MADIHA FERJANI, KAMEL JEDIDI, and SHARAN JAGPAL*

This article develops and tests a reduced-form, conjoint methodology for measuring brand equity. The proposed approach (1) provides objective dollar-metric values for brand equity without the need to collect perceptual or brand association data, (2) captures the effects of awareness and availability in the marketplace as sources of brand equity, (3) accounts for competitive reaction, (4) allows the mix of branded and unbranded firms to affect industry size, and (5) uses consideration set theory to project market share estimates from the conjoint experiment to the marketplace. Managers can use the approach to develop customized strategies for targeting customers, monitoring brand “health,” allocating resources, and determining the values of brands in a merger or acquisition. The empirical results suggest that the proposed metric for measuring consumer-level brand equity has convergent validity; in addition, the magnitudes and strengths of brand equity vary considerably across consumers and brands. At the firm level, the results show that previous methods are likely to overstate brand equity, especially for products with low market shares. Finally, the results show that the external validity for the proposed brand equity measures is high.

Keywords: brand equity, brand valuation, choice models, conjoint analysis, competition, Nash equilibrium

A Conjoint Approach for Consumer- and Firm-Level Brand Valuation

There is a vast and burgeoning literature on how to measure consumer- and firm-level brand equity (for a detailed literature review, see Keller and Lehmann 2006). Some researchers (e.g., Ailawadi, Lehmann, and Neslin 2003) propose that firm-level brand equity should be measured directly using market-level data. Others (e.g., Srinivasan, Park, and Chang 2005) suggest that primary data should first be collected to measure consumer-level brand equity, and then this information, combined with market-level data, should be used to estimate firm-level brand equity. Our proposed method is in the spirit of the latter approach because we measure both consumer- and firm-level brand equities.

Keller and Lehmann (2006) identify four components of brand value: (1) biased perceptions, (2) image associations, (3) incremental value (a component that is not related to product attributes or benefits), and (4) inertia value. The current article develops a utility model that captures all these components of brand equity. The proposed model allows for different information-processing strategies and provides objective estimates of brand equity without directly measuring consumer perceptions and brand image associations.

Two critical design features of the methodology are that (1) the experiment must include unbranded products for determining the values for products with no brand equity and (2) all choice sets in the conjoint experiment must include the no-purchase option. This feature is key for obtaining unambiguous dollar-metric estimates of brand equity. In addition, it allows the market size to vary depending on the players in the market.

At the firm level, the two key features of the model are that (1) it explicitly allows brand equity to depend on objective measures of awareness and availability and (2) the mar-

*Madiha Ferjani is Assistant Professor of Marketing, Mediterranean School of Business, South Mediterranean University (e-mail: madiha.ferjani@msb-online.org). Kamel Jedidi is John A. Howard Professor of Business, Columbia Business School, Columbia University (e-mail: kj7@columbia.edu). Sharan Jagpal is Professor of Marketing, Rutgers Business School, Rutgers University (e-mail: jagpal@rutgers.edu). The authors thank the two anonymous JMR reviewers and Ricardo Montoya for their helpful suggestions. They also thank Habib Jedidi, chief executive officer of Tunisie Lait, for sponsoring this project and providing industry data for brand value calculations. The authors are listed in random order; each author contributed equally to this article. Wayne DeSarbo served as associate editor for this article.
Consumer- and Firm-Level Brand Valuation

...marketing policies (e.g., market prices and advertising levels) of all products in the industry are endogenously determined. Thus, the model provides objective estimates for brand equity after simultaneously allowing for competitive reaction, demand and supply adjustments, and consumer heterogeneity.

We test the methodology using data from a choice-based conjoint experiment. The results show that the proposed metric for measuring consumer brand equity has convergent validity and is externally valid. Furthermore, the brand equity estimates vary considerably across methods. After briefly reviewing the literature, we describe the brand equity measurement model. Next, we report the results from a commercial application. We conclude by discussing the main findings and proposing directions for further research.

LITERATURE REVIEW

Extant methods for measuring brand equity differ in terms of whether they measure brand equity at the consumer or firm level, the marketing outcomes measured (utility or monetary value), and the benchmark definition of what would happen when a product turns unbranded. Next, we discuss these issues in the context of consumer- and firm-level brand equity.

Consumer-Level Brand Equity

Srinivasan (1979) and Kamakura and Russell (1993) define consumer-level brand equity as the component of utility that is intrinsic to the brand and cannot be explained by the product attributes. This measure captures the incremental and inertia values of a brand but provides only relative values of brand equity. Park and Srinivasan (1994) measure brand equity as the difference between a consumer’s overall utility from a brand and his or her utility based only on objective product attributes. This definition accounts for biased perception and uses a benchmark product that is defined in terms of objective attributes. Swait and colleagues (1993) define consumer brand equity as the equalization price, or the price that equates the utility of a brand to the utility the same product would obtain in a marketplace with no brand differentiation. Because the authors define the equalization price “with respect to any utility of interest” (Swait et al. 1993, p. 29), this measure does not provide dollar-metric values of brand equity. In this article, we define brand equity as the difference in the consumer’s willingness to pay (WTP) for a branded product with a particular set of features and an identical unbranded product.

Firm-Level Brand Equity

Ailawadi, Lehmann, and Neslin (2003) define brand equity as the revenue premium a brand generates compared with a private-label product. Srinivasan, Park, and Chang (2005) define firm-level brand equity as the incremental profit contribution obtained by the brand in comparison with an identical unbranded product, assuming that the prices of both products are the same. To obtain this measure, they adjust the results of their demand experiment using subjective estimates of push-based awareness and push-based availability data from a panel of industry experts. Dubin (1998) defines brand equity as the incremental profitability that the firm would earn operating with the brand-name compared with operating without it. The key distinction among these three methods is that the first two specify the unbranded scenario exogenously, while the third (Dubin’s method) derives the unbranded scenario endogenously, using a competitive equilibrium approach. In this article, we adopt Dubin’s definition to measure firm-level brand equity. For comparison, we specify the unbranded scenarios both endogenously and exogenously.

THE CONSUMER MODEL

In this section, we first present a utility model that captures all four components of brand value on choice (Keller and Lehmann 2006, p. 751). We then show how a reduced-form version of this model, which obviates the need to measure consumer perceptions and brand image association, can be used to develop an objective measure of brand equity.

Model Structure

Consider a choice set consisting of J – 1 branded products (or services), one unbranded product, and the no-purchase option. By definition, the unbranded product is a product with no brand equity. Examples include a private-label or a generic product. The study operationalizes the unbranded product as a hypothetical new product. This conjoint design is a critical part of our methodology for measuring both consumer- and firm-level brand equity.

Let J index the unbranded product; \(x_{jm} \) be consumer i’s perceived value of attribute m for product j, \(x_i = (x_{ij1}, \ldots, x_{ijM}) \); and \(p_j \) be the price of product j. Let \(z_{ijk} \) denote consumer i’s image association of product j on image dimension k (k = 1, …, K). Suppose that consumer i (i = 1, …, I) considers buying one unit of product j from the available set of products (j = 1, …, J). Assume that the consumer’s preferences can be modeled as a quasi-linear utility function in which the status quo is represented by an individual-specific composite good with unit price \(p_{0i}^{w} \). Let \(q_i \) denote the number of units of the composite good purchased by consumer i. Then, the utility function for this consumer depends on the quantity \(q_i \) of the composite good and on whether the consumer makes a choice from the set of available products (j = 1, …, J).

Let \(U_i(n_{ij}, q_i) \) denote consumer i’s utility function, where \(n_{ij} = 1 \) if consumer i chooses product j and 0 if otherwise. Let \(w_i \) be consumer i’s budget. For all i, assume that the consumer maximizes \(U_i(n_{ij}, q_i) \), subject to the budget constraints \(n_{ij} p_{ij} + q_{i} p_{0i}^{w} \leq w_i \).

Suppose initially that the consumer’s preferences are directly based on the attribute dimensions (including prices and brands). If so, the consumer’s preferences are based on what we call “attribute space.” Subsequently, we examine the case in which the consumer first transforms the attribute information into perceived benefits (“benefit space”) and then forms preferences based on these benefit dimensions.

Because a utility-maximizing consumer always exhausts his or her budget, the indirect utility function for consumer i if he or she purchases product j (i.e., \(n_{ij} = 1 \) and \(q_i = (w_i - p_j)/p_{0i}^{w} \) is as follows:
(1) \[U_i(n_{ij}, q_{ij}) = b_{ij0} + \sum_{k=1}^{K} b_{ijk} x_{ijk} + \sum_{m=1}^{M} b_{im} x_{imj} + b_i^p W_i - p_i^p + v_{ij}, \] for all \(i = 1, \ldots, I, j = 1, \ldots, J, \)

where for each consumer \(i, x_{imj} \) is the perceived level of attribute \(m \) (image association \(k \)) for product \(j \). \(b_{ij0} \) is an intercept specific to product \(j \) that captures both the incremental and the inertia values of brand \(j \). \(b_{im} \) is the importance of perceived attribute \(m \) (image association \(k \)), \(b_i^p \) is the marginal effect of income or price sensitivity, and \(v_{ij} \) is an error term. If consumer \(i \) chooses the no-purchase option, the indirect utility function is as follows:

(2) \[U_i(0, q_{ij}) = b_i^p W_i + v_{i0}, \] for all \(i = 1, \ldots, I. \)

One approach for measuring brand equity is to work directly with Equation 1. This approach makes it possible to estimate the effects of different sources of brand equity. However, it entails collecting data on market prices, perceived and objective attribute values for each brand (Park and Srinivasan 1994), and brand image associations (Swait et al. 1993). An alternative approach (described subsequently) is to work with objective attribute values and infer the impact of attribute perception bias and image associations on brand values from the model. This approach is simple to use, does not require subjective perceptions and image association data, and avoids all problems associated with measurement error and multicollinearity.

In line with the work of Kamakura and Russell (1993), let \(x_{imj} \) be the objective level of attribute \(m \) for product \(j \). For any consumer \(i \), let \(\theta_{ijm} \) be an individual-specific perceptual bias parameter for attribute \(m \) and product \(j \), and let \(\theta_{ijm0} \) be a measurement intercept parameter. Let \(\delta_{ijm} \) be a consumer-specific parameter that captures the effect of the price signal on the perception of attribute \(m \) for product \(j \). Then, for consumer \(i \), the perceived level of attribute \(m \) for product \(j \) is as follows:

(3) \[x_{imj} = \theta_{ijm0} + \theta_{ijm} x_{imj} + \delta_{ijm} p_j + e_{ijm}, \] for all \(i = 1, \ldots, I, j = 1, \ldots, J, m = 1, \ldots, M, \)

where \(e_{ijm} \) is a stochastic term that captures perceptual errors.

