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We examine the effects of nonstationarity on the performance of multiserver queueing systems with exponential service times 
and sinusoidal Poisson input streams. Our primary objective is to determine when and how a stationary model may be used as an 
approximation for a nonstationary system. We focus on a particular question: How nonstationary can an arrival process be 
before a simple stationary approximation fails? Our analysis reveals that stationary models can seriously underestimate delays 
when the actual system is only modestly nonstationary. Other findings include confirmation and elaboration of S. M. Ross's 
conjecture that expected delays increase with nonstationarity, and the identification of easily computed and tight lower and upper 
bounds for expected delay and the probability of delay. These empirical results are based on a series of computer experiments in 
which the differential equations governing system behavior are solved numerically. 

In most real service systems, the customer demand 
process is nonstationary. Examples can be found 

in Edie (1954), Koopman (1972), Segal (1974), Kolesar 
et al. (1975), Kleinrock (1976), Kolesar (1984) and 
Landauer and Becker (1989). Indeed, it is difficult to 
imagine actual service systems in which arrivals are truly 
stationary, yet virtually all theoretical queueing models 
make this assumption. This is not surprising because the 
mathematics of nonstationary stochastic processes is so 
complex that analytical results are very limited. More- 
over, theoreticians since Erlang himself have presumed 
that stationary models can be used to assist managers and 
designers who must deal with a nonstationary world (see 
Brockmeyer, Halstrom and Jensen 1948). 

Of course, if the arrival process is strongly nonsta- 
tionary, a sensible analysis will have to deal with it 
explicitly. In practice, several approaches have been 
employed. First, one can isolate the period of peak 
arrivals and carry out a separate (stationary) analysis 
using as the arrival rate some average of the arrival rate 
during the peak period. Second, the entire time period 
can be segmented with average arrival rates estimated 
for each segment and used as inputs to a series of 
independent (and stationary) analyses. Third, the nonsta- 
tionarity of the actual process may be explicitly captured 
in a simulation model. The choice among these ap- 
proaches, decisions about how to execute them (how 
long a peak period, how many segments, etc.) and the 
utility of these approaches depend on an understanding 
of how nonstationarity affects the accuracy of stationary 
approximations. This paper proposes to contribute to that 
understanding by focusing on what appears to be a 
fundamental question: How nonstationary can an arrival 

process be before a simple stationary approximation 
fails? Our ongoing research builds on the work reported 
here and deals explicitly with issues, such as the accu- 
racy of peak period analyses and segmented analyses. 
Results on these will be reported in subsequent papers. 

There appears to be a broad agreement among theo- 
reticians and practitioners that if the arrival rate fluctua- 
tions are mild, they can be ignored and a standard 
stationary analysis used. Yet, there has been no explo- 
ration of what level of nonstationarity is sufficiently 
mild for this to be true. Furthermore, though it is widely 
believed that delays increase as nonstationarity of the 
arrivals increases, there has been no proof of this even 
for the simplest Markovian single-server model. In fact, 
the literature does not contain a general definition of the 
degree of nonstationarity. (Even the existence of a limit- 
ing distribution for the waiting-time process for the 
single-server queue with periodic Poisson input was not 
proven until Harrison and Lemoine 1977.) 

