Sequential learning, predictability, and optimal portfolio returns

Michael S. Johannes, Arthur G. Korteweg and Nicholas G. Polson *

Abstract

This paper finds statistically and economically significant out-of-sample portfolio benefits for an investor who uses models of return predictability when forming optimal portfolios. Investors must account for estimation risk, and incorporate an ensemble of important features, including time-varying volatility, and time-varying expected returns driven by payout yield measures that include share repurchase and issuance. Prior research documents a lack of benefits to return predictability, and our results suggest that this is largely due to omitting time-varying volatility and estimation risk. We also document the sequential process of investors learning about parameters, state variables, and models as new data arrives.

* Johannes is at the Graduate School of Business, Columbia University, mj335@columbia.edu. Korteweg is at the Graduate School of Business, Stanford University, korteweg@stanford.edu. Polson is at the Graduate School of Business, University of Chicago, ngp@chicagogsb.edu. We thank Cam Harvey (the editor), the Associate Editor, an anonymous referee, Martijn Cremers, Darrell Duffie, Wayne Ferson, Stefan Nagel, and seminar participants at Columbia, Duke, Rice, the University of North Carolina, USC Marshall, Yale School of Management, the University of Chicago, the 2012 Society of Quantitative Analysts Meeting, the 2009 AFA meetings, the 2008 Conference on Modeling and Forecasting Economic and Financial Time Series with State Space models at the Sveriges Riksbank, the 2009 CREATES conference in Skagen, Denmark, the 2009 SOFiE conference in Lausanne, the 2009 CIREQ-CIRANO Financial Econometrics Conference in Montreal, and the 2009 Quantitative Methods in Finance Symposium at UT Austin for helpful comments. We thank Ravi Pillai for excellent computing support. All errors are our own.
Equity return predictability is widely considered a stylized fact: theory indicates expected returns should time-vary and numerous studies find supporting evidence. For example, Lettau and Ludvigson argue “it is now widely accepted that excess returns are predictable by variables such as dividend-price ratios, earnings-price ratios, dividend-earnings ratios, and an assortment of other financial indicators” (2001, p. 842). Evidence for predictable volatility is so strong to be rarely debated, with predictability introduced via short-run persistence and long-run mean-reversion. This predictability should be very important for investors when making portfolio decisions, as investors should ‘time’ the investment set, increasing allocations when expected returns are high and/or volatility is low.

A surprising recent finding questions the evidence for aggregate equity return predictability, and, moreover, suggests that there are no out-of-sample benefits to investors from exploiting this predictability when making optimal portfolio decisions. Goyal and Welch (2008, p. 1456) find that “the evidence suggests that most models are unstable or even spurious. Most models are no longer significant even in-sample. ... Our evidence suggests that the models would not have helped such an investor” who is seeking to use the predictability when forming portfolios. Intuitively, the conclusion is that while there may be some evidence for predictability, it is so weak to be of no practical use for investors.

This paper revisits this issue and finds new results reconciling these seemingly contradictory findings. We find strong evidence that investors can use predictability to improve out-of-sample portfolio performance provided they incorporate a number of sensible features into their optimal portfolio problems. In addition to incorporating expected return predictability, investors must account for time-varying volatility and estimation risk when
forming portfolios. Our results are not inconsistent with Goyal and Welch (2008), as we find no benefits to expected return predictability using the standard approach, which assumes constant volatility regression models and investors that ignore estimation risk.

Intuitively, an ensemble of additional features is needed because each feature provides only a marginal increase in performance. For example, time-varying volatility is important as it is both highly variable and predictable, and estimation risk is important because there is substantial uncertainty over the nature of the predictability (Brennan (1998), Stambaugh (1999) and Barberis (2000)). Ignoring either of these components provides a misleading view of risks. Incorporating estimation risk or time-varying volatility does not, however, generate statistically significant out-of-sample improvements for the standard predictability model. One way to interpret our results is that careful modeling requires accounting for all of the first-order important features, such as predictable expected returns, time-varying volatility and parameter uncertainty. Thus, there is no single ‘silver bullet’ that generates out-of-sample gains.

Our empirical experiment is straightforward. We consider a Bayesian investor who (a) uses models incorporating yield based expected return predictors and stochastic volatility (SV), (b) learns about the models, parameters and state variables sequentially in real time, revising beliefs via Bayes’ rule as new data arrives, and (c) computes predictive return distributions and maximizes expected utility accounting for all sources of uncertainty. We focus on a single predictor variable, the dividend yield, but consider two measures of this variable: the traditional cash dividends measure and a version incorporating equity repurchases and issuance. The latter measure was introduced by Boudoukh et al. (2007), who
find that net payout yield is a stronger predictor of equity returns. Overall, we confront
our investor with the same learning problems faced by econometricians, a problem
suggested by Hansen (2007).

To implement the Bayesian portfolio problem, we need to characterize the posterior dis-
tribution at each point in time throughout our sample. We use particle filters to tackle this
difficult sequential learning problem. Particle filters are a recursive Monte Carlo approach
that generate approximate samples from the posterior distribution that we can use to gen-
erate draws from the predictive return distributions to compute optimal portfolio holdings.
Particle filters are the dominant approach for sequential state or parameter inference across
a range of fields.

After solving the learning problem, our investor maximizes expected CRRA utility over
terminal wealth for different time horizons, from one month to two years. Ideally, one
would solve the recursive long-horizon portfolio problem with intermediate learning, but
this is infeasible with multiple unknown parameters.\(^1\) Given these portfolios, we compute
out-of-sample portfolio returns, summarizing performance using standard metrics such as
Sharpe ratios and certainty equivalent returns (CEs). CEs are a more relevant benchmark
than Sharpe ratios given power utility. This procedure generates a time series of realized,
*fully out-of-sample* returns for various models and datasets (cash dividend yields and net
payout yields). To evaluate the statistical significance, we simulate returns assuming a
given model, e.g., constant means and variances, and evaluate models with various forms
of predictability to see if the Sharpe ratios or CEs are statistically different from those that
generated by simpler model specifications.\(^2\)
Empirically, our first set of results indicates that none of the constant volatility models generate statistically significant out-of-sample improvements compared to a model with constant means and variances. This implies that accounting for parameter uncertainty and using the Boudoukh et al. (2007) net payout yield predictor does not provide statistically significant benefits when volatility is assumed constant. This is consistent with Goyal and Welch (2008), but goes one step further and implies that just accounting for parameter uncertainty (i.e., being a Bayesian) does not generate statistically significant improvements. In some cases, timing based on expected return predictability using the traditional cash dividend measure performs worse than using a model with constant means and variances (accounting for parameter uncertainty in both cases). This result is robust for all risk aversion cases and across all investment horizons that we consider.

Our main result is that incorporating an ensemble of factors significantly improves out-of-sample performance. A specification with predictable expected returns generated by net payout yields and stochastic volatility, when used by an investor who accounts for estimation risk, generates statistically significant (at the 5% level) improvements in CEs and Sharpe ratios. This holds for all risk-aversion and investment horizons, where significance is measured either against a model with constant means and variances or against a model with constant means and time-varying volatilities.

The effects are economically large. For example, in a model with constant means and variances, a Bayesian investor with a risk-aversion of four generates an annualized CE yield of 4.77% and a monthly Sharpe ratio of 0.089 (annualized Sharpe ratio of about 0.31). In the general model using net payout yield as the predictor and incorporating stochastic volatility,
the investor generates a CE yield of 6.85% and a Sharpe ratio of 0.155 (annualized, 0.54). The 2% difference in CE yields generates extremely large gains when compounded over a sample of almost 80 years. The Sharpe ratios are more than 70% higher. The results are even stronger for long horizon investors. Together, the results indicate that an ensemble of factors generates statistically and economically significant improvements.

Models with constant expected returns and time-varying volatility do not generate statistically significant returns, even if the investor accounts for estimation risk. Thus, we find no evidence for a pure volatility timing effect. To our knowledge, there is no published evidence for volatility timing based on aggregate equity returns over long sample periods. Fleming, Kirby, and Ostdiek (1998) consider a multivariate asset problem using data from 1982–1996 and study time-varying second moments, which include correlations. They also use significant in-sample information about average returns. Yan (2005) considers a problem with many individual stocks and factor stochastic volatility. Bandi, Russell, and Zhu (2008) consider multiple individual stocks and volatility timing using intraday high-frequency equity returns.

If the cash dividend-yield is used instead of net payout yields along with time-varying volatility, we find statistically strong improvements, but not as large as the improvements generated by the net payout yield measure. Thus, the net payout measure provides additional improvements, as it is a stronger predictor of equity returns. We also consider a drifting coefficients specification, but this model generally performs on par or slightly worse than a model with constant predictability.

We also summarize the investor’s real-time learning about parameters, states, and mod-
els. We find evidence that learning can take a significant amount of time, which should not be surprising given the persistence of volatility, dividend yields, and expected returns. This does, however, explain why incorporating estimation risk can be important, as there is significant uncertainty over parameter estimates even after observing decades of data. We also discuss the model learning problem, quantifying how an investor learns about the relative merits of competing models.