In contrast to Kamakura and Russell (1993), Equation 3 allows price to serve as a signal for the quality of an attribute. Thus, suppose that a high price for product \(j \) signals a higher level for attribute \(m \) (i.e., higher quality) in that product to consumer \(i \). Then, \(\delta_{ijm} > 0 \). In the special case in which \(\delta_{ijm} = 0 \), the price of product \(j \) has no signal value to consumer \(i \) for the attribute in question. In general, price signals can vary across both brands and attributes.

Equation 3 allows for different perceptual biases across attributes. For example, suppose that consumer \(i \) is fully informed about attribute \(m \) in product \(j \) or can verify the level of this attribute before purchase (i.e., attribute \(m \) is a “search” attribute). Then, \(\theta_{ijm} = 1 \), and \(\theta_{ijm0} = \delta_{ijm} = 0 \). Alternatively, suppose that consumer \(i \) misperceives that the level of attribute \(m \) for product \(j \) (e.g., a branded product) is higher than its true value. Then, in general, \(\theta_{ijm} \neq 1 \) (i.e., the attribute is an “experience” or “creedence” attribute).

Following Jedidi and Zhang (2002), we set \(p_i^p \) to 1. Substituting Equation 3 for the perceived attributes \(x_{imj} \) into Equation 1 and collecting terms leads to the following:

(4) \[U_i(n_{ij}, q_{ij}) = b_{ij0} + \sum_{m=1}^{M} b_{im} \theta_{ijm0} + \sum_{k=1}^{K} b_{ik} z_{ijk} + \sum_{m=1}^{M} b_{im} \theta_{ijm} x_{imj} - \left(b_i^p - \sum_{m=1}^{M} b_{im} \delta_{ijm} \right) p_j + b_i^p w_i + \sum_{m=1}^{M} b_{im} e_{ijm} + v_{ij}, \]

The parameters \(b_{im}, \theta_{ijm0}, \theta_{ijm} \), and \(\delta_{ijm} \) cannot be identified unless we impose some restrictions on the model. However, for measuring brand equity, it is not necessary to impose any restrictions. Specifically, the joint effects of all the parameters can be estimated using a reduced-form approach. Thus, we can compactly write Equation 4 as follows:

(5) \[U_i(n_{ij}, q_{ij}) = \beta_{ij0} + \sum_{m=1}^{M} \beta_{ijm} x_{imj} - \beta_i^p p_j + \epsilon_{ij}, \]

for all \(i = 1, \ldots, I, j = 1, \ldots, J, \)

where \(\beta_{ijm} = b_{im} \theta_{ijm0} \) is a regression coefficient that captures the reduced-form, brand-specific effect of objective attribute \(m \); \(\beta_{ij} = b_{ij0} - \sum_{m=1}^{M} b_{im} \beta_{ijm} \) captures the reduced-form effect of price on the utility of brand \(j \); \(\beta_i^p = b_i^p - \sum_{m=1}^{M} b_{im} \delta_{ijm} \) is a brand-specific coefficient that captures the incremental effects of a brand, such as inertia and brand associations; and \(\epsilon_{ij} = \sum_{m=1}^{M} b_{im} e_{ijm} + v_{ij} \) is a composite, heteroskedastic error term. We discuss the distributional assumptions for \(\epsilon_{ij} \) (\(j = 1, \ldots, J \)) in the “Model Estimation” subsection.

As Equation 5 shows, a utility model in which both attribute and price effects vary across brands and individuals can capture all the four sources of brand value and also control for price signaling. From a control point of view, the effects of the \(x_{ijm} \) can be measured if data on brand image associations are available. However, from an estimation viewpoint, this is not necessary, because these image effects are automatically absorbed in the brand-specific intercept \(\beta_{ij0} \). Note that though Equation 5 captures multiple sources of brand equity, it does not reveal the specific perceptions or image associations from which brand equity arises. Thus, if the management objective is to understand brand equity at the perception or image association levels, it is necessary to supplement the method by collecting perceptual data.

The general model in Equation 5 requires the estimation of separate utility functions for each brand. Consequently, estimation problems can arise if the number of brands and/or attributes is large. One way to address this is to assume that all perceptual parameters are invariant across attributes (i.e., \(\theta_{ijm} = \theta_{ij} \forall m \)). Then, Equation 4 simplifies to the following:
Consumer- and Firm-Level Brand Valuation

849

(6) \[\begin{align*}
U_i(a_{ij}, q_i) &= \beta_{0j} + \theta_j \sum_{m=1}^{M} b_{jm} x_{jm} - \beta_{ij} p_j + \epsilon_{ij}
\end{align*} \]

In Equation 6, only the intercept, price coefficient, and the “proportional halo” parameter \(\theta_j \) vary by brand. Furthermore, Equation 6 implies that halo effects are proportional across attributes. Note that this condition may not hold. For example, Crest toothpaste may have a much higher halo effect for “cavity prevention” than for “whitening.”

Suppose that the consumer evaluates products in terms of their perceived benefits (benefit space) and not in terms of attribute space. Furthermore, suppose that the relationships between the objective stimuli (i.e., the physical attributes, prices, and brands) and the perceived benefits are stochastic and vary across individual consumers. Then, the consumer’s preferences can be modeled using a reduced-form utility function that is analogous to Equation 5 (see the Appendix).

In summary, Equation 5 allows for general information-processing strategies (i.e., attribute versus benefit processing) by consumers and captures various sources of brand equity. Importantly, for measuring brand equity, there is no need to obtain subjective data on brand attribute perceptions or brand image associations.

Model Estimation

A utility-maximizing consumer will select product \(j \) if and only if two conditions are simultaneously satisfied: (1) his or her utility for product \(j \) is greater than the utility from the no-purchase option, and (2) the utility from product \(j \) has the maximum value in a given choice set. Let \(s \) index a choice occasion or observation (\(s = 1, \ldots, S \)) in a conjoint experiment. Let \(U_{ij} = U_i(a_{ij}, q_i) = V_{ij} + \epsilon_{ij} \), and let \(U_i = U_i(0, q_i) = \epsilon_{i0} \) denote the utility from the purchase of product \(j \) and the no-purchase option on choice occasion \(s \), respectively. Then, consumer \(i \) will choose product \(j \) on choice occasion \(s \) if

\[(7) \quad U_{ijs} = \max_{1 \leq j \leq J} U_{ijs} \geq U_{i0s}, \]

and will not choose any product if

\[(8) \quad U_{ij0} < U_{i0s}, \quad j = 1, \ldots, J, \quad s = 1, \ldots, S. \]

Assume that each of the \(\epsilon_{ij0} \) (\(j = 0, \ldots, J \)) follows an independent and identical extreme value distribution. Both distributional assumptions are reasonable given the choice-based conjoint design. Thus, brand alternatives are randomized both within and across choice sets, and the independence assumption holds. At first glance, the homoskedasticity assumption may seem to be anomalous because \(\epsilon_{ij0} \) is a composite error term. However, this is not an issue, because scale and taste parameters are inherently confounded in multinomial logit models and the model parameters are both brand and individual specific. Finally, although the \(\epsilon_{ij0} \) (\(j = 0, \ldots, J \)) are independent, the Bayesian estimation approach allows the brand-specific parameters to covary in the population (see the Web Appendix at http://www.marketingpower.com/jmrdec09). Then, consumer’s choice probability for product \(j \) (\(P_{ij0} \)) and the nonpurchase probability (\(P_{i00} \)) on occasion \(s \) are, respectively, as follows:

\[(9) \quad P_{ij} = \frac{\exp(V_{ij})}{\sum_{j'=1}^{J} \exp(V_{ij'})}, \quad P_{i0} = \frac{1}{\sum_{j=1}^{J} \exp(V_{ij'})}.
\]

To capture consumer heterogeneity, assume that \(\beta_{ij} = [\beta_{ij0}, \beta_{ij1}, \ldots, \beta_{ijM}] = [\beta_{0j}, \beta_{p0j}, \beta_{ij1}, \ldots, \beta_{ijM}] \) is the joint vector of regression (partworth) parameters, follows a multivariate normal \(N(\beta, \Omega) \). The covariance matrix \(\Omega \) is non-diagonal and captures the covariation of the model parameters (including the brand intercepts) in the population.

Because the model includes the no-choice option, all main effects and interactions are identified. In addition, the model allows the probability of the no-purchase option (and, thus, the total share of the \(J \) brands) to vary as a result of changes in competitive prices or branding status (i.e., a brand loses its name).

We estimate the model parameters using a Bayesian estimation procedure (see the Web Appendix at http://www.marketingpower.com/jmrdec09). This procedure allows us to compute dollar-metric consumer-level brand equity (see Equation 12) as part of the iteration process and provides confidence intervals for brand equity values at different levels of aggregation. Thus, managers can choose customized marketing strategies after performing an appropriate risk-return analysis.

THE MEASUREMENT OF BRAND EQUITY

Consumer-Level Brand Equity

We now discuss how Equation 5 can be used to measure brand equity at the individual level. Following Jedidi and Zhang (2002, p. 1352), we define a consumer’s WTP as “the price at which a consumer is indifferent between buying and not buying the product.” Using this definition, we write consumer \(i \)’s WTP for product \(j \), \(R_{ij} \), as follows:

\[(10) \quad R_{ij} = \frac{\beta_{ij0} + \sum_{m=1}^{M} \beta_{ijm} x_{jm}}{\beta_{ij0}^p}, \quad \text{for all } i = 1, \ldots, I, \quad j = 1, \ldots, J,
\]

where \(\beta_{ij0}^p > 0 \). Recall that we defined brand equity \(BE_{ij} \) as the difference in WTP between a branded and an identical unbranded product. For any product \(j \), this difference is given by

\[(11) \quad BE_{ij} = \frac{\beta_{ij0} + \sum_{m=1}^{M} \beta_{ijm} x_{jm}}{\beta_{ij0}^p} - \frac{\beta_{0j0} + \sum_{m=1}^{M} \beta_{0jm} x_{jm}}{\beta_{0j0}^p}, \quad \text{for all } i = 1, \ldots, I, \quad j = 1, \ldots, J.
\]

Equation 11 has an intuitive interpretation. Brand equity is the sum of three effects: (1) the incremental WTP due to the main effect of brand,
(2) the incremental WTP due to an enhanced attribute perception of the brand,

\[
\left(\frac{1}{p_j} \sum_{m=1}^{M} \beta_{jm} x_{jm} - \frac{1}{p'_j} \sum_{m=1}^{M} \beta_{jm} x_{jm} \right), \quad \text{and}
\]

(3) differences in price sensitivity for a branded and an unbranded product (\(p_j^b\) versus \(p_j^u\)). Equation 11 allows us to measure how prices and enhanced attribute perceptions affect brand equity overall. However, this model does not allow us to measure how a specific image association affects brand equity, because these effects are absorbed in the main effect of brand (see the foregoing explanation of the first effect).