Thus, the question of when a stationary model may be 
reasonably used to estimate performance for a nonsta- 
tionary system is clearly of practical as well as theoreti- 
cal importance. There are situations in which use of a 
stationary model can lead to bad decision making, e.g., 
by suggesting two few servers to meet the desired per- 
formance. This may even be true when the stationary 
model is used in a more sophisticated manner, e.g., with 
time segmentation (see Green and Kolesar 1989). Yet, 
approaches that explicitly model nonstationarity, such as 
Monte Carlo simulations or numerical solution of the 
differential equations of the system, can be quite onerous 
in modeling and computational effort, especially for 
systems with a large number of servers. 
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The major goal of this paper is to gain a better 
understanding of how nonstationarity affects delays in 
queueing systems and, hence, to provide insights and 
guidelines on when nonstationarity can safely be ig- 
nored, and, perhaps more importantly, when it cannot. 
Although there is a substantial literature dealing with 
nonstationary queues, there has been no systematic study 
of this issue. Most of the literature primarily concerns 
numerical solutions of either exact (see, e.g., Koopman 
1972, Luchak 1957) or approximate (see, e.g., Rothkopf 
and Oren 1979, Clark 1981) differential equations of 
nonstationary systems. Prime among the few papers that 
address the behavior of nonstationary systems relative to 
their stationary counterparts is that of Ross (1978) which 
puts forth two conjectures: First, that in a single-server 
infinite capacity queueing system, the "more nonstation- 
ary" the arrival process, the greater the average delay. 
Second, that in a finite capacity model, the proportion of 
lost customers is greater when arrivals are nonstationary 
than when they are stationary. Rolski (1981) proves that 
the average delay is at least as large in an infinite 
capacity, single-server system with nonstationary 
Poisson arrivals as it is in the comparable M/G/1 queue. 
Heyman (1982) shows that the average delay does not 
necessarily increase as the arrival process becomes 
"more nonstationary. " He also shows by a counter- 
example that the second conjecture is not always valid. 
However, Rolski (1984) proves that the second Ross 
conjecture is true for pure loss systems with exponential 
service times and one or two servers, while Svoronos 
and Green (1988) show that for single-server loss sys- 
tems with exponential service times and periodic Poisson 
input, the proportion of losses is convex increasing in the 
amplitude. Newell (1968, 1971) uses a diffusion approx- 
imation to examine the dynamic behavior of a queueing 
system in which the arrival rate increases at a nearly 
constant rate to a maximum that exceeds the (constant) 
service rate, and then decreases. He found that there 
exists a characteristic time T prior to the peak of the 
arrival rate such that for t << T, the queue distribution 
stays close to the equilibrium distribution that would 
prevail if the system were stationary with the arrival rate 
at time t. Newell (1971) also presents approximations 
for use when the distribution stays close to the 
"quasiequilibrium. " 

In this paper, we numerically investigate the behavior 
of multiserver, exponential queueing systems with sinu- 
soidal Poisson input. This class of models was chosen 
because the exact differential equations for the steady- 
state probabilities can readily be solved numerically 
and because this easily parameterized arrival process 
captures the essence of many actual periodic arrival 
processes. (In our own work on real-world queueing 

problems in police patrol, firefighting, banks, and 
telecommunications we have encountered arrival rate 
processes with strong unipeaked daily cycles.) 

The only results we found that are in the same spirit as 
ours appear in Rothkopf and Oren (1979). As an applica- 
tion of their closure approximation method for systems 
with nonstationary Markovian queues, they note some 
effects of sinusoidal input on the behavior of the time 
average mean number in the system as the amplitude and 
arrival rate increase. 

Our findings include: 1) a numerical confirmation and 
extension of Ross's conjecture to the effect that expected 
delay is convex increasing in the amplitude of the arrival 
process, 2) the establishment of easy-to-compute tight 
upper bounds for the probability of delay and expected 
delay that provide a simple method for bounding the 
errors produced by any estimate, including the stationary 
one, and 3) overwhelming evidence that if a queueing 
system has a periodic arrival process with a relative 
amplitude (amplitude normalized by the average arrival 
rate) of only 10% (which is not obviously very nonsta- 
tionary), a stationary model is likely to produce poor 
estimates of performance. In an attempt to understand 
better what factors contribute to making performance 
difficult to predict from a stationary model, we also 
explore the effects of traffic intensity, system size and 
event frequency (i.e., the expected number of arrivals 
and departures per cycle) on relative system 
performance. 

