels that are distinct from the one analyzed in our paper. First, the redemptions by some investors may cause funds to distribute capital gains to the remaining investors (such tax externalities were discussed and analyzed by Dickson, Shoven, and Sialm (2000) and Barclay, Pearson, and Weisbach (1998)). Second, certain management fees, negotiated in fixed amount ex ante, would be amortized on a smaller asset base if the fund experiences substantial outflows ex post. The strength of these effects is unrelated to the illiquidity of the fund’s underlying assets, and so they are distinct from our empirical tests.

10We thank Susan Christofferson for providing us the summary data.
redemptions in a month with heavy outflows amounts to 37 and 76 bps, respectively.11 These are still conservative estimates. For illiquid assets, forced trading is likely to cause more damage to returns than estimated by Edelen (1999). Moreover, for unusually large redemptions, the proportion of redemptions that leads to forced trading is also likely to be larger than his estimation. Hence, when investors in illiquid funds expect the possibility of large redemptions by other investors, they could reasonably fear losing 100 bps or more of their entire investment in a month, \textit{just due to the redemptions of others}. This should be sufficient to induce a sizable group of investors (who are sensitive to performance and enjoy relatively low switching cost) to redeem and potentially lead to self-fulfilling redemptions.12

Certain measures taken by mutual funds in an attempt to mitigate the damage from redemptions speak to this important aspect of the institutional background. Section 6.3 provides empirical analysis on some of these measures. One prominent measure used by almost all funds is to carry a small proportion (usually 1\% to 5\%) of the assets in cash, which could absorb flows without triggering instant trading. The ability of funds to reduce the damage from redemptions by using cash is, however, limited. Cash holdings are costly because they compromise performance relative to investment objectives and styles, and are not able to absorb large flows. Also, after the fund uses cash to meet redemptions, it will still need to sell assets to rebuild its cash positions in case there are no immediate inflows. Another measure used by funds is to attempt to predict future flows. In practice, however, this proves to be difficult. As emergency measures, some funds state in their prospectus that they reserve the right to suspend redemption or to deliver redemption in kind (i.e., with a basket of underlying securities). But, these measures have almost never been applied for retail investors.

1137 (or 76) bps = 20\% (or 37\%)\times 76\% \times 2.2\%/(1 - 20\%/2). We assume here that the outflows occur evenly during the month and therefore the average assets under management are (1-20%/2) of the beginning-of-the-month level.

12An important question is what causes investors to expect a certain amount of outflows. In our empirical analysis, past performance plays the key role. Yet, despite the fact that it is the most powerful and highly significant predictor of future flows, it only captures a relatively small portion of the variations in fund flows. We believe it is very likely that investors use other signals (in addition to past performance) in predicting other investors’ propensity to redeem. As econometricians, however, we do not have access to these signals and are confined to using the observed past performance as the proxy for the information that investors have.
Recently, an increasing number of funds started imposing restrictions on trading frequency. This was encouraged to a large extent by the Securities and Exchange Commission’s new rule in 2005 formalizing the redemption fees (not to exceed 2% of the amount redeemed) that mutual funds can levy and retain in the funds. In theory, the redemption fee could eliminate the payoff complementarity,13 but in reality the rule is far from perfect. First, usually redemption fees are only assessed when the holding period falls short of some threshold length. Second, so far many funds choose not to implement the rule, either because of the competition (to offer ordinary investors the liquidity service), or because of insufficient information regarding individual redemptions from the omnibus accounts.14 Our main analysis uses data from 1995-2005 when redemption restrictions were very uncommon.

Overall, the fact that funds take various mitigating measures proves that they are concerned about costs imposed by redemptions. As discussed above, however, none of these measures is capable of perfectly solving the problem. Most importantly, all the cost estimates provided in the existing literature (discussed above) represent the cost of redemption in equilibrium, that is, after incorporating the measures taken by mutual funds to mitigate such effects. Hence, the presence of these mitigating measures works against our ability to find evidence for the effect of strategic complementarities. Thus, our findings provide a rather conservative estimate on the impact of strategic complementarities on investors redemption behavior.

\textbf{2.2 Hypotheses}

In the appendix, we develop a simple model of complementarities in mutual-fund redemptions, which is based on the premises discussed above. Using the global-game methodology, we solve the model and derive the following two hypotheses.

13Note that redemption fees are different from back-end load fees in that they are retained in the fund for the remaining shareholders. Back-end load fees are paid to the brokers, and thus do not eliminate the payoff complementarities.

14The new rule requires funds to enter into written agreements with intermediaries (such as broker-dealers and retirement plan administrators) that hold shares on behalf of other investors, under which the intermediaries must agree to provide funds with certain shareholder identity and transaction information at the request of the fund and carry out certain instructions from the fund.
Hypothesis 1: Conditional on low past performance, funds that hold illiquid assets will experience more outflows than funds that hold liquid assets.

Intuitively, in funds that hold illiquid assets, investors who withdraw their money impose a negative externality on those who stay in the fund. This is because they generate a cost to the fund, and the cost is borne mostly by the investors who keep their money in. As a result, the expectation that some investors will withdraw increases the incentive of other investors to do the same thing. This generates self-fulfilling redemptions – i.e., redemptions that are based on the expectation that others will redeem – which increase the overall amount of redemptions. The same force does not work when past performance is relatively high. In this case, the fund receives sufficient inflows. Then, when investors withdraw their money, they do not impose a negative externality on the investors who stay in the fund, as the fund can pay the withdrawers using money from new inflows.

Hypothesis 2: The pattern predicted in Hypothesis 1 will be less prominent in funds that are held mostly by large/institutional investors than in funds that are held mostly by retail investors.

For simplicity, this hypothesis is developed by introducing a single large investor to the shareholder base and analyzing the effect on redemptions. The intuition is that a large investor holds a large proportion of the fund’s shares, and is thus less affected by the actions of other investors. The large investor at least knows that by not withdrawing he guarantees that his shares will not contribute to the overall damage caused by withdrawals to the fund’s assets. Thus, the negative externality imposed by withdrawals in illiquid funds is weaker for a large investor, and therefore he is less likely to withdraw. Moreover, knowing that the fund is held by a large investor, other investors will also be less likely to withdraw. This is because the large investor injects strategic stability and thus reduces the inclination of all shareholders to withdraw.

While the hypothesis is developed for only one large investor (utilizing the theoretical tools in Corsetti, Dasgupta, Morris, and Shin (2004)), we conjecture that the same effect will be in place in a richer framework that allows for multiple large investors.15 Hence, going into the empirical

15The result described here will go through easily if the large investors play a cooperative equilibrium. This is quite realistic given that large shareholders often coordinate their actions with each other. If the large investors do not cooperate, the basic force behind the result here will stay intact, although other forces may arise.
analysis we will be interested in the difference in redemption patterns between funds that are held mostly by large/institutional investors and funds that are held mostly by small/retail investors.

3 Data

Our empirical analysis focuses on 4,393 equity funds from the CRSP Mutual Fund database in the years 1995-2005. A fund is defined as an equity fund if at least 50% of its portfolio is in equity throughout the sample period. To ensure that our flow measure captures investors’ desired action, we include only fund-year observations when the funds are open to new and existing shareholders. We also exclude retirement shares that are usually issued for defined-contribution plans, such as 401(k) and 403(b) plans, because they limit the flexibility for investors.

We use CRSP S&P style code and area code to identify the types of assets each fund invests in and create a dummy variable Illiq based on these codes. Illiq equals one if these codes indicate that the fund invests primarily in one of the following categories: small-cap equities (domestic or international), mid-cap equities (domestic or international), or single-country assets excluding U.S., U.K., Japan, and Canada. We cross check these classifications for consistency with the CRSP Mutual Funds asset class code and category code. Since these codes are available only after 2002 and funds rarely switch categories, for data before 2002, we determine the classification by matching both the fund’s names and tickers. For funds that deceased before 2002, we manually classify them based on the description of their investment area/style in the Morningstar database. Our results are qualitatively similar if we exclude mid-cap funds or funds investing in developed single-country markets. For the subsample of domestic equity funds, we are able to construct finer and continuous liquidity measures using the holdings data information (details in Section 6.1).

A mutual fund often issues several share classes out of the same portfolio. These share classes carry different combinations of fees/loads and minimum investment requirements to cater to investors.

16 The intuition and prediction of our theoretical model also apply to bond funds. However, we do not have available data to measure the liquidity of assets in bond funds.

17 Although defined-contribution plans usually grant participants the right to reallocate their balances up to the frequency allowed by the funds, the reallocation is confined within the set of investment choices offered by the plans (usually a group of funds within the same fund family).
vestors with different wealth levels and investment horizons. The purchases and redemptions of
different class shares belonging to the same fund are pooled. For our tests, we are interested in
whether a share is issued to institutions or to retail investors. We rely on CRSP data and hand-
collected data to create a dummy variable Inst to denote whether a fund share is an institutional
share or a retail share. For the post-2002 period, CRSP assigns each fund share a dummy for
institutional share and a dummy for retail share. The two dummies are not mutually exclusive.
Therefore, we set Inst to be one for a fund share if the CRSP institutional share dummy is one
and the CRSP retail share dummy is zero.18 We then determine the Inst dummy to the earlier
period by matching the fund share’s unique ID in CRSP (ICDI code). The remaining sample is
then manually classified according to the Morningstar rule where a fund share is considered an
institutional one if its name carries one of the following suffixes: I (including various abbreviations
of “institutional” such as “Inst”, “Instl”, etc.), X, Y, and Z. A fund share is considered retail if it
carries one of the following suffix: A, B, C, D, S, and T. Fund shares with the word “Retirement”
(or its various abbreviations such as “Ret”) or with a suffix of R, K, and J in their names are
classified as retirement shares and are excluded from our analysis for reasons stated earlier. Other
fund shares, those carrying other suffix (mainly M and N) or no suffix, are classified as institu-
tional if the amount of minimum initial purchase requirement is greater than or equal to $50,000
(a standard practice adopted by the mutual fund literature).19

According to the 2005 Investment Company Fact Book, institutional shareholders in mutual
funds include financial institutions such as banks and insurance companies, business corporations
(excluding retirement plans that are considered employee assets), nonprofit organizations (including
state and local governments), and others. Prior literature has established that institutional investors
in mutual funds behave differently from retail investors (James and Karceski (2006)). In addition
to the dummy variables for institutional and retail shares, we use the minimum initial purchase

18 The double criteria serve to exclude fund shares that are open to both institutional investors and individuals
with high balances. For example, some funds (such as the Vanguard Admiral fund series) offer individuals with large
balances access to fund shares that charge lower expenses. Such fund shares are not classified as institution shares in
our coding.

19 The minimum initial purchase information is available from the Morningstar, but not from the CRSP database.
requirement of a fund share as an alternative measure for the size of the typical investors of a fund.

Our main analysis of fund flows is conducted at the fund-share level. This is mainly because some key variables are fund-share specific (rather than fund specific), such as institutional shares, minimum initial purchase, expenses and loads. Some sensitivity analysis is repeated at the fund level where we aggregate fund-share data that belong to the same fund. Analysis about fund policy is conducted at the fund level. The definitions and summary statistics of the main variables are reported in Table 1. Our final sample includes 639,596 fund share-month observations with 10,404 unique fund shares in 4,393 unique funds, among which 1,227 are classified as illiquid funds. Illiquid funds are overall smaller in terms of assets under management than liquid funds ($533 vs. $872 million for average, and $140 vs. $145 million for median), are slightly younger in age (9.2 vs. 11.5 years for average, and 6.5 vs. 7.2 years for median), and have somewhat higher institutional ownership (28.0% vs. 22.8%). Finally, illiquid funds outperform liquid funds by 23 (4) basis points monthly measured by one-factor (four-factor) Alpha, consistent with the return premium for illiquid assets. Throughout the paper all regressions allow year fixed effects and all standard errors adjust for clustering at the fund level. Therefore the effective number of observations in regressions is in the order of the number of funds (i.e., 4,393 for the full sample, and smaller numbers for subsample analysis).