We connect our approach to the recent results in Pastor and Stambaugh (2012) on term structures of predictive variances. They find that predictive return volatility does not necessarily fall as the time-horizon increases, in contrast to what would happen with i.i.d. returns and in contrast to popular belief. They document this feature in the context of a ‘predictive system’, in which the relationship between the predictor variables and expected returns is imperfect. The predictive volatility in a model can increase with horizon due to parameter and state variable uncertainty. We perform the same experiments as Pastor and Stambaugh (2012) and find similar results in our models. Although our models are not a formal imperfect predictive system, our results indicate that the increasing predictive volatility as a function of time-horizon is a more general feature, as it appears in models other than those considered in Pastor and Stambaugh (2012).

The rest of the paper is as follows. Section 1 describes the standard approach for evaluating predictability via out-of-sample returns, the models we consider, and our methodology. Section 2 reports our results on sequential inference, including parameter estimates and model probabilities, and the out-of-sample portfolio results, and Section 3 concludes.
I. Evaluating predictability via out-of-sample portfolio performance

A. The standard approach

The standard approach considers a model of the form

\[ r_{t+1} = \alpha + \beta x_t + \sigma \varepsilon_{t+1}^r, \]  

where \( r_{t+1} \) are monthly log excess returns on the CRSP value-weighted portfolio, \( x_t \) is a predictor variable, \( \varepsilon_{t}^r \) is a mean-zero constant variance error term, and the coefficients \( \alpha, \beta, \) and \( \sigma^2 \) are ‘fixed but unknown’ parameters. The dividend yield is the most commonly used predictor, defined as the natural logarithm of the previous year’s cash payouts divided by the current price. Standard full-sample statistical tests for predictability estimate the models on a long historical sample commonly starting in 1927.\(^3\) It is possible to incorporate multiple predictors, but this paper follows the bulk of the literature and focuses on univariate regression models.

Although statistical significance is important for testing theories, measures of economic performance, such as the performance of optimal portfolios out-of-sample, are arguably more appropriate and require that investors could identify and take advantage of the predictability in real-time. Typical implementations of out-of-sample portfolio experiments such as Goyal and Welch (2008) use regression models like the one above combined with the assumption of normally distributed errors to form optimal portfolios. An investor finds portfolio weights between aggregate equities and the risk-free rate by maximizing one-period
expected utility, assuming a power or constant relative risk aversion utility function, and using the predictive distribution of returns induced by the regression model. The initial parameter estimates are estimated based on a training sample, and are re-estimated as new data arrives. Point estimates for the parameters are used to predict future returns. This is called the plug-in method. As mentioned earlier, Goyal and Welch (2008) find no benefits to an investor who follows this procedure using a wide range of predictors. In particular, they find no benefits for the ‘classic’ predictor variable, cash dividend yield. Wachter and Warusawitharana (2009) consider a Bayesian multi-asset portfolio problem with long term bonds, aggregate equity returns, and the risk-free rate. They find out-of-sample benefits for a highly informative prior, but no benefits for other priors. They provide no evidence that the gains are due to timing expected returns in stocks, and, their optimal portfolios maintain large short positions in long-term bonds, which implies that they have a large negative bond risk premium. Thus, the gains are likely due to bond and not stock positions. The gains they find are quite modest, relative to the gains we document below. Wachter and Warusawitharana (2012) consider a related problem with dividend-yield timing, but do not consider out-of-sample returns.

*Prima facie*, there are multiple reasons to suspect that the typical approach might perform poorly out-of-sample. First, the regression model above ignores important, first-order, features of equity returns. Most notably, the constant volatility assumption is in strong contrast to observed data, since equity return volatility time-varies. Ignoring this variation could cause optimal portfolios based solely on time-varying expected returns to perform poorly. Moreover, power utility specifications are sensitive to fat tails in the
return distribution, a feature absent in the constant volatility, normally distributed shock regression specification, but present in models with time-varying volatility.

Second, the typical approach ignores the fact that the parameters determining the equity premium, $\alpha$ and $\beta$, are estimated with significant amounts of error. In fact, the whole debate about predictability has received so much attention in part because the predictability evidence, while compelling, is still quite weak. By ignoring estimation risk or parameter uncertainty, the standard implementation understates the total uncertainty, as perceived by an investor. Kandel and Stambaugh (1996) and Barberis (2000) document the important role of parameter uncertainty when forming optimal portfolios.

Third, the linear regression model assumes that the relationship between $x_t$ and $r_{t+1}$ is time-invariant. Theoretically, certain asset pricing models, such as Menzly, Santos and Veronesi (2004) or Santos and Veronesi (2006), imply that the relationship between the equity premium and $x_t$ varies over time. Empirically, Paye and Timmerman (2006), Lettau and Van Nieuwerburgh (2008), Henkel et al. (2011), and Dangl and Halling (2012) find evidence for time-variation in the relationship between returns and common predictors.

Fourth, most out-of-sample implementations based on expected return predictability focus on the dividend-yield, which measures payouts of firms via cash dividends. As argued by Boudoukh et al. (2007), an expanded measure of payout that includes share repurchases is a far more effective predictor. In fact, they argue that there is no evidence that cash-dividends is a significant predictor but net payout is strongly significant. For all of these reasons, it may not at all be surprising that the standard approach performs poorly out-of-sample.
The goal of this paper is to introduce extensions to deal with these features and to re-evaluate the out-of-sample performance. The next section introduces the models and our empirical approach.

B. Our approach

B.1. Models

We consider a number of extensions to the baseline regression model. The first allows volatility to vary over time,

\[ r_{t+1} = \alpha + \beta x_t + \sqrt{V^r_{t+1}} \varepsilon^r_{t+1}, \]  

(2)

where \( V^r_{t+1} \) evolves via a log-volatility specification (Jacquier, Polson and Rossi, 1994, 2005),

\[ \log (V^r_{t+1}) = \alpha_r + \beta_r \log (V^r_t) + \sigma_r \eta^r_{t+1}. \]  

(3)

In choosing the log-specification, the goal is to have a parsimonious specification insuring that volatility is stochastic, positive, and mean-reverting. Volatility predictability arises from its persistent but mean-reverting behavior.

Time-varying volatility has direct and indirect effects on optimal portfolios. The direct effect is through the time-variation in the investment set generated by stochastic and mean-reverting volatility, as investors will ‘time’ volatility, increasing or decreasing equity allocations as volatility changes over time. This effect is ignored in constant volatility regression models. There is also an indirect effect because time-varying volatility implies that the signal-to-noise ratio for learning about expected return predictability varies over
time. To see this, note that time-\( t \) log-likelihood function for the parameters controlling equity premium, conditional on volatility, is

\[
\ln(L(r_{t+1}, x_t, V_{t+1}^r | \alpha, \beta)) = c_{t+1} - \frac{1}{2} \frac{(r_{t+1} - \alpha - \beta x_t)^2}{V_{t+1}^r},
\]

where \( c_{t+1} \) is a term that does not depend on the parameters. In models with constant volatility, \( V_t^r = \sigma^2 \), the amount of information regarding expected return predictability is constant over time. When volatility time-varies, the information content varies with \( V_t^r \). When \( V_t^r \) is high, there is little information about expected returns, thus, the signal-to-noise to noise ratio is low. Conversely, when \( V_t^r \) is low, the signal-to-noise ratio is high. This is, of course, the usual “GLS vs. OLS” problem that vanishes asymptotically, but can be important in this setting due to small sample issues generated by the high persistence of \( x_t \) and the relatively low signal-to-noise ratio.

The SV specification has an additional important feature for optimal portfolios: it generates fat-tailed return distributions. The distribution of returns in equation (2) is normally distributed, conditional on \( V_{t+1}^r \) and the parameters, but the marginal and predictive distribution of returns that integrate out the unobserved volatilities are a scale mixture of normals, which has fat-tails. In addition to fitting the variation in volatility, time-varying volatility is a long-standing explanation for fat tails (see, for example, Rosenberg (1972)). The continuous-time literature has found that SV alone cannot generate enough kurtosis to fit the observed return data at high frequencies, such as daily, but at lower frequencies such as monthly, SV models generate excess kurtosis that is, in fact, consistent with the observed returns. This is discussed in more detail below. We assume the volatility shocks
are independent of returns.\(^4\)

We also allow the regression coefficient on the predictor variable to vary over time. As mentioned above, some theories imply that this coefficient varies, and there is also empirical evidence suggesting that the loading on predictors such as the dividend-price ratio varies over time (Lettau and Van Nieuwerburgh (2008), Henkel et al. (2011), and Dangl and Halling (2012)). This extension posits that \(\beta_t\), the regression coefficient, is a mean-reverting process with mean \(\beta_0\) and auto-covariance \(\beta_\beta\). The model is

\[
\begin{align*}
    r_{t+1} &= \alpha + \beta_0 x_t + \beta_{t+1} x_t + \sqrt{V_{t+1}^x} \varepsilon_{t+1}^r \\
    \beta_{t+1} &= \beta_\beta \beta_t + \sigma_\beta \varepsilon_{t+1}^\beta,
\end{align*}
\]

(5)

(6)

where \(\varepsilon_{t+1}^\beta\) is i.i.d. normal. It is common to assume that \(\beta_t\) moves slowly, consistent with values of \(\beta_\beta\) close to one and \(\sigma_\beta\) relatively small. Alternatively, a Markov switching process would allow for abrupt changes in the states. The drifting coefficient specification is related to Pastor and Stambaugh (2009), who consider latent specifications of the conditional mean, where the shocks in the conditional mean are correlated with returns and with predictor variables. We discuss the connections in greater detail below.