Following a description of our research methodology 
in Section 1, we present our results in Section 2. In 
Section 3, we use these findings to explore the accuracy 
of a completely stationary approximation under various 
conditions. We conclude in Section 4 with a summary of 
our findings and the resulting conjectures. 

1. METHODOLOGY 

1.1. Evaluation of Performance Measures 

Our numerical results were obtained by solving the 
following set of differential equations for the M(t)/M/s 
system: 

p0(t) = - X(t) p0(t) + /Lp1(t) 

pn(t) = X(t)pn_1(t) + (n + i)Opn+i(t) 

-(X(t)+n,u)Pn(t), 1,<n<s 

pn(t) = X(t)Pn 1(t) +spiPn+1(t) 

-(\(t + St)p Mt), n >,s 

where X(t) is the arrival rate at time t, which we assume 
varies according to a sinusoid, ,u is the service rate, and 
pn(t) is the probability of n customers in the system at 
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time t. We will assume that X= T X(t)dt/T<si,, 
where T is the period of the sinusoid or the cycle length. 
Thus, the system will develop a periodic steady-state 
behavior (see Heyman and Whitt 1984). 

The numerical integration was performed using the 
International Math-Science Library subroutine DVERK 
which recursively uses fifth- and sixth-order Runge-Kutta 
methods. The length of the recursion interval is deter- 
mined internally so that a user specified global error is 
not exceeded. Our integrations were usually initialized 
using the steady-state M/M/s solution obtained with 
X(0) as the stationary arrival rate. 

In order to obtain an accurate solution for the infinite 
capacity system, we truncated the number of equations 
employed by following a method suggested in Odoni and 
Roth (1983). A maximum dimension of N is used by 
DVERK as the number of equations to be solved on the 
first call. After each subsequent call of DVERK (having 
solved N' < N equations), the probability pN (t) of a 
saturated system is compared to a specified small num- 
ber, e (e.g., e = 10-8). If pN'(t) is larger than c, the 
number of equations solved at the next call is increased 
by m (e.g., m = 5). Conversely, if both pN,(t) and 
PN, -m(t) are less than c, N' is reduced by m for the 
next call. 

For conceptual convenience and ease of discussion, 
we assume that a cycle is 24 hours. DVERK is called 
every five minutes on the simulated clock and the solu- 
tion vector of state probabilities is used to calculate the 
probability of all servers busy and the expected number 
in the queue. Thus, each cycle is divided into 288 
five-minute segments. (Test cases reveal that the daily 
average measures of performance obtained by using a 
five-minute grid yield identical results to five decimal 
places as compared to those obtained by using a one- 
minute grid.) 

Figure 1 shows a typical graph of the time-varying 
probability that all servers are busy (probability busy) 
produced by this method. We observe first that the 
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Figure 1. Probability of all servers busy versus time. 

probability busy peak occurs after the peak in the arrival 
rate process, and second, that the probability busy curve 
is clearly not a sinusoid. In particular, it is not symmet- 
ric, displaying a shorter time from maximum to mini- 
mum then vice versa. (In the case shown in Figure 1, the 
time from peak of probability busy to the minimum value 
is about 11.5 hours.) These patterns were evident in the 
other cases we examined as well. Further work on the 
behavior of time-varying measures and related implica- 
tions for using stationary models will be reported in a 
subsequent paper. 

In this paper, we focus on three key performance 
measures: the daily (customer average) expected delay, 
the daily average queue length, and the daily (customer 
average) probability of delay. We use these composite 
measures, rather than time dependent ones, so that we 
can compare the performance of the nonstationary sys- 
tems to their stationary counterparts. In addition to 
customer averages, we also examined time average mea- 
sures (e.g., the probability of all servers busy) for which 
we reach the same conclusions. Since customer averages 
are more commonly used for managing systems, e.g., 
for capacity planning, we display our results for these in 
this paper. 