[Insert Table 1 here]

4 Empirical Evidence

4.1 Hypothesis 1: The effect of liquidity

4.1.1 Overview

Our first hypothesis is that conditional on poor performance, funds that invest primarily in illiquid assets (i.e., illiquid funds) will experience more outflows because investors take into account the negative externalities of other investors’ redemptions. The resulting empirical observation should be that illiquid funds have a higher sensitivity of outflows to performance when performance is relatively poor. The reason is that different funds have different performance thresholds, below
which they start seeing net outflows and complementarities start affecting the redemption decision. On average, as we go down the performance rank, we are gradually hitting the threshold for more and more funds. Then, because complementarities are stronger for illiquid funds than for liquid funds, a decrease in performance in illiquid funds has a larger effect on outflows, implying a higher flow-to-poor performance sensitivity. Essentially, the complementarities that come with redemptions in response to poor performance have a multiplier effect that amplifies outflows in illiquid funds.

Before turning to the regression analysis, we consider a semiparametric approach, where the relation between flow and performance is not restricted to be linear, to offer a diagnostic view of the relation between fund flow and past performance. This analysis is important in light of the vast evidence of a non-linear relationship between flow and performance (see Chevalier and Ellison (1997)). The drawback of the semiparametric approach is the low significance levels due to the flexible functional specification. The results are presented in Figure 1.

[Insert Figure 1 here]

We present the results in Figure 1, where the vertical axis is the percentage net flow into the fund share in month t and the horizontal axis is the fund share’s past return performance, measured by the monthly Alpha from the one-factor market model averaged over months $t-7$ to $t-1$.

The net flow (Flow) is measured following the standard practice in the literature:

\[
\text{Flow}_t = \frac{TNA_t - TNA_{t-1} (1 + \text{Ret}_t)}{TNA_{t-1}}, \tag{1}
\]

where TNA is the total net assets managed by the fund share, and Ret is the raw return. About 45% of the fund share-month observations see negative net flows.

Figure 1 plots, separately for the sample of liquid funds and the sample of illiquid funds, the estimated nonparametric functions $f(\cdot)$ in the following semiparametric specification:

20 All Alpha values are calculated from the return of the month under consideration, and Beta estimates using monthly return data of the previous 36 months (or as many as the data allows). The value is set to be missing if there are less than 12 observations in the estimation.
\[Flow_{i,t} = f(\text{Alpha}_{i,t-1}) + \beta X_{i,t} + \varepsilon_{i,t}, \quad (2) \]

where \(X \) is a vector of control variables including: fund size (\(\text{Size} \), in log million dollars), fund age (\(\text{Age} \), years since inception, in logs), expenses in percentage points (\(\text{Expense} \)), and total sales load (\(\text{Load} \), the sum of front-end and back-end loads). These variables are shown in prior literature to affect mutual funds’ flow-to-performance sensitivity. The estimation of (2) applies the method introduced by Robinson (1988).21 The method first estimates \(\hat{\beta} \) by differencing out \(\text{Alpha} \) on both sides of the equation, and then estimates the following relation using the nonparametric kernel method22:

\[Flow_{i,t} - \hat{\beta} X_{i,t} = f(\text{Alpha}_{i,t-1}) + \varepsilon'_{i,t}. \quad (3) \]

The intercept in (3) is identified by setting \(\hat{f}(\text{Alpha} = 0) = \hat{E}(\text{Flow}|\text{Alpha} = 0) \), where the \(\hat{E} \) (the empirical analog to expectation) operation is taken on observations within the kernel centered on \(\text{Alpha} = 0 \). Thus, the intercept represents the net flow for a fund when its \(\text{Alpha} \) is zero (or market performance).

The thick solid (dotted) line in Figure 1 represents the plot of \(f(\cdot) \) for the liquid (illiquid) funds, and the corresponding thin lines represent the 10% confidence intervals. Figure 1 reveals two features that are consistent with investors’ behavior under complementarities in redemption decisions. First, while liquid and illiquid funds have similar flow-to-performance sensitivities in the positive \(\text{Alpha} \) region, illiquid funds experience noticeably more sensitive flows when performance is negative, with the magnitude significantly higher for illiquid funds when the average monthly \(\text{Alpha} \) in the past six months falls below \(-2.7\%\) (about 4.4% of the observations fall below this point).23 Second, redemptions on average occur at a higher past performance level for illiquid

21Chevalier and Ellison (1997) apply the same method in estimating the nonparametric relation between past performance and fund flows/management turnover.

22Specifically, \(\hat{\beta} \) is estimated using the regular linear regression method on \(y - \hat{m}_y = (X - \hat{m}_X)\beta + \nu \), where \(\hat{m}_y \) (\(\hat{m}_X \)) are the kernel-weighted average value of all observations within a neighborhood centered on \(\text{Alpha}_{i,t-1} \). See Robinson (1988) for details. The choice of kernel function follows the best practice of Silverman (1986).

23The significance is based on the point-wise standard errors from kernel-based nonparametric method. The non-parametric method allows flexible specification in the shape of the function, at the expense of much wider confidence
funds than for liquid ones. Illiquid funds on average start to experience negative net flows when the monthly Alpha falls below -0.8%; the threshold point for liquid funds is -1.6%.

4.1.2 Regression analysis

For a summary estimate of the effect of liquidity on the flow-performance sensitivity, we conduct the following regression and report the results in Table 2:

$$
Flow_{i,t} = \beta_0 Perf_{i,t-1} + \beta_1 Illiq_i \cdot Perf_{i,t-1} + \beta_2 Illiq_i + \beta_3 Control_{i,t} + \beta_4 Control_{i,t} \cdot Perf_{i,t-1} + \varepsilon_{i,t}.
$$

(4)

In (4), $Perf_{i,t-1}$ is a lagged performance measure. In Table 2 columns (1) to (3), we use three common performance measures: Alpha from a one-factor market model ($Alpha_1$), Alpha from a four-factor (the Fama-French three factors plus the momentum factor) model ($Alpha_4$), and return in excess of the category return ($RetExCat$) where category is defined by the CRSP S&P style code. All measures are monthly average excess returns, in percentage points, during the six-month period ending in the month before $Flow$ is calculated.\(^{24}\) Control variables ($Control$) include: lagged flow ($Flow(-1)$), size of the funds in log million dollars ($Size$), fund age in log years (Age), fund expense in percentage points ($Expense$), sum of front-end and back-end load charges in percentage points ($Load$), and the dummy variable for institutional shares ($Inst$). The control variables enter both directly, and interactively with the performance measure.

Columns (1) to (3) of Table 2 show that fund flows are highly responsive to past performance, a relation well documented in prior literature. Specifically, in our sample, one percentage point increase in lagged monthly average $Alpha_1$ leads to an increased net inflow in the magnitude of intervals.

\(^{24}\) We settled on the six-month lag after we regressed flows on lagged individual monthly returns up to a year. We find that the effects of the recent six months’ returns on current flows are monotonically decreasing, and the effects weaken substantially when the returns are lagged further. Our results remain qualitatively similar if we use shorter lags to measure past performance.
0.70% of the fund’s total net assets. The flow responses to Alpha4 and RetExCat are also significant (at 0.50% and 0.77%, respectively). Because we are mostly interested in the pattern of fund outflows, in Columns (4) to (6) we focus on the subsample where funds underperform the benchmark returns. Consistent with prior literature, we see that investors are more responsive to good performance than to bad performance: the coefficients on Perf in columns (4) to (6) of Table 2 are significantly lower than their counterparts in the full sample. Interestingly, the responsiveness to poor performance differs quite significantly across the three performance measures. When using Alpha1, one percentage point of sub-benchmark performance leads to 0.27% of reduced flows (significant at less than 1%). The response is 0.09% using the two other measures (insignificant at the 10% level).

For our analysis, the choice of performance metric is guided by different considerations than those for standard performance attribution. We are interested in how investors behave as a function of the behavior of other investors, and therefore the appropriate performance measure for our analysis is the one that investors use and are overall more responsive to, particularly after poor performance. Consistent with the prior literature on mutual fund flows, we find that investors respond more strongly to simple market-benchmark adjusted returns (such as Alpha1) than to refined multifactor-adjusted excess returns (such as Alpha4). Hence, based on the results in columns (4) to (6) of Table 2, we will mostly focus on Alpha1 for the rest of the paper.

The focus of our analysis is the coefficient for Illiq·Perf. Table 2 shows that all coefficient estimates for Illiq·Perf are positive, and all except for one are significant at less than the 5% level. The most important result for our hypothesis is that flows are more sensitive to poor performance in illiquid funds than in liquid funds as indicated by the positive coefficients on Illiq·Perf in columns (4) to (6). Specifically, the estimated coefficient for Illiq·Alpha1 is 0.14 for the negative Alpha1 subsample. Thus, when Alpha1 is negative, the flow-performance sensitivity in illiquid funds is 52% higher than that in liquid funds (0.41% vs. 0.27%). For the full sample, the sensitivity is 19% higher for the illiquid funds (0.83% vs. 0.70%). This result provides support for our first hypothesis that outflows are more sensitive to bad performance in illiquid funds than in liquid funds.
An immediate robustness question is about the effect of size. The summary statistics in Section 3 indicate that very large funds tend to invest in liquid assets: Though the median assets of liquid and illiquid funds are very similar ($145 vs. $140 million), the mean values are substantially different ($872 vs. $533 million). To make sure that the incremental flow sensitivity among illiquid funds is not due to inadequate size control (Size indeed enters the regression as a control variable both on its own and in interaction with Perf), we repeat the exercise by excluding observations where Size falls into the top quartile value of the full sample. With this filtering, the sizes of liquid and illiquid funds are comparably distributed. The resulting coefficient on Illiq·Perf obtained in this alternative analysis is very similar: 0.16 (t-statistic = 2.25).

4.2 Hypothesis 2: The effect of investor composition

Hypothesis 2 of our model predicts that the effect of complementarities on investors’ response to poor performance is less pronounced when there are fewer and larger shareholders (such as institutional investors). The idea is that fewer and larger shareholders are more likely to internalize the payoff externalities and their presence reduces outflows that damage funds’ assets. As a result, we expect the effect of illiquidity on flow-performance sensitivity to be smaller in funds that are held mostly by large investors. To test this hypothesis, we use the percentage of a mutual fund’s assets held by large investors as an instrument to identify the extent of the internalization of the redemption cost. We use two proxies for the presence of large investors. One is based on whether a share is an institutional share (Inst), and the other is based on whether it has a high minimum initial purchase requirement (MinPur250K). The second measure sorts fund shares based on the amount of investment by investors, which could be institutional or retail. We use $250,000 as the cutoff, but the results are very similar if we use a lower ($100,000) or a higher ($500,000) cutoff. We consider a fund to be held primarily by large investors (“institutional-oriented fund”) if more than 75% of the fund assets are issued to institutional shares, or to fund shares with minimum initial purchase requirement of $250,000 or higher. Conversely, a fund is considered to be held primarily by small investors (“retail-oriented fund”) if less than 25% of the fund assets are in fund shares that are issued to large investors. Table 3 repeats the analysis of column (4) of Table 2 on
subsamples partitioned by the composition of investors.

Table 3 shows that the effect of asset liquidity on the flow-to-poor-performance sensitivity is only present among retail-oriented funds. Using the percentage of institutional shares to classify the clientele of the fund, the coefficient for $\text{Iliq} \cdot \text{Alpha1}$ is 0.20 ($t = 2.91$) for funds held primarily by small investors and 0.02 ($t = 0.18$) for funds held primarily by large investors. While the reduced significance in the sub-sample of institutional oriented funds may be due to the small sample size, the lower point estimate in this sub-sample is definitely informative about the different behavior in institutional oriented funds. Hence, the results indicate that flows are more sensitive to poor performance in illiquid funds only when there is lack of large-investor mass in the shareholder base. Similar results prevail when we use the minimum initial purchase requirement as the proxy for large investors. These results are consistent with the second hypothesis of the model.