Based on Stambaugh (1986), we model \(x_t\) as a persistent but mean-reverting process,

\[
x_{t+1} = \alpha_x + \beta_x x_t + \sqrt{V_{t+1}^x} \varepsilon_{t+1}^x,
\]

(7)

where \(\beta_x < 1\), \(\text{corr}(\varepsilon_{t+1}^r, \varepsilon_{t+1}^x) = \rho\), and \(V_{t+1}^x\) is the time-varying variance of dividend yields. We assume a standard log-specification for \(V_{t+1}^x\), \(\log(V_{t+1}^x) = \alpha_v + \beta_v \log(V_{t}^x) + \sigma_v \eta_{t+1}^v\), where the errors are standard normal. Incorporating a mean-reverting process for \(x_t\) is particularly important for optimal portfolios formed over long-horizons, which we consider
in addition to monthly horizons. As noted by Stambaugh (1999), mean-reversion in $x_t$
generates skewness in the predictive distribution of returns at longer horizons.

We consider the following specifications:

- The ‘CV-CM’ model has constant means (CM) and constant variances (CV). This is
  a benchmark model with no predictability (i.e., equation (1) with $\beta = 0$).

- The ‘CV’ model has constant variance, but time-varying expected returns. In equa-
  tions (2) and (7), this is the special case with $V_{t+1}^r = \sigma^2$ and $V_{t+1}^r = \sigma_{x_t}^2$.

- The ‘CV-OLS’ is the same model as the CV model, but is implemented using ordinary
  least squares (OLS) with all data up to time $t$.

- The ‘CV-rolling OLS’ is the same model as the CV model, but is implemented using
  ordinary least squares (OLS) and a ten-year rolling window of data.

- The ‘CV-DC’ is a constant volatility model with drifting regression coefficients. In
  equations (5) through (7), this is the special case with $V_{t+1}^r = \sigma^2$ and $V_{t+1}^r = \sigma_{x_t}^2$.

- The ‘SV-CM’ model is a SV model with a constant mean, i.e. equation (2) with $\beta = 0$, which implies that the equity premium is constant.

- The ‘SV’ model is a SV model with time-varying expected returns generated by
  equations (2) and (7).

- The ‘SV-DC’ model denotes the most general specification with SV and predictability
  driven by the drifting coefficients model in equations (5) through (7).
All of the models are implemented using a Bayesian approach to account for parameter uncertainty, with the exception of the CV-rolling OLS and CV-OLS implementations, which condition on point estimates. We use these to highlight the impact of parameter uncertainty on out-of-sample performance. We focus on payout yield as a single predictor, but use two measures of ‘yield:’ the traditional cash dividend yields measure and a more inclusive measures of total payouts via the ‘net payout’ measure of Boudoukh et al. (2007) which includes share issuances and repurchases.

More general specifications are certainly possible, but our goal is not to find the most general econometric specification. Rather, our goal is to model a number of data features that are important for optimal portfolios including predictability in expected returns, time-varying volatility, contemporaneous correlation between dividend growth shocks and returns, and drifting coefficients. More general specifications could incorporate non-normal return shocks, leverage effects, additional predictor variables, and a factor stochastic covariance structure for dividend growth and returns.\(^5\) There is a large literature modeling aggregate market volatility developing more involved continuous-time specifications with multiple volatility factors and non-normal jump shocks. These models are typically implemented using daily or even higher frequency data, and it would be very difficult to identify these features with lower frequency monthly data.

Additionally, adding economic restrictions generated by present-value calculations such as those in Koijen and Van Binsbergen (2010) may also improve the model’s performance.\(^6\) These extensions add additional parameters and, more importantly, significantly complicate econometric implementation, making sequential implementation extremely difficult. It is
important to note that if our models have any gross misspecification, it should be reflected in poor out-of-sample returns.

**B.2. Inference**

We consider a Bayesian investor learning about the unobserved variables, parameters, state variables, and models, sequentially over time. Notationally, let \( \{M_j\}_{j=1}^M \) denote the models under consideration. In each model there is a vector of unknown static parameters, \( \theta \), and a vector of unobserved state variables \( L_t = (V_t^r, V_t^x, \beta_t) \). The observed data consists of a time series of returns and predictor variables, \( y^t = (y_1, ..., y_t) \) where \( y_t = (r_t, x_t) \). The Bayesian solution to the inference problem is \( p(\theta, L_t, M_j | y^t) \), the posterior distribution, for each model specification at each time point. The marginal distributions \( p(\theta | M_j, y^t) \), \( p(L_t | M_j, y^t) \) and \( p(y^t | M_j) \) summarize parameter, state variable, and likelihood-based model inference, respectively. The marginal likelihood function, \( p(y^t | M_j) \), summarizes model fit and allows likelihood based model comparisons without resorting to common approximations such as the Akaike or Bayesian Information Criterion (AIC or BIC).

Out-of-sample experiments require estimation of each model at each time period \( t = 1, ..., T \). This real-time or sequential perspective significantly magnifies any computational difficulties associated with estimating latent variable models. For full-sample inference, Markov Chain Monte Carlo (MCMC) methods are commonly used, but they are too computationally burdensome to use for a sequential implementation. To sample from the posterior distributions, we use a Monte Carlo approach called particle filtering.

Particle filters discretize the support of the posterior, and, as shown by Johannes and
Polson (2006) and Carvalho et al. (2010, 2011), work well for parameter and state variable inference in many models with latent states such as log-SV models. Particle filters are fully sequential methods: after summarizing the posterior at time $t$, there is never any need to use the past data as particle filters only use the new data to update previous beliefs. Because of their sequential nature, particle filters are computationally much faster than alternatives such as repeated implementation of MCMC methods. This is the main advantage, but there is an associated cost: particle filtering methods are not as general or robust as MCMC methods. An internet appendix provides an overview of particle filters as well as the details of our filtering algorithm, which is an extension of the methods developed in Johannes and Polson (2006) and Carvalho et al. (2010, 2011).

**B.3. Optimal portfolios and out-of-sample performance measurement**

When making decisions, a Bayesian investor computes expected utility using the predictive distribution, which automatically accounts for estimation risk. The posterior distribution quantifies parameter uncertainty or estimation risk. This can be contrasted with frequentist statistics, where parameters are ‘fixed but unknown’ quantities and not random variables, and therefore one cannot define concepts like parameter uncertainty.

Our investor maximizes expected utility over terminal wealth $T$ periods in the future, assuming that the wealth at the beginning of each period is $\$1$,

$$\max_{\{\omega\}} E_t \left[ U(W_{t+T}) \right] | M_j, y^t] ,$$

(8)
where wealth evolves from $t$ to $t + T$ via

$$W_{t+T} = W_t \cdot \prod_{\tau=1}^{T} \left[ (1 - \omega_{t+\tau-1}) \exp(r_{t+\tau}^f) + \omega_{t+\tau-1} \exp \left( r_{t+\tau}^f + r_{t+\tau} \right) \right],$$

and $r_{t+\tau}^f$ is a zero coupon default-free log bond yield for the period between time $t + \tau - 1$ and $t + \tau$. The portfolio weight on equities is $\omega_{t+\tau-1}$, and is allowed to vary over the investment horizon. We consider a range of horizons $T$ from one month ($T = 1$) to two years ($T = 24$).\(^7\)

In the long horizon problems we allow investors to re-balance their portfolios every year, as in Barberis (2000). We bound portfolio weights at -2 and +3, which primarily impacts the OLS models (CV-OLS and CV-rolling OLS). The out-of-sample returns from these models look much worse if we leave the weights uncapped. The portfolio weights for the other models are more stable and rarely hit the upper or lower bounds.

We consider a power utility investor,

$$U(W_{t+T}) = \frac{(W_{t+T})^{1-\gamma}}{1-\gamma}. \quad (10)$$

Expected utility is calculated for each model

$$E_t \left[ U(W_{t+T}) \mid \mathcal{M}_j, y^f \right] = \int U(W_{t+T}) p(W_{t+T} \mid \mathcal{M}_j, y^f) dW_{t+T}, \quad (11)$$

using equation (9) and the predictive distribution of returns,

$$p(r_{t+\tau} \mid \mathcal{M}_j, y^f) = \int p(r_{t+\tau} \mid \theta, L_t, \mathcal{M}_j, y^f) p(\theta, L_t \mid \mathcal{M}_j, y^f) d\theta dL_t. \quad (12)$$

Calculating expected utility in this manner, rational Bayesian investors take all of the relevant uncertainty into account by averaging across the unknown parameters and latent state variables, using the posterior distribution $p(\theta, L_t \mid \mathcal{M}_j, y^f)$.\(^8\)
Marginalization alters the conditional return distribution, increasing variance and generating fat tails. To see this, consider a SV specification where the predictive distribution is

\[ p(r_{t+1}|\mathcal{M}, y_t) = \int p(r_{t+1}|\theta, V_t, \mathcal{M}, y_t) p(V_t|\theta, \mathcal{M}, y_t) p(\theta|\mathcal{M}, y_t) \, d\theta dV_t, \quad (13) \]

and \( p(r_{t+1}|\theta, V_t, \mathcal{M}, y_t) \) is the normally distributed conditional return distribution, \( p(V_t|\theta, \mathcal{M}, y_t) \) is the filtered distribution of the stochastic variance, and \( p(\theta|\mathcal{M}, y_t) \) is the parameter posterior distribution at time \( t \).