For nonstationary systems, we calculate these mea- 
sures by averaging the instantaneous measures provided 
at the 288 time segments of the five-minute grid. Assum- 
ing that segment 1 begins at midnight and that segments 
are numbered consecutively, let Xi be the average arrival 

- 288 rate at the start of segment i, so that X = Zi -1 X1i/288. 
Let pn i be the probability that n customers are in the 
system at the start of segment i. Then the daily average 
probability of delay is defined as 

288 s- I 

Pd E Xi I - Pni 288X 
i=l n=O 

288 

X )i Pdi /288 X (1) 
i=l1 

where Pdi is the probability that all servers are busy at 
the start of segment i. 

Similarly, the daily average expected delay is 
defined as 

288 N 

Wq= E E (n-s)pni/288 X (2) 
i=l n=s 

or 

288 - s ? 
v ,Xi n =sn -( ns + 1 ) Pni) /S/1 

8 Wq ()288 ) 

~ 288X)<iWq(3) 288X\ 
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where N is the maximum allowable system size as 
specified in the DVERK computer program and Wqi is 
the expected delay for a customer arriving at the start of 
segment i. From Little's formula, the expected queue 
length is Lq = XWq. For the stationary models, we 
obtain the usual long-run measures from the equations 
for the M/M/s system. 

1.2. Experimental Strategy 

The generic model used in our study has four parame- 
ters. These are s, the number of identical exponential 
servers, i, the service rate of each server, X, the daily 
average arrival rate, and A (> 0) the amplitude of the 
sinusoidal arrival process given by 

X(t) =X+A cos(27rt/24). 

Without loss of generality, the period is assumed to be 
24 hours. 

The interpretation of the parameters and their various 
combinations is key to understanding our experimental 
strategy and results. Consistent with tradition, the aver- 
age traffic intensity, p = Xl/s, measures the average 
load on the system, and s, the number of servers, is 
a fundamental measure of system size. We will also 
use the measure of maximum traffic intensity, Pmax = 

(X + A)/sA. The amplitude of the arrival process, A, is 
intuitively a measure of the nonstationarity, though we 
often found it more useful to discuss our results in terms 
of the relative amplitude, RA = A / X, which normalizes 
the amplitude with respect to the average arrival rate. 
Relative amplitude provides a uniform scale for the 
degree of nonstationarity which varies between 0 and 1, 
and thus allows for easier comparison of results across 
different systems. Another possible measure of nonsta- 
tionarity is the frequency of events per cycle as mea- 
sured by both ) and A, the average arrival and departure 
rates. This idea will be discussed further in Section 2. 

In the specific model instances investigated, we select 
parameter values with X < sA to assure the existence of a 
limiting distribution (see Heyman and Whitt 1984), and 
X - A > 0 so that X(t) > 0 for all t. Aside from these 
constraints, our choices of experimental models were 
governed by three major considerations-correspon- 
dence to actual service systems, a desire to be as general 
as possible, and computational feasibility. 

We began our experiments on a set of trial models 
with whose results we did a preliminary exploration of 
the effects of varying the amplitude and frequency of the 
arrival process, as well as the roles of traffic intensity 
and system size on behavior. The results of these initial 
runs confirmed some hypotheses, modified others, and 
gave one negative result. 

We then specified a broader range of experimental 
runs that would confirm our modified set of conjectures 
over a wide range of conditions. Though numerical 
results can never truly prove a result, our intent was to 
cover a broad enough spectrum of models to constitute a 
very convincing case. This spectrum of models was 
based on four service rates reflecting time ranges that we 
had experienced in real-world applications of queueing 
theory. 

1. A = 0.2, or equivalently a mean service time of 5 
hours, represents situations such as field maintenance 
or service of mechanical systems or processing times 
for some chemical batch production systems. 

2. A = 2, or equivalently mean service times of half an 
hour, corresponds to some emergency systems, such 
as police, fire or ambulance services. 

3. A = 20, or equivalently a mean service time of 3 
minutes, approximates certain factory operations or 
transaction times for automatic teller machines. 