5 Alternative Explanations

5.1 Information

The result that investors are more sensitive to bad performance in illiquid funds than in liquid funds may arise if bad performance in illiquid funds is more informative about the quality of the fund’s assets or managers. This explanation is reminiscent of the empirical banking-crisis literature that argues that withdrawals from banks are largely driven by bad fundamentals (Gorton (1988), Calomiris and Mason (1997), Schumacher (2000), Martinez-Peria and Schmukler (2001), and Calomiris and Mason (2003)). We first note that this alternative explanation does not explain the findings of Table 3, according to which the stronger response of investors to bad performance in illiquid funds is not observed among institutional-oriented funds. We also directly examine the empirical validity of the assumption that performance in illiquid funds is more informative than that in liquid funds.

If bad performance in illiquid funds is indeed more indicative of future bad performance, for reasons other than the resulting withdrawals by fund investors, then one should expect that funds
investing in illiquid assets will display more return persistence, especially when the past performance is poor. The first three columns of Table 4 look directly at this aspect of the data and present a formal comparison between the liquid and illiquid funds in our sample. One difficulty arises, however, because the story developed in our paper also generates some return persistence in illiquid, but not in liquid, funds, due to the damaging redemptions in illiquid funds. Hence, in the comparison we conduct, we try to isolate the effect of information about fundamentals from that of the damage caused by self-fulfilling redemptions by excluding all observations with more than 5% outflows during the past month (about 6.3% of the sample).

We use the standard portfolio-sorting approach in the asset pricing literature to examine performance persistence. For each month, we sort funds into quintiles based on three performance measures (Alpha1, Alpha4, and RETEXCAT, all defined in Table 1) during the past six months. Then, we report the average performance in each quintile in the current month. In interpreting the results, we focus on Alpha1, which is the performance measure we focused on thus far in the paper. Two main observations come out of the data. First, one way to think about return persistence, as proposed in previous literature, is to compare the current return of the highest quintile — formed on the basis of past return — with that of the lowest quintile. This measure \((Q5 - Q1)\) is reported in Table 4 for liquid and illiquid funds. As we see in the table, while \((Q5 - Q1)\) is slightly higher for illiquid funds, the difference is far from being statistically significant \((t\text{-statistic} = -0.28)\). Second, for our purposes it is perhaps more important to compare only the funds with the worst performance, as they experience most of the outflows and thus are the subject of our investigation. We can see in the table that illiquid funds with the worst past performance (bottom quintile) do not underperform the liquid funds with the worst past performance. In fact, the performance of the former is actually slightly higher (but the difference is also not statistically significant). Hence, there seems to be no evidence that illiquid funds show more return persistence than liquid funds, and thus the information conveyed by past performance about future performance is unlikely to explain the results in our paper.
The comparison between the return persistence of liquid vs. illiquid open-end funds admittedly suffers from a couple of problems. First, by excluding observations with extreme past outflows, we are not able to refute the possibility that the past performance of these extreme observations (and not others) is exceptionally informative about future performance, and that this is known to the investors, who react accordingly. Second, according to Berk and Green (2004), it is possible that persistence in returns of open-end funds is not indicative of persistence in the quality of the managers because the response of flow to performance will affect future performance when there are decreasing returns to scale in asset management.

To address these two problems, we conduct an out-of-sample test on equity closed-end funds. These closed-end funds manage similar assets as the open-end funds in our sample, but with one crucial difference: investors cannot take money out of (or put money in) closed-end funds. Hence, the return persistence patterns of closed-end funds offer a unique opportunity to identify the persistence of managerial skills or asset quality, without being contaminated by the effect of the fund flows.

Our sample of closed-end funds is obtained from and described in Bradley, Brav, Goldstein, and Jiang (2009). It contains all CRSP-covered closed-end funds that invest primarily in equity (domestic and international). There are 142 such funds and the sample spans from 1988 to 2004. We repeat the return persistence test using the NAV returns of closed-end funds, and report the results in the last three columns of Table 4.25 Interestingly, the NAV returns of closed-end funds investing in liquid assets actually show more persistence than those of closed-end funds investing in illiquid assets. This lack of return persistence in illiquid closed-end funds is consistent with evidence in the asset pricing literature on illiquid stocks. For example, a recent paper by Avramov, Chordia, and Goyal (2006) shows that illiquid stocks display stronger return reversal at the monthly frequency. Overall, this set of results provides even stronger indication that the information in past

25 It is worth noting that in open-end funds, NAV returns coincide with fund returns because fund shares values are equated to their NAVs by construction. In contrast, the two notions of returns could diverge for closed-end funds because of the stochastic evolution of discounts (approximately, closed-end fund returns are the summation of NAV returns and discount change). We focus on the NAV returns because we are testing the return persistence of the underlying portfolios.
performance about future performance cannot provide a convincing explanation for the results in our paper.

5.2 Different clienteles

Another possible mechanism for the differences in the sensitivity of outflows to poor performance between liquid and illiquid funds is that these different types of funds are held by different clienteles. For example, if illiquid funds were held by institutional investors, who are more tuned to the market and redeem more after bad performance, while liquid funds were held by retail investors, our result could be generated by a clientele effect. A brief look at the data indicates that this mechanism is not likely to be generating our results. According to our data, liquid funds are more likely than illiquid funds to be held by institutions (See Section 3). Moreover, Table 3 indicates that institutions are on average slightly more sensitive to poor performance than retail investors (although they do not chase after good performance as much). These two facts alone would generate the opposite result to what we find in the paper.

A sharper test to address the clientele issue is to see whether our results hold when we isolate the observations belonging to the relatively more sophisticated clientele – namely, that of large/institutional investors. Thus, we repeat the analysis in Table 3 only for shares held by large/institutional investors, measured as either the proportion of fund assets held in institutional share classes or held in share classes with a minimum initial purchase of at least $250,000. We report the results in Table 5.

[Insert Table 5 here]

The results in Table 5 – obtained for the subsample of large/institutional shares – are very similar to those in Table 3 – obtained for the whole sample. This suggests that our previous results are not driven by the clientele effect. In detail, the table shows that among retail-oriented funds – where we expect strategic complementarities to affect outflows\footnote{Recall that purchases and redemptions in all share classes belonging to the same fund are pooled. Therefore, outflows in retail share classes impose costs on the institutional share classes within the same fund.} – large investors are more sensitive
to bad performance in illiquid funds than in liquid funds. The difference in sensitivity of flow to performance between illiquid and liquid funds is 0.34% or 0.50%, depending on the measure that we use for large/institutional investors, both significant at less than the 10% level. As in Table 3, this result is not obtained when we look among institutional-oriented funds.

Overall, this set of results provides additional indication that coordination motives play a role in the behavior of mutual-fund investors. Essentially, we find that the behavior of one particular clientele (large/institutional investors) in the same type of funds (illiquid funds), is different depending on whether they are surrounded by retail investors or by fellow large/institutional investors. When surrounded by retail investors, institutional investors are still affected by strategic complementarities and thus respond more to bad performance in illiquid than in liquid funds. When surrounded by other institutional investors, they do not exhibit such behavior. This differential behavior indicates that our results are not driven by the possibility that small and large investors have different preferences for asset liquidity, nor are they driven by the possible heterogeneity among large investors that hold liquid and illiquid funds.

6 Robustness Tests and Additional Evidence

6.1 Liquidity measures based on fund holdings

Our Illiq variable is based on funds’ investment style (e.g., small-cap or single-country). The advantage of this measure is that it captures a fund feature that is transparent to even the most unsophisticated investors. Moreover, it is exogenous to fund flows since the stated objectives of the fund are formed at the inception of the fund. One potential concern with using this dummy variable is that differences in flow-to-poor performance sensitivities might be caused by unobservable fund characteristics that are unrelated to the liquidity of the underlying assets. To confirm that our earlier findings are related to the liquidity of the fund assets, we retrieve from the Thompson Financial database the detailed holding data for the subsample of domestic equity funds, and calculate finer measures of the liquidity of the funds’ underlying assets (Liq_Holding). Specifically, for each stock held by a fund, we calculate two measures to capture the underlying stock’s liquidity:
the dollar trading volume (\(Trade_Vol\), in logs), and the liquidity measure developed in Amihud (2002) (\(Amihud\)).\(^{27}\) The liquidity measure of a fund is then calculated as the value-weighted average liquidity measure of the fund’s underlying securities. To ensure the accuracy of these measures, we exclude funds where less than 75% of the underlying securities are matched to the CRSP database.\(^{28}\)

The liquidity measures based on holdings offer two additional advantages. First, they track variation both across and within funds, and therefore enable more powerful identification. Second, they allow funds to have different degrees of adherence to their stated objective (on the basis of which the \(Iliq\) measure is constructed). For example, within the category of small-cap funds, there could still be considerable variation in the liquidity of the underlying assets. On the other hand, as discussed above, one needs to assume some level of investor sophistication to expect different flow-to-performance responses based on these refined liquidity measures. Further, the construction of the measures necessarily narrows down our sample to domestic equity funds only. Overall, we view the holding-based liquidity measure as complementary to our main measure \(Iliq\).

The trading volume is the average daily dollar value of the trading volume over the quarter ending on the holding data report date. For stocks with high trading volumes, it is easier to execute large trades without a significant adverse price impact. Thus, the (value-weighted) average trading volume of a fund’s underlying assets captures the ability of the fund to accommodate outflows without hurting the value for the remaining shareholders. The Amihud liquidity measure is constructed as an inverse price-impact measure (i.e., how much trading volume can a stock absorb for one unit of price change). For each stock, it is calculated as the annual average of \(0.001 \sqrt{\frac{\text{Trading Volume}}{|\text{Return}|}}\) (using daily data). We download this measure for all CRSP stocks from Joel Hasbrouck’s web site.\(^{29}\) The correlation coefficient between the trading volume and the Amihud measure is 0.78, and their correlation coefficients with the dummy variable for

\(^{27}\)See discussions in a recent paper by Spiegel and Wang (2006) on the performance of the two measures in capturing return premium due to illiquidity.

\(^{28}\)It is reasonable to assume that stocks not covered by CRSP tend to have small market cap. Therefore, the total value weights of the missing stocks are likely to be lower than 25%. Thus, the error of the measure due to missing stocks should not impose a major cost on our estimation.

\(^{29}\)We are grateful to Joel Hasbrouck for providing the Amihud measure data for individual stocks on his website. The measure we adopt is named “L2” by Hasbrouck.
illiquid funds are -0.46 and -0.59, respectively.

For each holding liquidity measure, we conduct the same tests as in Tables 2 and 3. The results are reported in Table 6. In the full sample, coefficients on $Liq_Holding \ast Perf$ are all significant with the expected signs, indicating less outflow for liquid funds than for illiquid funds for a given poor performance. Consistent with Hypothesis 2, when we focus on the subsample of fund shares in institutional oriented funds, the effect is reduced to near zero in magnitude and becomes insignificant for both measures.

As a sensitivity check, we replace the $Amihud$ variable for the whole fund holding with a similarly-constructed variable for the most liquid securities that account for one-quarter (in value) of a mutual fund’s holdings. The results are reported in the last column of Table 6. The motivation is that a mutual fund may sell the most liquid portion of its portfolio first when facing outflows (Koo (2006)), and hence the marginal liquidity of the portfolio could be as important as the average liquidity. The median value of this new measure is comparable to the 75th percentile of all-sample portfolio average $Amihud$, and the correlation between the two is 0.89. The results show that the coefficient on $Liq_Holding \ast Alpha$ remains statistically significant (at the 1% level) for the full sample, and is not significant for the subsample of institutional-oriented funds. Similar results prevail if we use the average liquidity measures for the most liquid 10% or 50% of the individual portfolios.