Although the return distribution is conditionally normal, the predictive distribution will have higher variance and fat tails generated by marginalizing out the uncertainty in volatility and the other parameters. Thus, although the shocks are normally distributed, predictive return distributions are generally non-normal. This non-normality is minor in constant volatility models, but substantial when volatility time-varies. This is important for fitting fat-tailed aggregate equity returns. Our power utility specification takes into account the conditional non-normalities, which can be important (see also Brandt et al., 2005, Harvey and Siddique, 2000, and Harvey et al., 2010).

At each time period, our investor chooses portfolio weights to maximize expected utility. The investor holds the assets for a given period, realizes gains and losses, updates posterior distributions, and then recomputes optimal portfolio weights (rebalancing annually rather than monthly for the investment horizons beyond one year). This procedure is repeated for each time period generating a time series of out-of-sample returns. Using this time series,
standard summary statistics such as certainty equivalent (CE) yields and Sharpe ratios are computed to summarize portfolio performance. For some models, we will document a strong disagreement between CE yields and Sharpe ratios, which are generated by the fact that Sharpe ratios do not take into account tail behavior. Given that the portfolios were formed by maximizing a power utility specification, CE yields are more appropriate.

### B.4. Evaluating statistical significance

To assess the statistical significance of the out-of-sample return summaries, the CE yields and Sharpe ratios, we perform extensive Monte Carlo simulations to construct finite sample distributions of the performance statistics. Our base simulations consider a null model with no predictability—constant means and variances—that is calibrated to match the full-sample returns. Then, given returns simulated from this null model, we estimate each of our models sequentially using the same estimation procedures that we used on the real data. We repeat this 500 times for each model specification.\(^\text{10}\) From this, we obtain a distribution of CE yields and Sharpe ratios that we can use to assess if the statistics obtained from the real-world data are statistically significantly higher than those generated in the null model.\(^\text{11}\)

We also consider the null of a SV model with a constant mean. This provides a benchmark SV specification without time-varying expected returns, allowing us to discriminate between timing based solely on volatility and timing based jointly on expected returns and volatility. This is important because SV, as discussed above, can have both direct and
indirect effects on the optimal portfolios, the former through volatility timing, and the latter via time-varying signal-to-noise ratios. As in the previous case, we simulate returns and then re-estimate models for each of the 500 simulated series using the same procedures used on real data.

II. Empirical Results

We use monthly log-excess returns from the value-weighted NYSE-AMEX-NASDAQ index (including distributions) minus the 1-month Treasury bill rate from Ibbotson and Associates over the period 1927 to 2007:

\[ r_{t+1} = \ln \left( \frac{(P_{t+1} + D_{t+1})/P_t}{1 + r_f^t} \right). \]  

(14)

Here \( D_{t+1} \) are the dividends obtained during period \( t \), and \( P_{t+1} \) is the ex-dividend price. The dividend yield regressor is constructed as the natural logarithm of the sum of the previous twelve months of dividends (from CRSP) divided by the current price, as in Cochrane (2008). The net payout measure is from Boudoukh et al. (2007), which starts in 1927 and ends in 2007. This measure includes both dividends and net equity repurchases (repurchases minus issuances) over the last twelve months, scaled by the current price, and can be obtained from the authors' website.

The choice of monthly time horizon is motivated by the past literature. Since SV movements are often high frequency, monthly data will be more informative than lower frequencies such as annual. In addition, we analyze optimal portfolio allocation problems that have typically been analyzed using data at the monthly frequency, see Kandel and
Stambaugh (1996), Stambaugh (1999), or Barberis (2000). Figure 1 provides time series of the regressors, OLS regression estimates, and t-statistics. The top panel indicates that net payouts are consistently higher than cash dividends over the sample period but the two are broadly similar. Repurchases used to be quite rare but have increased since the 1980s. Overall, the net payout variable is less persistent than the cash dividend yield because firms deliberately smooth cash dividends (Brav et al., 2005), while the net payout variable contains two additional sources of variation through issuances and repurchases.

The middle and bottom panels of Figure 1 provide OLS regression coefficient estimates and \( t \)-statistics for the null hypothesis of \( H_0 : \beta = 0 \), sequentially through the sample. The regression estimates and \( t \)-statistics are cumulative up to time \( t \), adding new datapoints as they become available (and keeping all old datapoints). The regression coefficients and the associated \( t \)-statistics are consistently higher for net payout yield than for cash dividends over the sample period. One source of the increased significance is the higher frequency movements in net payouts. The \( t \)-statistics change significantly over time, falling significantly in the late 1990s and increasing back to prior levels by about 2003. This is consistent with the findings in Boudoukh et al. (2007).

Our Bayesian investor uses standard conjugate priors described in the internet appendix, which are calibrated as follows. First, we train the priors from 1927 to 1929 by regressing excess market returns on a constant and the predictor. This procedure can be viewed as assuming non-informative priors, and then updating using the likelihood function using the training sample, which results in a proper conjugate prior distribution. For the SV parameters, we run AR(1) regressions using squared residuals on lagged squared residuals.
The initial volatility states are drawn from the distribution of the regression volatility estimate over the training period. For time-varying coefficient models, the return and payout ratio regressions are insufficient to pin down the priors so we place some structure on the parameters governing the evolution of $\beta_t$. The prior on $\beta_\beta$ is calibrated to have mean 0.95, with standard deviation 0.1 implying a high autocorrelation in $\beta_t$. The conditional means and variances are equal for all models for the first out-of-sample dates. This training sample approach is commonly used to generate ‘objective’ priors.

A. Sequential parameter estimates and predictive returns

A.1. Sequential parameter estimates

Our approach generates parameter posteriors for each time period, for each model specification, and for both predictors. This section discusses the constant volatility (CV) model estimated using the net payout yield measure. Results for the other models/datasets are given in the internet appendix. Figure 2 displays sequential summaries of the posterior distribution, reporting for each parameter the posterior mean (solid line) and a (1, 99)\% posterior probability interval at each point in time (the grey shaded area). The interval limits are not necessarily symmetric around the mean, because the posteriors are exact finite sample distributions.$^{12}$

There are three notable features in Figure 2. First, the speed of learning varies across parameters. Learning is far slower for expected return parameters, $\alpha$ and $\beta$, and parameters controlling the mean and speed of mean-reversion of the dividend-yield ($\alpha_x$ and $\beta_x$) than for
the volatility and correlation parameters. Although standard asymptotics imply a common
learning speed, there are differential learning speeds in finite samples. For the expected
return parameters, there is still a significant amount of parameter uncertainty even after
30 or 40 years, highlighting how difficult it is to learn expected return parameters due to
the low signal-to-noise ratio and the persistence of the yield measure. The slow learning
and substantial parameter uncertainty explains why estimation risk might be important
for portfolio allocation.

Second, parameter estimates drift over time. This is especially true for the volatility
parameters, which occurs because the CV model has a constant volatility parameter, but
is also true for the expected return parameters as estimates of $\alpha$ and $\beta$ slowly decline for
the last 20 years of the sample. The estimates of $\beta_x$ trend slightly upwards, although
the movement is not large.\textsuperscript{13} This ‘drifting’ of fixed parameter estimates is not necessarily
surprising, because the posterior distribution and posterior moments are martingales. Thus,
the shocks to quantities such as $E(\alpha|y^t)$ are permanent and will not mean-revert.

Third, there is evidence for misspecification. For example, $E(\sigma|y^t)$ declines substan-
tially over time, due to omitted SV and the fact that the beginning of the sample has
particularly high volatility. Since nearly all studies begin in 1927, discarding this data and
starting post-war would create a serious sample selection bias. There are significant shifts
in the mean parameters in the net payout yield equation, $\alpha_x$ and $\beta_x$, in the late 1970s and
early 1980s. Interestingly, Boudoukh et al. (2007) formally test for a structural break and
find no evidence, although we use monthly data, whereas they test using annual data. The
source of the variation can be found in the time series of the regressors in Figure 1, where in
the early 1980s the net payout variable has a series of high frequency shocks. As discussed in the internet appendix, this is consistent with omitted SV in the dividend yield process. The results from the other models are similar to the CV model, and are discussed in detail in the internet appendix.