Our definition for consumer-level brand equity is effectively the price premium a consumer is willing to pay for that brand over the price he or she is willing to pay for an identical unbranded product. (Note the use of the same \(x_{jm}\) values but different partworth values \(\beta_{jm}\) in computing BE\(_j\) in Equation 11.) This definition is different from that used in previous studies. In terms of our notation, Kamakura and Russell (1993, p. 12) define brand equity as \(\beta_{jm}\), scaled so that the mean value across all brands in the market is zero. Consequently, their measure of brand equity is nonmonetary; in addition, it does not separate out the effect of biased perceptions. Swait and colleagues (1993) define brand equity by the equalization price, which corresponds to \(R_{Qj}\) in Equation 10. This correspondence occurs because they set the utility of the unbranded product to zero (\(V^R = 0\)). Note that it is critical for the experimental design to include both the unbranded product J and the no-choice option. Without including these options, it is not possible to estimate \(\beta_{j0}\) and \(\beta_{jm}\) (\(m = 1, \ldots, M\)); thus, dollar-metric measures of brand equity (BE\(_j\)) cannot be obtained.

Firm-Level Brand Equity

At the firm level, brand equity is defined as the incremental profit the firm would earn by operating with the brand compared with operating without it. Let \(p = (p_1, \ldots, p_J)\) be the price vector for products \(j = 1, \ldots, J\). Let \(Z = \{Z_j1, \ldots, Z_jL; j = 1, \ldots, J\}\) be a vector of L marketing activities, such as advertising. Let \(M_j(p, Z)\) be product \(j\)'s expected market share given the competitive marketing decisions \(p\) and \(Z\). Let \(p_j\) and \(c_j\), respectively, be the unit price and variable cost per unit of product \(j\). Let \(F_j(Z_j)\) be the sum of the fixed costs for product \(j\) and other costs associated with nonprice marketing activities (e.g., advertising). Let \(Q_j\) denote the expected quantity of product \(j\) that is sold and \(T\) be the total product category purchase quantity per year for the entire market. Then, the expected annual profit earned by product \(j\) is given by

\[
\text{Profit}_j = Q_j \times (p_j - c_j) - F_j(Z_j), \quad j = 1, \ldots, J,
\]

where \(Q_j = T \times M_j(p, Z)\). Similarly, the expected profit that product \(j\) would have earned if it were unbranded is as follows:

\[
\text{Profit}'_j = Q'_j \times (p'_j - c_j) - F_j(Z'_j),
\]

where \(Q'_j = T \times M'_j(p', Z')\) is the expected quantity product \(j\) would have sold if it were unbranded and priced at \(p'_j\) and \(p'\) and \(Z'\) are the new industry equilibrium values for prices and marketing activities. We assume that the category volume \(T\) is unaffected when a branded product becomes unbranded. However, because of the no-choice option, the model allows the choice probability of the composite good to change as a result of a product becoming unbranded. Thus, the total sales volume of the \(J\) products can change when any product turns unbranded (i.e., \(\sum Q'_j \neq \sum Q_j\)). Therefore, the brand equity of product \(j\) is as follows:

\[
BE_j = \text{Profit}_j - \text{Profit}'_j, \quad j = 1, \ldots, J.
\]

We now discuss how to measure \(M_j\), \(M'_j\), \(Q_j\), and \(Q'_j\).

Determining \(M_j\)

If all products enjoy full awareness and full distribution, \(M_j\) is simply the average choice probability in the sample (see Equation 9). However, this assumption is unrealistic.

To adjust for lack of full awareness and distribution, consider for now a market with three products \(j = 1, 2, \) and 3. Let \(c = (d_1, d_2, d_3)\) be a subset of products in which \(d_j\) is a dummy (coded 1 = yes and 0 = no) that indicates whether product \(j\) belongs to the subset. Let \(\pi^c_j\) denote the proportion of consumers in the population who are aware of product \(j\), and let \(\pi^d_j\) denote the proportion of distribution outlets in which product \(j\) is available (e.g., % all commodity volume). In general, both these proportions are endogenous and depend on the marketing policies chosen by different firms in the industry. We follow the standard approach and assume that these proportions are locally independent (Silk and Urban 1978). Then \(\pi_j = \pi^c_j \pi^d_j\) is the proportion of consumers who are aware of product \(j\) and can purchase it from a distribution outlet. This implies that the awareness- and availability-adjusted market share for product \(j = 1, \) for example, is given by

\[
M_j = \pi_j(1 - \pi_j) (1 - \pi_j) p_j (1 - \pi_j) + \pi_j \pi_j (1 - \pi_j) p_j (1 - \pi_j) + \pi_j \pi_j \pi_j p_j (1 - \pi_j),
\]

where \(\pi_j (1 - \pi_j) (1 - \pi_j)\) is the probability that Product 1 is the only product that a consumer is aware of and that is available for purchase and \(p_j (1 - \pi_j)\) is the choice probability of Product 1 in the set \(c = (1, 0, 0)\) computed using Equation 9. In contrast to conventional models, Equation 15 does not constrain the sum of market shares to equal one. This model property is critical because it allows marketing policies (e.g., the advertising budgets chosen by branded and unbranded products) to affect the market shares and volumes for different products and, thus, the dollar values of brand equity for different firms.

More generally, let \(c_j \in C\) be a subset of brands (including the no-purchase option) sold in the marketplace, and let \(\phi_{cj}\) be the associated probability for that choice subset. Let \(P_j^{c_j}\) be the probability of choosing product \(j\) from choice set \(c_j\). Then, the awareness- and distribution-adjusted market share for product \(j\) is as follows:

\[
M_j = \pi_j(1 - \pi_j) (1 - \pi_j) p_j (1 - \pi_j) + \pi_j \pi_j (1 - \pi_j) p_j (1 - \pi_j) + \pi_j \pi_j \pi_j p_j (1 - \pi_j).
\]

This assumption is not general. For example, a consumer’s store purchase decisions could depend on his or her awareness levels for different brands.

An alternative approach is to compute the average weighted choice probability. That is, \(M_j = (I^j(\pi_j) \exp(V_j)) / (1 + \sum_{i} \pi_i \exp(V_i))\). However, this approach is not theoretically correct.
Consumer- and Firm-Level Brand Valuation

\[M_j = \sum_{c \in C} \phi_c P_j^{c_k} \]

Determining \(Q'_j \). To estimate this quantity, it is necessary to determine the price levels \(p^j \) and marketing policies \(Z^j \) the firm would choose for product \(j \) if it were unbranded. In addition, it is necessary to determine the combined effect of these policies on the levels of awareness and distribution \(\pi^j \) and \(M^j \).

Several methods can be used to determine these values. One approach is to follow Srinivasan, Park, and Chang (2005) and use ratings by experts to estimate the levels of "push-based" awareness and "push-based" availability. This method is easy to implement. However, it is subjective and does not provide guidance on how to determine the "push-based" prices for different brands. An alternative approach is to assume that the branded product would have price, awareness, and distribution levels equal to the corresponding values of a private-label or a weak national brand (e.g., Ailawadi, Lehmann, and Neslin 2003). This method provides objective values for price, awareness, and distribution. However, as with the previous method, it does not allow these values to depend on the joint effects of the marketing policies chosen by different firms in the industry, including both branded and other products (e.g., generics and private labels).

To address these issues, we use a third approach that is similar in spirit to that of Choi, DeSarbo, and Harker (1990) and Goldfarb, Lu, and Moorthy (2009). As we discussed previously, the joint effect of awareness and availability for product \(j \) is given by \(M^j \). However, in general, the relationship between awareness and availability is nonrecursive. For example, more retailers will stock a product whose awareness is high. However, if more retailers stock a product, consumer awareness will also increase (e.g., as a result of in-store displays for that product). To simultaneously allow for these feedback effects between awareness and availability and the effects of the marketing policies \(Z_j \), \(Z_{jL} \), \(Z_{jJ} \), \ldots, \(Z_{jL} \) (e.g., advertising spending, trade promotions), let

\[
\begin{align*}
\pi^j &= \gamma_0^j (\pi^j)^{\gamma_1^j} \prod_{l=1}^{L} (Z_j^j)^{\gamma_2^j}, \\
\pi^{jL} &= \gamma_0^{jL} (\pi^{jL})^{\gamma_1^{jL}} \prod_{l=1}^{L} (Z_j^j)^{\gamma_2^{jL}}, \quad j = 1, \ldots, J,
\end{align*}
\]

where \(\gamma_0^j \) and \(\gamma_0^{jL} \) are constants and \(\gamma_{1}^j \), \(\gamma_{1}^{jL} \), \(\gamma_{2}^j \), \(\gamma_{2}^{jL} \) \((l = 1, \ldots, L)\) are elasticity parameters. Combining Equations 17a and 17b leads to the following reduced-form equation:

\[\pi_j = \gamma_0 \prod_{l=1}^{L} Z_{jl}, \quad j = 1, \ldots, J, \]

where the \(\gamma \) are elasticity parameters that measure the joint effects of marketing activities on \(\pi_j \). As we discussed in the empirical example, these parameters can be estimated using objective data on awareness, availability, and marketing activities for existing brands in the marketplace. These specifications assume a current effects model; in general, however, awareness and distribution can depend on the lagged effects of marketing variables. To capture such effects, it is necessary to use a dynamic specification for the awareness and distribution modules and to embed this in a multiperiod game-theoretic model.