Finally, we conducted two additional robustness checks (untabulated). First, we find that when we include the dummy $Illiq$ with either $Trade_Vol$ or $Amihud$, the dummy variable becomes statistically insignificant at conventional levels while the holding-based liquidity measures remain highly significant. This result indicates that the dummy variable is indeed a coarser proxy of funds’ liquidity compared to holding-data-based measures (and therefore loses its significance in the presence of a finer measure of liquidity). We also re-estimate the regression in Table 6 for the subsample of illiquid funds, and find similar results. For example, the coefficient for $Trade_Vol$ is still significantly negative at less than the 1% level. Together, these results indicate that our main
results in Tables 2 and 3 are not driven by some unobservable characteristics of small-cap/single-country funds that are orthogonal to the liquidity aspect of these funds.

6.2 Outflows, liquidity, and fund performance

An important aspect of our thesis is that large outflows should damage future fund performance in illiquid funds more than in liquid funds. We now turn to present evidence on this implication. To assess the effect of outflows on future fund performance, we estimate the following equation, at the fund level:

\[
\text{Perf}_{i,t} = \beta_0 \text{Outflow}_{i,t-1} + \beta_1 \text{Size}_{i,t-1} + \beta_2 \text{Expense}_{i,t} + \sum_{j=1}^{J=6} \gamma_j \text{PastPerf}_{i,t-j} + \varepsilon_{i,t}.
\]

(5)

Here, \(\text{Perf}_{i,t} \) is a fund’s current month Alpha1 and \(\text{Outflow} \) is an indicator variable for whether the lagged flow is lower than \(-5\%\) of total net asset value.\(^{30}\) Because past returns are included in the regression, a significant coefficient estimate of \(\beta_0 \) would show that large outflows affect a fund’s future return beyond what is predicted by past returns.

[Insert Table 7 here]

We estimate (5) separately on liquid funds, illiquid funds (as classified by the Illiq dummy variable), and fund-month observations whose Amihud measure falls below the 25\(^{th}\) percentile value of the full sample. The results are presented in Columns (1) to (3) of Table 7. Consistent with the prior literature, we find that fund performance (net of fees) is negatively correlated with fees and fund size. Our new finding is that the presence of large outflows in the past month predicts lower returns in the current month in the order of 19 basis points for the 25\(^{th}\) least liquid funds (significant at less than the 1\% level). The same effect is still significant, but of milder magnitude (13 basis points) for the broader class of illiquid funds. The outflows do not have a detectable effect on returns for liquid funds. This is consistent with our theory.

In Columns (4) to (6) of Table 7, we use “return gap” for the \(\text{Perf} \) variable. The return gap is the difference between the fund return and the return of the fund’s underlying assets. By

\(^{30}\) The results are similar when we use \(-10\%\) as the cutoff value.

26
construction, this reflects the value added by the actions of a fund manager’s active management net of the trading costs associated with such actions. This measure is free from the effects of return persistence or reversal of the underlying assets. Since redemptions impose costs on the fund, they should worsen the short-term fund return gap. Following Kacperczyk, Sialm, and Zheng (2007), we calculate the return of a fund’s underlying assets as the monthly buy-and-hold return by imputing the value-weighted returns of the most recently disclosed quarterly holdings by the fund. Again, we only include funds with at least 75% of the securities matched to CRSP. We estimate (5) with the return gap as the Perf variable and the results are shown in Columns (4) to (6) of Table 7. We find that for the 25% most illiquid funds, a significant outflow leads to about 21 basis points worsening of fund returns relative to the buy-and-hold returns of the underlying assets. The effect is far from significant for liquid funds. This is again consistent with our theory.

Finally, in untabulated analysis we estimate the accumulated damage on the return gap resulting from significant outflows. We show that in illiquid funds, this amounts to about 93 basis points (significant at less than the 1% level) in the six-month period after the month with significant outflow. This suggests that if an investor fails to redeem from an illiquid fund that experiences a 5% outflow, he would incur a cumulative loss of about 1% in return over the next six months above and beyond the change in the value of the underlying assets.

6.3 Fund policies

Mutual funds can take actions to either reduce the incentives of investors to redeem shares or reduce the effect of redemptions on the future return. Given the premise in our paper that redemptions are more damaging for illiquid funds than for liquid funds, one would expect that illiquid funds will be more aggressive in taking such actions. We now investigate the two leading actions mutual funds can take to mitigate the problem: holding cash reserves and setting redemption restrictions. We analyze how the extent to which these tools are used depends on funds’ liquidity.

Cash holdings allow mutual funds to reduce the damage from redemptions by spreading flow-triggered trades over a longer period of time. The cost of holding reserves is that they dilute returns and shift the fund away from its desired trading style. The presence of a trade-off implies that
illiquid funds should hold more cash reserves than liquid funds. Indeed, the sample average fund-level cash holdings as a percentage of total net assets is 4.04% for all funds, and 4.96% for illiquid funds (the difference is statistically significant at the 1% level). Table 8 examines the determinants of cash holdings at the annual frequency (where cash is measured at the year end as the percentage of total assets). In addition to fund liquidity (for which we use the Amihud measure), we include as control variables the average monthly flows, the standard deviation of flows, the average monthly Alpha during the year, fund size, fund age, percentage of institutional shares, and load charges, measured at the end of the year.

[Insert Table 8 here.]

Columns (1) and (4) of Table 8 report the regression results for the whole sample and the subsample of illiquid funds, respectively. We find that other things equal, one standard deviation of the Amihud measure (which is about 62.11, see Table 1) is associated with 0.87 percentage points ($t = 15.62$) decrease in cash holdings (or about 20% of the full sample average). The coefficient is very similar among the subsample of illiquid funds. Cash holding is highly sensitive to past flows, indicating its role in absorbing flows to mitigate the urgency of trading. Preemptive cash policy requires that cash holdings be higher in anticipation of negative future flows. However, we observe (not tabulated) an insignificant but slightly positive correlation between current cash holdings and next-period fund net flows. This suggests that mutual funds either do not set cash reserves in anticipation of future flows, or do not do a great job in predicting these flows. The two pieces of evidence combined show that overall cash holdings may help reducing damage from outflows in illiquid funds, but they are unlikely to completely eliminate payoff complementarities in redemption decisions. In addition, high institutional ownership is associated with less cash holding, consistent with our previous analysis on how the presence of large investors weakens the

31 The positive correlation is weakened but does not turn negative if we control for the serial correlation of fund flows.

32 Even if some funds are moderately successful in predicting future flows, the planned cash holdings are still exogenous to individual investors. That is, each investor’s incentive to redeem is still monotonically increasing in other investors’ redemptions, given any cash balance level that a fund optimally chooses.
effect of payoff complementarities. Surprisingly, high volatility in monthly flows (STDFLOW), which calls for more liquidity buffer, is actually associated with lower cash holdings. This could be attributed to the asymmetric effects of inflows and outflows. It turns out that the empirical cash-to-flow sensitivity is four times as large for outflows than for inflows. Again, this relation shows that cash holdings largely accommodate past flows rather than anticipate future ones.

We conduct similar analysis for redemption fees. In 2005, the SEC formalized rules for funds to impose redemption fees, which are paid byredeeming investors to the fund. We hand-collected information about the redemption fees set by different funds from the Morningstar database. Table 8 contains the results for the predictability of the adoption of redemption fees based on funds’ conditions before 2005. In Columns (2) and (5), the dependent variable is a dummy variable equal to one if a fund adopted the redemption fee, and the independent variables are measured either at the end of 2004 (TNA and AGE) or averaged during the two-year period of 2003-2004 (other variables). The estimation uses the probit method, and the reported coefficients are the marginal probabilities associated with a unit change in the values of regressors from their all-sample mean values. In Columns (3) and (6), the dependent variable is the product of the redemption fee (in percentage points) and the duration for which the redemption fee applies (in number of months). The duration for which the redemption fee applies ranged from one week to 90 months, and the median duration is one month. The multiplicative measure (Redemption Fee * Month) is intended to capture the strength of the restriction on redemption, both in terms of the magnitude of the penalty and of the duration for which the penalty applies. The dependent variable is censored at zero, and the Tobit method is used for estimation.

Columns (2) and (3) of Table 8 show that the coefficients for Amihud are negative and significant at less than the 1% level, consistent with our prediction that illiquid funds are more likely to impose restrictions on redemptions. This effect is present among the subsample of illiquid funds (Columns (5) and (6)), with similar magnitude, although at lower statistical significance. Funds with more volatile flows in the past impose stricter restriction (significant at less than the 1% level in the full sample as well as the subsample of illiquid funds).
7 Conclusion

This paper provides an empirical analysis of the relation between payoff complementarities and financial fragility in the context of mutual fund outflows. Based on a global-game model of mutual-fund redemptions, we test two hypotheses. First, in illiquid funds — where payoff complementarities are stronger — we expect that outflows will be more sensitive to bad performance than in liquid funds. This is because investors’ tendency to withdraw increases when they fear the damaging effect of other investors’ redemptions. Second, this pattern is expected to be weaker in funds that are held mostly by institutional investors or large investors, since they are expected to internalize the negative externalities. We find strong support for these two predictions in the data. We present evidence that is inconsistent with the alternative explanations based on the informativeness of past performance and on different clienteles.

The contribution of our paper is threefold. First, the paper sheds new light on the factors that determine the behavior of mutual-fund investors. It argues that investors’ behavior is affected by the expected behavior of fellow investors. This is a destabilizing force that generates outflows based on self-fulfilling beliefs. Obviously, this is a result of the existing mutual-fund contracts. It would be interesting to analyze optimal contracts and policy implications for mutual funds in this light. Second, the paper is the first in the literature to provide evidence that strategic complementarities generate financial fragility and demonstrate the vulnerability of open-end financial institutions. By offering demandable claims, these institutions become exposed to large withdrawals based on self-fulfilling beliefs. The current paper uses mutual-fund data to demonstrate this relation. This data offers several advantages that are discussed in the paper. It would be interesting, if data allow, to use our approach to shed light on settings that are even more prone to fragility, such as hedge funds. Third, the paper demonstrate the usefulness of the global-game framework in bringing models of strategic complementarities to the data. This framework predicts that the equilibrium outcome monotonically depends on the level of complementarities, as well as the size of the player. Finding proxies in the data for the level of complementarities and for the relative size of the players, one can then identify the causality implied by the predictions of the model. We believe that this identification strategy can help in empirical analysis of other settings with strategic

30
complementarities.

References

Doctoral Dissertation, Northwestern University.

Rochet, J.-C., and X. Vives (2004): “Coordination failures and the lender of last resort: was Bagehot right after all?,” Journal of the European Economic Association, 2, 1116–1147.

Appendix: Theoretical Model

The basic setup: liquidity and outflows

There are two dates 1 and 2. Prior to $t = 1$, each investor from a continuum $[0, 1]$ holds one share in a mutual fund; the total amount of investment is normalized to 1. The fund generates returns at $t = 1$ and $t = 2$. At $t = 1$, the gross return of the fund, R_1, is realized and becomes common knowledge. At this time, investors decide whether to withdraw their money from the fund (by redeeming their shares) or not. We assume that only a fraction $N \in (0, 1)$ of all investors make a choice between withdrawing and not withdrawing. This assumption helps to simplify the model by ruling out the possibility that the fund goes bankrupt.\(^{33}\) Investors that withdraw at $t = 1$ receive the current value per share R_1, which they can then invest in outside assets that yield a gross return of 1 between $t = 1$ and $t = 2$. Thus, overall, withdrawing from the fund provides a final payoff of R_1 by $t = 2$.

To capture the fact that redemptions impose a negative externality on the investors who stay in the fund, we assume that in order to pay investors who withdraw at $t = 1$, the fund needs to sell assets. Due to illiquidity, generated by transaction costs or by asymmetric information, the fund cannot sell assets at the NAV at $t = 1$. Instead, in order to get R_1 in cash, the fund needs to sell $R_1 \cdot (1 + \lambda)$ worth of assets, where $\lambda > 0$ is the level of illiquidity of the fund’s assets. Thus, absent any inflows to the fund, if proportion N withdraws at $t = 1$, the payoff at $t = 2$ for the remaining shareholders is:\(^{34}\)

$$
\frac{1 - (1 + \lambda) N}{1 - N} R_1 R_2 (\theta). \quad (6)
$$

Here, $R_2 (\theta)$ is the gross return at $t = 2$ absent any outflows. It is an increasing function of the variable θ, which is realized at $t = 1$. We will refer to the variable θ as the fundamental of the fund. It captures the ability of the fund to generate high future return, and is related to the skill

\(^{33}\)The possibility of bankruptcy complicates the global-games analysis significantly (see: Goldstein and Pauzner (2005)). Moreover, the assumption is consistent with empirical evidence that many investors do not actively review their portfolios (see Johnson (2006) and Agnew, Pierluigi, and Sunden (2003)).