One useful way to summarize the differences across models and regressors is to compare the predictability coefficients, i.e., the $\beta$’s in equation (2). Figure 3 shows that the estimated predictability coefficients differ across models for both datasets. The differences are quite large in the beginning of the sample, especially between the coefficients from constant models and those with SV and time-varying regression coefficients. For the dividend yield data, the SV, SV-DC, and CV parameter estimates are quite similar in the latter part of the sample. For the net payout yield data, there are relatively large differences between the estimates over the entire sample period. The SV models have consistently lower coefficients than the constant volatility models, with the SV coefficients almost half the size of the CV coefficients at points in the 1980s and 1990s. These differences are consistent with a time-varying signal-to-noise ratio. Overall, the models will have varying degrees of statistical evidence in favor of return predictability. The internet appendix provides formal Bayesian hypothesis tests of predictability.

A.2. Predictive returns

Equation (13) provides the one-month ahead predictive return distribution. To see the differences across models, Figure 4 plots predictive expected excess returns and volatilities for the dividend-yield dataset. There are a number of notable results. First, the models
with expected return predictability can have very different predictive expected returns, which is due to the volatility specification. For example, the predictive expected returns in the SV model are higher than those in the CV model for nearly the entire sample, a result driven by the different signal-to-noise ratios in the models. Thus the presence or absence of time-varying volatility does impact expected return estimates. Second, the drifting coefficient models generate very volatile expected return estimates, which is driven by the difficulty in estimating a time-varying regression coefficient with cash dividend yield, a weak signal. Finally, the predictive volatilities are dramatically different between the SV and CV specifications. While not surprising, this clearly shows the problems with CV specifications.

For each period, we also sequentially compute measures of fat tails, such as the predictive (conditional) kurtosis. The predictive distribution of the baseline CV model with constant volatility has an average (through the sample) excess kurtosis of 0.02, starting at about 0.15 and declining to less than 0.01 at the end of the sample. This slight excess kurtosis and its decline are due solely to parameter uncertainty, since there is no time-varying volatility in the CV model. Clearly the constant volatility models are incapable of generating any fat tails in the conditional distribution.

For the SV model, the average predictive excess kurtosis is 8.75, starting around 15 in the beginning of the sample and declining to about 6 at the end of the sample. The initial higher kurtosis is due to the interaction between parameter uncertainty and SV, as parameter uncertainty in the volatility equation fattens the tails of the volatility distribution, which, in turn, fattens the tails of predictive returns. This is consistent with previous research.
showing that SV models generate significant kurtosis in the monthly frequency (see Das and Sundaram (1999)). As mentioned earlier, the skewness of returns is modest and not statistically significant at monthly horizons. In the internet appendix, we provide additional results comparing the tail behavior of the models to those observed in the data. Overall, the SV model are capable of generating more realistic tail behavior than the CV models.

We also analyze the term structure of predictive volatilities. A provocative recent paper by Pastor and Stambaugh (2012) shows that predictive return volatility does not necessarily fall as the time-horizon increases, in contrast to popular belief. Denoting $r_{t,t+k}$ as the return from time $t$ to $t + k$, they find that $\text{var}(r_{t,t+k}|y^t)$ may increase as a function of $k$, due to parameter and state variable uncertainty. They document this feature in the context of a “predictive system,” in which the relationship between the predictor variables and expected returns is imperfect but the conditional volatility of returns is constant.

We perform the same experiments as Pastor and Stambaugh (2012) for our model specifications, which are not formal imperfect predictive systems. The results are in Figure 5. The results indicate that a number of our models generate increasing predictive volatility. Those with drifting coefficients are most similar to those in Pastor and Stambaugh and have a striking increase in the predictive volatility as the horizon increases. This is true of both CV and SV specifications with drifting coefficients. The SV model, when volatility is at its long-run mean, generates a slight upward slope in the predictive variance with parameter uncertainty, but a slight decrease conditional on fixed parameters. These results indicate that the increasing predictive volatility as a function of time-horizon is a far more general phenomenon, as it appears in models other than those considered in Pastor and Stambaugh.
A.3. Model comparison

As mentioned earlier, the particle filtering approach provides estimates of the cumulative marginal likelihood,

\[ p(y_t|\mathcal{M}_i) = \prod_{s=1}^{t-1} p(y_{s+1}|y^s, \mathcal{M}_i), \]

where

\[ p(y_{t+1}|y^t, \mathcal{M}_i) = \int p(y_{t+1}|\mathcal{L}_t, \theta, y^t, \mathcal{M}_j) \, p(\mathcal{L}_t, \theta|y^t, \mathcal{M}_j) \, d(\mathcal{L}_t, \theta). \] (15)

This accounts for all of the state and parameter uncertainty, and can be contrasted with standard maximum likelihood based model comparison that conditions on parameter and state estimates. By integrating out the uncertainty in states and parameters, the Bayesian approach punishes needlessly complicated models and is often referred to as a “fully-automatic Occam’s razor” (Smith and Spiegelhalter (1980)).

Figure 6 reports posterior log-likelihoods, relative to the SV model, \( \ln p(y_t|\mathcal{M}_i) - \ln p(y_t|\mathcal{M}_\text{SV}) \), throughout the sample. This metric provides a relative comparison of how well an observation, \( y_t \), conforms to its predictive distribution. Metrics that use the entire predictive distribution of returns are useful for data with time-varying volatility and non-normalities. These metrics are fully out-of-sample, and the comparisons do not assume that one of the models is the “true” model, certainly a counterfactual assumption.

There are three noticeable features. First, both datasets eventually and strongly favor models with stochastic volatility. This is not a surprise, since time-varying volatility is
such a strong feature of equity returns. Constant volatility models have two problems: they cannot capture the time-variation in volatility and have very thin tails, as mentioned above. Second, different data sources favor different models. The cash dividend data suggests a SV model with constant dividend predictability, while net payout yield data favors a model with both stochastic volatility and drifting coefficients. This is intuitively sensible, since the better signal-to-noise ratio for expected returns when using net payout yield implies that it is possible to more accurately estimate the drifting coefficient and its underlying parameters. Below, we compare these results with the out-of-sample portfolio results, an alternative predictive measure of model performance.

Third, the shocks to the net payout yield in the early 1980s that are apparent in Figure 1, rapidly shift the relative likelihood towards models with stochastic volatility. These shocks happen around the enactment of SEC Rule 10b-18, which provided companies a safe harbor against share repurchase related lawsuits, and induced more share repurchases going forward. Mechanically, the change in relative likelihoods occurs because these observations are ex-ante unlikely under constant volatility, but far more likely under models with stochastic volatility.

B. Portfolio Results

Tables I (cash dividends) and II (net payout yield) summarize the CEs and Sharpe ratios for the out-of-sample portfolio returns for each model, dataset, risk aversion, and investment horizon. Table III reports the mean, standard deviation, skewness, and excess kurtosis statistic for the out-of-sample returns for each time horizon and for \( \gamma = 4 \). We
consider two null models to benchmark significance, a model with constant means and variances and a model with constant means and stochastic volatility.

B.1. Models using dividend yields

The first results in Table I indicate that none of the constant volatility models provide statistically significant improvements in out-of-sample portfolio returns. Interestingly, among these poor performing models, the ‘best’ model is actually the CV-CM model, a model with constant means and variances accounting for parameter uncertainty. This model delivers CE yields of around 4.75% to 5% for $\gamma = 4$.\textsuperscript{14} Models incorporating cash dividend yields as a regressor perform noticeably worse than the constant/mean and volatility model. For example, at the one-month horizon, the CV model (constant volatility with cash-dividend yield predictability) generates a CE yield of -7%. The two models ignoring parameter uncertainty, the CV-OLS and CV-rolling OLS perform particularly poorly, quantifying the importance of parameter uncertainty, especially at short horizons. There is a modest improvement for some of the longer horizon cases, but none of the improvements are statistically significant.

These results are completely consistent Goyal and Welch (2008). In fact, the results are even stronger as the CV model accounts for parameter uncertainty whereas Goyal and Welch do not. In every case, out-of-sample returns incorporating expected return predictability using the traditional cash dividend-yield measure result in worse performance than a constant mean and volatility specification. Thus, even if you are Bayesian and
account for parameter uncertainty, there is no statistical or economic evidence for out-of-sample gains for models with constant volatility.

The results in panel A of Table III provide additional insights regarding the poor performance, showing that constant volatility models with cash dividend yields generate extreme negative skewness and excess kurtosis. Intuitively, this occurs because the optimal portfolios in these models do not admit the possibility of fluctuating volatility (and therefore substantively fat-tailed return distributions), and thus the out-of-sample portfolio returns during high volatility periods can be very large, leading to excess kurtosis. The CV-rolling OLS specification generates extremely high out-of-sample volatility, which generates the negative CE yields.

Turning to the SV specifications, the SV-CM model incorporating time-varying volatility and a constant mean shows noticeably higher CEs and Sharpe ratios, but the increases are statistically insignificant in all cases except the short horizon Sharpe ratios, which are significant at the 10% level. The effect of stochastic volatility is most clear from the portfolio return statistics in Table III. Compared to the CV-CM model, the SV-CM model has noticeable better skewness (-0.56 compared to -1.3) and lower excess kurtosis (2.84 compared to 9.40) for the one-month horizon. The longer horizon portfolio statistics also improve, though not by as much.