The market equilibrium. Suppose that each firm produces a single product, firms do not cooperate, and all firms choose their marketing policies simultaneously. Then, each firm chooses \(p_j \) and \(Z_j \) (and the implied awareness and distribution levels) to maximize the following:

\[(p_j - c_j)Q_j(p, Z) - F(Z_j), \quad j = 1, \ldots, J, \]

where \(Q_j = T \times M_j(p, Z) \). Then, the first-order conditions for the Nash equilibrium are as follows:

\[(p_j - c_j) = 0, \quad (p_j - c_j) \frac{\partial Q_j}{\partial Z_j} = 0, \quad j = 1, \ldots, J. \]

Given the estimates for the model parameters, it is possible to numerically solve the system of equations in Equation 20 to calculate the set of equilibrium prices \(p_j \) and marketing decisions \(Z_j \) that would be chosen when product \(j \) becomes unbranded. These equilibrium quantities can be used to calculate Profit'. Note that for this method, the levels of price, awareness, and availability for any given product (branded or unbranded) are endogenously determined.

In the empirical study, we use all three approaches (industry expert, private label, and Nash) to calculate Profit' and to compute the dollar values of firm-level brand equity.

AN EMPIRICAL APPLICATION: DESIGN AND MODEL SPECIFICATION

We illustrate the methodology using data from a choice-based conjoint study on yogurt we conducted in a Mediterranean country. The sample consists of 425 representative consumers. We chose the yogurt category for several reasons. Yogurt is a product category that most consumers are familiar with in the country in which the study was conducted. In addition, the competitive set includes both national and multinational brands.

We chose the attributes in the conjoint design by asking 21 participants in a pilot study to state the attributes that were most important to them when choosing among yogurt brands. The most frequently mentioned attributes were brand name (95%), flavor (71%), yogurt quality (52%), quality of packaging (47%), and price (42%). Each participant was also asked to state his or her WTP for a 125-gram (4.4 ounces) container of yogurt. On the basis of the results, we concluded that prices ranging from $1.15 to $3.00 per 125-gram container were credible. At the time of the study, the market prices varied between $1.18 and $2.24 per container.

Design of Conjoint Experiment

Using the results of the pilot study, we created conjoint profiles based on the three most important attributes: (1) brand name, (2) price, and (3) flavor. We did not include fat content and package size as attributes because the products contain undifferentiated ingredients; furthermore, all brands are sold in the same package sizes (125-gram containers). In addition, as the pilot study showed, most consumers associate quality, taste, and texture with the brand name rather than with the product attributes.

The brand attribute has six levels: a hypothetical new brand with the name Sesame and five of the leading
brand names in the market (STIL, Yoplait, Chambourcy, Mamie Nova, and Délice Danone). According to the sponsoring company’s internal documents, these five leading brands jointly account for 88% market share. The hypothetical new product was introduced to respondents using the following neutral concept test format:4

Senssem is a new flavored yogurt about to be introduced in the market. Senssem offers the same package size and flavor assortments as the brands currently available in the market. Senssem is the product of a new dairy company.

Note that the attribute-level details of Senssem (e.g., price) were not included in the concept description; however, they were included as treatment variables in the experiment.

The experimental design used six price levels for a 125-gram yogurt container ($1.15, $1.18, $1.21, $1.24, $1.27, and $1.30) and the three most popular flavors (vanilla, banana, and strawberry). These three flavors combined account for 95% of consumer purchases.

We used a cyclic design approach for constructing choice sets (see Huber and Zwerina 1996). We generated six choice designs of 18 choice sets each for the conjoint experiment. We first divided the full factorial of 108 (6 × 6 × 3) profiles into mutually exclusive and collectively exhaustive orthogonal designs of 18 profiles each. For each orthogonal plan, we used the cyclic design procedure to generate a choice design of 18 choice sets each. Each choice set included 3 yogurt profiles. Note that using the full factorial design enables us to estimate brand-specific attribute effects (i.e., brand interaction effects). As we noted previously, this feature of the experimental design is necessary to capture all sources of brand equity.

Each participant in the study was randomly assigned to one of the six choice designs. After the conjoint task was explained, each participant was presented a sequence of 18 choice sets of yogurt in show card format. The participant’s task was to choose, at most, one of the three alternatives (including the no-purchase alternative in all scenarios) from each choice set shown. We controlled for order and position effects by counterbalancing the position of the brand and randomizing the order of profiles across respondents. For validation purposes, we asked each respondent to perform the same choice task on 5 holdout choice sets. The holdout choice sets were designed so that no yogurt profile dominated any other profile on all attributes. We used different holdout choice sets across the six choice designs.

To assess the validity of our brand equity measurement, we asked respondents to evaluate each of the five brands on alternative dimensions of brand equity that have been proposed in the literature (e.g., Aaker 1991; Agarwal and Rao 1996). In addition, we asked them brand-specific questions regarding awareness, satisfaction, intention, and brand loyalty.

4Although we used a neutral concept to operationalize an unbranded product, it is possible that consumers could draw inferences about attributes/benefits based on the information provided for the unbranded product, including the name itself (Senssem in our study). To address this potential design issue, more than one name could be included to define the unbranded product, and name could be used as an additional treatment in the conjoint experiment (e.g., generic brands). However, our empirical results show that our use of a hypothetical product to operationalize an unbranded product has face validity.

Model Specifications

We used the data from the conjoint experiment to estimate a family of six nested models. In addition, we compared our model results with those obtained using Swait and colleagues’ (1993) methodology. The six nested models were selected to test for all possible sources of brand equity.

Let BRAND\textsubscript{k} denote a 0/1 dummy variable that indicates whether yogurt profile j is made by Brand k. We used the following brand indexes; the hypothetical new product Senssem (k = 1), STIL (k = 2), Yoplait (k = 3), Chambourcy (k = 4), Mamie Nova (k = 5), and Délice Danone (k = 6). Using vanilla as the base level, let FLAV\textsubscript{1} and FLAV\textsubscript{2}, respectively, be the dummy variable indicators of the strawberry and banana flavors. Let PRICE\textsubscript{j} be the price level of yogurt profile j. We specified the following general utility function:

\begin{equation}
V_{ij} = \sum_{k=1}^{6} \beta_{ik}^{B} \text{BRAND}_{kj} + \sum_{k=1}^{6} \sum_{l=1}^{2} \beta_{ikl}^{B} \text{BRAND}_{kj} \times \text{FLAV}_{lj} \\
+ \sum_{k=1}^{6} \beta_{ik}^{P} \text{BRAND}_{kj} \times \text{PRICE}_{j}, \ j = 1, 2, 3,
\end{equation}

where the \(\beta_{ik}^{B}\) parameters measure the main effect of brand and the \(\beta_{ikl}^{B}\) and \(\beta_{ik}^{P}\) parameters measure the brand-specific effects of flavor and price, respectively.

Each nonprice parameter in Equation 21 is specified at the individual level; however, the price parameters are not. Although this specification is not general, allowing the price coefficients to be heterogeneous can be problematic. A potential difficulty can arise if the price coefficient is extremely small (close to zero) or has the wrong sign for some consumers. In this case, the consumer’s WTPs for different brands (see Equation 10) can be large and can even be negative or approach infinity. For example, in a conjoint study on midsize sedans, Sonnier, Ainslie, and Otter (2008) find that the heterogeneous price coefficient model yields negative WTP estimates for between 13% and 23% of the participants. In addition, they report implausible WTP estimates (in the hundreds of thousands of dollars) for some participants. One way to address these difficulties is to constrain the price coefficient so that lower prices always have higher utilities. A second common approach is to constrain the price coefficient to be equal across respondents (e.g., Jedidi, Jagpal, and Manchanda 2003). A third approach is to constrain the price coefficients to one. In a choice model, this means that consumers maximize surplus instead of utility. The latter two methods are equivalent if the utility function is quasi linear (Jedidi and Zhang 2002). In most practical applications, all three approaches lead to price coefficients that are nonzero and have the proper signs. We follow Jedidi, Jagpal, and Manchanda (2003) and constrain the price coefficients to be common across respondents.

We estimated the general model in Equation 21 and five special cases. To assess the effect of brands, we estimate a nested model in which the intercept, the effect of flavor, and price sensitivity are all common across brands. This model, which we refer to as the “no-brand-effect model,” is specified as follows:

\begin{equation}
V_{ij} = \beta_{i}^{B} + \sum_{l=1}^{2} \beta_{il}^{F} \text{FLAV}_{lj} + \beta_{i}^{P} \text{PRICE}_{j}, \ j = 1, 2, 3.
\end{equation}
Consumer- and Firm-Level Brand Valuation

The second model captures the brand effect only through the intercepts, as in Kamakura and Russell (1993). This "brand-main-effect model" is as follows:

\begin{equation}
V_{ij} = \sum_{k=1}^{6} \beta_{ik}^{\text{BBRAND}} \times \sum_{l=1}^{2} \beta_{il}^{\text{FLAV}} + \beta_{i}^{\text{PRICE}}, \quad j = 1, 2, 3.
\end{equation}

The third model captures the incremental utility due to an enhanced attribute perception from the brand. It allows brands to affect consumer utility through both the intercept and the attributes. This "brand–attribute interaction model" is as follows:

\begin{equation}
V_{ij} = \sum_{k=1}^{6} \beta_{ik}^{\text{BBRAND}} + \sum_{k=1}^{6} \sum_{l=1}^{2} \beta_{ikl}^{\text{BBRAND}} \times \text{FLAV}_{il} + \beta_{i}^{\text{PRICE}}, \quad j = 1, 2, 3.
\end{equation}

The fourth model, which we refer to as the "brand–price interaction model," allows price sensitivity to vary across brands as follows:

\begin{equation}
V_{ij} = \sum_{k=1}^{6} \beta_{ik}^{\text{BBRAND}} + \sum_{l=1}^{2} \beta_{il}^{\text{FLAV}} + \sum_{k=1}^{6} \beta_{ik}^{\text{BBRAND}} \times \beta_{i}^{\text{PRICE}}, \quad j = 1, 2, 3.
\end{equation}

The fifth model constrains all the parameters in the general model (Equation 21) to be fixed across respondents. We refer to this model as the "no-heterogeneity model."