\(^{34}\)For simplicity, it is assumed here that redeeming shareholders do not bear any portion of the liquidity cost. The important thing is that remaining shareholders bear a disproportionate amount of the cost. This is motivated by the institutional details discussed in Section 2.
of the fund manager and/or to the strength of the investment strategy that the fund has picked. For simplicity, we assume that θ is drawn from the uniform distribution on the real line. For now, to keep the exposition simple, we say that $R_2(\theta)$ is independent of R_1. Later, we discuss the possibility of performance persistence – i.e., the possibility that $R_2(\theta)$ and R_1 are positively correlated – and explain why it does not change our results. Finally, to avoid the possibility of bankruptcy, we assume that $N < \frac{1}{1+\lambda}$.

The above setup generates strategic complementarities among investors in their decision to redeem their shares. Specifically, as N increases, the expected payoff from remaining with the fund till $t = 2$ decreases, since the outflows cause damage to the value of the remaining portfolio. In the mutual fund context, however, there is an additional force that mitigates the coordination problem to some extent. This is represented by the new money that flows into the fund and enables the fund to pay withdrawers without having to sell assets. It is empirically well known that funds receive more inflows when their past performance is better. To simplify the exposition, we take this to be exogenous for now. In particular, we denote the amount of inflows as $I(R_1)$, where $I(\cdot)$ is an increasing function. Later, we discuss how this feature can be endogenized.

Now, faced by withdrawals of N and inflows of $I(R_1)$, the fund will need to sell only $(1 + \lambda) \cdot \max\{0, (N - I(R_1))\}$ assets, where the max term represents the fact that if inflows are greater than outflows, the fund does not need to sell any assets. Thus, investors waiting till $t = 2$ will receive:

$$1 - (1 + \lambda) \max\{0, (N - I(R_1))\} R_1R_2(\theta).$$

(7)

To summarize, investors need to decide between withdrawing in $t = 1$, in which case they get R_1, and waiting till $t = 2$, in which case they get the amount in (7). We can see that the $t = 2$ payoff is increasing in the fundamental θ and decreasing in the proportion N of investors who withdraw early, as long as N is above $I(R_1)$.

Solving the model entails finding the equilibrium level of N. Clearly, this will depend on the

35 Here, we assume that when the mutual fund receives positive net inflows, there are no externalities associated with the need to buy new assets at a price above the current value of fund shares. This assumption is reasonable given that typically there is less urgency in buying new securities in response to inflows than in selling securities in response to outflows (see: Christoffersen, Keim, and Musto (2007)).
realization of the fundamental θ. The complication arises because investors’ optimal actions also depend on the actions of other investors, and this generates the potential for multiple equilibria.

We define two threshold levels of θ: $\underline{\theta}$ and $\overline{\theta}(R_1)$. The threshold $\underline{\theta}$ is defined such that if investors know that θ is below $\underline{\theta}$, they choose to withdraw at $t = 1$, no matter what they believe other investors are going to do. Thus,

$$ R_2(\underline{\theta}) = 1. $$

Similarly, the threshold $\overline{\theta}$ is defined such that if investors know that θ is above $\overline{\theta}$, they choose to stay in the fund till $t = 2$, no matter what they believe other investors are going to do. Thus,

$$ R_2(\overline{\theta}) = \frac{1 - \max \left\{ 0, (N - I(R_1)) \right\}}{1 - (1 + \lambda) \max \left\{ 0, (N - I(R_1)) \right\}}, $$

which defines $\overline{\theta}$ as a function of R_1, i.e., $\overline{\theta}(R_1)$.

Define $\overline{R_1}$ such that $I(\overline{R_1}) = N$, where I is the level of inflows. We can see that

$$ \overline{\theta}(R_1) > \underline{\theta} \quad \text{if} \quad R_1 < \overline{R_1}, $$

$$ \overline{\theta}(R_1) = \underline{\theta} \quad \text{if} \quad R_1 \geq \overline{R_1}. $$

Suppose that the realization of θ is common knowledge in $t = 1$. In this case, in equilibrium, all investors withdraw in $t = 1$ when $\theta < \underline{\theta}$, whereas all of them wait till $t = 2$ when $\theta > \overline{\theta}(R_1)$. When θ is between $\underline{\theta}$ and $\overline{\theta}(R_1)$ (which is possible when $R_1 < \overline{R_1}$), there are two equilibria: In one equilibrium, all investors withdraw at $t = 1$, whereas in the other equilibrium, they all wait till $t = 2$.

To overcome the problem of multiplicity, we apply the techniques developed in the literature on global games. Following this literature, we assume that the realization of θ in period 1 is not common knowledge. Instead, we make the more realistic assumption that at $t = 1$, investors receive noisy signals about θ. In particular, suppose that each investor i receives a signal $\theta_i = \theta + \sigma \varepsilon_i$, where $\sigma > 0$ is a parameter that captures the size of noise, and ε_i is an idiosyncratic noise term that is drawn from the distribution function $g(\cdot)$ (the cumulative distribution function is $G(\cdot)$). One way to think about this information structure is that all investors see some common information about the realization of θ—for example, they observe the rating that the fund received from Morningstar
but have slightly different interpretations of it, generating the different assessments captured by
the \(\theta_i \)'s.

As is shown in many applications of the theory of global games, under the information structure
assumed here, there is a unique equilibrium, in which there is a cutoff signal \(\theta^* \), such that investors
withdraw in \(t = 1 \) if and only if they receive a signal below \(\theta^* \) (clearly, \(\theta^* \) is between \(\underline{\theta} \) and \(\overline{\theta} \)).

For the economy of space, we do not prove this uniqueness result here, and refer the reader to
the review article by Morris and Shin (2003) and to the many papers cited therein. We turn ro
characterize the threshold \(\theta^* \), which captures the propensity of outflows in equilibrium and forms
the basis for our empirical predictions.

In equilibrium, investors who observe a signal above (below) \(\theta^* \) choose to wait till \(t = 2 \) (with-
draw in \(t = 1 \)). Then, by continuity, an investor who observes \(\theta^* \) is indi-
fferent between withdrawing and remaining in the fund. This implies that,

\[
\int_{-\infty}^{\infty} \frac{1 - (1 + \lambda) \max \left\{ 0, \left(G \left(\frac{\theta - \theta}{\sigma} \right) N - I(R_1) \right) \right\}}{1 - \max \left\{ 0, \left(G \left(\frac{\theta - \theta}{\sigma} \right) N - I(R_1) \right) \right\}} R_2(\theta) \frac{1}{\sigma} g \left(\frac{\theta - \theta}{\sigma} \right) d\theta = 1.
\]

(11)

Here, conditional on the signal \(\theta^* \), the posterior density over \(\theta \) is \(\frac{1}{\sigma} g \left(\frac{\theta - \theta}{\sigma} \right) \). Then, given the
state \(\theta \), the proportion of investors (out of \(N \)) who receive a signal below \(\theta^* \) is \(G \left(\frac{\theta - \theta}{\sigma} \right) N \). Thus, the amount of withdrawals \(N(\theta, \theta^*) \) is equal to \(G \left(\frac{\theta - \theta}{\sigma} \right) N \). Denoting \(G \left(\frac{\theta - \theta}{\sigma} \right) = \alpha \) and changing
the variable of integration, we get the following equation that implicitly characterizes \(\theta^* \):

\[
\int_{0}^{1} \frac{1 - (1 + \lambda) \max \left\{ 0, \left(\alpha N - I(R_1) \right) \right\}}{1 - \max \left\{ 0, \left(\alpha N - I(R_1) \right) \right\}} \cdot R_2 \left(\theta^* - G^{-1}(\alpha) \sigma \right) d\alpha = 1.
\]

(12)

This equation provides the basis for our first hypothesis. To gain more intuition for this equation,
it is useful to rewrite it for the limit case as information converges to common knowledge, i.e., as
\(\sigma \) approaches 0. Threshold \(\theta^* \) is then implicitly given by:

\[
R_2(\theta^*) = \frac{1}{\int_{0}^{1} \frac{1 - (1 + \lambda) \max \left\{ 0, \left(\alpha N - I(R_1) \right) \right\}}{1 - \max \left\{ 0, \left(\alpha N - I(R_1) \right) \right\}} d\alpha}.
\]

(13)

Inspection of (13) leads directly to Hypothesis 1 in the paper. When the performance is high,
i.e., \(R_1 \geq R_1 \), the threshold signal \(\theta^* \) is constant in \(\lambda \), whereas when the performance is low, i.e.,
\(R_1 < R_1 \), the threshold signal \(\theta^* \) is increasing in \(\lambda \) (and decreasing in \(R_1 \)).
Before turning to our second hypothesis, we wish to discuss the role of two assumptions made above for expositional simplicity. The first one is that $R_2(\theta)$ is independent of R_1, i.e., that there is no persistence in performance. The second one is that the stream of inflows $I(R_1)$ is exogenously positively affected by the past return R_1. As it turns out, these two points can be addressed together. That is, by relaxing the first assumption, we can endogenize the second one, and leave the prediction of the model intact.

Suppose that there is some persistence in returns due, for example, to managerial skill. As before, there is common knowledge about R_1. In addition, investors in the fund, who decide whether to redeem their shares or not, observe noisy signals θ_i about the fundamental that affects the fund’s return. Thus, from each investor’s point of view, the expected R_2 is an increasing function of R_1 and of θ_i. Now, suppose that outside investors, who decide whether to invest new money in the fund observe the past return R_1, but do not have private information about θ. This assumption captures the idea that insiders have superior information about the fund’s expected return, since they have been following the fund more closely in the past (see Plantin (2009) for a similar assumption). In such a model, for every R_1, insiders’ decision on whether to redeem or not will still be characterized by a threshold signal θ^*, below which they redeem, and above which they do not. As before, this threshold will be increasing in λ. It will also be decreasing in R_1, which does not change our prediction. Interestingly, the decision of outsiders on whether to invest new money in the fund will depend on R_1, so that the increasing function $I(R_1)$ will be endogenous. This is because a high R_1 will indicate a higher likelihood of a high R_2, and this will attract more inflows. The only important difference in the extended model will be that the inflow decision will also depend on the liquidity of the fund’s assets. For every R_1, outside investors will be less inclined to invest new money in illiquid funds since they know that these funds are more likely to be subject to large outflows. This, however, will only strengthen our result by increasing the payoff complementarity among inside investors in illiquid funds and thus increasing the amount of outflows in these funds.

Extension: the role of large investors

So far, we analyzed a situation where there are many small investors. This corresponds to a
fund that is held by retail investors. The nature of the coordination game described above changes
substantially when institutional investors with large positions are involved.

To illustrate the effect of large investors, we conduct an exercise similar to that in Corsetti,
Dasgupta, Morris, and Shin (2004) and introduce one large investor into the model of the previous
subsection. Specifically, assume that out of the assets that might be withdrawn from the fund,
\(N \), proportion \(\beta \) is controlled by one large investor, and proportion \((1 - \beta) \) is controlled by a
continuum of small investors. We take the large investor to represent an institutional investor,
while the small investors represent retail investors. We assume that, just like the retail investors,
the institutional investor also gets a noisy signal on the fundamental \(\theta \). Conditional on \(\theta \), the signal
of the institutional investor is independent of the signals of the retail investors. For simplicity, the
amount of noise \(\sigma \) is the same for all investors. As before, investors need to decide at \(t = 1 \) whether
to redeem their shares or not. The large investor either redeems proportion \(\beta \) or does not redeem
at all. This is because it is never optimal for him to redeem only part of his position, as he can
always increase the return on the part he keeps in the fund by keeping more.