Portfolio returns in SV models have lower kurtosis because persistent time-varying volatility tempers variation in portfolio volatility, as portfolio weights are lower in high volatility periods and potentially increasing position in low volatility environments. Additionally, since large negative returns have historically occurred in periods of high volatility,
the realized skewness of the portfolio returns are lower than the raw historical returns, since the investor reduces their holdings in high volatility periods. Thus, relative to the standard predictability model, SV improves performance along all dimensions: higher Sharpe ratios, less negative skewness, and lower kurtosis.\textsuperscript{15}

However, despite the improvements generated by the addition of time-varying volatility, the SV portfolio returns are still not statistically significant relative to either of the null models. It is not easy to generate statistical significance against a benchmark of constant means and variance in finite samples. This is an important finding because it indicates that there is no statistical evidence for volatility timing, assuming a constant mean. As mentioned earlier, there is no evidence in the literature for pure volatility timing over long time periods, although there is some evidence for a combination of volatility and correlation timing in the context of multiple asset portfolio problems (see Fleming, Kirby, and Ostdiek (2001, 2003)) subject to the caveats mentioned earlier.

Adding the dividend yield as a predictor, the full SV model (time-varying means and variances) does generate uniform statistically significant improvements, where significance is at the 5% level and holds against both null models. This is our first evidence that an ensemble of factors improves performance, and that there is an interaction between time-varying expected returns and time-varying volatility, as both features are needed to generate statistical significance. As discussed earlier, this is consistent with the importance of a time-varying signal-to-noise ratio for measuring time-varying expected returns.

Compared to the CV-CM model that also incorporates parameter uncertainty, the CEs in the SV model are more than 1.5% higher per year and the monthly Sharpe ratios increase...
from 0.089 to 0.143 for the $\gamma = 4$ case. Compared to the SV-CM model, predictable expected returns increase the CEIs by about 1% per year and the Sharpe ratios increase from 0.132 to 0.143. The addition of expected return predictability using the dividend yield improves skewness and decreases volatility in a stochastic volatility model, with only a minor reduction in average return and a mild increase in kurtosis.

At all horizons, the returns generated by the SV model are always statistically significant against both null models. This uniform evidence is important to insure the results aren’t specific to short horizon problems. The portfolio returns generated by the full SV model generate a slight positive skew and only modest excess kurtosis. Estimation risk is also important in the SV model, as ignoring parameter and state uncertainty generally hurts out-of-sample performance. Overall, we find strong evidence for statistically significant portfolio improvements at all horizons, using an ensemble of factors.

The models with drifting coefficients perform extremely poorly with constant volatility and better with SV, but are only significant for short horizon investors. This result should not be surprising, given the weak level of predictability and the additional parameters present in the DC models. As discussed earlier, with uncertain parameters, drifting coefficients models generate a strong increasing term structure of predictive volatility as in Pastor and Stambaugh (2012). We also note that both measures of model performance, the model probabilities and out-of-sample portfolios, identify the SV model as the best performing specification. Thus, the statistical and economic metrics coincide.

Some additional intuition for the relative performance can be seen in Figure 7, which shows the term structure of portfolio weights on a number of different dates, for the cumula-
tive OLS model (CV-OLS) and the Bayesian models, using the dividend yield as predictor. The different models do generate very different long-horizon moments and return distributions, due to the time-varying state variables, estimation risk, and predictability. The differences arise because parameter uncertainty and mean-reversion (in expected returns and volatilities) impacts predictive moments differently as a function of investment horizon, as was discussed above.

The key difference between the CV-OLS and our CV-CM benchmark model is the effect of parameter uncertainty. At short horizons the CV-OLS and the CV weights are quite similar, but at longer horizons the CV weight tends to be below the cumulative OLS weight, reflecting the fact that parameter uncertainty effectively increases the volatility of the predictive market returns (as seen in Figure 5). The difference tends to decrease as time progresses and more information arrives, reducing the importance of parameter uncertainty. We also see that the models with stochastic volatility tend to have higher portfolio weights. This happens because the initial high variance of the 1930s is only slowly unlearned by the constant variance models, resulting in lower portfolio weights for much of the sample period. This underscores the importance of learning in a portfolio setting. The rolling regression portfolio weights are extremely variable and uninformative, with huge portfolio turnover, and for clarity we do not separately show them.\textsuperscript{17}
B.2. Models using net payout yields

The portfolio results for the net payout predictor for each model are in Table II and Panel B of Table III. We find uniformly statistically significant evidence for performance improvement for the SV specification using net payout yields, as the out-of-sample CE yields and Sharpe ratios are significant for every risk aversion and horizon combination. The statistical significance is relative to both null models, which indicates that it is the combination of time-varying volatility and expected return predictability that generates the significance.

In terms of economic significance, the CE yields for the short horizon SV model portfolios are 6.85% (5.71%) for $\gamma = 4$ ($\gamma = 6$), respectively. This can be compared with a CE yield of 4.77% (4.38%) in the constant mean and variance case (from Table I). Thus, expected return and volatility timing increases CE returns by 1.5% to 2% per year, which, when compounded over a long sample generates a dramatic, economically significant increase in realized utility. The monthly Sharpe ratios improve from 0.089 to roughly 0.155, an improvement of more than 70%.

The return statistics in Table II show strong improvement when compared to the CV specification at the one-month horizon, documenting the importance of time-varying volatility in controlling tail behavior. Thus, there is strong statistical and economic evidence for the ability to time the investment set when using an ensemble of factors. The SV performance using net payout yields is higher than those for the dividend yield in every time-horizon/risk aversion combination.

For the constant volatility models, none of the CE yields are statistically significant
against either benchmark model, and the Sharpe ratios are insignificant at the monthly horizon for both risk aversions. For short time-horizons, the bottom panel in Table III shows that these models (excluding the CV-rolling OLS case) generate low average returns and extremely negative skewness and very high kurtosis. The rolling regression case generates extremely high volatility. Thus, at the one-month horizon, none of the constant volatility models generate any statistical significance.

At longer horizons, many of the constant volatility specifications are statistically significant when performance is measured by the Sharpe ratio, but always insignificant when measured by the CE yield. This curious result can be reconciled by the skewness and kurtosis statistics, both of which are ignored when computing Sharpe ratios. For example for the CV specification, the skewness is -4.2 and kurtosis is 70. The CEs are insignificant for the constant volatility specifications because they take into account the higher moments due to the power utility specification. At longer horizons, the skewness improves for the constant volatility models, but the kurtosis is still generally greater than 10, which is heavily penalized in the CE metric, but not in the Sharpe ratio metric.

The drifting coefficients specification with time-varying volatility generates statistically significant gains in every risk-aversion and investment horizon case. Even though the drifting coefficients model has three additional parameters, the increased signal-to-noise ratio of the net payout measure combined with stochastic volatility is sufficient to accurately estimate the drifting coefficient. Although significant across both metrics and for all time-horizon/risk-aversion cases, the SV model performs better in every case. Thus, there is a small, statistically insignificant loss from adding a drifting coefficients specification.
In terms of portfolio return statistics, Table III again documents the important of stochastic volatility, as the kurtosis in the SV models is dramatically lower than the constant volatility specifications. Assuming stochastic volatility and compared to the cash dividend-yield case, net payout yields generate about 2% higher average returns and volatility per year, which translates into CE yields that are about 0.5% to 1% higher and Sharpe ratios that are higher by approximately 0.1 to 0.3. This improvement is due to the greater predictive ability of the net payout measure. Additional, detailed statistics on the portfolio weights are available in the internet appendix.

Overall, the results indicate that statistically and economically significant gains are generated for every time horizon and risk aversion case provided that the investor (a) incorporates stochastic volatility, (b) incorporates expected return predictability using the net payout measure, and (c) accounts for parameter uncertainty when forming optimal portfolios. Together, this points toward the importance of an ensemble of factors that are required to generated statistically significant out-of-sample portfolio improvements from predictability models. Expected return timing alone, even when accounting for parameter uncertainty, does not generate significant gains.

III. Conclusions

This paper studies the problem of an investor who learns about the investment set over time with the goal of forming optimal portfolios, using various models that incorporate payout yield-based expected return predictors and stochastic volatility. The learning problem is Bayesian and is solved by using particle filters to generate samples from the posterior
distribution of parameters, states, and models at each time period. After learning, our investor forms optimal portfolios by maximizing expected utility.

We reconcile seemingly contradictory evidence in the literature regarding the economic and statistical evidence for portfolio improvements generated by incorporating predictability. We find that an ensemble of factors that capture first-order important features of returns are needed to generate statistically significant portfolio improvements. In terms of models, it is important to incorporate stochastic volatility and time-varying expected returns, where the time-variation in expected returns is captured by the net payout ratio from Boudoukh et al. (2007). It is also important to account for parameter uncertainty when forming optimal portfolios. We corroborate the findings in Goyal and Welch (2008) that simple predictability models with constant volatility do not lead to statistically significant out-of-sample portfolio gains, at least not for the set of predictors that we consider.