4. A = 200, which gives mean service times of a third of 
a minute, reflects operations in some computer and 
telecommunications systems. 

For each of these values of A, we designed a target set of 
models that spans a range from low (0.25) to high (0.75) 
average traffic intensities, a range of relative amplitudes 
from 0 to 1, and a range of system sizes from 1 to 12 
servers. 

Each experimental model can be viewed as a point in 
the four dimensional space X, it, s, A. Our original goal 
was to experiment at extreme and interpolation points 
of this space. Unfortunately, due to computational limita- 
tions, we were unable to carry out all runs in this target 
range of experiments. For systems with a high value 
of it (20 or 200), high traffic intensity, high relative 
amplitude and many servers, the CPU time needed to 
accurately estimate the limiting distributions at peak 
congestion grew beyond practical limits. 

A few words about the nature of these limitations: As 
with stationary systems, in these models the number of 
customers in the system expands without bound as the 
traffic intensity approaches 1, yet our computer program 
was limited to a maximum of 600 customers in the 
system. Worse, in highly nonstationary systems, a large 
excess of customers can arrive during a peak period and 
drive up the number of customers in the system even 
when the average traffic intensity is moderate. More- 
over, in systems that are otherwise well behaved, a large 
number of servers would often take us beyond the maxi- 
mum number of customers in the system even when the 
traffic intensity and relative amplitude were moderate. 
On the other hand, for some of the systems with slow 
service rates (e.g., A = 0.2), service times are so long 
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that the number of periods needed before the state proba- 
bilities approach the limiting periodic steady-state 
behavior was intolerably large. 

As an alternative, we adopted (or, if you will, 
retreated to) an experimental strategy in which for each 
hypothesis to be tested we selected a central test case 
and several surrounding test cases that would confirm 
the result at a point inside our experimental domain and 
demonstrate that it also holds for perturbations from this 
point in each parameter. These runs are described in the 
following sections. A data set listing the results for all 
experimental runs in this exercise is contained in Green 
and Kolesar (1990) and may be obtained from the 
authors. 

2. EFFECTS OF NONSTATIONARITY 

Do delays increase as the arrival process becomes "more 
nonstationary?" In addressing this question, it is impor- 
tant to note that "degree of nonstationarity" is not a well 
defined concept. For a sinusoidal-Poisson arrival pro- 
cess, it is intuitive that for a fixed average rate X, the 
larger the amplitude, the greater the nonstationarity. 
In his 1978 paper, Ross suggested that the frequency 
of events per cycle is also a measure of nonstationarity. 
In particular, he discussed a queueing system with a 
Poisson arrival process that alternates between two 
arrival rates (states) according to a continuous-time 
Markov process, and he argued that "intuitively," the 
more frequent the transitions between the two states, the 
"more stationary" the process. Thus, we will consider 
both amplitude and frequency as measures of nonstation- 
arity. We first investigate the effects of amplitude on 
delays. For ease of comparison among systems, most of 
the following discussion will be in terms of the relative 
amplitude, RA = A /)X. 

2.1. Amplitude 

Figure 2 illustrates our major experimental result on the 
effects of amplitude-expected delay is convex increas- 
ing with amplitude. Moreover, the greater the traffic 
intensity, the steeper the rate of increase. The figure 
illustrates these findings for our central test case of 
X = 6, A = 2 and s = 6, and in addition shows expected 
delay curves for several other values of X corresponding 
to average traffic intensities ranging from 0.25 to 0.75. 
Such graphs generated for other models including cases 
with A = 0.2, 2, 20; X =3, 6, 7.8, 9; and s = 3, 6, 9 
confirm this result for perturbations of parameter values 
from our central case of A = 2, X = 6, s= 6. 