The results in Corsetti, Dasgupta, Morris, and Shin (2004) establish that there is again a unique
equilibrium in the game. This equilibrium is characterized by two thresholds: retail investors redeem
if and only if their signals fall below \(\theta^R \), and the institutional investor redeems if and only if his
signal is below \(\theta^I \).

Let us characterize the threshold signals \(\theta^R \) and \(\theta^I \). As before, a retail investor that observed
\(\theta^R \) is indifferent between redeeming and not redeeming:

\[
\int_{-\infty}^{\infty} G \left(\frac{\theta^I - \theta}{\sigma} \right) \cdot \frac{1 - (1 + \lambda) \max \left\{ 0, \left(\frac{G(\frac{\theta^R - \theta}{\sigma})(1 - \beta + \beta N - I(R_1))}{1 - \max \left\{ 0, \frac{G(\frac{\theta^R - \theta}{\sigma})}{1 - \beta N - I(R_1)} \right\} \right) \right\} }{1 - \max \left\{ 0, \frac{G(\frac{\theta^R - \theta}{\sigma})}{1 - \beta N - I(R_1)} \right\} } d\theta = 1.
\]

(14)

Here, conditional on the signal \(\theta^R \), the posterior density over \(\theta \) is \(\frac{1}{\sigma} g \left(\frac{\theta^R - \theta}{\sigma} \right) \). Then, given the state
\(\theta \), the proportion of retail investors (out of \((1 - \beta)N \)) who receive a signal below \(\theta^R \) and redeem is
\(G \left(\frac{\theta^R - \theta}{\sigma} \right) \). The amount of withdrawals now depends on the behavior of the institutional investor.
Conditional on \(\theta \), with probability \(G \left(\frac{\theta^I - \theta}{\sigma} \right) \) he receives a signal below \(\theta^I \) and withdraws, in which
case the amount of withdrawals is \(G \left(\frac{\theta^I - \theta}{\sigma} \right) (1 - \beta) + \beta \) \(\mathcal{N} \). With probability \(1 - G \left(\frac{\theta^I - \theta}{\sigma} \right) \), he does not withdraw, in which case the amount of withdrawals is \(G \left(\frac{\theta^R - \theta}{\sigma} \right) (1 - \beta) \mathcal{N} \). The institutional investor is indifferent at signal \(\theta^I \):

\[
\int_{-\infty}^{\infty} \left[1 - (1 + \lambda) \max \left\{ 0, \frac{G \left(\frac{\theta^I - \theta}{\sigma} \right) (1 - \beta) \mathcal{N} - I(R_1) \right\} \right] \cdot R_2 (\theta) \frac{1}{\sigma} g \left(\frac{\theta^I - \theta}{\sigma} \right) d\theta = 1. \tag{15} \]

Essentially, from his point of view, he knows that if he does not withdraw, the amount of withdrawals conditional on \(\theta \) is \(G \left(\frac{\theta^R - \theta}{\sigma} \right) (1 - \beta) \mathcal{N} \).

After changing variables of integration, we obtain the following two equations:

\[
\int_{-\infty}^{\infty} \left[G \left(\frac{\theta^I - \theta^R + G^{-1}(\alpha) \sigma}{\sigma} \right) \cdot \frac{1 - (1 + \lambda) \max \left\{ 0, (\alpha(1 - \beta) + \beta) \mathcal{N} - I(R_1) \right\}}{1 - \max \left\{ 0, (\alpha(1 - \beta) + \beta) \mathcal{N} - I(R_1) \right\}} \right] \cdot R_2 \left(\frac{\theta^R - G^{-1}(\alpha) \sigma}{\sigma} \right) d\alpha = 1. \tag{16}
\]

\[
\int_{-\infty}^{\infty} \left[1 - (1 + \lambda) \max \left\{ 0, \frac{G \left(\frac{\theta^I - \theta^R + G^{-1}(\alpha) \sigma}{\sigma} \right) (1 - \beta) \mathcal{N} - I(R_1) \right\} \right] \cdot R_2 \left(\frac{\theta^I - G^{-1}(\alpha) \sigma}{\sigma} \right) d\alpha = 1. \tag{17} \]

As before, we analyze the solution for the case where \(\sigma \rightarrow 0 \). It is easy to see that in this case \(\theta^I \) and \(\theta^R \) converge to the same value, which we will denote as \(\theta^{**} \). Why? Suppose that this was not the case, and assume that \(\theta^R > \theta^I \). Then, when observing \(\theta^R \) the retail investors know that the institutional investor is not going to withdraw, so they expect a uniform distribution of withdrawals between 0 and \((1 - \beta) \mathcal{N} \). Similarly, when observing \(\theta^I \) the institutional investor knows that the retail investors are going to withdraw, so he expects withdrawals to be \((1 - \beta) \mathcal{N} \), i.e., he expects more withdrawals than the retail investors expect when they observe \(\theta^R \). Thus, the only way to make the retail investors indifferent at signal \(\theta^R \) and the institutional investor indifferent at signal \(\theta^I \) is to say that \(\theta^I > \theta^R \), but this contradicts the above assumption that \(\theta^R > \theta^I \). Similarly, one can establish that there cannot be an equilibrium where \(\theta^I \) and \(\theta^R \) do not converge to the same value and \(\theta^I > \theta^R \).

Thus, effectively, there is one threshold signal \(\theta^{**} \) that characterizes the solution to the game and determines the propensity of outflows. Another variable that is important for the solution is
\(\frac{\theta_R - \theta_I}{\sigma} \), which from now on we will denote as \(x \). Then, the solution to the model boils down to solving the following two equations for \(\theta^{**} \) and \(x \) (here, the first equation is for the retail investors and the second one is for the institutional investor):

\[
R_2 (\theta^{**}) = \frac{1}{\int_0^1 \left[G \left(G^{-1} (\alpha) - x \right) \cdot \frac{1 - (1+\lambda) \max \left\{ 0, (\alpha(1-\beta)+\beta N-I(R_1)) \right\}}{1 - \max \left\{ 0, (\alpha(1-\beta) N-I(R_1)) \right\}} + (1 - G \left(G^{-1} (\alpha) - x \right)) \cdot \frac{1 - (1+\lambda) \max \left\{ 0, (\alpha(1-\beta)+\beta N-I(R_1)) \right\}}{1 - \max \left\{ 0, (\alpha(1-\beta) N-I(R_1)) \right\}} \right] \, d\alpha}.
\]

\[
R_2 (\theta^{**}) = \frac{1}{\int_0^1 \left[\frac{1 - (1+\lambda) \max \left\{ 0, (\alpha(1-\beta)+\beta N-I(R_1)) \right\}}{1 - \max \left\{ 0, (\alpha(1-\beta) N-I(R_1)) \right\}} \right] \, d\alpha}.
\]

Using (19), we can derive an upper bound on \(\theta^{**} \) by setting \(G \left(G^{-1} (\alpha) + x \right) = 1 \). This upper bound, \(\theta^{UB} \), is given as follows:

\[
R_2 (\theta^{**}) < \frac{1}{\int_0^1 \left[\frac{1 - (1+\lambda) \max \left\{ 0, (\alpha(1-\beta)+\beta N-I(R_1)) \right\}}{1 - \max \left\{ 0, (\alpha(1-\beta) N-I(R_1)) \right\}} \right] \, d\alpha} \equiv R_2 (\theta^{UB}).
\]

Analyzing (20), we can see that \(\theta^{UB} \) is decreasing in \(\beta \). Moreover, it is clearly below \(\theta^* \) when \(\beta = 1 \). Thus, given continuity, there exists a \(\beta^* < 1 \), such that when \(1 > \beta > \beta^* \), \(\theta^{**} < \theta^* \). In words, when the institutional investor is large enough, funds that have an institutional investor will experience less outflows than funds with only retail investors. By the same token, for funds with an institutional investor, the effect of illiquidity on outflows (after bad performance) will be weaker. This is the basis for Hypothesis 2 of the paper.

\(^{36}\) Note that from the argument above, both the numerator and the denominator approach 0, and the fraction is well defined.
Table 1: Variable Definitions and Summary Statistics

The sample contains 639,596 fund-share-month observations from 10,404 fund-shares of 4,393 equity funds over 1995-2005. Funds are classified as equity funds when more than 50% of their holdings are in equity investments for all years during 1995-2005. Data items are collected from the CRSP mutual fund database and the Morningstar database.

Panel A: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std</th>
<th>5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Inst</td>
<td>23.85</td>
<td>37.29</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
<td>37.42</td>
<td>100.00</td>
</tr>
<tr>
<td>%Cash</td>
<td>4.49</td>
<td>5.63</td>
<td>0.00</td>
<td>0.90</td>
<td>3.00</td>
<td>6.24</td>
<td>14.9</td>
</tr>
<tr>
<td>Age</td>
<td>7.73</td>
<td>8.94</td>
<td>1.75</td>
<td>3.25</td>
<td>5.33</td>
<td>8.50</td>
<td>20.83</td>
</tr>
<tr>
<td>Alpha1</td>
<td>-0.05</td>
<td>1.50</td>
<td>-2.49</td>
<td>-0.73</td>
<td>-0.08</td>
<td>0.61</td>
<td>2.54</td>
</tr>
<tr>
<td>Alpha4</td>
<td>-0.11</td>
<td>1.41</td>
<td>-2.25</td>
<td>-0.70</td>
<td>-0.15</td>
<td>0.39</td>
<td>2.20</td>
</tr>
<tr>
<td>Amihud</td>
<td>92.24</td>
<td>62.11</td>
<td>12.97</td>
<td>37.49</td>
<td>78.70</td>
<td>143.22</td>
<td>203.06</td>
</tr>
<tr>
<td>Expense</td>
<td>1.57</td>
<td>0.62</td>
<td>0.66</td>
<td>1.10</td>
<td>1.50</td>
<td>2.00</td>
<td>2.60</td>
</tr>
<tr>
<td>Flow</td>
<td>1.37</td>
<td>8.96</td>
<td>-6.19</td>
<td>-1.35</td>
<td>0.12</td>
<td>3.04</td>
<td>19.22</td>
</tr>
<tr>
<td>Illiq</td>
<td>0.27</td>
<td>0.45</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Inst</td>
<td>0.22</td>
<td>0.41</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Load</td>
<td>2.42</td>
<td>2.45</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>5.00</td>
<td>6.50</td>
</tr>
<tr>
<td>MinPurchase</td>
<td>838</td>
<td>10556</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>2.50</td>
<td>1000</td>
</tr>
<tr>
<td>PIN</td>
<td>16.12</td>
<td>3.47</td>
<td>11.85</td>
<td>13.66</td>
<td>15.27</td>
<td>18.20</td>
<td>22.86</td>
</tr>
<tr>
<td>RetExCat</td>
<td>-0.10</td>
<td>0.99</td>
<td>-1.73</td>
<td>-0.53</td>
<td>-0.09</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>RetGap</td>
<td>-0.20</td>
<td>1.33</td>
<td>-2.41</td>
<td>-0.70</td>
<td>-0.16</td>
<td>0.32</td>
<td>1.92</td>
</tr>
<tr>
<td>Size</td>
<td>345.23</td>
<td>927.53</td>
<td>0.67</td>
<td>9.49</td>
<td>46.81</td>
<td>210.85</td>
<td>1671.98</td>
</tr>
<tr>
<td>Stdflow</td>
<td>6.83</td>
<td>11.8</td>
<td>0.54</td>
<td>1.51</td>
<td>3.09</td>
<td>6.70</td>
<td>25.40</td>
</tr>
<tr>
<td>Trade_Vol</td>
<td>170.62</td>
<td>186.16</td>
<td>4.87</td>
<td>26.77</td>
<td>99.91</td>
<td>273.03</td>
<td>518.23</td>
</tr>
</tbody>
</table>
Panel B: Variable Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Inst</td>
<td>%</td>
<td>Percentage of a fund's assets in institutional shares</td>
</tr>
<tr>
<td>%Cash</td>
<td>%</td>
<td>Percentage of fund assets held in cash</td>
</tr>
<tr>
<td>Age</td>
<td>Year</td>
<td>Number of years since the fund's inception</td>
</tr>
<tr>
<td>Alpha1</td>
<td>%</td>
<td>Average monthly alpha from a one-factor market model during the six month period before the current month</td>
</tr>
<tr>
<td>Alpha4</td>
<td>%</td>
<td>Average monthly alpha from a four-factor market model (the Fama-French three factor and the momentum factor) during the six month period before the current month</td>
</tr>
<tr>
<td>Trade_Vol</td>
<td>$million</td>
<td>The average dollar trading volume of stocks, aggregated at the fund portfolio level using value-weighted average.</td>
</tr>
<tr>
<td>PIN</td>
<td>%</td>
<td>The probability of informed trading (Easley, et al. (1996)) measure. Calculated for each stock, aggregated at the fund portfolio level using value-weighted average.</td>
</tr>
<tr>
<td>Expense</td>
<td>%</td>
<td>Expenses of a fund share as percentage of total assets.</td>
</tr>
<tr>
<td>Flow</td>
<td>%</td>
<td>Current month net flow of a fund share as percentage of last month's TNA</td>
</tr>
<tr>
<td>Illiq</td>
<td>Dummy</td>
<td>Dummy = 1 if a fund primarily invests in illiquid assets. Funds specializing in small-cap, mid-cap and single country international stocks (except in UK, Canada, and Japan) are classified as illiquid funds.</td>
</tr>
<tr>
<td>Inst</td>
<td>Dummy</td>
<td>Dummy = 1 if a fund share is issued to institutions</td>
</tr>
<tr>
<td>Load</td>
<td>%</td>
<td>Total load (front plus backend load) charged by a fund shares</td>
</tr>
<tr>
<td>MinPurchase</td>
<td>$1,000</td>
<td>Minimum initial purchase required by a fund share</td>
</tr>
<tr>
<td>RetExCat</td>
<td>%</td>
<td>Return of a fund in excess of that of the category, averaged over the past six months</td>
</tr>
<tr>
<td>RetGap</td>
<td>%</td>
<td>Return of a fund in excess of the return of the holdings measured at the most recent Form 13F filing</td>
</tr>
<tr>
<td>Size</td>
<td>$million</td>
<td>Total asset value of a fund share</td>
</tr>
<tr>
<td>Stdflow</td>
<td>%</td>
<td>Standard deviation of fund’s monthly flow</td>
</tr>
</tbody>
</table>
Table 2: Effects of Liquidity on Flow-Performance Sensitivities