We also study the problem of sequential parameter inference and model monitoring, tracking relative model performance over time. We find strong time-variation in the investor’s beliefs in parameters and over different model specifications. We find a strong agreement between economic metrics of model performance (out-of-sample returns) and statistical metrics of model performance. We also connect our results and models to the recent work by Pastor and Stambaugh (2009, 2012) on predictive systems and find that some of the specifications that we consider also have increasing volatility at longer horizons, even though the models are not necessarily predictive systems. These results suggest that the Pastor and Stambaugh (2012) result may be far more general than their specific predictive systems model.
There are a number of important directions in which the analysis can be extended. While we document statistically significant improvements in optimal portfolio performance, it should be possible to further improve the performance by allowing for multiple predictor variables, more general model specifications, and by incorporating economic restrictions as in Koijen and Van Binsbergen (2010). It would also be interesting to study optimal portfolios with alternative preferences that take into account a preference for early resolution of uncertainty, especially with model and parameter uncertainty.
The Bellman equation generated by the fully dynamic problem is high-dimensional. Essentially, each unknown state and parameter has sufficient statistics, and thus the dimensionality of the Bellman equation is roughly equal to twice the number of unknown parameters and states, on the order of 25 dimensions for even the simplest models. Solving this is not feasible with current computing capabilities.

Although our investor is Bayesian, there are no methodological problems evaluating the out-of-sample returns generated by a Bayesian investor using classical statistical techniques. We thank the Associate Editor and a referee for suggesting this experiment.


This significantly simplifies implementation, as the mixture approximation of Kim, Shephard, and Chib (1997) can be used in econometric implementation. The leverage effect is often motivated by negative skewness in equity returns: e.g., at a daily frequency, the skewness of aggregate equity is typically about -2 (see Andersen, Benzoni, and Lund (2002)). The skewness is much less significant at monthly frequencies, roughly -0.49, and is not statistically different from zero. We estimated a specification incorporating a leverage effect using the full-sample of returns, and the point estimate was only $-0.11$, which is much smaller (in absolute value) than typically found at the daily frequency (e.g., Eraker, Johannes, and Polson (2003) and Jacquier, Polson, and Rossi (2004) find values around -0.5).

We did consider an extension with correlated volatility shocks, which captures the fact that the aggregate dividend growth and equity return volatility are significantly correlated. The out-of-sample portfolio results were similar to the other stochastic volatility specifications. We thank the referee for suggesting the specification and the exercise.
Koijen and Van Binsbergen’s (2010) approach introduces non-linear parameter restrictions related to present values via a Campbell and Shiller (1988) log-linearization, assuming underlying shocks have constant volatility. They expand around stationary means, assuming the conditional variances are constant. This approach is difficult to implement sequentially. Parameters used in the approximations, such as stationary means, are unknown. Additionally, the non-linear parameter constraints significantly complicate Bayesian inference, as the models are no longer conjugate.

Previous versions of the paper considered horizons up to 10 years, with similar results.

There are well known problems that can arise regarding the existence of expected utility with Bayesian learning with power utility. This is due to the t-distributed predictive distribution of returns, which implies that expected utility can be infinite since the t-distribution’s moment generating function does not exist (see, e.g., Kandel and Stambaugh (1996)). This result is not a generic result, but is rather caused by the standard conjugate inverse gamma prior. For example, expected power utility is finite if the volatility parameter, $\sigma$, is bounded at any finite value with a truncated inverse gamma prior. This was recently noted in Bakshi and Skoulakis (2010) in a different setting. To allow for shorting and portfolio weights greater than 1, we bound the monthly return distribution between -100% and 100%. Empirically, these bounds are never hit in our simulations.

An earlier version of this paper also considered optimal portfolios generated by model averaging, taking into account the fact that there are multiple models.

This is extremely computationally intensive. Estimating each of the models with latent variables (drifting coefficients or stochastic volatility models) and forming portfolios takes roughly 1 day on a desktop machine. We run 500 simulations for 8 models for both the dividend-yield and payout-yield data. To perform this experiment, we used a large scale supercomputing cluster, which after efficiently programmed, took almost 6 weeks of cluster computing time.

We only consider one-sided tests for improved performance. The difference between statistically equal or worse performance is not important for our purposes.

Posterior probability intervals (also known as ‘credible intervals’) represent the probability that a
parameter falls within a given region of the parameter space, given the observed data. In Figure 2 the 
(1.99)% posterior probability interval represents the compact region of the parameter space for which there
is a 1% probability that the parameter is higher than the region’s upper bound, and a 1% probability that it is lower than the lower bound. Posterior probability intervals should therefore not be interpreted the same way as confidence intervals in classical statistics.

13 One corroborating piece of evidence is in Brav et al. (2005), who present evidence that the speed of mean reversion for dividends has slowed in the last 50 years, making dividend yields more persistent.

14 Note that the long-horizon CE yields in the constant means models are different from the 1-month horizon. The reason is that the monthly portfolio weights update each month whereas the long-horizon portfolio weights update annually.

15 Not surprisingly, as discussed in the internet appendix, the portfolio weights in the SV models (for both dividend yield and net payout yield) are more negatively correlated with estimates of volatility than the constant volatility models. Since volatility is persistent, this in part explains a portion of the performance improvement in the SV models. The SV models also have higher average portfolio weights than the CV models.

16 The CE yields and Sharpe ratios for the SV model ignoring parameter and state uncertainty can fall significantly. For example, for the case $\gamma = 4$, the one-month CE yields fall to 4.68% and 4.44% for the dividend-yield and net payout measures, respectively, roughly 2% lower than the out-of-sample returns accounting for estimation risk (results not separately reported).

17 We report additional statistics regarding the portfolio weights in the internet appendix.

42
REFERENCES


Table I: Portfolio Returns: Dividend Yield Data.
This table shows out-of-sample portfolio returns using the dividend yield as the predictor, for one month, one year and two year investment horizons. Investors have power utility with risk aversion parameter \( \gamma \), and allocate their wealth between the market portfolio of stocks and a risk-free one-period bond. The certainty equivalent returns in Panel A represent the annualized risk-free return that gives the investor the same utility as the risky portfolio strategy. Panel B shows monthly Sharpe ratios. CM stands for a model with constant mean (i.e. no predictability), and CV and SV stand for constant and stochastic volatility, respectively. Hence, CV-CM represents a model with constant mean and constant volatility of returns. DC means drifting coefficients and represents models where the coefficient on net payout is allowed to vary over time. CV-OLS uses the OLS point estimates of equation (1), with data up to time \( t \). CV-rolling OLS uses a 10-year rolling regression model to form portfolios. * and ** indicate that the result is significant at the 10% and 5% level, respectively, based on 500 simulated datasets with constant mean and volatility. † and ‡ indicate that the result is significant at the 10% and 5% level, respectively, based on 500 simulated datasets with constant mean and stochastic volatility.

<table>
<thead>
<tr>
<th>Panel A: Certainty Equivalent returns (in % per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \gamma = 4 )</td>
</tr>
<tr>
<td>( 1m )</td>
</tr>
<tr>
<td><strong>Constant Volatility models</strong></td>
</tr>
<tr>
<td>CV-CM</td>
</tr>
<tr>
<td>CV-OLS</td>
</tr>
<tr>
<td>CV</td>
</tr>
<tr>
<td>CV-DC</td>
</tr>
</tbody>
</table>

| **Stochastic Volatility models** |
| SV-CM | 5.52 | 5.92 | 5.94 | 4.89 | 5.14 | 5.14 |
| SV | 6.43**†† | 6.51**†† | 6.53**†† | 5.52**†† | 5.64**†† | 5.64**†† |
| SV-DC | 6.56**†† | 5.85 | 5.68 | 5.64**†† | 5.17 | 5.02 |

<table>
<thead>
<tr>
<th>Panel B: Sharpe ratios (monthly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \gamma = 4 )</td>
</tr>
<tr>
<td>( 1m )</td>
</tr>
<tr>
<td><strong>Constant Volatility models</strong></td>
</tr>
<tr>
<td>CV-CM</td>
</tr>
<tr>
<td>CV-OLS</td>
</tr>
<tr>
<td>CV</td>
</tr>
<tr>
<td>CV-DC</td>
</tr>
</tbody>
</table>

| **Stochastic Volatility models** |
| SV-CM | 0.132*† | 0.125 | 0.125 | 0.133*† | 0.124 | 0.124 |
| SV | 0.143***†† | 0.144**†† | 0.143**†† | 0.143***†† | 0.146**†† | 0.145**†† |
| SV-DC | 0.143***†† | 0.135* | 0.135* | 0.144**†† | 0.138*† | 0.136* |
Panel A: Certainty Equivalent returns (in % per annum)