EMPIRICAL RESULTS: MODEL COMPARISONS

We used Markov chain Monte Carlo (MCMC) methods to estimate each of the five models (see the Web Appendix at http://www.marketingpower.com/jmrdcc09). For each model, we ran sampling chains for 100,000 iterations. We assessed convergence by monitoring the time series of the draws and by assessing the Gelman–Rubin statistics (Gelman and Rubin 1992). In all cases, the Gelman–Rubin statistics were less than 1.1, suggesting that convergence was satisfactory. We report the results based on 40,000 draws after discarding the initial 60,000 draws as burn-in iterations.

Goodness of Fit

We used the Bayes factor (BF) to compare the models. This measure accounts for model fit and automatically penalizes model complexity. Table 1 reports the log-marginal likelihoods (LML) for all the models. Kass and Raftery (1995, p. 777) suggest that a value of log-BF = (LML_{M_1} – LML_{M_2}) greater than 5.0 provides strong evidence for the superiority of model M_1 over model M_2. Thus, the LML results in Table 1 provide strong evidence for the empirical superiority of the brand–attribute interaction model relative to all other models.

The no-heterogeneity model performed poorly. This shows that a model that fails to allow for differences among consumers is unsatisfactory. The no-brand-effect model also provides a poor fit. Although this model captures some differences across consumers, it fails to capture the effect of brands on consumer preferences. All other models performed much better than the no-heterogeneity and no-brand-effect models. As Table 1 shows, the main effects of brand contributed most to the improvement in LML, followed by the brand–attribute interaction effects. Allowing brands to have different price sensitivities did not contribute significantly to overall model fit. Thus, brands have a significant effect on attribute perceptions but do not appear to affect price sensitivity.

Predictive Validity

We used the estimated parameters for each model to test that model’s predictive validity for both the calibration and the holdout samples. As we discussed, the calibration data for each consumer included 18 choice sets, and the holdout sample included 5 choice sets. Except for the no-heterogeneity model, all models have hit rates that are significantly higher than the 25% hit rate implied by the chance criterion. Consistent with the previous model comparison results, the no-brand-effect model has relatively poor predictive validity. All other models have hit rates that are statistically indistinguishable.

Parameter Values

We now discuss the parameter estimates for the selected brand–attribute interaction model. Table 2 summarizes the posterior distributions of the parameters by reporting their posterior means and 95% posterior confidence intervals.

Brand main effects. There is considerable variability in the brand-specific intercepts. Délice Danone (the market leader) has the highest mean intercept value of 5.71. The unbranded product (Sensiem) has the lowest mean intercept value of 3.36. This provides face validity for the use of a hypothetical product to operationalize an unbranded product. The mean intercept value for STIL is not significantly different from that of the unbranded product. This is not surprising, because STIL is a weak national brand that has his-

<table>
<thead>
<tr>
<th>Model</th>
<th>LML</th>
<th>Hit Rate</th>
<th>Holdout Hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand main effect (ME)</td>
<td>6144.9</td>
<td>.768</td>
<td>.623</td>
</tr>
<tr>
<td>ME + brand–attribute interaction</td>
<td>6049.9</td>
<td>.771</td>
<td>.628</td>
</tr>
<tr>
<td>ME + brand–price interaction</td>
<td>6159.9</td>
<td>.771</td>
<td>.629</td>
</tr>
<tr>
<td>General: all effects</td>
<td>6054.9</td>
<td>.771</td>
<td>.629</td>
</tr>
<tr>
<td>No brand effect</td>
<td>9019.2</td>
<td>.495</td>
<td>.408</td>
</tr>
<tr>
<td>No heterogeneity</td>
<td>9789.7</td>
<td>.413</td>
<td>.245</td>
</tr>
</tbody>
</table>

*Selected model.
torically spent little on brand-building activity. The brand-specific intercepts for Yoplait, Chambourcy, and Mamie Nova all have overlapping 95% posterior confidence intervals.

Brand interaction effects. Because vanilla was the base yogurt flavor, all parameter estimates should be interpreted relative to vanilla. Overall, consumers prefer the vanilla to the banana flavor. Except for the unbranded product (Semsem), consumers are indifferent between the vanilla and the strawberry flavor. However, these results vary across brands. For example, consumers have a significantly higher utility for a strawberry-flavored yogurt from Délice Danone than from one made by the unbranded product.

Price effects. The main effects of price have the expected sign and are significant. To provide more insight regarding consumer price sensitivities across products, Table 2 reports the average price elasticity of each product across respondents when price is $.24 (approximately the average market price across brands) for a 125-gram yogurt container. Note that because the price coefficients are the same for all brands, the price elasticity differences across brands are due to the differences in brand choice probabilities.

Consumer heterogeneity. Consumers appear to be heterogeneous in their yogurt preferences. This is evident from the large value of LML for the no heterogeneity model and the relatively large heterogeneity variances for the estimated parameters (see Tables 1 and 2).

EMPIRICAL RESULTS: CONSUMER-LEVEL BRAND EQUITY

We now use the results to compute the individual-level brand equities and their associated confidence intervals. In addition, we assess the convergent validity of our measures of brand equity and compare our results with those obtained by using Swait and colleagues’ (1993) methodology.

We used the MCMC draws of the parameters to estimate brand equity (BEij) for each individual and for each brand’s yogurt flavor (see Equation 11). For example, consider a strawberry-flavored yogurt made by Yoplait. We can use the estimates of the posterior means in Table 2 to illustrate how to compute brand equity for this combination as follows:

$$BE_{ij} = \frac{3.97 - .03}{.16} - \frac{3.36 - .63}{.16} = 24.6 - 17.1 = 7.66 = \$0.76.$$

The first (second) term in this equation measures the WTP for a branded (unbranded) strawberry-flavored yogurt. Thus, on average, a consumer is willing to pay an extra $.08 for the strawberry-flavored yogurt made by Yoplait.

Table 3 reports the posterior means and 95% confidence intervals of these consumer-level brand equities for different brands and flavors. Figure 1 depicts how the distributions of these overall brand equities vary across consumers for different brands. Because these consumer-level brand equities vary across both brands and flavors, we also measured the overall brand equity for any given brand as the weighted average across the three yogurt flavors. For weights, we used each consumer’s self-stated percentage of the occasions on which he or she purchases each of the three yogurt flavors. The distributions of these overall brand equities for different brands appear in the right-most panels in Figure 1.

Table 3 shows that regardless of flavor, STIL has no brand equity. This is not surprising, because STIL has not invested significantly in brand-building activities. The market leader, Délice Danone, enjoys the highest brand equity. On average, consumers are willing to pay a premium of up to $.16 per 125-gram container for Délice Danone over the price they are willing to pay for an identical 125-gram con-
Table 3
CONSUMER-LEVEL BRAND EQUITY MEASURES (IN $): POSTERIOR MEANS AND 95% CONFIDENCE INTERVALS

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Brand</th>
<th>STIL</th>
<th>Yoplait</th>
<th>Chambourcy</th>
<th>Mamie Nova</th>
<th>Délice Danone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla</td>
<td>.01^a</td>
<td>.04</td>
<td>.05</td>
<td>.08</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–.01, .02)</td>
<td>(.02, .06)</td>
<td>(.03, .06)</td>
<td>(.06, .09)</td>
<td>(.13, .16)</td>
<td></td>
</tr>
<tr>
<td>Strawberry</td>
<td>.02</td>
<td>.07</td>
<td>.08</td>
<td>.11</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–.01, .05)</td>
<td>(.05, .09)</td>
<td>(.05, .09)</td>
<td>(.08, .13)</td>
<td>(.17, .21)</td>
<td></td>
</tr>
<tr>
<td>Banana</td>
<td>.01</td>
<td>.04</td>
<td>.04</td>
<td>.10</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–.04, .02)</td>
<td>(.01, .07)</td>
<td>(.02, .07)</td>
<td>(.08, .13)</td>
<td>(.13, .18)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>.01</td>
<td>.05</td>
<td>.06</td>
<td>.10</td>
<td>.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–.01, .02)</td>
<td>(.04, .06)</td>
<td>(.04, .07)</td>
<td>(.08, .11)</td>
<td>(.15, .18)</td>
<td></td>
</tr>
</tbody>
</table>

^To be read: On average, a consumer is willing to pay a maximum of $.01 extra to obtain a vanilla-flavored yogurt from STIL rather than from Semsem.

Figure 1
THE DISTRIBUTION OF CONSUMER-LEVEL BRAND EQUITY FOR EACH BRAND/FLAVOR AND OVERALL (IN $)

Notes: To facilitate comparisons across brands and flavors, the heavy vertical lines mark the points in the distributions where the consumer-level brand equities are zero.

tainer of an unbranded yogurt. There are no significant differences between the brand equities of vanilla- and banana-flavored yogurts. Consumers attach higher brand equity to a strawberry-flavored yogurt than to a vanilla-flavored one. This is true for Délice Danone. For Mamie Nova, Chambourcy, and Yoplait, however, the results are less significant (p = .1). As Figure 1 shows, there is considerable consumer-level heterogeneity in brand equity for all brands.

Convergent Validity
Following Agarwal and Rao (1996), we examined the convergent validity of our brand equity measure with each
of the following seven proxies suggested in the marketing literature for measuring consumer-level brand equity (Aaker 1991): awareness, perceived quality, brand associations, preference, price premium, loyalty, and satisfaction.

Table 4 reports the mean scores for each brand on each of these seven measures and their respective correlations with our proposed brand equity measure. (Detailed results are available on request.) As in Agarwal and Rao’s (1996) work, we computed both individual- and aggregate-level correlation coefficients. The individual correlations are based on the individual-level brand equity measures computed across flavors. The aggregate correlations were computed analogously using the aggregate measures of brand equity.

The results show high congruency at the aggregate level between our brand equity measures and all other measures. The lower individual-level correlations are similar to those that Agarwal and Rao (1996) report. The unbranded product, Semsem, received the lowest mean preference score (1.22) and the lowest dollar-metric preference value (−0.06) among all brands. (Neither value appears in Table 4). This is consistent with the finding that Semsem has the lowest mean intercept across all brands (Table 2) and provides face validity for using a hypothetical new product as a benchmark for a product with no brand equity.