The convexity and the steepness of the curves have 
strong implications for the appropriateness of using a 
stationary model based on the daily average arrival rate 
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Figure 2. Expected delay versus relative amplitude 
when A = 2 and s = 6. 

to estimate expected delays. Looking at the top curve 
which corresponds to an average traffic intensity 

- 
of 

0.75, we see that with a relative amplitude of only 1/3, 

the actual expected delay (0.308) is more than twice that 
of the stationary expected delay (0.141). At a relative 
amplitude of 100%, the actual expected delay is more 
than ten times the stationary estimate. 

Figure 3 illustrates the effect of relative amplitude on 
the probability of delay for the same parameter values 
just discussed. Though we again observe a monotone 
deterioration in performance as relative amplitude in- 
creases, the curves level off since the probability of 
delay is bounded above by 1. 

2.2. Frequency of Events 

We next consider the effects on delays of increases in the 
frequency of events. To do this, we assume that the 
cycle length T is fixed (at 24 hours) and that the number 
of servers s is fixed, and we examine cases in which we 
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Figure 3. Probability delay versus relative amplitude 
when A = 2 and s = 6. 
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This result was first conjectured by Grassmann (1983) 
for the M/M/s queue as a consequence of the convexity 
of the mean queue size with respect to the arrival rate. 
The intuition here is obtained by noting that when X and 
,u are both large, the number of events during any given 
small interval A t becomes so large that the system 
approaches steady-state behavior during A t. As A t -O 0, 
X( t) for t e ( t', t' + A t) for any given t' will be almost 
constant. Thus, as frequency goes to infinity, the overall 
expected queue length approaches the expectation over 
time of the expected queue length in a system that at 
every time t behaves like a stationary M/M/s with 
arrival rate X(t). 

Another interesting observation seen in Figure 4 is 
that the rate of increase of expected queue length is quite 
sharp so that the upper bound behavior starts appearing 
even at moderate average arrival rates-at about 5 
arrivals per hour in this case. 

In Figure 5, the maximum traffic intensity is greater 
than one and we see that expected queue length is convex 
increasing in the frequency of arrivals. Graphs generated 
for other systems in which Pmax is greater than one, 
including models with 3 and 6 servers and relative 
amplitudes of 0.5 and 1.0, confirmed this finding. 

Now we consider how the probability of delay 
behaves as a function of arrival frequency. Not sur- 
prisingly, we found that there exists an upper bound 
analogous to (7) for the probability of delay. That is, as 

oo (or T-- oo), the probability of delay approaches 

Pd= XT X(t)pd(X(t)) dt (8) 

where Pd(X(t)) is the Erlang delay formula for a station- 
ary system; see, e.g., Gross and Harris (1985). How- 
ever, unlike our result for expected delay, (8) results in a 
finite upper bound even when Pmax exceeds one. This 
was confirmed empirically for all of the more than 300 
models that we examined. Figure 6 shows the probability 
of delay versus the frequency curve for a system with 
Pmax less than one, and Figure 7 for a system with Pmax 
greater than one. 

3. ACCURACY OF THE SIMPLE STATIONARY 
APPROXIMATION 

We next examine the implications of using a stationary 
model based on the daily average arrival rate to estimate 
delays in a nonstationary system. That is, how good an 
approximation is obtained by ignoring the nonstationar- 
ity? More specifically, we are interested in determining 
under what conditions, if any, this stationary approxima- 
tion will yield reasonably accurate results for the ex- 
pected delay and the probability of delay. Thus, in 
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Figure 6. Probability of delay versus frequency of ar- 
rivals when s = 1, RA - 1 and p = 0.25. 

addition to exploring accuracy as a function of the 
degree of nonstationarity (i.e., amplitude and frequency 
of the arrival process), we discuss how, for a given 
degree of nonstationarity, the accuracy of a stationary 
approximation may be affected by the basic system 
characteristics of traffic intensity and system size. 