<table>
<thead>
<tr>
<th></th>
<th>γ = 4</th>
<th></th>
<th></th>
<th>γ = 6</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1m</td>
<td>1y</td>
<td>2y</td>
<td>1m</td>
<td>1y</td>
<td>2y</td>
</tr>
<tr>
<td>Constant Volatility models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV-OLS</td>
<td>1.44</td>
<td>6.10</td>
<td>6.21</td>
<td>2.34</td>
<td>5.27</td>
<td>5.35</td>
</tr>
<tr>
<td>CV-rolling OLS</td>
<td>-14.85</td>
<td>-11.32</td>
<td>-11.23</td>
<td>-63.30</td>
<td>-61.95</td>
<td>-61.98</td>
</tr>
<tr>
<td>CV</td>
<td>3.03</td>
<td>6.07</td>
<td>6.19</td>
<td>3.29</td>
<td>5.25</td>
<td>5.33</td>
</tr>
<tr>
<td>CV-DC</td>
<td>0.77</td>
<td>6.19</td>
<td>6.27</td>
<td>2.00</td>
<td>5.33</td>
<td>5.40</td>
</tr>
<tr>
<td>Stochastic Volatility models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV</td>
<td>6.85**</td>
<td>7.50**</td>
<td>7.67**</td>
<td>5.71**</td>
<td>6.29**</td>
<td>6.42**</td>
</tr>
<tr>
<td>SV-DC</td>
<td>6.23**</td>
<td>7.22**</td>
<td>7.36**</td>
<td>5.36**</td>
<td>6.08**</td>
<td>6.22**</td>
</tr>
</tbody>
</table>

Panel B: Sharpe ratios (monthly)

<table>
<thead>
<tr>
<th></th>
<th>γ = 4</th>
<th></th>
<th></th>
<th>γ = 6</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1m</td>
<td>1y</td>
<td>2y</td>
<td>1m</td>
<td>1y</td>
<td>2y</td>
</tr>
<tr>
<td>Constant Volatility models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV-OLS</td>
<td>0.011</td>
<td>0.150**</td>
<td>0.151**</td>
<td>0.011</td>
<td>0.149**</td>
<td>0.151**</td>
</tr>
<tr>
<td>CV-rolling OLS</td>
<td>0.118</td>
<td>0.143**</td>
<td>0.146**</td>
<td>0.113</td>
<td>0.132*</td>
<td>0.136**</td>
</tr>
<tr>
<td>CV</td>
<td>0.045</td>
<td>0.155**</td>
<td>0.156**</td>
<td>0.045</td>
<td>0.154**</td>
<td>0.155**</td>
</tr>
<tr>
<td>CV-DC</td>
<td>0.044</td>
<td>0.156**</td>
<td>0.156**</td>
<td>0.042</td>
<td>0.155**</td>
<td>0.156**</td>
</tr>
<tr>
<td>Stochastic Volatility models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV</td>
<td>0.155**</td>
<td>0.172**</td>
<td>0.172**</td>
<td>0.154**</td>
<td>0.172**</td>
<td>0.171**</td>
</tr>
<tr>
<td>SV-DC</td>
<td>0.144**</td>
<td>0.166**</td>
<td>0.167**</td>
<td>0.145**</td>
<td>0.166**</td>
<td>0.166**</td>
</tr>
</tbody>
</table>

Table II: Portfolio Returns: Net Payout Yield Data.

This table shows out-of-sample portfolio returns using the net payout yield as the predictor, for one month, one year and two year investment horizons. Investors have power utility with risk aversion parameter γ, and allocate their wealth between the market portfolio of stocks and a risk-free one-period bond. The certainty equivalent returns in Panel A represent the annualized risk-free return that gives the investor the same utility as the risky portfolio strategy. Panel B shows monthly Sharpe ratios. CM stands for a model with constant mean (i.e. no predictability), and CV and SV stand for constant and stochastic volatility, respectively. Hence, CV-CM represents a model with constant mean and constant volatility of returns. DC means drifting coefficients and represents models where the coefficient on net payout is allowed to vary over time. CV-OLS uses the OLS point estimates of equation (1), with data up to time t. CV-rolling OLS uses a 10-year rolling regression model to form portfolios. * and ** indicate that the result is significant at the 10% and 5% level, respectively, based on 500 simulated datasets with constant mean and volatility. † and †† indicate that the result is significant at the 10% and 5% level, respectively, based on 500 simulated datasets with constant mean and stochastic volatility.
Table III: Portfolio Return Statistics.
This table shows the first four moments (mean, standard deviation, skewness and excess kurtosis) of annualized out-of-sample portfolio returns across one month, one year and two year investment horizons. Panel A reports the statistics for the portfolio where the investor uses the cash dividend yield as the predictor variable, and Panel B shows the statistics for the net payout yield as predictor. Investors have power utility with risk aversion parameter $\gamma = 4$, and allocate their wealth between the market portfolio of stocks and a risk-free one-period bond. The models are as described in Table I.
Figure 1: Sequential OLS parameter estimates.
The top panel plots the time-series of the two predictors, dividend and net payout yield. The middle panel graphs OLS regression coefficients, \( \beta \), of the univariate predictability regression:

\[ r_t = \alpha + \beta x_{t-1} + \sigma \epsilon_t, \]

where \( r_t \) is the excess market return, the predictor variable \( x_t \) is either the dividend or net payout yield, and \( \epsilon_t \) is distributed \( \mathcal{N}(0, 1) \). We use the entire time series of excess returns, \( r_t \) up to time \( t \) to estimate \( \beta \). The bottom panel shows the t-statistics, \( t(\beta) \). We use the Amihud-Hurvich (2004) method to adjust for small sample bias.
Sequential parameter estimates for the CV model, 
\[ r_{t+1} = \alpha + \beta x_t + \sigma \varepsilon^r_{t+1} \]
\[ x_{t+1} = \alpha_x + \beta_x x_t + \sigma_x \varepsilon^{x}_{t+1}, \]
where \( r_{t+1} \) is the return on the market portfolio in excess of the risk-free rate from month \( t \) to month \( t + 1 \). The predictor variable, \( x_t \), is the net payout yield of Boudoukh et al. (2007). The shocks \( \varepsilon^r_{t+1} \) and \( \varepsilon^{x}_{t+1} \) are distributed standard Normal with correlation coefficient \( \rho \). Each panel displays the posterior means and (1.99)% posterior probability intervals (the grey shaded area) for each time period. Excess market return volatility, \( \sigma \), is annualized.
Figure 3: Predictability coefficient
Time-series plots of the posterior mean of the predictability coefficient, $\beta$, across models and predictor variables. The top panel shows the coefficients of the four models using dividend yield as the predictor variable, and the bottom panel uses net payout yield as the predictor. CV and SV represent models with expected return predictability and constant volatility (CV) and stochastic volatility (SV), respectively. DC stands for drifting coefficients and represents models where the predictability coefficient is allowed to vary over time. For the DC models we graph the loading on the predictor, $\beta_0 + \beta_t$, from equation (5).
Figure 4: **Predictive excess market returns**

Time-series plots of one-month-ahead predictive excess market returns across models, using dividend yield as the predictor variable. The top plot shows the annualized expected excess market return, and the bottom plot shows the annualized standard deviation.
Figure 5: Predictive volatility
This graph shows the term structure of annualized predictive excess market return volatilities for various models, using the dividend yield as the predictor variable. Each panel represents a different model. The top left plot shows the predictive volatility for the CV model, which has predictability in expected returns, and constant variance. The striped line ignores parameter uncertainty, whereas the solid line includes the effect of parameter and state uncertainty. As a benchmark, the dotted, horizontal line marks the volatility in the CV-CM model, which has no predictability in either expected returns or variances. The top right plot shows the CV-DC model, with a drifting predictability coefficient and constant variance. The middle row of plots show the stochastic volatility (SV) model, which has both expected return and volatility predictability, at the realized volatility state at the last observation in our dataset, (December 2008, left plot), and at the average volatility level (right plot). Similarly, the bottom row shows the SV-DC model with stochastic volatility and a time-varying expected return predictability coefficient, both in December 2008 (left plot) and at the average level of volatility (right plot).
Figure 6: Relative log-likelihoods
This graph shows the time series of the log-likelihood of the CV, CV-DC, and SV-DC models, relative to the SV model. In each period, the likelihoods are calculated using all available data up to that period. The relative log-likelihoods for the dividend yield data are in the top panel, and for the net payout yield data in the bottom panel. CV and SV represent models with expected return predictability and constant volatility (CV) and stochastic volatility (SV), respectively. DC stands for drifting coefficients and represents models where the predictability coefficient is allowed to vary over time.
Figure 7: Optimal portfolio weights by investor horizon: Dividend yield data

Plots of optimal portfolio weights for an investor who allocates wealth between the market portfolio of stocks and a risk-free one-period bond, with an investment horizon spanning from one to ten years. The plots show the optimal weights on the stock portfolio at the beginning of each decade in our sample period, as well as at the final datapoint in our sample (December 2008, bottom-right plot). The investor has power utility with risk aversion $\gamma = 4$, and rebalances annually while accounting for all parameter and state uncertainty. CV and SV represent models with expected return predictability and constant volatility (CV) and stochastic volatility (SV), respectively. DC stands for drifting coefficients and represents models where the predictability coefficient is allowed to vary over time. CV-OLS uses the OLS point estimates of equation (1), with data up to time $t$. 