Comparison with Swait and Colleagues’ (1993) Model

We used the data to estimate Swait and colleagues’ (1993) model. To capture observed consumer heterogeneity, we followed Swait and colleagues’ approach and used gender, household size, and household income as sociodemographic covariates. The log-likelihood for the general model in which all parameters vary by brand is −9670.84. All the price coefficients in Swait and colleagues’ model is −0.1, as opposed to our proposed model (see Table 2). For example, the average brand equity for Délice Danone is $0.16 (see Table 3). This is the same as the difference between the average equalization price for Délice Danone ($0.34) and the average equalization price for Semsem ($0.18) using Swait and colleagues’ (1993) model. However, this result is not surprising, for any given brand, Swait and colleagues’ definition of the equalization price and the constraint that the unbranded product has zero utility (VR = 0; see Equation 3 in Swait and colleagues [1993]) imply that the equalization price for any consumer is equivalent to the WTP for that consumer.

Summary

The results show that the proposed metric for measuring consumer brand equity is valid. In addition, our method provides detailed information to managers regarding the magnitudes of brand equity across consumers, brands, and product forms. Managers can use this individual- and market-level information to develop customized marketing strategies and to allocate resources across products. In addition, by conducting such studies over time, managers can track the “health” of their brands.

Table 5 reports the results for Swait and colleagues’ (1993) model. The absolute values of the price and brand main effect estimates are lower than the corresponding estimates using the proposed model (see Table 2). For example, the price coefficient in Swait and colleagues’ model is −0.1, whereas the corresponding estimate using our model is −0.16. This difference in parameter estimates is mainly because Swait and colleagues’ multinomial logit model does not capture unobserved heterogeneity.6

The mean equalization prices range from $0.18 for Semsem to $0.34 for Délice Danone, the market leader (Table 5). Notably, compared with our brand equity estimates, the equalization prices in Swait and colleagues’ (1993) model do not display much variability across participants.

To test for method congruency, we computed the correlation between the consumer-level equalization prices and our measures of brand equity. This correlation is low (.38). This is not surprising, because both metrics are based on different theoretical conceptualizations. Recall that for our method, the average brand equity for Délice Danone is $0.16 (see Table 3). This is the same as the difference between the average equalization price for Délice Danone ($0.34) and the average equalization price for Semsem ($0.18) using Swait and colleagues’ (1993) model. However, this result is not surprising, for any given brand, Swait and colleagues’ definition of the equalization price and the constraint that the unbranded product has zero utility (VR = 0; see Equation 3 in Swait and colleagues [1993]) imply that the equalization price for any consumer is equivalent to the WTP for that consumer.

Table 4

<table>
<thead>
<tr>
<th>Brand Equity Measure</th>
<th>STIL</th>
<th>Yoplait</th>
<th>Chambourcy</th>
<th>Manie Nova</th>
<th>Délice Danone</th>
<th>Individual Correlation</th>
<th>Aggregate Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awareness</td>
<td>.56</td>
<td>.62</td>
<td>.61</td>
<td>.88</td>
<td>.98</td>
<td>.21b</td>
<td>.96b</td>
</tr>
<tr>
<td>Perceived quality</td>
<td>5.64</td>
<td>6.36</td>
<td>6.36</td>
<td>6.84</td>
<td>7.62</td>
<td>.41</td>
<td>.99</td>
</tr>
<tr>
<td>Brand associations</td>
<td>5.03</td>
<td>5.81</td>
<td>5.91</td>
<td>6.68</td>
<td>7.95</td>
<td>.43</td>
<td>1.00</td>
</tr>
<tr>
<td>Preference (paired comparison)</td>
<td>1.66</td>
<td>2.22</td>
<td>2.49</td>
<td>3.21</td>
<td>4.20</td>
<td>.52</td>
<td>1.00</td>
</tr>
<tr>
<td>Price premium (dollar metric)</td>
<td>−.02</td>
<td>−.02</td>
<td>−.01</td>
<td>.03</td>
<td>.11</td>
<td>.43</td>
<td>.96</td>
</tr>
<tr>
<td>Loyalty</td>
<td>.05</td>
<td>.06</td>
<td>.08</td>
<td>.18</td>
<td>.59</td>
<td>.39</td>
<td>.93</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>2.70</td>
<td>3.35</td>
<td>3.50</td>
<td>3.70</td>
<td>4.44</td>
<td>.46</td>
<td>.98</td>
</tr>
</tbody>
</table>

6Because taste parameters and error variances are inherently confounded in multinomial logit models (see Swait and Bernardino 2000, p. 4), multinomial logit parameters tend to be smaller in absolute value in models with high error variances. Because our model accounts for unobserved heterogeneity, its error variances are lower than the corresponding error variances in Swait and colleagues’ (1993) model. Consequently, the parameter estimates using our model tend to have higher absolute values than the corresponding estimates in Swait and colleagues’ model.

Table 4

<table>
<thead>
<tr>
<th>COMPARISON WITH ALTERNATIVE CONSUMER-LEVEL BRAND EQUITY MEASURES</th>
<th>STIL</th>
<th>Yoplait</th>
<th>Chambourcy</th>
<th>Manie Nova</th>
<th>Délice Danone</th>
<th>Individual Correlation</th>
<th>Aggregate Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awareness</td>
<td>.56</td>
<td>.62</td>
<td>.61</td>
<td>.88</td>
<td>.98</td>
<td>.21b</td>
<td>.96b</td>
</tr>
<tr>
<td>Perceived quality</td>
<td>5.64</td>
<td>6.36</td>
<td>6.36</td>
<td>6.84</td>
<td>7.62</td>
<td>.41</td>
<td>.99</td>
</tr>
<tr>
<td>Brand associations</td>
<td>5.03</td>
<td>5.81</td>
<td>5.91</td>
<td>6.68</td>
<td>7.95</td>
<td>.43</td>
<td>1.00</td>
</tr>
<tr>
<td>Preference (paired comparison)</td>
<td>1.66</td>
<td>2.22</td>
<td>2.49</td>
<td>3.21</td>
<td>4.20</td>
<td>.52</td>
<td>1.00</td>
</tr>
<tr>
<td>Price premium (dollar metric)</td>
<td>−.02</td>
<td>−.02</td>
<td>−.01</td>
<td>.03</td>
<td>.11</td>
<td>.43</td>
<td>.96</td>
</tr>
<tr>
<td>Loyalty</td>
<td>.05</td>
<td>.06</td>
<td>.08</td>
<td>.18</td>
<td>.59</td>
<td>.39</td>
<td>.93</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>2.70</td>
<td>3.35</td>
<td>3.50</td>
<td>3.70</td>
<td>4.44</td>
<td>.46</td>
<td>.98</td>
</tr>
</tbody>
</table>

Across-brand correlation between individual-level awareness and our individual-level brand equity measure.

Across-brand correlation between aggregate awareness and our aggregate brand equity measure.

Average quality (brand association) score across eight items measured on a seven-point scale.

An average satisfaction score across three satisfaction items measured on a five-point scale.
EMPIRICAL RESULTS: PROFITABILITY AND FIRM-LEVEL BRAND EQUITY

We begin this section with a discussion of how to estimate the profitabilities of different brands. Then, we compare different methods for determining the dollar values of firm-level brand equity. We conclude by performing external validation tests.

Profitability

Table 6 presents the predicted profits for each brand in the market. The calculations are based on the following information for 125-gram yogurt containers provided by the sponsoring company: common variable costs across brands of $.1307, fixed 7% wholesale margins, and fixed $.04 retail margins. We obtained the predicted market share for each brand by computing the choice probability of each brand/flavor conditional on its retail price for each MCMC draw and conditional on the current brand awareness and availability for that brand (see Equation 16). The individual-level brand awareness data were collected directly from respondents by asking them at the beginning of the survey to list all brands of yogurts of which they were aware. The correlation between our survey awareness measures and those from internal company records is .97. We obtained the brand annual advertising spending, availability, and market price data from the sponsor company’s internal records. Table 6 reports these statistics. Note that though the annual advertising budgets appear to be low by U.S. standards, they were high in real terms.7

Table 6

<table>
<thead>
<tr>
<th>Brand</th>
<th>Awareness</th>
<th>Availability</th>
<th>Retail Price ($)</th>
<th>Manufacturer Price ($)</th>
<th>Margin ($)</th>
<th>Advertising ($M)</th>
<th>Predicted Share (95% Confidence Interval)</th>
<th>Profit ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIL</td>
<td>.56</td>
<td>.25</td>
<td>.185</td>
<td>.136</td>
<td>.005</td>
<td>.001</td>
<td>.025 (0.019, 0.031)</td>
<td>.10</td>
</tr>
<tr>
<td>Yoplait</td>
<td>.62</td>
<td>.40</td>
<td>.235</td>
<td>.182</td>
<td>.052</td>
<td>.120</td>
<td>.047 (0.040, 0.055)</td>
<td>1.88</td>
</tr>
<tr>
<td>Chambourcy</td>
<td>.62</td>
<td>.32</td>
<td>.240</td>
<td>.187</td>
<td>.056</td>
<td>.169</td>
<td>.036 (0.030, 0.044)</td>
<td>1.50</td>
</tr>
<tr>
<td>Mamie Nova</td>
<td>.88</td>
<td>.70</td>
<td>.240</td>
<td>.187</td>
<td>.056</td>
<td>.306</td>
<td>.160 (0.140, 0.180)</td>
<td>7.11</td>
</tr>
<tr>
<td>Déllice Danone</td>
<td>.98</td>
<td>.90</td>
<td>.240</td>
<td>.187</td>
<td>.056</td>
<td>1.099</td>
<td>.590 (0.553, 0.630)</td>
<td>26.31</td>
</tr>
</tbody>
</table>

*Annual advertising budget in millions of dollars.
Notes: Variable cost per unit is $.1307. Retailers make $.04 per yogurt container of 125 grams. Wholesalers make 7% of the manufacturer price. Total market size is 826,875 yogurt containers of 125 grams.

7Around the time of the study, the average advertising rate for a 30-second television spot in the Mediterranean country was only $2,904; in addition, the national television channel (the main television channel) had an average daily viewership of 48.3% (see http://www.marocinfocom.com/detail.php?id=1617). We used this information to approximate the real advertising spending by Déllice Danone (the market leader). Suppose Déllice Danone had spent its entire annual advertising budget ($1.1 million) on television. Then, Déllice Danone would have obtained 18,295 gross rating points (GRP = reach × frequency = 48.3 × $1.1 million/$2,904) per annum. Note that this level of real advertising is almost double the corresponding average level of real advertising by packaged goods firms in the United States (approximately 10,000 GRPs per annum).
vals. Profitability varies considerably across the five brands. STIL is barely profitable, primarily because of its low price and low availability. Délice Danone, the market leader, makes the most profit because of its attractiveness, high awareness, and high availability, all of which translate into high market share.