The dependent variable is the net flow to a fund-share in month t. $Perf$ is the fund’s prior performance, measured with three variables, $Alpha1$, $Alpha4$ and $RetExCat$. Table 1 lists the detailed definitions and calculations of all variables in the regression. Columns (1) to (3) use the full sample of fund-share-month observations and columns (4) to (6) use the subsample of observations with negative performance measures. All estimations include year fixed-effects. Standard errors adjust for heteroskedasticity and within-cluster correlation clustered at the fund-level. The effective number of observations is on the order of number of unique funds. * and ** indicate statistical significant at less than the 10% and 5% levels, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th>Subsample of negative performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Alpha1</td>
<td>(2) Alpha4</td>
</tr>
<tr>
<td></td>
<td>(3) RetExCat</td>
<td>(4) Alpha1<0</td>
</tr>
<tr>
<td></td>
<td>(5) Alpha4<0</td>
<td>(6) RetExCat<0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COEF</td>
</tr>
<tr>
<td>$Perf$</td>
<td></td>
<td>0.70**</td>
</tr>
<tr>
<td>$Illiq*Perf$</td>
<td></td>
<td>0.13**</td>
</tr>
<tr>
<td>Control variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Flow(-1)$</td>
<td></td>
<td>0.14**</td>
</tr>
<tr>
<td>$Size(Ln)$</td>
<td></td>
<td>0.11**</td>
</tr>
<tr>
<td>$Age(Ln)$</td>
<td></td>
<td>-2.01**</td>
</tr>
<tr>
<td>$Expense$</td>
<td></td>
<td>-0.30**</td>
</tr>
<tr>
<td>$Load$</td>
<td></td>
<td>-0.05**</td>
</tr>
<tr>
<td>$Inst$</td>
<td></td>
<td>-0.74**</td>
</tr>
<tr>
<td>$Illiq$</td>
<td></td>
<td>0.13**</td>
</tr>
<tr>
<td>$Size*Perf$</td>
<td></td>
<td>0.06**</td>
</tr>
<tr>
<td>$Age*Perf$</td>
<td></td>
<td>-0.32**</td>
</tr>
<tr>
<td>$Expense*Perf$</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>$Load*Perf$</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>$Inst*Perf$</td>
<td></td>
<td>-0.16**</td>
</tr>
<tr>
<td>#unique funds &</td>
<td>4,393</td>
<td>639,596</td>
</tr>
<tr>
<td>fund-share-months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Table 3: Effects of Investor Composition on Flow-Performance Sensitivities

Definitions of all variables are listed in Table 1. The dependent variable is the net flow to a fund-share in month t. Included are observations with negative performance measure of Alpha1. Analyses from Table 2 are replicated separately on subsamples of all fund-shares in institutional-oriented funds and retail-oriented funds. Institutional-oriented funds are defined as the funds with at least 75% the total assets held by large investors, proxied either by the institutional share class classification (column (1)) or by the minimum initial purchase requirements of at least $250,000 (column (2)). Retail-oriented funds are the funds with no greater than 25% of the fund’s total assets held by large investors. Results for these funds are shown in columns (3) and (4). All estimations include year fixed-effects. Standard errors adjust for heteroskedasticity and within-cluster correlation clustered at the fund-level. The effective number of observations is on the order of number of unique funds. * and ** indicate statistical significant at less than the 10% and 5% levels, respectively.

<table>
<thead>
<tr>
<th>Large investor proxies:</th>
<th>Institutional-Oriented Funds</th>
<th>Retail-Oriented Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Inst</td>
<td>MinPur250k</td>
</tr>
<tr>
<td>Alpha1</td>
<td>0.27*</td>
<td>0.43**</td>
</tr>
<tr>
<td>Ililiq*Alpha1</td>
<td>0.02</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Control variables:

<table>
<thead>
<tr>
<th></th>
<th>Institutional-Oriented Funds</th>
<th>Retail-Oriented Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Inst</td>
<td>MinPur250k</td>
</tr>
<tr>
<td>Flow(-1)</td>
<td>0.07**</td>
<td>4.53</td>
</tr>
<tr>
<td>Size(Ln)</td>
<td>0.13**</td>
<td>3.01</td>
</tr>
<tr>
<td>Age(Ln)</td>
<td>-2.07**</td>
<td>-13.07</td>
</tr>
<tr>
<td>Expense</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>Load</td>
<td>0.01</td>
<td>0.36</td>
</tr>
<tr>
<td>Inst</td>
<td>-0.58**</td>
<td>-2.40</td>
</tr>
<tr>
<td>Ililiq</td>
<td>0.06</td>
<td>0.37</td>
</tr>
<tr>
<td>Size*Alpha1</td>
<td>-0.05</td>
<td>-1.61</td>
</tr>
<tr>
<td>Age*Alpha1</td>
<td>0.16</td>
<td>1.51</td>
</tr>
<tr>
<td>Expense*Alpha1</td>
<td>-0.01</td>
<td>-0.09</td>
</tr>
<tr>
<td>Load*Alpha1</td>
<td>-0.02</td>
<td>-0.60</td>
</tr>
<tr>
<td>Inst*Alpha1</td>
<td>0.19</td>
<td>0.98</td>
</tr>
</tbody>
</table>

#unique funds & fund-share-months: 1,082 61,194 520 22,037 3,495 282,933 4,071 322,090
R-squared: 0.03 0.03 0.03 0.03
Table 4: Predictability of Fund Returns

This table compares the return predictability of funds investing in illiquid and liquid assets for both (open-end) mutual funds and closed-end funds. The sample of close-end funds contain all 142 equity closed-end funds that are tracked by CRSP during 1988 to 2004. Three benchmark-adjusted return measures, Alpha1, Alpha4, and RetExCat are defined in Table 1. Reported are the equal-weight current-month return performance of a portfolio sorted by the lagged performance (past 6 months) by the same measure, separately for liquid and illiquid funds. The difference between quintiles 5 and 1 is reported for each subsample, so is the difference-of-difference across the two subsamples.

<table>
<thead>
<tr>
<th>Lag Performance Quintiles</th>
<th>Alpha1</th>
<th>Alpha4</th>
<th>RetExCat</th>
<th>Alpha1</th>
<th>Alpha4</th>
<th>RetExCat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Funds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>-0.007</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.005</td>
<td>-0.004</td>
<td>-0.005</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.003</td>
<td>-0.002</td>
<td>-0.002</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Q3</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Q4</td>
<td>0.000</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Q5</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>Q5-Q1</td>
<td>0.010</td>
<td>0.005</td>
<td>0.005</td>
<td>0.008</td>
<td>0.005</td>
<td>0.009</td>
</tr>
<tr>
<td>t-stat</td>
<td>3.96</td>
<td>1.92</td>
<td>3.73</td>
<td>2.48</td>
<td>2.07</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Illiquid Funds						
Q1	-0.006	-0.003	-0.005	-0.007	-0.005	0.001
Q2	-0.002	-0.002	-0.002	-0.005	-0.007	0.001
Q3	0.000	-0.001	-0.001	-0.005	-0.008	0.001
Q4	0.003	0.001	0.000	-0.007	-0.008	0.001
Q5	0.006	0.004	0.004	-0.007	-0.009	-0.002
Q5-Q1	0.012	0.006	0.008	0.001	-0.004	-0.003
t-stat	3.01	1.66	4.30	0.10	-0.76	-0.99

Difference						
Liq(Q5-Q1) – Illiq(Q5-Q1)	-0.001	-0.001	-0.003	0.007	0.009	0.012
t-stat	-0.28	-0.29	-1.30	1.21	1.63	2.84
Definitions of all variables are listed in Table 1. The dependent variable is the net flow to a fund-share in month t. Included are observations with negative performance measure of Alpha_1. Analyses from Table 3 are replicated on the subsample of large investor fund-shares only. Columns (1) and (2) report the flow-performance sensitivities of large investors in institutional-oriented funds, while columns (3) and (4) report the sensitivities of large investors in retail-oriented funds. Institutional-and retail-oriented funds are defined in Table 3. All estimations include year fixed-effects. Standard errors adjust for heteroskedasticity and within-cluster correlation clustered at the fund-level. The effective number of observations is on the order of number of unique funds. * and ** indicate statistical significant at less than the 10% and 5% levels, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Institutional-Oriented Funds</th>
<th>Retail-Oriented Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Large investor proxies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MinPur250k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha_1</td>
<td>0.42^{**} 4.97</td>
<td>0.52^{**} 3.21</td>
</tr>
<tr>
<td>$\text{Illiq}*\text{Alpha}$</td>
<td>-0.03 -0.28</td>
<td>-0.22 -1.03</td>
</tr>
<tr>
<td>Control variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Flow}(-1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Size}(Ln)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Age}(Ln)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Size}*\text{Alpha}_1$</td>
<td>-0.03 -0.99</td>
<td>-0.09^* -1.73</td>
</tr>
<tr>
<td>$\text{Age}*\text{Alpha}_1$</td>
<td>0.12 1.23</td>
<td>0.31^* 1.77</td>
</tr>
<tr>
<td>$\text{Expense}*\text{Alpha}_1$</td>
<td>-0.09 -0.62</td>
<td>-0.26 -1.05</td>
</tr>
<tr>
<td>$\text{Load}*\text{Alpha}_1$</td>
<td>0.01 0.28</td>
<td>0.01 0.03</td>
</tr>
<tr>
<td>#unique funds & fund-share-months</td>
<td>1,074 41,105 510 14,249 980 28,289 699 17,677</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Alternative measures of assets liquidity based on fund holding

Definitions of all variables are listed in Table 1. The dependent variable is the net flow to a fund-share. Estimation sample includes all observations with $\text{Alpha1} < 0$. Column (1) uses the portfolio average trading volume (in logarithm) of the underlying holdings as the liquidity measure. Column (2) the portfolio average Amihud liquidity measure (in logarithm). Column (3) uses the average Amihud liquidity measure of the most liquid quartile of a portfolio. Each specification is conducted on the full sample and the subsample of institutional-oriented funds. All regressions include year fixed-effects. Standard errors adjust for heteroskedasticity and within-cluster correlation clustered at the fund-level. The effective number of observations is on the order of number of unique funds. * and ** indicate statistical significant at less than the 10% and 5% levels, respectively.