For this purpose, we define a relative error measure 
for expected delay as 

Actual E(delay) - Stationary E(delay) 

Actual E(delay) 

where the stationary E(delay) is obtained from the sta- 
tionary M/M/ s model using X = X (see Gross and 
Harris, Equation 2.50). The relative error for expected 
queue size and probability of delay are analogously 
defined. 

3.1. The Effect of Amplitude 

How is the relative error of expected delay affected by 
amplitude? Since we already know that expected delay 
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Figure 7. Probability of delay versus frequency of ar- 
rivals when s = 1, RA = 1 and p = 0.75. 
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increases convexly with amplitude, it follows that the 
relative error will increase as well. Figure 8 illustrates 
this behavior for a typical case. The most interesting 
observation here is that for all cases in this figure, when 
relative amplitudes are greater than 10%, the relative 
error is greater than 10%. In all of the models we 
studied with a relative amplitude of 25% or more, the 
relative error was always greater than 10%, and usually 
significantly so. Since, from a practical perspective, 
25% is a rather small degree of nonstationarity, this 
finding implies that using the average arrival rate to 
estimate expected delays in a system with a time-vary- 
ing arrival process is likely to be quite misleading. 

Figure 9 shows the corresponding relative error plot 
for the probability of delay. Though, not unexpectedly, 
the errors are smaller (due to the boundedness of this 
measure), they too become quite significant for relative 
amplitudes of greater than 10%. Thus, again it appears 
that using the stationary model with the average arrival 
rate is likely to produce unacceptably inaccurate 
estimates. 

3.2. The Effect of Frequency of Events 

A somewhat positive interpretation of our results on 
relative error versus relative amplitude is that using a 
model based on the average arrival rate to estimate 
expected delay is generally fairly accurate (i.e., results 
in a relative error of < 10%) if the relative amplitude is 
< 10%. (We did find some exceptions to this.) Is there a 
similarly safe event frequency? Our empirical evidence 
says no. Figure 10 shows a typical graph for relative 
error versus frequency of events which indicates the 
contrary. The relative error curve rises so steeply that it 
is over 12% for ) = 0.05 (i.e., an average of 1 arrival 
every 20 hours-an extreme case indeed, considering a 
cycle length of 24 hours). At X = 0.5, the relative error 
is already close to its upper bound of about 48.5%. 
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Figure 8. Error in expected delay versus relative ampli- 
tude when , = 2 and s = 6. 
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Figure 9. Error in probability of delay versus relative 
amplitude when It = 2 and s = 6. 

(Since Pmax here is less than 1, the expected queue 
length is bounded above from (7) and thus the relative 
error will be correspondingly bounded.) 

3.3. The Effect of Traffic Intensity 

For a fixed level of nonstationarity, i.e., relative ampli- 
tude and frequency, how is the relative error affected by 
traffic intensity? We had first conjectured that as conges- 
tion increases, the accuracy of the simple stationary 
estimate would get worse. Figure 11 shows that this is 
not the case. Indeed, there seems to be no easily pre- 
dictable effect due to traffic intensity. 

3.4. The Effect of System Size 

What is the effect, if any, of increasing system size, as 
measured by the number of servers s, on the accuracy of 
the simple stationary approximation? First, our numeri- 
cal results indicate that, as in stationary M/M/s sys- 
tems, for a fixed traffic intensity, delays decrease as s 
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Figure 11. Error in expected queue size versus traffic 
intensity when RA = 1, i = 2 and p= 
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increases. However, it was not intuitively clear to us 
how the performance in a nonstationary system relative 
to its stationary counterpart might be affected by its size. 
To explore this, we compared the relative error in 
expected delays for queueing systems in which the ser- 
vice rate and relative amplitude were held fixed, and 
both the number of servers and the arrival rate were 
increased proportionally so that the traffic intensity re- 
mained constant. Figure 12 illustrates our general find- 
ing that relative error increases as system size increases 
by showing two curves generated for our central case of 
it= 2 and an average traffic intensity of 0.65. This 
finding was confirmed by similar graphs for models with 
A 0.2, 2, 20; p = 0.25, 0.5, 0.65, 0.75; and relative 
amplitudes of 0.1, 1/3, 2/3 and 1, all of which are 
perturbations from our central case of i = 2, p = 0.65, 
and relative amplitude = 1/3. 