Firm-Level Brand Equity

Firm-level brand equity is defined as the incremental profitability the firm would earn operating with the brand name compared with operating without it. These values can be converted into net present values if we know the appropriate marginal cost of capital for each firm and the projected growth rate for the industry (see Jagpal 2008, pp. 425–29). To predict the profit of a product if it were unbranded, we used each of the three methods discussed previously: competitive Nash equilibrium, industry expert, and private label.

Competitive (Nash) equilibrium approach. To implement this approach, it is necessary to determine how the marketing policies of different firms affect awareness and availability. Using the data in Table 6, we obtained the following estimates for Equation 18:

\[
\pi_j = .57 \times Adv_j^{23},
\]

where \(Adv_j\) is the annual advertising spending (in millions of dollars) for brand \(j\). Both parameter estimates are significant at \(p < .01\), and the adjusted R-square is .52. Thus a 1% increase in advertising is expected to lead to a .23% increase in the joint probability of awareness and availability for any product \(j\). The advertising elasticities based on market share are Yoplait (.09), Chambourcy (.05), Mamie Nova (.12), and Délice Danone (.12).

Next, we used MATLAB to derive the equilibrium marketing strategies (prices and advertising budgets) for each product when it turns unbranded. To check for stability of the Nash solutions, we varied the starting values and tested for negative definiteness of the Hessian. In predicting the market share for an unbranded product, we used the estimated parameter values for the hypothetical new product (Semsem). Table 7 reports the equilibrium prices, advertising budgets, market shares, and profits for each product when it becomes unbranded. For example, without its brand equity, Délice Danone would have achieved only 5.6% of market share and an annual profit of $2.33 million. This implies that Délice Danone’s brand-building efforts contributed an incremental 53.4% (59% – 5.6%) share points and an incremental annual profit of approximately $24 million ($26.31 – $2.33 million).

The industry expert approach. To determine the would-be levels of availability and awareness when a product becomes unbranded, we followed Srinivasan, Park, and Chang (2005) and asked three industry experts, “In your best judgment, what would have been the levels of the brand’s availability and its awareness had the brand not conducted any brand-building activities and relied entirely on the current level of push through the channel?” Srinivasan, Park, and Chang refer to these estimates as push-based awareness and push-based availability. The average inter-judge correlation is .69 for push-based awareness and .61 for push-based availability, suggesting that the ratings are fairly reliable.

Table 8 reports the average estimates of push-based awareness and push-based availability across experts in the panel. To implement Srinivasan, Park, and Chang’s (2005) method in a competitive context, it was necessary to choose a value for the push-based price. We used the Nash methodology to compute these values. Table 8 reports these equilibrium prices and the resulting market shares and profits when each product turns unbranded.

Although the industry expert approach led to prices that are similar to those obtained using the proposed method, it led to market share and profit estimates that are considerably lower. The primary reason for this discrepancy is that the experts’ estimates of push-based awareness and push-based availability appear to be significantly biased downward. For example, the experts’ estimate of the joint probability of push-based awareness and availability for STIL is \(\pi = .05 (25 \times 20)\), which is approximately one-tenth the corresponding value of .46 obtained using the Nash approach (see Table 7). In addition to the effect of errors in human judgment, the downward bias of the industry expert approach stems from the experts’ estimates of awareness and availability focusing exclusively on push-based factors.

For example, the expert approach implicitly assumes that unbranded products do not engage in any pull-based mar-

Table 7

PROFITS WHEN PRODUCTS TURN UNBRANDED: THE NASH APPROACH

<table>
<thead>
<tr>
<th>Brand</th>
<th>Awareness × Availability</th>
<th>Manufacturer Price ($)</th>
<th>Margin ($)</th>
<th>Advertising (SM)</th>
<th>Predicted Share (95% Confidence Interval)</th>
<th>Profit ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIL</td>
<td>.46</td>
<td>.248</td>
<td>.194</td>
<td>.063</td>
<td>.389</td>
<td>.032</td>
</tr>
<tr>
<td>Yoplait</td>
<td>.48</td>
<td>.248</td>
<td>.194</td>
<td>.064</td>
<td>.415</td>
<td>.034</td>
</tr>
<tr>
<td>Chambourcy</td>
<td>.48</td>
<td>.248</td>
<td>.194</td>
<td>.064</td>
<td>.420</td>
<td>.034</td>
</tr>
<tr>
<td>Mamie Nova</td>
<td>.49</td>
<td>.248</td>
<td>.195</td>
<td>.064</td>
<td>.471</td>
<td>.038</td>
</tr>
<tr>
<td>Délice Danone*</td>
<td>.55</td>
<td>.251</td>
<td>.197</td>
<td>.066</td>
<td>.711</td>
<td>.056</td>
</tr>
</tbody>
</table>

*To be read: If Délice Danone turns unbranded, its Nash price would be $.251, and its Nash advertising spending would be $.711 million. The outcome of these decisions is a joint probability of awareness and availability of .55 and a market share of .056.

The advertising share elasticity for brand \(j\) is given by \((.23 \times M_j) / Adv_j\). We could not compute STIL’s advertising elasticity because of STIL’s very low advertising budget.
Marketing activities (e.g., advertising for building awareness). The Nash method allows both push-based and pull-based factors to affect availability and awareness. Consequently, the experts’ estimates of awareness and availability are considerably lower than the corresponding values using the Nash method.

The private-label approach. This approach assumes that a branded product will attain the same levels of awareness, availability, and price as the corresponding values for a private label if it becomes unbranded. Because there is no private label in the industry, STIL was used as a proxy. Table 9 reports the market shares and profits for each product if it were unbranded. Overall, the private-label approach gave much lower profit values for the unbranded product than the Nash method. This is not surprising, because STIL is a heavily subsidized government-owned product; thus, STIL’s price and advertising levels are suboptimal. Specifically, STIL’s price of $.185 is lower than the optimal Nash price of $.248 (see Table 7). Similarly, STIL’s annual advertising budget of $.001 million is small compared with the corresponding optimal Nash advertising budget of $.389 million (see Table 7). Thus, STIL may not serve as a good private-label benchmark.

Table 10 presents each brand’s equity computed as the difference between that brand’s current profit and the profit the product would have earned if it were unbranded (see Tables 6–9). As Table 10 shows, brand equity varies considerably across the five brands. It might appear paradoxical that STIL should make higher profits when it is unbranded. However, there is a historical reason for this. STIL, a government-owned firm with monopoly power until the mid-1980s, has been mismanaged and has suffered continuous losses despite being heavily subsidized. Consequently, STIL has negative brand equity. Not surprisingly, our model

Table 8
PROFITS WHEN PRODUCTS TURN UNBRANDED: THE INDUSTRY EXPERT APPROACH

<table>
<thead>
<tr>
<th>Brand</th>
<th>Push-Based</th>
<th>Predicted Share</th>
<th>Profit ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Awareness</td>
<td>Availability</td>
<td>Retail Price ($)</td>
</tr>
<tr>
<td>STIL</td>
<td>.25</td>
<td>.20</td>
<td>.249</td>
</tr>
<tr>
<td>Yoplait</td>
<td>.16</td>
<td>.20</td>
<td>.250</td>
</tr>
<tr>
<td>Chambourcy</td>
<td>.13</td>
<td>.20</td>
<td>.250</td>
</tr>
<tr>
<td>Mamie Nova</td>
<td>.47</td>
<td>.37</td>
<td>.251</td>
</tr>
<tr>
<td>Délince Danone</td>
<td>.62</td>
<td>.52</td>
<td>.255</td>
</tr>
</tbody>
</table>

*aBecause advertising is a brand-building activity, this approach implicitly assumes that advertising spending is zero if a product turns unbranded.

Table 9
PROFITS WHEN PRODUCTS TURN UNBRANDED: THE PRIVATE-LABEL APPROACH

<table>
<thead>
<tr>
<th>Brand</th>
<th>Private Label</th>
<th>Predicted Share</th>
<th>Profit ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Awareness</td>
<td>Availability</td>
<td>Retail Price ($)</td>
</tr>
<tr>
<td>STIL</td>
<td>.56</td>
<td>.25</td>
<td>.185</td>
</tr>
<tr>
<td>Yoplait</td>
<td>.56</td>
<td>.25</td>
<td>.185</td>
</tr>
<tr>
<td>Chambourcy</td>
<td>.56</td>
<td>.25</td>
<td>.185</td>
</tr>
<tr>
<td>Mamie Nova</td>
<td>.56</td>
<td>.25</td>
<td>.185</td>
</tr>
</tbody>
</table>

*aBecause advertising is a brand-building activity, this approach implicitly assumes that advertising spending is zero if a product turns unbranded.

Table 10
FIRM-LEVEL BRAND EQUITY ESTIMATES ($M)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Nash</th>
<th>Industry Expert</th>
<th>Private Label</th>
<th>% Profit due to Brand Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIL</td>
<td>−1.19</td>
<td>−.13</td>
<td>.01</td>
<td>−a</td>
</tr>
<tr>
<td>Yoplait</td>
<td>.51</td>
<td>1.73</td>
<td>1.79</td>
<td>27% 92% 95%</td>
</tr>
<tr>
<td>Chambourcy</td>
<td>.11</td>
<td>1.37</td>
<td>1.41</td>
<td>7% 92% 94%</td>
</tr>
<tr>
<td>Mamie Nova</td>
<td>5.55</td>
<td>6.08</td>
<td>7.00</td>
<td>78% 86% 99%</td>
</tr>
<tr>
<td>Délince Danone</td>
<td>23.98</td>
<td>23.67</td>
<td>26.12</td>
<td>91% 90% 99%</td>
</tr>
</tbody>
</table>

*a% profit due to brand equity cannot be computed because brand equity is negative.
predicts that STIL will be more profitable if it becomes unbranded.