<table>
<thead>
<tr>
<th>Liq_Holding measure</th>
<th>(1) Ln(trade_vol) All observations</th>
<th>%INST>=75%</th>
<th>(2) Amihud All observations</th>
<th>%INST>=75%</th>
<th>(3) Amihud (most liquid quartile) All observations</th>
<th>%INST>=75%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COEF T-STAT</td>
<td>COEF T-STAT</td>
<td>COEF T-STAT</td>
<td>COEF T-STAT</td>
<td>COEF T-STAT</td>
<td>COEF T-STAT</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.24** 2.61</td>
<td>0.71** 4.89</td>
<td>0.20** 2.11</td>
<td>0.68** 4.63</td>
<td>0.26** 2.56</td>
<td>0.68** 4.35</td>
</tr>
<tr>
<td>Liq_Holding* Alpha</td>
<td>-0.13** -5.78</td>
<td>-0.02 -0.43</td>
<td>-0.18** -4.01</td>
<td>0.03 0.36</td>
<td>-0.09** -2.69</td>
<td>0.03 0.48</td>
</tr>
<tr>
<td>Flow(-1)</td>
<td>0.11** 8.30</td>
<td>0.14** 7.73</td>
<td>0.11** 8.16</td>
<td>0.13** 7.59</td>
<td>0.11** 8.69</td>
<td>0.14** 7.75</td>
</tr>
<tr>
<td>Size(Ln)</td>
<td>0.06** 2.87</td>
<td>0.14** 3.06</td>
<td>0.04** 2.00</td>
<td>0.15** 3.04</td>
<td>0.04** 2.01</td>
<td>0.15** 3.11</td>
</tr>
<tr>
<td>Age(Ln)</td>
<td>-1.65** -23.75</td>
<td>-2.04** -11.57</td>
<td>-1.59** -22.81</td>
<td>-2.02** -11.36</td>
<td>-1.57** -21.96</td>
<td>-2.03** -11.15</td>
</tr>
<tr>
<td>Expense</td>
<td>-0.74** -10.03</td>
<td>-0.08 -0.46</td>
<td>-0.64** -8.65</td>
<td>0.03 0.18</td>
<td>-0.61** -8.04</td>
<td>0.08 0.44</td>
</tr>
<tr>
<td>Load</td>
<td>0.02 1.43</td>
<td>0.01 0.16</td>
<td>0.03** 1.72</td>
<td>0.02 0.43</td>
<td>0.03 1.62</td>
<td>0.03 0.77</td>
</tr>
<tr>
<td>Inst</td>
<td>-0.52** -5.04</td>
<td>-0.64** -2.67</td>
<td>-0.42** -4.06</td>
<td>-0.58** -2.40</td>
<td>-0.42** -3.98</td>
<td>-0.51** -2.18</td>
</tr>
<tr>
<td>Liq_Holding</td>
<td>-0.25** -8.04</td>
<td>-0.15** -2.63</td>
<td>-0.24** -3.93</td>
<td>-0.15** -1.36</td>
<td>-0.15** -2.64</td>
<td>-0.05 -0.56</td>
</tr>
<tr>
<td>Size* Alpha</td>
<td>0.00 0.08</td>
<td>0.04 1.04</td>
<td>0.00 0.15</td>
<td>0.05 1.16</td>
<td>-0.01 -0.33</td>
<td>0.04 0.98</td>
</tr>
<tr>
<td>Age* Alpha</td>
<td>0.06 0.92</td>
<td>-0.14 -1.21</td>
<td>0.07 1.07</td>
<td>-0.13 -1.12</td>
<td>0.10 1.39</td>
<td>-0.08 -0.66</td>
</tr>
<tr>
<td>Expense* Alpha</td>
<td>-0.24** -4.07</td>
<td>0.00 -0.01</td>
<td>-0.20** -3.45</td>
<td>0.08 0.55</td>
<td>-0.15** -2.44</td>
<td>0.09 0.58</td>
</tr>
<tr>
<td>Load* Alpha</td>
<td>0.07** 3.44</td>
<td>-0.05* -1.73</td>
<td>0.07** 3.51</td>
<td>-0.05* -1.60</td>
<td>0.07** 2.87</td>
<td>-0.05* -1.62</td>
</tr>
<tr>
<td>Inst* Alpha</td>
<td>0.15 1.40</td>
<td>-0.26 -1.49</td>
<td>0.17 1.60</td>
<td>-0.22 -1.26</td>
<td>0.15 1.29</td>
<td>-0.24 -1.32</td>
</tr>
</tbody>
</table>

#unique funds & fund-share-months 3,127 262,313 740 44,965 3,127 262,313 740 44,965 3,077 246,374 732 44,468
#obs & R-sqr 0.04 0.05 0.04 0.05 0.04 0.04 0.05
Table 7: Effects of Outflows on Fund Returns

The analysis in this table is on fund-month (rather than fund-share-month) basis. The dependent variable in Columns (1) to (3) is Alpha_1 in month t and that in Columns (4) to (6) is the return gap between a fund’s actual return and the return of the fund’s underlying assets, calculated based on the fund’s most recent reported holding of stocks. Outflow is a dummy variable equals to 1 if the fund experiences net outflow of at least 5% of its total net asset value in month $t-1$, and 0 otherwise. $\text{Ret}(-i)$ is the one-factor Alpha or return gap of the fund during the i-th month prior to month t. Definitions of other variables are listed in Table 1. Standard errors adjust for heteroskedasticity and within-cluster correlation clustered at the fund-level. The effective number of observations is on the order of number of unique funds. * and ** indicate statistical significant at less than the 10% and 5% levels, respectively.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outflow</td>
<td>-0.014</td>
<td>-0.012**</td>
<td>-0.189**</td>
<td>-0.016</td>
<td>-0.115**</td>
<td>-0.210**</td>
<td>-0.013**</td>
<td>-0.036**</td>
<td>-0.033**</td>
<td>0.002</td>
<td>0.026**</td>
<td>0.008</td>
</tr>
<tr>
<td>Ln(TNA)</td>
<td>-0.102**</td>
<td>-0.117**</td>
<td>-0.085**</td>
<td>-0.170**</td>
<td>-0.229**</td>
<td>-0.334**</td>
<td>0.003</td>
<td>0.016**</td>
<td>0.010</td>
<td>0.010</td>
<td>0.003</td>
<td>0.036</td>
</tr>
<tr>
<td>Expense</td>
<td>0.035**</td>
<td>0.001</td>
<td>0.009</td>
<td>0.001</td>
<td>0.010</td>
<td>0.003</td>
<td>0.007</td>
<td>0.021**</td>
<td>0.015**</td>
<td>0.000</td>
<td>0.000</td>
<td>0.021**</td>
</tr>
<tr>
<td>$\text{Ret}(-1)$</td>
<td>0.067**</td>
<td>0.082**</td>
<td>0.096**</td>
<td>0.002</td>
<td>0.017**</td>
<td>0.005</td>
<td>-0.006</td>
<td>0.003</td>
<td>0.010**</td>
<td>-0.002</td>
<td>-0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>$\text{Ret}(-2)$</td>
<td>0.000</td>
<td>0.005</td>
<td>0.004</td>
<td>0.004</td>
<td>-0.002</td>
<td>-0.002</td>
<td>0.077**</td>
<td>0.071**</td>
<td>0.064**</td>
<td>0.027**</td>
<td>0.038**</td>
<td>0.010</td>
</tr>
<tr>
<td>$\text{Ret}(-3)$</td>
<td>0.064**</td>
<td>0.224**</td>
<td>0.220**</td>
<td>0.071**</td>
<td>-1.028**</td>
<td>-1.652**</td>
<td>1,940</td>
<td>130,517</td>
<td>969</td>
<td>63,467</td>
<td>37,538</td>
<td>1,949</td>
</tr>
</tbody>
</table>

#unique funds & fund-months 1,940 130,517 969 63,467 37,538 1,949 128,711 975 63063 934 37519
R-squared 0.01 0.02 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Table 8: Effects of Liquidity on Fund Cash and Redemption Fee Policy

Definitions of all variables are listed in Table 1. Columns (1) to (3) use observations from the whole sample of funds and Columns (4) to (6) use observations from the subsample of illiquid funds. In columns (1) and (4), all variables are measured at the annual frequency. The dependent variable is the percentage of assets a fund holds in cash at year end and linear regression with year fixed-effects is used in estimation. In columns (2) and (5), the dependent variable is the dummy variable for whether a fund has adopted a redemption fee by 2005 and Probit is used in estimation (reported coefficients are marginal probability changes for one unit change in each regressor, holding other regressors at their sample mean levels). In columns (3) and (6), the dependent variable is the product of the amount of redemption fee (as % of the redeemed amount) and the number of month the redemption fee applies to, and Tobit is used in estimation. * and ** indicate statistical significant at less than the 10% and 5% levels, respectively.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Estimation method</th>
<th>All Funds</th>
<th>Illiquid Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>%Cash I(Redemption)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amihud</td>
<td>-0.014** -15.62 -6.9%** -4.45</td>
<td>0.118** 4.40 -18.6% -0.29</td>
<td>0.031 0.35 90.8% 2.03</td>
</tr>
<tr>
<td>Flow(-1)</td>
<td>0.121** 7.64</td>
<td>33.6% 0.94</td>
<td>4.04 0.53</td>
</tr>
<tr>
<td>TNA</td>
<td>-0.059 -1.35</td>
<td>36.2% 1.51</td>
<td>4.04 0.53</td>
</tr>
<tr>
<td>Age</td>
<td>0.289** 2.56</td>
<td>7.0%** 4.82</td>
<td>1.79** 3.93</td>
</tr>
<tr>
<td>%Inst</td>
<td>-0.695** -4.51</td>
<td>1.7%** 2.97</td>
<td>0.35* 1.90</td>
</tr>
<tr>
<td>Load</td>
<td>-0.016 -0.48</td>
<td>1.3% 0.74</td>
<td>0.09 0.16</td>
</tr>
<tr>
<td>Alpha1</td>
<td>0.067** 2.27</td>
<td>-3.1% -1.25</td>
<td>-1.32* -1.68</td>
</tr>
<tr>
<td>StdFlow</td>
<td>-0.106** -3.78</td>
<td>3.8%** 6.83</td>
<td>0.90** 5.08</td>
</tr>
<tr>
<td>Cnst</td>
<td>5.585** 22.38</td>
<td>-- --</td>
<td>-9.01** -5.79</td>
</tr>
<tr>
<td>#obs & R-squared</td>
<td>23,025 0.032</td>
<td>2,575 0.052</td>
<td>2,575 0.019</td>
</tr>
<tr>
<td>% Redemption</td>
<td>28.27%</td>
<td>29.90%</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Overview of the effect of liquidity on flow-performance-sensitivities

Plotted is the nonparametric function $f(.)$ in the following semiparametric specification:

$$\text{Flow}_{it} = f(\text{Alpha}_{t-1}) + \beta X_{it} + \varepsilon,$$

where i and t are subscripts for fund shares and months. X represents a vector of control variables that include: fund size, fund age, expenses, and total sales loads. Estimation follows the Robinson (1988) method.