Does it make sense that as the system size increases 
the stationary approximation becomes worse? We offer 
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Figure 12. Error in expected delay versus system size 
when p = 0.65 and ,u=2 

an explanation similar to the one concerning the effect of 
frequency of events. As the number of servers and hence 
the arrival rate increases more customers arrive at the 
peak of the cycle producing congestion, which then 
propagates throughout the cycle. Conversely, as system 
size decreases, the corresponding decrease in arrivals, 
particularly during the peak, attenuates the effect of the 
nonstationarity and results in delays that are closer to 
those arising in the stationary system. Of course, it is 
important to note that at the relative amplitudes shown in 
Figure 12, the relative errors are generally unacceptably 
high even with systems with only three servers. 

4. FINDINGS AND CONJECTURES 

The (mostly) empirical results described in this paper 
provide very strong evidence of the existence of some 
practically and theoretically important structural charac- 
teristics of Markovian queueing systems with periodic 
input which are summarized here. 

1. Expected delay and probability of delay increase as 
amplitude increases. For expected delay, the increase 
is convex and the rate of increase is steeper for larger 
traffic intensities. 

2. Expected queue length and probability of delay also 
increase as the event frequency, or equivalently, the 
cycle length increases. For both measures, we have 
proven that as the event frequency tends toward zero, 
the measures converge to the values obtained from 
the corresponding stationary model based on the av- 
erage arrival rate. 

3. For systems in which the maximum traffic intensity is 
strictly less than one, the expected queue length 
approaches an upper bound given by (7) as the event 
frequency, or equivalently, the cycle length ap- 
proaches infinity, and otherwise, diverges. The prob- 
ability of delay approaches a limit given by (8) as the 
event frequency goes to infinity, even for systems 
where the instantaneous traffic intensity exceeds one. 

These results have strong implications for using the 
average arrival rate in a stationary model to estimate 
delays for time-varying systems. For small systems (e.g., 
one or two servers) with small relative amplitudes (e.g., 
less than 10%) and infrequent events (or equivalently 
short cycle lengths), such a stationary approximation 
may give reasonable estimates. However, relative error 
increases as each of these parameters increase and the 
sharpest increases occur as event frequency increases. In 
most systems we examined, and particularly those which 
are most likely to approximate real systems, the relative 
errors for both expected delay and probability of delay 
are unacceptably high. 
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The convergence of expected queue length and proba- 
bility of delay to (7) and (8), respectively, suggest use of 
those equations as approximations to actual behavior. 
We explore this in Green and Kolesar (1991). 

Our choice of a sinusoidal arrival rate function and 
exponential service times were largely determined by 
issues of computational and experimental convenience. 
There is nothing we know of to indicate that our basic 
findings would not hold in more general models. (We 
have proven that our result on the convergence of perfor- 
mance measures to the stationary case when cycle length 
goes to zero holds more generally. Also, Rolski's result 
(1986) for single-server systems holds for more general 
arrival and service processes.) In particular, we conjec- 
ture the following: 

1. In multiserver queueing systems with periodic 
Poisson arrival processes and well behaved continu- 
ous service distributions (i.e., the first two moments 
exist), expected delay is convex increasing and proba- 
bility of delay is monotone increasing in the 
amplitude. 

2. For the same class of systems, as arrival frequency 
per cycle approaches infinity, expected queue length 
asymptotically approaches the upper bound given by 
(7) when the instantaneous traffic intensity is always 
strictly less than one, and otherwise, diverges. Simi- 
larly, the probability of delay approaches the upper 
bound given by (8), but for all cases. 
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