Table 10 also reports the proportion of profit for each product that is due to the brand name. Except for Délice Danone, these proportions vary considerably across methods for any given product. Notably, both the expert and the private-label methods attribute a high proportion of profits to the brand name for brands with low market shares. For example, according to the Nash method, only 7% of Chambourcy’s profits can be attributed to brand name. In contrast, the expert and private-label methods attribute almost all of Chambourcy’s profit (92% and 94%, respectively) to the Chambourcy brand name. As we discussed previously, these discrepancies occur because previous methods do not adjust for competitive responses, lead to lower estimates for push-based awareness and availability, and do not use a benchmark product with identical attribute levels.

Comparison with other measures. We now compare our firm-level brand equity measures with those obtained from the revenue premium, adjusted revenue premium, and Dubin (1998) methods using STIL as the private label. The revenue premium measure is defined as the difference in revenue between a branded yogurt and STIL. The adjusted revenue premium measure adjusts the revenue premium measure to allow for the effect of variable costs per unit, \(VC_j \) (see Ailawadi, Lehmann, and Neslin 2003). Dubin’s (1998, p. 117) measure is defined as follows:

\[
\text{Dubin’s Equity}_j = \text{Volume}_j \times (\text{Price}_j - VC_j) \\
\times \left[1 - \left(\frac{s_j(1-s_j)(\epsilon_j - 1)}{(1 - \text{share}_j)(\epsilon_{STIL} - s_j)}\right)
ight], \quad j = 2, \ldots, 5
\]

where \(s_j \) is the volume of Brand \(j \) divided by the sum of the volumes of Brand \(j \) and the private-label STIL, and \(\epsilon_j \) and \(\epsilon_{STIL} \) are the price elasticities of Brand \(j \) and the private-label product, respectively.\(^\text{9}\) Note that the entire term in brackets represents the proportion of the brand’s margin that is due to the brand name.

Table 11 reports the results. The unadjusted revenue premium measure leads to the highest brand equity values across methods. This is not surprising, because the revenue-based metric for measuring brand equity does not adjust for variable costs or advertising spending. For every brand, the adjusted revenue premium measure produces a higher brand equity value than that obtained with Dubin’s approach. However, these discrepancies vary by brand and are the lowest (in proportional terms) for the market leader, Délice Danone. These results are not surprising, because Dubin’s metric for measuring brand equity adjusts for the effects of competitive responses when a product becomes unbranded.

For every brand, the proposed method gives lower firm-level brand equity values than Dubin’s method; in addition, the former attributes a lower proportion of firm-level brand equity to brand name. The discrepancies across both methods vary by brand and are the lowest (in proportional terms) for the two major brands in the market, Délice Danone and Mamie Nova.

There are several reasons for these discrepancies. First, in contrast to our method, Dubin (1998, p. 90, Equation 14) assumes that the total quantity sold by the industry is unaffected when a branded product becomes unbranded. As Table 6 shows, the total industry volume at present is 826,875 (125-gram) yogurt containers, and the combined volume-based market share of the five brands analyzed is 86%. Thus, the total quantity currently sold by the five brands is 711,112 (.86 \times 826,875) yogurt containers.

According to Dubin’s method, this quantity should remain the same regardless of whether a branded product becomes unbranded. According to our Nash-based method, however, the total quantity sold by the five brands will fall to 554,006 (.67 \times 826,875) containers when Délice Danone turns unbranded—a reduction of 22.1%.\(^\text{10}\) Second, Dubin’s (1998, Equation 4) metric for measuring firm-level brand equity is based solely on gross margins; our metric is based on net margins, after adjusting for advertising costs. Finally, Dubin’s method implicitly assumes that all products have the same levels of awareness and availability; our method explicitly allows both awareness and availability to be endogenously determined on the basis of demand-pull and demand-push factors. Consequently, Dubin’s brand equity estimates are higher than the corresponding values using our Nash-based method.

Validity of Firm-Level Brand Equity Measures

To validate the proposed measures of firm-level brand equity, we compared the market share estimates for the model with two other sets of market share estimates (see Table 12). The first is based on the average self-stated market shares in the sample for different brands. We obtained the second set of market shares in a separate study of 600

\(^\text{9}\)These price elasticities are market level elasticities computed after accounting for the effects of brand awareness and availability (see Equation 16). In contrast, the elasticities in Table 2 are average elasticities for the sample computed assuming full awareness and full availability (see Equation 9).

\(^\text{10}\)The combined market share of the five brands when Délice Danone turns unbranded is .67. Table 7 does not include this information.

Table 11

<table>
<thead>
<tr>
<th>Revenue Premium</th>
<th>Dubin’s Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>Unadjusted</td>
</tr>
<tr>
<td>STIL</td>
<td>2.89</td>
</tr>
<tr>
<td>Yoplait</td>
<td>4.25</td>
</tr>
<tr>
<td>Chambourcy</td>
<td>3.73</td>
</tr>
<tr>
<td>Mamie Nova</td>
<td>21.84</td>
</tr>
<tr>
<td>Délice Danone</td>
<td>88.36</td>
</tr>
</tbody>
</table>

Notes: The revenue premium and Dubin’s measures of brand equity are computed relative to STIL.
participants conducted by an independent consulting firm. The mean absolute deviation between our estimates and those obtained by the consulting firm is .025. The corresponding mean absolute deviation between our estimates and the self-stated market shares in our sample is .021. These results show excellent congruence among the three sets of market share estimates. Because the computation of brand profits depends crucially on the market share estimates, this result provides strong support for the external validity of our firm-level brand equity measures.

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This article proposes a methodology for estimating brand equity. Key features of the model are that it provides an objective dollar-metric value for measuring both consumer- and firm-level brand equity, shows how to use consideration set theory to translate market share estimates from the conjoint experiment to the marketplace, does not require the collection of perceptual data, and allows for competitive reactions by all firms. Thus, managers can use the model to measure brand equity at different levels of aggregation, develop customized strategies for targeting customers, monitor brand health, and revise brand marketing policies over time. In addition, because the model provides a dollar-metric value for firm-level brand equity, managers can use our method for resource allocation and for determining the financial values of brands they seek to buy or sell in a merger or acquisition.

The empirical results show that the effect of brand on consumers’ WTP varies across both consumers and product forms; in addition, the proposed metric for consumer brand equity has convergent validity. The results also show that our firm-level brand equity estimates have high internal and external validities. Managerially, the key finding is that the estimates of brand equity for a given brand vary considerably across methods; in particular, the results suggest that previous methods are likely to overstate firm-level brand equity, especially for products with low market shares.

Further research is necessary to address several issues. These include developing a more general approach for estimating the model when the number of brands and attributes is large, generalizing the awareness and availability modules to relax the independence assumption and to allow for dynamic marketing-mix effects in a game-theoretic setting, and developing new approaches for estimating WTP based on heterogeneous price coefficients in the utility function. Although this study illustrated our conjoint-based methodology for measuring brand equity using a simple product category (yogurt), the method can be used to measure brand equity for more complex products and services, such as mutual funds (e.g., Wilcox 2003), telecommunications (e.g., Iyengar, Jedidi, and Kohli 2008), durable goods (e.g., Srinivasan, Park, and Chang 2005), and products in different phases of the product life cycle. Finally, because we used only one method for defining an unbranded product, further research should test alternative ways of operationalizing an unbranded product.

APPENDIX: THE CONSUMER MODEL IN BENEFIT SPACE

In Equation 3, we assumed that consumers’ preferences are based on attribute space. That is, there is a one-to-one mapping from objective to perceptual attributes. Here, we extend the model to the case in which the consumer first transforms the objective attributes into perceived benefits (benefit space) and then forms preferences based on these benefit dimensions.

Let R be the number of benefits and yijk be consumer i’s uncertain level of perceived benefit r (r = 1, . . . , R). Let byr be the impact of perceived benefit r on utility. Suppose that consumers form preferences based on benefit space. Then, Equation 1 becomes

\[
U_i(n_{ij}, q_i) = b_{y0} + \sum_{k=1}^{K} b_{yk} x_{ijk} + \sum_{r=1}^{R} b_{yr} y_{ijr} + \sum_{m=1}^{M} b_{ym} y_{imm} + \sum_{r=1}^{R} \delta_{yr} P_r + \mu_{ijr},
\]

for all i = 1, . . . , I, j = 1, . . . , J, r = 1, . . . , R,

where \(\mu_{ijr}\) is a stochastic term that captures perceptual errors.

Substituting Equation A2 for the perceived attributes \(y_{ijk}\) into Equation A1 and collecting terms, we obtain the following:

\[
U_i(n_{ij}, q_i) = b_{y0} + \sum_{r=1}^{R} b^*_{yr} x_{ijk} + \sum_{m=1}^{M} b^*_{ym} y_{imm} + \sum_{r=1}^{R} \delta_{yr} P_r + \mu_{ijr},
\]

As in the attribute space model, the parameters \(b^*_{yr}\), \(\lambda_{ijm0}\), \(\lambda_{ijmr}\), and \(\delta_{yr}\) cannot be separately identified; however, their joint effects can. Thus, Equation A3 can be written as follows:

\[
U_i(n_{ij}, q_i) = \beta_{y0} + \sum_{m=1}^{M} \beta_{ym} y_{imm} - \beta_{y0} P_r + \epsilon_{ijr},
\]

for all i = 1, . . . , I, j = 1, . . . , J,

where \(\beta_{ym}\) and \(\beta_{ym} y_{ijm}\) is a regression coefficient that captures the reduced-form, brand-specific effect of objec-

11 It was not possible to perform an additional validation analysis using scanner data. Such data were not collected at the time of the study in the Mediterranean country.
tive attribute \(m, \beta_{ij}^p = \beta_i^p - \Sigma_{r=1}^\infty \beta_{ijr}^p \delta_{ijr} \) captures the reduced-form effect of price on the utility of brand \(j \). \(\beta_{ij}^{y} = b_{ij0} + \Sigma_{r=1}^\infty b_{ijr}^y \lambda_{ijr0} + \Sigma_{k=1}^\infty \beta_{ijrk}^y \) is a brand-specific coefficient that captures the incremental effects of a brand such as inertia and brand associations, and \(\epsilon_{ij} = \Sigma_{r=1}^\infty b_{ijr}^y \lambda_{ijr0} + \nu_{ij} \) is a composite error term.

Note that the reduced-form benefit space model in Equation 4 has the same algebraic form as the reduced-form attribute space model in Equation 5. Similarly, we can show that a reduced-form model can capture more general consumer decision processes in which consumers’ preferences are based on both attribute and benefit space. (Combine Equation 3 and Equation A4.)

REFERENCES

